文档库 最新最全的文档下载
当前位置:文档库 › DDV伺服阀说明书

DDV伺服阀说明书

DDV伺服阀说明书
DDV伺服阀说明书

五大类阀门使用说明书

五大类阀门使用说明书-CAL-FENGHAI.-(YICAI)-Company One1

D3/6/971J(X)蝶阀 使 用 说 明 书

D3/6/971J(X)对夹式蝶阀使用说明书 该系列蝶阀为软密封对夹式,驱动装置通过阀轴带动阀板作0-90゜范围旋转,作起闭和调节动作。 1.压力级:, MPa; 2.使用温度:-15℃---75℃; 3.适用介质:水、蒸汽、天然气、食品、药品、油类。 一、结构特点: 1、结构简单紧凑,90゜范围内旋转起闭迅速、准确; 2、操作扭矩小,省力轻巧; 3、双向密封、泄漏量为零。 二、安装使用注意事项: 1、该系列蝶阀可以安装在任意位置的管道上,客户根据自动控制系统的要求,结合驱动装置进行安装,安装位置应保证使用、维修方便; 2、该系列蝶阀可双向使用无需考虑介质流向; 3、存放应保持干燥,阀板处于微闭状态(约3~5°); 4、安装前应清理阀门内腔,不允许有污物附着。 5、驱动装置具体安装、使用、贮存、保管等注意事项,按相关要求执行。 三、常见故障及排除方法:

Z41H 闸阀 使 用 说 明 书

Z41H 闸阀使用说明书 Z41H闸阀为阀板在阀杆的带动下,沿阀座密封面作升降运动而达到启闭的目的。 1、压力级:, , MPa, , MPa,10 MPa; 2、使用温度:-29℃---425℃ 3、使用介质:水、蒸汽、油品等非腐蚀性介质。 一、结构特点 1、阀体通道为全通径,流体阻力小。 2、介质可从闸阀二侧任意方向流过,不受介质流动方向的限制。 3、全开对密封面受冲蚀性较小,密封性能好。 二、维护保养 1、运输途中的维护 阀门在运输途中应注意要轻装轻卸,以防止法兰密封面磕碰损坏,应将密封面擦干净后再关闭。要确保油漆、铭牌和法兰密封面的完好,现场要作好防雨、防尘工作。 2、保管中的维护 对入库的阀门,要认真擦拭、清洗阀门在运输过程中的积水和灰尘,对容易生锈的加工面、阀杆、密封面应涂上一层防锈剂或贴上一层防锈纸加以保护。阀门进出口通道的密封盖要封好,以免赃物进入。对在运输中损坏、丢失的阀门零件,应及时配齐。 3、阀门安装注意事项

伺服阀使用说明书

伺服阀使用说明书 伺服阀是DEH控制系统中电液转换的关键元件,它可将电调装置发出的控制指令,转变成相应的液压信号,并通过改变进入油动机油缸液流的方向、压力和流量,来达到驱动阀门、控制机组的目的。 1 结构特点 伺服阀是一个由力矩马达、两级液压放大及机械反馈所组成的系统。第一级液压放大是双喷嘴挡板系统;第二级放大是滑阀系统。其基本结构如图1所示。 1.1 力矩马达:一种电气—机械转换器,可产生与电指令信号成比例的旋转运动,用在伺服阀的输入级。力矩马达包括电气线圈、极靴和衔铁等组件。衔铁装在一个薄壁弹簧管上,弹簧管在力矩马达和阀的液压段之间起流体密封作用。衔铁、挡板和反馈杆刚性固接,并由薄壁弹簧管支撑。 1.2 先导级:挡板从弹簧管中间伸出,置于两个喷嘴端面之间,形成左、右两个可变节流孔。衔铁的偏转带动挡板,从而可改变两侧喷嘴的开启,使其产生压差,并作用于与该喷嘴相通的滑阀阀芯端部。 1.3 功率放大级:由一滑阀系统控制输出流量。阀芯在阀套中滑动,阀套上开有环行槽,分别与供油腔P和回油腔T相通。当滑阀处于“零位”时,阀芯被置于阀套的中位;阀芯上的凸肩恰好将进油口和回油口遮盖住。当阀芯受力偏离“零位”向任一侧运动时,导致油液从供油腔P流入一控制腔(A或B),从另一控制腔(B或A)流入回油腔T。阀芯推动反馈杆端部的小球,产生反馈力矩作用在衔铁挡板组件上。当反馈力矩逐渐等于电磁力矩时,衔铁挡板组件被移回到对中的位置。于是,阀芯停留在某一位置。在该位置上,反馈力矩等于输入控制电流产生的电磁力矩,因此,阀芯位置与输入控制电流的大小成正比。

1.4 特点: ●衔铁及挡板均工作在中立位置附近,线性好 ●喷嘴挡板级输出驱动力大 ●阀芯基本处于浮动状态,不易卡住 ●阀的性能不受伺服阀中间参数的影响,阀的性能稳定,抗干扰能力强,零点漂移小 2 工作原理: 当力矩马达没有电信号输入时,衔铁位于极靴气隙中间,平衡永久磁铁的磁性力。当有欲使调节阀动作的电气信号由伺服放大器输入时,力矩马达的线圈中有电流通过,产生一磁场,在磁场作用下,产生偏转力矩,使衔铁旋转,同时带动与之相连的挡板转动,此挡板伸到两个喷嘴中间。在正常稳定工况时,挡板两侧与喷嘴的距离相等,两侧喷嘴泄油面积相等,使喷嘴两侧的油压相等。当有电气信号输入,衔铁带动挡板转动时,挡板移近一只喷嘴,使这只喷嘴的泄油面积变小,流量变小,喷嘴前的油压变高,而对侧的喷嘴与挡板间的距离变大,泄油量增大,使喷嘴前的压力变低,这样就将原来的电气信号转变为力矩产生机械位移信号,再转变为油压信号,并通过喷嘴挡板系统将信号放大,挡板两侧喷嘴前油压与下部滑阀的两个端部腔室相通,当两个喷嘴前的油压不等时,滑阀两端的油压也不相等,使滑阀移动,由滑阀上的凸肩所控制的油口开启或关闭,从而控制通向油动机活塞下腔的高压油,以开大调节阀的开度,或者将活塞下腔通向回油,使活塞下腔的油泄去,由弹簧力关小调节阀。为了增加系统的可靠性,在伺服阀中设置了反馈弹簧,使伺服阀有一定的机械零偏(可外调)。在运行中如突然发生断电或失去电信号时,靠机械力最后可使滑阀偏移一侧,使调节阀关闭。 3 技术参数:(MOOG-J761) 额定流量:63 lpm 分辨率:<0.5% 滞环:<3% 最高允许工作压力:32MPa 正常工作压力:14MPa 工作温度:-29~135℃ 密封材料:氟橡胶 线圈电阻:80Ω(单线圈)40Ω(两线圈并联) 额定电流:±40mA 接线方式:A、C(+)B、D(-) 4 注意事项: 4.1 油液建议使用温度为35℃~55℃。其酸值、氯含量、水含量、电阻率等指标符合要求。 4.2为了系统和元件的最佳寿命,系统油液颗粒度应把保持于SAE等级2、NAS-1638等级6或ISO-15/12。 4.3 伺服阀出厂前都经过严格的性能测试。如伺服阀发生故障,用户不得自行解体,而应返回制造商、研究所的伺服阀维修中心进行修理、排障和调整。 4.4伺服阀的装卸 4.4.1安装伺服阀前应确认: ●安装面无污粒附着; ●供油和回油管路正确; ●底面各油口的密封圈齐全; ●定位销孔位正确。 4.4.2伺服阀从液压系统卸下时,必须做到: ●将阀注满清洁工作液,装上运输护板;

