文档库 最新最全的文档下载
当前位置:文档库 › 水平面的匀速圆周运动

水平面的匀速圆周运动

水平面的匀速圆周运动
水平面的匀速圆周运动

水平面内匀速圆周运动

一:向心力来源分析

请分析以下圆周运动的向心力来源(作受力图说明)。

二、实例分类分析

(1)、水平圆盘问题

2.质量相等的小球A 、B 分别固定在轻杆的中点和端点,当杆在光滑的水平面上绕O 点匀速转动时,求杆的OA 段和AB 段对小球的拉力之比。

3.水平圆盘绕竖直中心轴匀速转动,一小木块放在圆盘上随盘一起转动,且木块相对于圆盘保持静止,如图所示.以下各说法中正确的是( )

A .木块做匀速圆周运动,运动中所受摩擦力方向与其线速度方向相反

B .木块质量越大,就越不容易在圆盘上滑动

C .木块到转轴的距离越大,就越容易在盘上滑动

D .圆盘转动的周期越小,木块就越容易在盘上滑动 4.如图所示,半径为 R 的圆筒绕竖直中心轴 OO ′ 转动,小物块 A 靠在圆筒的内壁上,它与圆筒的动摩擦因数为 μ,现要使 A 不下落,则圆筒转动的角速度 ω 至少为 ( )

A .R g μ

B .g μ

C .R g

D .R g μ

5.如图所示,OO ′为竖直轴,MN 为固定在OO ′上的水平光滑杆,有两个质量相同的金属球A 、B 套在水平杆上,AC

和BC 为抗拉能力相同的两根细线,C 端固定在转轴OO ′上.当绳拉直时,A 、B 两球转动半径之比恒为2∶1,当转轴的角速度逐渐增大时 ( ) A .AC 先断 B .BC 先断

C .两线同时断

D .不能确定哪根线先断

8. 如图7所示,细绳一端系着质量M =0.6kg 的物体,静止在水平肌,另一端通过光滑的小孔吊着质量m =0.3kg 的物

体,M 的中与圆孔距离为0.2m ,并知M 和水平面的最大静摩擦力为2N 。现使此平面绕中心轴线转动,问角速度ω在什么

范围m 会处于静止状态?(g =10m /s 2)

光滑的水平面

图 7

(2、)圆锥摆问题

11、长为L 的细线悬挂质量为M

的小球,小球在水平面内做匀速圆周运动,细线与竖直方向夹角为θ,求

(1)小球的角速度。

(2)小球对细线的拉力大小。

12.一个光滑的圆锥形筒的轴线垂直于水平面,圆锥筒固定,质量为m 运动,圆锥母线与轴线夹角为θ,小球到锥面顶点的高为h ,

(1)小球的向心加速度为多少? (2)对圆锥面的压力为多大?

(3)小球的角速度和线速度各为多少?

思考:小球的向心加速度与小球质量有关吗?与小球的高度有关吗?

13.如图所示,一个内壁光滑的圆锥筒的轴线垂直于水平面,圆锥筒固定不动,有两个质量相同的小球A 和小球B 紧贴圆锥筒内壁分别在水平面内做匀速圆周运动,则下列说法中正确的是

A .A 球的线速度必定小于

B 球的线速度

B .A 球的角速度必定大于B 球的角速度

C .A 球运动的周期必定大于B 球的周期

D .A 球对筒壁的压力必定大于B 球对筒壁的压力

14. 如图(a)所示,在光滑的圆锥顶用长为L 的细线悬挂一质量为m 的小球,圆锥顶角为2θ,当圆锥和球一起以角速度ω匀速转动时,球压紧锥面.此时绳的张力是多少?若要小球离开锥面,则小球的角速度至少为多少?

(附加题)15.如图所示,把一个质量m = 1 kg 的物体通过两根等长的细绳与竖直杆上A 、B 两个固定点相连接,绳a 、b 长都是1 m ,杆AB 长度是1.6 m ,直杆和球旋转的角速度等于多少时,b 绳上才有张力?