伺服阀工作原理

典型电---气比例阀、伺服阀的工作原理 电---气比例阀和伺服阀按其功能可分为压力式和流量式两种。压力式比例/伺服阀将输给的电信号线性地转换为气体压力;流量式比例/伺服阀将输给的电信号转换为气体流量。由于气体的可压缩性,使气缸或气马达等执行元件的运动速度不仅取决于气体流量。还取决于执行元件的负载大小。因此精确地控制气体流量往往是不必要的。单纯的压力式或流量式比例/伺服阀应用不多,往往是压力和流量结合在一起应用更为广泛。 电---气比例阀和伺服阀主要由电---机械转换器和气动放大器组成。但随着近年来廉价的电子集成电路和各种检测器件的大量出现,在1电---气比例/伺服阀中越来越多地采用了电反馈方法,这也大大提高了比例/伺服阀的性能。电---气比例/伺服阀可采用的反馈控制方式,阀内就增加了位移或压力检测器件,有的还集成有控制放大器。 一、滑阀式电---气方向比例阀 流量式四通或五通比例控制阀可以控制气动执行元件在两个方向上的运动速度,这类阀也称方向比例阀。图示即为这类阀的结构原理图。它由直流比例电磁铁1、阀芯2、阀套3、阀体4、位移传感器5和控制放大器6等赞成。位移传感器采用电感式原理,它的作用是将比例电磁铁的衔铁位移线性地转换为电压信号输出。控制放大器的主要作用是: 1)将位移传感器的输出信号进行放大; 2)比较指令信号Ue和位移反馈信号U f U; 3)放大,转换为电流信号I输出。此外,为了改善比例阀的性能,控制放大器还含有对反馈信号 Uf的处理环节。比如状态反馈控制和PID调节等。 带位置反馈的滑阀式方向比例阀,其工作原理是:在初始状态,控制放大器的指令信号UF=0,阀芯处于零位,此时气源口P与A、B两端输出口同时被切断,A、B两口与排气口也切断,无流量输出;同时位移传Uf=0。若阀芯受到某种干扰而偏离调定的零位时,位移传感器将输出一定的电压Uf,控制放 放大后输出给电流比例电磁铁,电磁铁产生的推力迫使阀芯回到零位。若指令Ue>0,则 电压差U增大,使控制放大器的输出电流增大,比例电磁铁的输出推力也增大,推动阀芯右移。而阀芯的右移又引起反馈电压Uf的增大,直至Uf与指令电压Ue基本相等,阀芯达到力平衡。此时。

调节阀操作说明书

气缸直行程控制阀 使用说明书 成都欧浦特控制阀门有限公司 ChengDu OPTIMUX Control Valves Co.,Ltd

一、 概述 OPGL 气缸直行程控制阀是成都欧浦特控制阀门有限公司引进美国先进技术,集多年成功的专业制造经验而生产的产品。该系列控制阀采用高刚性、大推力的气缸式执行机构,气源压力可达1.0MPa,气缸强大的推力可克服很高的介质流体压力。(OPGL 电动控制阀所配用的电动执行机构,根据用户要求确定)。自动对中心无螺纹连接卡入式阀座,使维修工作轻而易举,简单快捷。粗壮的阀杆及与其一体式的阀芯,能够承受高压差而阀芯不致脱落。另外它还综合了传统的单座控制阀、双座控制阀和笼式控制阀的优点,泄漏量小、稳定性好、允许压差高,使OPGL 气缸直行程控制阀充分显示出其独有的特点,它代表了国际九十年代末控制阀最先进的主流,我们相信广大客户在使用OPGL 气缸直行程控制阀时很快会发现其越来越多的优点。 在安装使用和维护OPGL气缸直行程控制阀前阅读本说明书将会给你很大的帮助。安装、操作或维修阀门时,使用和维修人员一定要充分地阅读安装说明,了解它的结构特点和拆装方法步骤,才能保证其安全运行。 OPGL 电动控制阀的用户请阅读本说明书和相应配套的电动执行机构的说明书。 OPGL 气缸直行程控制阀国内独家生产,具有国家发明专利的高科技产品。 二、 结构特点 1、OPGL 气缸直行程控制阀技术先进,性能卓越。具有调节、切断、切断压差大、泄漏量小等全部功能,特别适用于允许泄漏量小、而阀前后压差较大的自控系统,可同时替代薄膜式单座阀、双座阀及笼式阀。 2、标准化、模块化设计,库存备件少、维修更方便。 3、带弹簧的双作用气缸式执行机构,材质为压铸铝合金,体积小、重量轻,配双作用阀门定位器,动作灵敏、定位精度高,活塞的上部和下部同时接受纯净的压缩空气,气缸内部免受腐蚀。气源压力最高可达1.0MPa,推力大、行程速度快、使用寿命长。气源故障时弹簧可使阀门自动关闭或打开,保证了系统的安全。特殊设计的气缸卡环结构可使气关、气开方式在现场很方便地更换。同时具备了单作用执行机构和双作用执行机构的功能和优点。 4、自动调准中心插入式无螺纹连接阀座,通过阀盖和阀笼固定在阀体内,易于拆出、维修方便,控制阀可以在线检修,阀芯阀座密封面的优化设计和超精加工无需研磨就可以达到极小的泄漏量。 5、阀芯和阀杆为一体式,阀杆较传统类型阀杆粗3~4倍,可承受高压差并消除了阀芯脱落、阀杆弯曲断裂的事故隐患。 6、双顶式导向结构,阀芯与阀笼无接触,彻底消除了阀笼导向所引起的阀芯擦伤、阀笼卡死等阀门应用问题。 7、阀笼有多种设计:分别用于一般工况和高温高压差的严酷工况。如:消除气蚀型、降噪型,保护阀芯和阀体免受气蚀的损坏,大幅度降低噪音。 8、维修简单、快捷、经济,阀体不必从管线上拆下来,只需拧下阀盖法兰上的螺母,阀盖、阀芯、阀座零件就可很方便的依次取出检查,反之亦然。