θ ·

(附加题)16.如图所示,质量为m=0.1kg的小球和A、B两根细绳相连,两绳固定在细杆的A、B两点,其中A绳长

L A =2m,当两绳都拉直时,A、B两绳和细杆的夹角θ

1

=30°,θ

2

=45°,g=10m/s2.求:

(1)当细杆转动的角速度ω在什么范围内,A、B两绳始终张紧?

(2)当ω=3rad/s时,A、B两绳的拉力分别为多大?

答案: 2.3:2 ; 3.C ; 4.D;

5. .A;对A球进行受力分析,A球受重力、支持力、拉力F

A

三个力作用,拉力的分力提供A球做圆周运动的向心力,

得:水平方向F

A cosα=mr

A

ω2,同理,对B球:F

B

cosβ=mr

B

ω2,由几何关系,可知cosα=

r

A

AC

,cosβ=

r

B

BC

. 所以:

F A F B =

r

A

cosβ

r

B

cosα

r

A

r

B

BC

r

B

r

A

AC

AC

BC

. 由于AC>BC,所以F

A

>F

B

,即绳AC先断.

8.解析:要使m静止,M也应与平面相对静止。而M与平面静止时有两个临界状态:

当ω为所求范围最小值时,M有向着圆心运动的趋势,水平面对M的静

摩擦力的方向背离圆心,大小等于最大静摩擦力2N。

此时,对M运用牛顿第二定律。

有 T-f

m =Mω

1

2r 且 T=mg

解得ω

1

=2.9 rad/s

9.解:水平转盘上放有质量为m的物块,当物块到转轴的距离为r时,连接物块和转轴的的绳子刚好被拉直(绳子的张力为零),此时向心力完全来自于摩擦力,所以,摩擦力 = μmg

1、F = mrω12 = μmg/2 <μmg

证明此时绳子完全松弛,T1=0,向心力靠静摩擦力就足以,此时静摩擦力 = μmg/2

2、F = mrω22 = 3μmg/2 >μmg

T2 + μmg = F

T2 = μmg/2

13.D. 14.【分析】小球在水平面内做匀速圆周运动,由绳子的张力和锥面的支持力两者的合力提供向心力,在竖直方向则合外力为零。由此根据牛顿第二定律列方程,即可求得解答。

【解】对小球进行受力分析如图(b)所示,根据牛顿第二定律,向心方向上有

T〃sinθ-N〃cosθ=mω2r ①

y方向上应有

N〃sinθ+T〃cosθ-G=0 ②

∵r = L〃sinθ③

由①、②、③式可得

T = mgcosθ+mω2Lsinθ

当小球刚好离开锥面时N=0(临界条件)

则有Tsinθ=mω2r ④

T〃cosθ-G=0 ⑤

15..如图所示,a 、b 两绳都伸直时,已知a 、b 绳长均为1 m ,即 AD =BD =1 m ,AO =1

2

AB =0.8 m ;

△AOD 中,cos θ=AO

AD

=0.8

1=0.8,sin θ=0.6,θ=37°,小球做圆周运动的轨道半径 r =OD =

AD 〃sin θ=1×0.6 m =0.6 m.,b 绳被拉直但无张力时,小球所受的重力mg 与a 绳拉力F Ta 的合力F 为向心力,其受力分析如图所示,由图可知小球的向心力为 F =mgtan θ,根据牛顿第二定律得 F =mgtan θ=mr 〃ω2 解得直杆和球的角速度为 ω=

gtan θ

r

=10×tan37°

0.6

rad/s ≈3.5 rad/s 。当直杆和球的角速度ω>3.5 rad/s

时,b 中才有张力

16. [解析](1)当B 绳恰好拉直,但T B =0时,细杆的转动角速度为ω1, 有: T A cos30°=mg

21030sin 30sin A A L m T ω=

解得:ω1=2.4 rad/s

当A 绳恰好拉直,但T A =0时,细杆的转动角速度为ω2,

有:

mg T B =0

45cos 022030sin 45sin A B L m T ω=

解得:ω2=3.15(rad/s )

要使两绳都拉紧2.4 rad/s ≤ω≤3.15 rad/s (2)当ω=3 rad/s 时,两绳都紧.

?=?+?30sin 45sin 30sin 2A B A L m T T ω

mg T T B A =?+?45cos 30cos T A =0.27 N , T B =1.09 N

[点评]分析两个极限(临界)状态来确定变化范围,是求解“范围”题目的基本思路和方法.

高中物理必修二匀速圆周运动经典试题

1.一辆32.010m =?kg 的汽车在水平公路上行驶,经过半径50r =m 的弯路时,如果车速72v =km/h ,这辆汽车会不会发生测滑?已知轮胎与路面间的最大静摩擦力4max 1.410F =?N . 2.如图所示,在匀速转动的圆盘上沿半径放着用细绳连接着的质量都为1kg 的两物体,A 离转轴20cm ,B 离转轴30cm ,物体与圆盘间的最大静摩擦力都等于重力的0.4倍,求: (1)A .B 两物体同时滑动时,圆盘应有的最小转速是多少? (2)此时,如用火烧断细绳,A .B 物体如何运动? 3.一根长0.625m l =的细绳,一端拴一质量0.4kg m =的小球,使其在竖直平面内绕绳的另一端做圆周运动,求: (1)小球通过最高点时的最小速度? (2)若小球以速度 3.0m/s v =通过周围最高点时,绳对小球的拉力多大?若此时绳突然断了,小球将如何运动. 4.在光滑水平转台上开有一小孔O ,一根轻绳穿过小孔,一端拴一质量为0.1kg 的物体A ,另一端连接质量为1kg 的物体B ,如图所示,已知O 与A 物间的距离为25cm ,开始时B 物与水平地面接触,设转台旋转过程中小物体A 始终随它一起运动.问: (1)当转台以角速度4rad/s ω=旋转时,物B 对地面的压力多大? (2)要使物B 开始脱离地面,则转台旋的角速度至少为多大?

h 5.(14分)质量m=1kg 的小球在长为L=1m 的细绳作用下在竖直平面内做圆周运动,细绳能承受的最大拉力T max =46N,转轴离地h=6m ,g=10m/s 2。 试求:(1)在若要想恰好通过最高点,则此时的速度为多大? (2)在某次运动中在最低点细绳恰好被拉断则此时的速度v=? (3)绳断后小球做平抛运动,如图所示,求落地水平距离x ? 6.汽车与路面的动摩擦因数为μ,公路某转弯处半径为R (设最大静摩擦力等于滑动摩擦力),求: (1)若路面水平,要使汽车转弯不发生侧滑,汽车速度不能超过多少? (2)若汽车在外侧高、内侧低的倾斜弯道上拐弯,弯道倾角为θ,则汽车完全不靠摩擦力转弯 的速率是多少? 7.质量0.5kg 的杯子里盛有1kg 的水,用绳子系住水杯在竖直平面内做“水流星”表演,转动 半径为1m ,水杯通过最高点的速度为4m/s ,g 取10 m/s 2,求: (1) 在最高点时,绳的拉力?(2) 在最高点时水对杯底的压力?(3) 为使小杯经过最高点时水不流出, 在最高点时最小速率是多少? 8.质量为m 的火车在轨道上行驶,火车内外轨连线与水平面的夹角为α=37°,如图,弯道半径R =30 m ,g=10m/s 2.求:(1)当火车的速度为V 1=10 m /s 时,火车轮缘挤压外轨还是内轨? (2)当火车的速度为V 2 =20 m /s 时,火车轮缘挤压外轨还是内轨?