CSDY1射流管电液伺服阀产品说明书

CSDY1射流管电液伺服阀 产品说明书 编制: 校对: 审核: 审定: 九江仪表厂 一九八九年十二月

CSDY1射流管电液伺服阀产品说明书 一、概述: CSDY1系列射流管电液伺服阀是力反馈型两级流量伺服控制阀,具有性能良好,抗污染能力强,安全可靠以及寿命长的突出特点,适用于电液伺服系统的位置、速度、加速度和力的控制。 二、结构原理: 图1是CSDY1系列射流管电液伺服阀的原理图,力矩马达采用永磁力矩马达,由两个永久磁钢产生极化磁通,衔铁两端伸入磁通回路的空气隙中,弹簧管一端固定在壳体上,另一端固定在衔铁组件的钢套中。反馈弹簧组件的一端固定在射流管喷嘴上,反馈杆被夹牢在阀芯的中心位置。 高压油连续地从供油腔Ps通过滤油器及固定节流孔,到射流管喷嘴向两个接受孔喷射,接受孔分别与阀芯两端控制腔相通。 当力矩马达线圈组件输入控制电流时,由于控制磁通和极化磁通的相互作用,在衔铁上产生一个力矩,该力矩使衔铁组件绕弹簧管旋转,从而使射流管喷嘴运动导致两个接受孔腔产生压差引起阀芯位移,且一直持续到由反馈弹簧组件弯曲产生的反馈力矩与控制电流产生的控制力矩相平衡为止。 由于阀芯位移与反馈力矩成比例,控制力矩与控制电流成比例,伺服阀的输出流量与阀芯位移成比例,所以伺服阀的输出流量与输入的指令控制电信号亦成比例,若给伺服阀输入反向电控信号,则伺服阀就有反向流量输出。 三、技术性能指标:

1、供油压力范围(MPa) 2.1~31.5 2、额定供油压力(MPa)20.6 3、额定流量(L/min)2—40(按用户要求) 4、滞环(%)≤3 ≤5(用于低频控制系统) 5、分辨率(%)≤0.25 6、线性度(%)≤7.5 7、对称度(%)≤10 8、压力增益(%Ps/1%In)≥30 9、静耗流量(L/min)≤0.45+3%Qn 10、零偏(%)≤2 11、幅频宽(-3Db)(HZ) ≥70 ≥40(用于低频控制系列) 12、相频宽(-90°)(HZ)≥90 四、线圈连接方法: 伺服阀线圈的连接方法,插销头标号,外引出线颜色及控制电流的极性等参照下表和射流管电液伺服阀安装图(图2)

液压伺服阀结构及工作原理

液压伺服阀结构及工作原理 一、滑阀式伺服阀: 采用动圈式力马达,结构简单,功率放大系数较大,滞环小和工作行程大;固定节流口尺寸大,不易被污物堵塞;主滑阀两端控制油压作用面积大,从而加大了驱动力,使滑阀不易卡死,工作可靠。 喷嘴挡板式伺服阀: 该伺服阀,由于力反馈的存在,使得力矩马达在其零点附近工作,即衔铁偏转角θ很小,故线性度好。此外,改变反馈弹簧杆11的刚度,就能在相同输入电流时改变滑阀的位移。 该伺服阀结构紧凑,外形尺寸小,响应快。但喷嘴挡板的工作间隙较小,对油液的清洁度要求较高。 射流管式伺服阀: 对油液的清洁度要求较低。缺点是零位泄漏量大;受油液粘度变化影响显著,低温特性差;力矩马达带动射流管,负载惯量大,响应速度低于喷嘴挡板阀。 滑阀式伺服阀 由永磁动圈式力马达、一对固定节流孔、预开口双边滑阀式前置液压放大器和三通滑阀式功率级组成。前置控制滑阀的两个预开口节流控制边与两个固定节流孔组成一个液压桥路。滑阀副的阀心(控制阀芯)直接与力马达的动圈骨架相连,(控制阀芯)在阀套内滑动。前置级的阀套又是功率级滑阀放大器的阀心。 输入控制电流使力马达动圈产生的电磁力与对中弹簧的弹簧力相平衡,使动圈和前置级(控制级)阀心(控制阀芯)移动,其位移量与动圈电流成正比。前置级阀心(控制阀芯)若向右移动,则滑阀右腔控制口·面积增大,右腔控制压力降低;左侧控制口·面积减小,左腔控制压力升高。该压力差作用在功率级滑阀阀心(即前置级的阀套)的两端上,使功率级滑阀阀心(主滑阀)向右移动,也就是前置级滑阀的阀套(主滑阀)向右移动,逐渐减小右侧控制孔的面积,直至停留在某一位置。在此位置上,前置级滑阀副的两个可变节流控制孔的面积相等,功率级滑阀阀心(主滑阀)两端的压力相等。这种直接反馈的作用,使功率级滑阀阀心跟随前置级滑阀阀心运动,功率级滑阀阀心的位移与动圈输入电流大小成正比。 二、喷嘴挡板式伺服阀 图中上半部为衔铁式力马达,下半部为喷嘴挡板式和滑阀式液压放大器。衔铁与挡板和弹簧杆连接在一起,由固定在阀体上的弹簧管支承。弹簧杆下端为一球头,嵌放在滑阀的凹槽内,永久磁铁和导磁体形成一个固定磁场。当线圈中没有电流通过时,衔铁和导磁体间的四个气隙中的磁通相等,且方向相同,衔铁与挡板都处于中间位置,因此滑阀没有油输出。当有控制电流流入线圈时,一组对角方向的气隙中的磁通增加,另一组对角方向的气隙中的磁通减小,于是衔铁在磁力作用下克服弹簧管的弹性反作用力

阀门产品使用说明书

Z41H 闸阀使用说明书 Z41H 闸阀为阀板在阀杆的带动下,沿阀座密封面作升降运动而达到启闭的目的。 1、压力级:1.0MPa, 1.6MPa, 2.5 MPa, 4.0MPa,6.4 MPa,10 MPa; 2 、使用温度: -29℃ ---425 ℃3、使用介质:水、蒸汽、油品等非腐蚀性介质。一、结构特点 1、阀体通道为全通径,流体阻力小。 2、介质可从闸阀二侧任意方向流过,不受介质流动方向的限制。 3、全开对密封面受冲蚀性较小,密封性能好。二、维护保养1、运输途中的维护 阀门在运输途中应注意要轻装轻卸,以防止法兰密封面磕碰损坏,应将密封面擦干净后再关闭。要确保油漆、铭牌和法兰密封面的完好,现场要作好防雨、防尘工作。2、保管中的维护 对入库的阀门,要认真擦拭、清洗阀门在运输过程中的积水和灰尘,对容易生锈的加工面、 阀杆、密封面应涂上一层防锈剂或贴上一层防锈纸加以保护。阀门进出口通道的密封盖要封好,以免赃物进入。对在运输中损坏、丢失的阀门零件,应及时配齐。3、阀门安装注意事项 3.1、阀门搬运时要小心轻放,更不允许丢掷,以免阀杆扭断及各 部件损伤。 3.2、在安装时应清除阀腔内部和管道中尘屑杂物,以避免擦伤阀体与阀板密封面,以致发 生渗漏。 3.3、带传动机构的闸阀(如齿轮传动、电动、气动或液动等)均应严格按传动机构使用说 明的规定安装,安装位置应保证阀门的使用,维修方便,阀门应直立安装。 3.4、阀门传动机构的安装、使用、贮存、保管应按执行机构使用说明书执行。 3.5、手轮、传动机构均不允许作起吊用,并严禁碰撞。 3.6、手动闸阀应靠旋转手轮使之启闭, 不得借助于其他杠杆。 3.7、在操作过程中应保持介质和阀件的清洁,发现任何缺陷 和故障,应及时排除。4、运转中的维护 阀门在运转过程中要使阀门处于常年整洁、润滑良好、阀件齐全、正常运转的状态。以达到开启灵活的目的,不允许在运行中对阀门进行敲打。 三、常见故障的预防和排除 常见故障 产生原因 预防措施 排除方法 开不起 1、 T 型槽断裂。 2、传动部位卡阻、磨损、锈蚀。 3、阀板卡死在阀体内。 4、阀杆螺母失效。 5、闸阀长期处于关闭状态下锈死。 6、阀杆受热后顶死闸板1、T 型槽应圆弧过渡,开启时不允许超过上死点。2、保持传动部位旋转灵活,润滑良好,清洁无尘。3、关闭力适当,不使用杠杆扳手。4、在条件允许的情况下,经常开启一下,以防锈蚀。关闭的阀门在升温的情况下,间隔一定时间开启。 1、停车卸压后,修

电液伺服阀控制器说明书

版本号:B 东方汽轮机厂 电液伺服阀控制器说明书 编号:M902-007000BSM 第全册 2003年12 月

编号:M902-007000BSM 编制: 校对: 审核: 会签: 审定: 批准:

修改记录表

目录 序号章一节名称页数备注 1 1 前言 1 2 2 硬件简介 1 3 3 功能简介 2 4 4 使用说明9 5 5 故障指示 2 6 6 性能和参数 1 7 7 使用注意说明 1

1 前言 DEA伺服卡是为全电调控制系统DEH配套而专门设计的。该卡采用了16位单片机80C196芯片和高性能的可编程逻辑阵列CPLD构成控制核心,同时采用了16位A/D和D/A芯片提高转换精度。电源部分采用了先进的DC-DC隔离转换器,确保卡件的工作电源和供电电源的充分隔离,使卡件的电源回路工作有效可靠。在实现带电插拔的技术上采用了飞利浦的I2C串行总线技术,在校验过程中将LVDT的全关值和全开值存入E2PROM中,从而实现带电插拔。 伺服卡的工作原理是通过采集LVDT的测量值与控制系统发出的给定值构成比较环节,然后通过PI运算,最终输出调节电流控制调节阀门的运动,使阀门的开度到达给定期望到达的位置。 编制:校对:审核:标审:录入员: 1-1