圆周运动典型例题学生版(含答案)

圆周运动专题总结 知识点一、匀速圆周运动 1、定义:质点沿圆周运动,如果在相等的时间里通过的 相等,这种运动就叫做匀速周圆运 动。 2、运动性质:匀速圆周运动是 运动,而不是匀加速运动。因为线速度方向时刻在变化,向 心加速度方向,时刻沿半径指向圆心,时刻变化 3、特征:匀速圆周运动中,角速度ω、周期T 、转速n 、速率、动能都是恒定不变的;而线速度 v 、加速度a 、合外力、动量是不断变化的。 4、受力提特点: 。 随堂练习题 1.关于匀速圆周运动,下列说法正确的是( ) A .匀速圆周运动是匀速运动 B .匀速圆周运动是匀变速曲线运动 C .物体做匀速圆周运动是变加速曲线运动 D .做匀速圆周运动的物体必处于平衡状态 2.关于向心力的说法正确的是( ) A .物体由于作圆周运动而产生一个向心力 B .向心力不改变做匀速圆周运动物体的速度大小 C .做匀速圆周运动的物体的向心力即为其所受合外力 D .做匀速圆周运动的物体的向心力是个恒力 3.在光滑的水平桌面上一根细绳拉着一个小球在作匀速圆周运动,关于该运动下列物理量中 不变的是(A )速度 (B )动能 (C )加速度 (D )向心力 知识点二、描述圆周运动的物理量 ⒈线速度 ⑴物理意义:线速度用来描述物体在圆弧上运动的快慢程度。 ⑵定义:圆周运动的物体通过的弧长l ?与所用时间t ?的比值,描述圆周运动的“线速度”, 其本质就是“瞬时速度”。 ⑶方向:沿圆周上该点的 方向 ⑷大小:=v = ⒉角速度 ⑴物理意义:角速度反映了物体绕圆心转动的快慢。 ⑵定义:做圆周运动的物体,围绕圆心转过的角度θ?与所用时间t ?的比值 ⑶大小:=ω = ,单位: (s rad ) ⒊线速度与角速度关系: ⒋周期和转速: ⑴物理意义:都是用来描述圆周运动转动快慢的。 ⑵周期T :表示的是物体沿圆周运动一周所需要的时间,单位是秒;转速n (也叫频率f ): 表示的是物体在单位时间内转过的圈数。n 的单位是 (s r )或 (m in r )f 的单位:

竖直面内的圆周运动(解析版)

竖直面内的圆周运动 一、竖直平面内圆周运动的临界问题——“轻绳、轻杆”模型 1.“轻绳”模型和“轻杆”模型不同的原因在于“轻绳”只能对小球产生拉力,而“轻杆”既可对小球产生拉力也可对小球产生支持力。 2.有关临界问题出现在变速圆周运动中,竖直平面内的圆周运动是典型的变速圆周运动,一般情况下,只讨论最高点和最低点的情况。 物理情景最高点无支撑最高点有支撑 实例球与绳连接、水流星、沿内轨道 的 “过山车”等 球与杆连接、球在光滑管道中运动等 图示 异同点受力 特征 除重力外,物体受到的弹力方 向:向下或等于零 除重力外,物体受到的弹力方向:向 下、等于零或向上 受力 示意 图 力学 方程 mg+F N=m v2 R mg±F N=m v2 R 临界 特征 F N=0 mg=m v2min R 即v min=gR v=0 即F向=0 F N=mg 过最高点的条 件 在最高点的速度v≥gR v≥0 【典例1】如图甲所示,轻杆一端固定在O点,另一端固定一小球,现让小球在竖直平面内做半径为R 的圆周运动。小球运动到最高点时,杆与小球间弹力大小为F,小球在最高点的速度大小为v,其F-v2图象如图乙所示,则()