2 硬件简介 伺服卡控制器的硬件主要包括伺服卡件和机箱组件: 2.1 伺服卡件 伺服卡采用的是四层印制板布线工艺,具有极高的EMC抗干扰能力。板上 主要元器件均采用进口优质元件。 2.1.1 CPU采用INTEL先进的16位单片机80C196,运算处理速度极快。该单片 机内置WATCH_DOG功能,自恢复能力强。 2.1.2 采用Xilinx公司的可编程逻辑阵列XC95108作为单片机的接口部件。该 芯片可以将众多的硬逻辑功能用软件实现,访问速度极快。同时该芯片有 许多的I/O,可以方便的实现外部接口。这样可以使伺服卡增加许多功能 而外围电路极为简单,卡件的集成度大幅度增加而可靠性也大为提高。2.1.3 采用了16位的A/D、D/A芯片作为模拟量信号的采集和输出转换,转换精 度高。其中一片A/D通过前置的通道选择器件采集各种模拟信号,两片D/A 中一片作为阀位输出信号,另外一片作为PI运算后输出电流用。伺服卡 的所有模拟量信号通道均采用了隔离放大器与外部接口实现隔离。 2.1.4 采用飞利浦的I2C串行总线技术,在校验过程中将校验所得的LVDT的全关 值和全开值存入到E2PROM中,从而使卡件在失电后不影响其使用。 2.1.5 采用DC-DC直流电源转换器,确保卡件的工作电源与供电电源实现隔离, 使卡件的电源回路和模拟信号通道在使用中更为安全可靠。伺服卡的所有 开关量信号全部用光电隔离器件与外部信号进行了隔离,确保卡件的工作 尽量不受外部信号的干扰 2.1.6 采用了双路LVDT采集通道,在其中一路LVDT工作不正常时可以实现切换。 内置振荡电路,可以作为LVDT的激励信号用,激励信号的频率和幅值可 以通过卡件上的跳线来设置。 2.1.7 面板上设有多个指示灯以指示各种状态,并有颤动量调节孔和测试端。2.1.8 伺服卡由主卡和插接在其上的数模卡构成。主卡上包括CPU、可编程逻辑 阵列、电源、输入和输出回路等;数模卡主要包含D/A、A/D等构成模拟 量回路。 2.2 机箱组件 2.2.1 机箱采用19”的电磁屏蔽机箱及组件。机箱后面的接线端子统一焊接到电 源母板上,接线方便。 2.2.2 卡件插入机箱时使用推拉式结构,拔插也十分方便。

CSDY1射流管电液伺服阀产品说明书

CSDY1射流管电液伺服阀产品说明书 产品讲明书 编制: 校对: 审核: 审定: 九江外表厂 一九八九年十二月

CSDY1射流管电液伺服阀产品讲明书 一、概述: CSDY1系列射流管电液伺服阀是力反馈型两级流量伺服操纵阀,具有性能良好,抗污染能力强,安全可靠以及寿命长的突出特点,适用于电液伺服系统的位置、速度、加速度和力的操纵。 二、结构原理: 图1是CSDY1系列射流管电液伺服阀的原理图,力矩马达采纳永磁力矩马达,由两个永久磁钢产生极化磁通,衔铁两端伸入磁通回路的空气隙中,弹簧管一端固定在壳体上,另一端固定在衔铁组件的钢套中。反馈弹簧组件的一端固定在射流管喷嘴上,反馈杆被夹牢在阀芯的中心位置。 高压油连续地从供油腔Ps通过滤油器及固定节流孔,到射流管喷嘴向两个同意孔喷射,同意孔分不与阀芯两端操纵腔相通。 当力矩马达线圈组件输入操纵电流时,由于操纵磁通和极化磁通的相互作用,在衔铁上产生一个力矩,该力矩使衔铁组件绕弹簧管旋转,从而使射流管喷嘴运动导致两个同意孔腔产生压差引起阀芯位移,且一直连续到由反馈弹簧组件弯曲产生的反馈力矩与操纵电流产生的操纵力矩相平稳为止。 由于阀芯位移与反馈力矩成比例,操纵力矩与操纵电流成比例,伺服阀的输出流量与阀芯位移成比例,因此伺服阀的输出流量与输入的指令操纵电信号亦成比例,若给伺服阀输入反向电控信号,则伺服

阀就有反向流量输出。 三、技术性能指标: 1、供油压力范畴(MPa) 2.1~31.5 2、额定供油压力(MPa)20.6 3、额定流量(L/min)2—40(按用户要求) 4、滞环(%)≤3 ≤5(用于低频操纵系统) 5、辨论率(%)≤0.25 6、线性度(%)≤7.5 7、对称度(%)≤10 8、压力增益(%Ps/1%In)≥30 9、静耗流量(L/min)≤0.45+3%Qn 10、零偏(%)≤2 11、幅频宽(-3Db)(HZ) ≥70 ≥40(用于低频操纵系列) 12、相频宽(-90°)(HZ)≥90 四、线圈连接方法: 伺服阀线圈的连接方法,插销头标号,外引出线颜色及操纵电流的极性等参照下表和射流管电液伺服阀安装图(图2)

卸荷阀、伺服阀原理

汽门的位置状态决定于卸荷阀的工作状态。卸荷阀的结构原理见图 在该阀的A 口和X 口之间,有一内部节流孔。当汽机正常运行时,有一稳定的小流量液流从A 口径节流口到X 口,再经单向阀到AST 总管后流向紧急遮断电磁阀块中的二个串联节流孔并排入无压力回油DV 总管,因此,在X 口处形成一个稍低于A 口压力的压力,这是个用来控制阀状态的压力,称为AST 压力。 见图1-2,卸荷阀的主阀芯为杯状滑阀。X 口处的AST 压力通过主阀体内的 上行通道和先导阀体内的右行通道及下行节流孔作用于阀芯的上腔,由于阀芯的上腔作用面积大于其下端的作用面积,AST 压力和A 口压力对阀芯产生的净力是向下的,它能关紧阀芯,AB 两口是隔断的,当紧急遮断装置在DEH 的指令下使AST 压力卸去,本机构中的AST 单向阀打开,X 口处泄压,阀芯上腔失压,阀芯打开,AB 两口通,油缸两腔通,汽门在弹簧力的作用下快关。