A .小球的质量为aR b B .当地的重力加速度大小为R b C .v 2=c 时,小球对杆的弹力方向向上 D .v 2=2b 时,小球受到的弹力与重力大小相等 【答案】: ACD 【典例2】用长L = 0.6 m 的绳系着装有m = 0.5 kg 水的小桶,在竖直平面内做圆周运动,成为“水流星”。G =10 m/s 2。求: (1) 最高点水不流出的最小速度为多少? (2) 若过最高点时速度为3 m/s ,此时水对桶底的压力多大? 【答案】 (1) 2.45 m/s (2) 2.5 N 方向竖直向上 【解析】(1) 水做圆周运动,在最高点水不流出的条件是:水的重力不大于水所需要的向心力。这是最小速度即是过最高点的临界速度v 0。 以水为研究对象, mg =m v 20L 解得v 0=Lg =0.6×10 m/s ≈ 2.45 m/s (2) 因为 v = 3 m/s>v 0,故重力不足以提供向心力,要由桶底对水向下的压力补充,此时所需向心力由以上两力的合力提供。 V = 3 m/s>v 0,水不会流出。 设桶底对水的压力为F ,则由牛顿第二定律有:mg +F =m v 2L 解得F =m v 2L -mg =0.5×(32 0.6 -10)N =2.5N

物理圆周运动经典习题(含详细答案).

圆周运动练习题 1. 在观看双人花样滑冰表演时,观众有时会看到女运动员被男运动员拉着离开冰面在空中做水平方向 的匀速圆周运动.已知通过目测估计拉住女运动员的男运动员的手臂和水平冰面的夹角约为45°,重力 加速度为g =10 m/s 2,若已知女运动员的体重为35 k g ,据此可估算该女运动员( ) A .受到的拉力约为350 2 N B .受到的拉力约为350 N C .向心加速度约为10 m/s 2 D .向心加速度约为10 2 m/s 2 图4-2-11 2.中央电视台《今日说法》栏目最近报道了一起发生在湖南长沙某区湘府路上的离奇交通事故. 家住公路拐弯处的张先生和李先生家在三个月内连续遭遇了七次大卡车侧翻在自家门口的场面,第八 次有辆卡车冲进李先生家,造成三死一伤和房屋严重损毁的血腥惨案.经公安部门和交通部门协力调 查,画出的现场示意图如图4-2-12所示.交警根据图示作出以下判断,你认为正确的是( ) A .由图可知汽车在拐弯时发生侧翻是因为车做离心运动 B .由图可知汽车在拐弯时发生侧翻是因为车做向心运动 C .公路在设计上可能内(东)高外(西)低 D .公路在设计上可能外(西)高内(东)低 图4-2-12 3. (2010·湖北部分重点中学联考)如图4-2-13所示,质量为m 的小球置于正方体的光滑盒子中,盒子的 边长略大于球的直径.某同学拿着该盒子在竖直平面内做半径为R 的匀速圆周运动,已知重力加速度 为g ,空气阻力不计,要使在最高点时盒子与小球之间恰好无作用力,则( ) A .该盒子做匀速圆周运动的周期一定小于2πR g B .该盒子做匀速圆周运动的周期一定等于2πR g C .盒子在最低点时盒子与小球之间的作用力大小可能小于2mg D .盒子在最低点时盒子与小球之间的作用力大小可能大于2mg 图4-2-13 4.图示所示, 为某一皮带传动装置.主动轮的半径为r 1,从动轮的半径为r 2.已知主动轮做顺时针转动,转 速为n ,转动过程中皮带不打滑.下列说法正确的是( ) A .从动轮做顺时针转动 B .从动轮做逆时针转动 C .从动轮的转速为r 1r 2n D .从动轮的转速为r 2r 1 n