它由电磁和液压两部分组成。电磁部分是永磁式力矩马达,由永久磁铁、导磁体、衔铁、控制线圈和弹簧管所组成。液压部分是结构对称的两级液压放大器,前置级是双喷嘴挡板阀,功率级是四通滑阀。滑阀通过反馈杆与衔铁挡板组件相连。 力矩马达把输入的电信号(电流)转换为力矩输出。无信号电流时,衔铁由弹簧管支承在上下导磁体的中间位置,永久磁铁在四个气隙中产生的极化磁通фg 是相同的,力矩马达无力矩输出。此时,挡板处于两个喷嘴的中间位置,喷嘴挡 板阀输出的控制压力p1p=p2p,滑阀在反馈杆小球的约束下也处于中间位置,阀无液压信号输出。若有信号电流输入时,控制线圈产生控制磁通φc,其大小与方向由信号电流所决定。如图5 所示,在气隙b、c中,φc与φg方向相同,而在气隙a、d中,φc与φg方向相反。因此,气隙b、c中的合成磁通大于a、d中的合成 磁通,于是,在衔铁上产生逆时针方向的力矩,使衔铁绕弹簧管中心逆时针方向偏转。同时,使挡板向右偏移,喷嘴挡板的右间隙减小而左间隙增大,控制压力 p2p增大p1p减小,推动滑阀左移。同时,使反馈杆产生弹性变形,对衔铁挡板组 件产生一个顺时针方向的反力矩。当作用在衔铁挡板组件上的磁力矩、弹簧管反力矩、反馈杆反力矩等诸力矩到平衡时,滑阀停止运动,取得一个平衡位置,并有相应的流量输出。滑阀位移、挡板位移、力矩马达输出力矩都依次与输入信号电流成比例地变化,如负载压差不变时,阀的输出流量也与信号电流成比例。当输入信号电流反向时,阀的输出流量也反向。所以这是一种流量控制电液伺服阀。从上述原理可知,滑阀位置是通过反馈杆变形力反馈到衔铁上使诸力平衡而决定的,所以亦称为力反馈式电液伺服阀。因为采用两级液压放大,所以又称力反馈两级电液伺服阀,我们所用就是这种型式。 该阀有四个油口,P、T、A、B,分别通供油、回油和执行器的两腔。在本 系统,调节汽阀执行机构和抽气调节汽阀执行机构中的油缸都是单侧供油的,故 B口是封闭不用的。

ZSFM雨淋阀使用说明书

Z S F M型隔膜式雨淋阀 使 用 说 明 书

ZSFM型雨淋阀 ZSFM型雨淋阀采用隔膜止回的原理,在隔膜的两面通道的管路压力基本平衡时,隔膜处于关闭状态,当供水系统压力大于管网喷水系统管路压力时,隔膜能自动打开的一种单向止回阀,可和其它部件组成多种雨淋报警灭火系统,适用于医院、宾馆、商场、工厂、机场、娱乐场、图书馆、体育场、会展中心等自动喷水灭火系统。 1.主要技术参数,外形连接尺寸: 额定工作压力:~ 密封试验压力:~ 供水压力范围:~ 管网气压范围:~(干式系统) 报警性能:DN100、150 15s内报警DN200 60s内报警 报警口压力:≥ 产品标准号:~2003《自动喷水灭火系统第5部雨淋阀》 法兰标准:GB/凸面平法兰级 主要外形和连接尺寸: DN 法兰外径 D 法兰螺孔中心 D0 阀体高度 H 螺孔直径 z-d 适用螺柱宽B 长A 高L 100 215 180 305 8—18 M16×80 450 650 600 150 285 240 406 8—22 M20×85 500 760 680

200 340 295 521 12—22 M20×95 650 800 780 2.主要结构和工作原理: ZSFM型雨淋阀由体、盖、隔膜等零件和管路附件、防复位器、电磁阀、压力开关和水力警铃等部件组成,隔膜关闭时、将阀体隔成上、下两个部份,上部连接自动喷水灭火系统管网,下部与供水系统管网相接、盖与隔膜在密封后形成一个有控制压力的内腔,有管路和阀体上部供水管路相连接,当内腔压力与供水管路压力基本平衡时,隔膜处于密封状态(即伺应状态),此时,供水系统无法向管网供水,当隔膜控制室内压力下降时,隔膜自动打开供水。 3.ZSFM型雨淋阀有以下两种性能特点: 1)在自动喷水灭火管网上安装开式喷头,平时管网无水,由隔膜将供水系统隔住,一旦隔膜打开, 整个保护区的开式喷头同时喷水扑灭火灾,适用于易燃、易爆的堆栈和仓库。 2)用不同控制探测系统装置控制隔膜的开启压力,形成湿式、干式和电控三个雨淋灭火报警系统。 a.湿式控制系统: 由ZSFM雨淋阀和闭式喷头组成,闭式喷头管路有水,供水系统被隔膜密封,当作为探测用的闭式喷头受火灾发生后热度爆裂时,闭式喷头喷水,管网压力下降,隔膜室内压力随之下降,隔膜自动打开供水,喷头开始喷水灭火,水力警铃和压力开关同时动作,但喷水的仅为破碎的闭式喷头所处的区域,不能大面积喷水。 b.干式控制系统: 由ZSFM雨淋阀和开式喷头以及分散在保护区的火警探测器,干式控制驱动部件是气动阀,一端与探测系统管路相连,一端与ZSFM雨淋阀的隔膜控制腔连接,平时管网的气体由气体压力维护装置进行自动维持在一定的气压,管网中无水,气压保持隔膜的密封,当探测系统发现火警时,管网气压下降,气体维护无法稳住气压,隔膜控制腔压力下降,隔膜无法密封,开始供水,开式喷头开始喷水控火和灭火。 c.电控系统: 由ZSFM型雨淋阀,开式喷头和火警电子探测器组成,当电控箱(柜)接收来自电子探测器发出的火警信号,经过联动,向安装在ZSFM雨淋阀的电磁阀发出指令,释放隔膜控制腔压力,隔膜自动开启供水,开式喷头开始喷水灭火。 根据保护区域,保护物资的需要,你可以设计出在火警发生后要整个区域全部喷水进行控火,保护和灭火的开式喷头管网,和火警区域局部喷水的闭式喷头管网,也可以根据环境温度设计成干式和湿式的控制系统,ZSFM雨淋报警阀均能为你设计服务。

伺服阀的工作原理及运行维护

穆格伺服阀的工作原理及运行维护 穆格电液伺服阀是电液转换元件,它能把微小的电气信号转换成大功率的液压输出。其性能的优劣对电液调节系统的影响很大,因此,它是电液调节系统的核心和关键。为了能够正确使用电液调节系统,必须了解电液伺服阀的工作原理。 1、电液伺服阀的分类 1)按液压放大级数可分为单级电液伺服阀,两级电液伺服阀,三级电液伺服阀。 2)按液压前置级的结构形式,可分为单喷嘴挡板式,双喷嘴挡板式,滑阀式,射流管式和偏转板射流式。 3)按反馈形式可分为位置反馈式,负载压力反馈式,负载流量反馈式,电反馈式。 4)按电机械转换装置可分为动铁式和动圈式。 5)按输出量形式分为流量伺服阀和压力控制伺服阀。 2、穆格电液伺服阀结构及工作原理(以双喷嘴挡板为例) 双喷嘴挡板式力反馈二级电液伺服阀由电磁和液压两部分组成。电磁部分是永磁式力矩马达,由永久磁铁,导磁体,衔铁,控制线圈和弹簧管组成。液压部分是结构对称的二级液压放大器,前置级是双喷嘴挡板阀,功率级是四通滑阀。画法通过反馈杆与衔铁挡板组件相连。 力矩马达把输入的电信号(电流)转换为力矩输出。无信号时,衔铁有弹簧管支撑在上下导磁体的中间位置,永久磁铁在四个气隙中产生的极化磁通是相同的力矩马达无力矩输出。此时,挡板处于两个喷嘴的中间位置,喷嘴两侧的压力相等,滑阀处于中间位置,阀无液压输出;若有信号时控制线圈产生磁通,其大小和方向由信号电流决定,磁铁两极所受的力不一样,于是,在磁铁上产生磁转矩(如逆时针),使衔铁绕弹簧管中心逆时针方向偏转,使挡板向右偏移,喷嘴挡板的右侧间隙减小而左侧间隙增大,则右侧压力大于左侧压力,从而推动滑阀左移。同时,使反馈杆产生弹性形变,对衔铁挡板组件产生一个顺时针方向的反转矩。当作用在衔铁挡板组件上的电磁转矩、弹簧管反转矩反馈杆反转矩等诸力矩达到平衡时,滑阀停止移动,取得一个平衡位置,并有相应的流量输出。 滑阀位移,挡板位移,力矩马达输出力矩都与输出的电信号(电流)成比例变化。 3、穆格电液伺服阀的常见故障 1)力矩马达部分 a.线圈断线:引起阀不动,无电流。 b.衔铁卡住或受到限位:原因是工作气隙内有杂物,引起阀门不动作。 c.球头磨损或脱落:原因是磨损,引起伺服阀性能下降,不稳定,频繁调整。 d.紧固件松动:原因是振动,固定螺丝松动等,引起零偏增大。 e.弹簧管疲劳:原因是疲劳,引起系统迅速失效,伺服阀逐渐产生振动,系统震荡,严重的管路也振动。 f.反馈杆弯曲:疲劳或人为损坏,引起阀不能正常工作,零偏大,控制电流可能到最大。 2)喷嘴挡板部分 a.喷嘴或节流孔局部或全部堵塞:原因是油液污染。引起频响下降,分辨降率低,严重的引起系统不稳定。

CSDY射流管电液伺服阀产品说明书

CSDY2 射流管电液伺服阀 产品说明书 编制: 校对: 审核: 审定: 九江仪表厂 一九八九年十二月

CSDY2 射流管电液伺服阀产品说明书 一、概述: CSDY2 系列射流管电液伺服阀是力反馈型两级流量伺服控制阀,具有性能良好,抗污染能力强,安全可靠以及寿命长的突出特点,适用于电液伺服系统的位置、速度、加速度和力的控制。 二、结构原理: 图1是CSDY2 系列射流管电液伺服阀的原理图,力矩马达采用永磁力矩马达,由两个永久磁钢产生极化磁通,衔铁两端伸入磁通回路的空气隙中,弹簧管一端固定在壳体上,另一端固定在衔铁组件的钢套中。反馈弹簧组件的一端固定在射流管喷嘴上,反馈杆被夹牢在阀芯的中心位置。 高压油连续地从供油腔Ps 通过滤油器及固定节流孔,到射流管喷嘴向两个接受孔喷射,接受孔分别与阀芯两端控制腔相通。 当力矩马达线圈组件输入控制电流时,由于控制磁通和极化磁通的相互作用,在衔铁上产生一个力矩,该力矩使衔铁组件绕弹簧管旋转,从而使射流管喷嘴运动导致两个接受孔腔产生压差引起阀芯位移,且一直持续到由反馈弹簧组件弯曲产生的反馈力矩与控制电流产生的控制力矩相平衡为止。 由于阀芯位移与反馈力矩成比例,控制力矩与控制电流成比例,伺服阀的输出流量与阀芯位移成比例,所以伺服阀的输出流量与输入的指令控制电信号亦成比例,若给伺服阀输入反向电控信号,则伺服阀就有反向流量输出。 三、技术性能指标: 士8mA ~± 50mA 20.6MPa 1、额定电流 2、额定压力

3、 额定流量 4、 线圈直流电阻 5、 滞环(%) 6、 分辨率(%) 7、 线性度(%) 8对称度(%) 9、 压力增益(%Ps/1%ln ) 10、 静耗流量(L/min ) 11、 零偏(%) < 2 12、 幅频宽(—3Db ) (HZ) > 35 13、 相频宽(—90°) (HZ ) >50 四、线圈连接方法: 伺服阀线圈的连接方法,插销头标号,外引出线颜色及控制电流 的极性等参照下表和射流管电液伺服阀安装图(图 2) 四、注意事项: 1、伺服阀安装前应先装上随带附件:冲洗板。启泵运行不少于 8h ,工作液清洁度应达到NAS7级 2、 伺服阀进口前应安装精度为10?20卩m 的油滤 3、 每年定期取样检查,更换滤芯及工作液。 63 ?120 L/min 103±100Q, 40±4Q < 5 < 0.25 < 7.5 < 10 > 30 < 0.45+3%Qn

液压伺服工作原理

液压伺服工作原理 1.1 液压伺服系统以其响应速度快、负载刚度大、控制功率大等独特的优点在工业控制中得到了广泛的应用。 电液伺服系统通过使用电液伺服阀,将小功率的电信号转换为大功率的液压动力,从而实现了一些重型机械设备的伺服控制。 液压伺服系统是使系统的输出量,如位移、速度或力等,能自动地、快速而准确地跟随输入量的变化而变化,与此同时,输出功率被大幅度地放大。液压伺服系统的工作原理可由图1来说明。 图1所示为一个对管道流量进行连续控制的电液伺服系统。在大口径流体管道1中,阀板2的转角θ变化会产生节流作用而起到调节流量qT的作用。阀板转动由液压缸带动齿轮、齿条来实现。这个系统的输入量是电位器5的给定值 x i 。对应给定值x i ,有一定的电压输给放大器7,放大器将电压信号转换为电流 信号加到伺服阀的电磁线圈上,使阀芯相应地产生一定的开口量x v 。阀开口x v 使液压油进入液压缸上腔,推动液压缸向下移动。液压缸下腔的油液则经伺服阀流回油箱。液压缸的向下移动,使齿轮、齿条带动阀板产生偏转。同时,液压缸 活塞杆也带动电位器6的触点下移x p 。当x p 所对应的电压与x i 所对应的电压相 等时,两电压之差为零。这时,放大器的输出电流亦为零,伺服阀关闭,液压缸带动的阀板停在相应的qT位置。 图1 管道流量(或静压力)的电液伺服系统 1—流体管道;2—阀板;3—齿轮、齿条;4—液压缸;5—给定电位器;6—流量传感电位器;7—放大器;8—电液伺服阀 在控制系统中,将被控制对象的输出信号回输到系统的输入端,并与给定值进行比较而形成偏差信号以产生对被控对象的控制作用,这种控制形式称之为反

紧急拉断阀使用说明书

低温拉断阀 (紧急脱离装置ERC) 使 用 说 明 书 连云港安特石化设备有限公司

低温软管型拉断阀使用说明书 1.用途和技术性能 用途 低温软管型拉断阀(DERC)是一种安装在软管与输送管线连接端,用于在紧急情况下使槽车与输送管线(或设备)自动、快速脱离的机构,又称低温紧急脱离装置,加液管路上配装该拉断阀,当加液管被拉断时,能确保液体不泄漏,保证人身安全,减小事故损失,避免环境污染。它适应于液化天然气(LNG)、液氮、液氧、液氨等各种化工介质的装卸领域。 性能参数 1. 公称通径:DN25、32、40、50、65、80、100; 2. 公称压力:、、、、、; 3. 设计温度:-196℃; 工作温度:-162℃~50℃ 4. 材质:壳体采用耐低温的奥氏体不锈钢锻件,制造时首先进 行深冷处理;密封材料采用耐低温聚四氟乙烯,内衬弹 性不锈钢骨架,密封面经研磨处理以达密封要求。 5. 密封性:零泄漏; 6. 使用性能: 1)紧急情况下能够使装卸设备自动、快速拉断; 2)常规操作时不会出现“拉断”; 3)拉断后分开的两部分能有效密封。 2.结构原理 结构 图 1 所示为软管型拉断阀的结构总图,其主体由两个切断阀组成,切断阀一般为采用弹簧力关闭的单向阀,单向阀主要由壳体、阀瓣、主密封圈、主密封座、导流板等组成;两切断阀靠三只拉断螺栓连接,紧急情况下随着槽车的“逃逸”软管直接拉断连接螺栓,无须电、液等外加动力。

1.导流板 2. 外壳 3. 弹簧 4. 阳头阀瓣 5. 主密封 6. 主密封座 7.螺钉 8. 拉断螺栓 9.垫片 10.螺母 11. 挡销 12. 副密封 13. 阴头阀瓣 图1 软管型紧急拉断阀 工作过程 如图2所示为紧急拉断阀安装在软管工艺管线上的示意图,该套装卸设备主要由软管(高压胶管或金属软管)、快速接头、紧急拉断阀和专用球阀等组成。 提示:应满足槽车在图示工作区内进行装卸作业。 1.快速接头 2. 装车软管 3. 钢丝绳 4. 紧急拉断阀 5. 缓冲软管 6.球阀 7. 气相管 8. 液相管 9.支架 图2 紧急拉断阀安装示意图 脱离过程描述 槽车正常装卸时,软管处于松弛自由状态;当槽车驰离,其接口进入警戒区时, 软管张紧并逐渐延伸拉长,当超出极限范围后进入脱离区,瞬间紧急脱离装置的拉断螺栓断裂,实现装置分离;分离后,一个单向阀留在发油台管线上,另一个留在软管上,在内部弹簧力的作用下均实现密封。 通常压力为的紧急拉断阀拉断力参考值为:规格为25DERC的直

节流阀说明书

铸钢节流阀Cast steel Throttle valve 使 用 说 明 书 Operation Manual 双达阀门股份有限公司 Shuangda valve co., ltd

一、用途和性能规范 Usage and specification 1.本产品适用于水、油品、蒸汽等管路上做调节用,具有流阻小、启闭灵活、寿命长、 安全可靠等优点。 2.适用温度:-29~425℃。 Service temperature: -29~425℃. 3.常温下实验压力按下表规定: Test pressure under normal temperature 二、采用的主要标准 Standards adopted ①设计制造按GB12236-89、API600的规定; Design and Manufacture: GB12236-89、API600 ②试验和检查按GB/T13927、API598的规定; Test and Inspect: GB/T13927、API598 ③法兰尺寸按ANSIB16.5、GB/T9113、JB/T79的规定; Flanged Dimension: ANSIB16.5、GB/T9113、JB/T79 ④结构长度按ANSIB16.10、GB12221的规定;

Face to face: ANSIB16.10、GB12221 ⑤阀门压力-温度等级按GB9131、ANSIB16.34的规定。 Pressure and Temperature: GB9131、ANSIB16.34 三、阀门的结构特点:Valve structure features 4.本阀门靠旋转手轮带动阀杆螺母使阀杆升降而带动阀瓣作垂直于流体的直线位移来 达到调节的目的。 5.本阀门关闭时手轮按顺时针方向旋转(手轮上设有标记) Valve is shut off through turning hand wheel in clockwise direction.(marks engraved on hand wheel) 6.本阀门结构简单、密封可靠、维修方便 The valve style is simple, sealing is reliable, and maintenance is convenient. 7.采用上密封结构,能辅助填料密封,且维修方便。 Back seat structure makes it assisting packing sealing and easy maintenance. 8.密封面焊有耐磨材料,增强密封性能和提高使用寿命。 Sealing surface is welded with durable material, which enhances the sealing performance and increases the usage time. 四、阀门主要零件材料 Main parts materials 五、安装、操作和保养 Installment, operation and maintenance 1.细心的拆卸阀门的包装物,对照材料,规范和明细表等清单,检查标签和标牌。 查看所选用的阀门型号,法兰尺寸,结构长度是否与系统的压力,温度等条件

相关文档