高中物理圆周运动典型例题解析1

圆周运动的实例分析典型例题解析 【例1】用细绳拴着质量为m 的小球,使小球在竖直平面内作圆周运动,则下列说法中,正确的是[ ] A .小球过最高点时,绳子中张力可以为零 B .小球过最高点时的最小速度为零 C .小球刚好能过最高点时的速度是Rg D .小球过最高点时,绳子对小球的作用力可以与球所受的重力方向相 反 解析:像该题中的小球、沿竖直圆环内侧作圆周运动的物体等没有支承物的物体作圆周运动,通过最高点时有下列几种情况: (1)m g m v /R v 2当=,即=时,物体的重力恰好提供向心力,向心Rg 加速度恰好等于重力加速度,物体恰能过最高点继续沿圆周运动.这是能通过最高点的临界条件; (2)m g m v /R v 2当>,即<时,物体不能通过最高点而偏离圆周Rg 轨道,作抛体运动; (3)m g m v /R v m g 2当<,即>时,物体能通过最高点,这时有Rg +F =mv 2/R ,其中F 为绳子的拉力或环对物体的压力.而值得一提的是:细绳对由它拴住的、作匀速圆周运动的物体只可能产生拉力,而不可能产生支撑力,因而小球过最高点时,细绳对小球的作用力不会与重力方向相反. 所以,正确选项为A 、C . 点拨:这是一道竖直平面内的变速率圆周运动问题.当小球经越圆周最高点或最低点时,其重力和绳子拉力的合力提供向心力;当小球经越圆周的其它位置时,其重力和绳子拉力的沿半径方向的分力(法向分力)提供向心力. 【问题讨论】该题中,把拴小球的绳子换成细杆,则问题讨论的结果就大相径庭了.有支承物的小球在竖直平面内作圆周运动,过最高点时:

(1)v (2)v (3)v 当=时,支承物对小球既没有拉力,也没有支撑力; 当>时,支承物对小球有指向圆心的拉力作用; 当<时,支撑物对小球有背离圆心的支撑力作用; Rg Rg Rg (4)当v =0时,支承物对小球的支撑力等于小球的重力mg ,这是有支承物的物体在竖直平面内作圆周运动,能经越最高点的临界条件. 【例2】如图38-1所示的水平转盘可绕竖直轴OO ′旋转,盘上的水平杆上穿着两个质量相等的小球A 和B .现将A 和B 分别置于距轴r 和2r 处,并用不可伸长的轻绳相连.已知两球与杆之间的最大静摩擦力都是f m .试分析角速度ω从零逐渐增大,两球对轴保持相对静止过程中,A 、B 两球的受力情况如何变化? 解析:由于ω从零开始逐渐增大,当ω较小时,A 和B 均只靠自身静摩擦力提供向心力. A 球:m ω2r =f A ; B 球:m ω22r =f B . 随ω增大,静摩擦力不断增大,直至ω=ω1时将有f B =f m ,即m ω=,ω=.即从ω开始ω继续增加,绳上张力将出现.12m 112r f T f m r m /2 A 球:m ω2r =f A +T ;B 球:m ω22r =f m +T . 由B 球可知:当角速度ω增至ω′时,绳上张力将增加△T ,△T =m ·2r(ω′2-ω2).对于A 球应有m ·r(ω′2-ω2)=△f A +△T =△f A +m ·2r(ω′2-ω2). 可见△f A <0,即随ω的增大,A 球所受摩擦力将不断减小,直至f A =0

竖直平面内的圆周运动及实例分析

竖直平面内的圆周运动及实例分析 竖直平面内的圆周运动一般是变速圆周运动(带电粒子在匀强磁场中运动除外),运动的速度大小和方向在不断发生变化,运动过程复杂,合外力不仅要改变运动方向,还要改变速度大小,所以一般不研究任意位置的情况,只研究特殊的临界位置──最高点和最低点。 一、两类模型——轻绳类和轻杆类 1.轻绳类。运动质点在一轻绳的作用下绕中心点作变速圆周运动。由于绳子只能提供拉力而不能提供支持力,质点在最高点所受的合力不能为零,合力的最小值是物体的重力。所以:(1)质点过最高点的临界条件:质点达最高点时绳子的拉力刚好为零,质点在最高点的向心力 全部由质点的重力来提供,这时有,式中的是小球通过最高点的最小速度, 叫临界速度;(2)质点能通过最高点的条件是;(3)当质点的速度小于这一值时,质点运动不到最高点高作抛体运动了;(4)在只有重力做功的情况下,质点在最低点的速度不得小于,质点才能运动过最高点;(5)过最高点的最小向心加速度。 2.轻杆类。运动质点在一轻杆的作用下,绕中心点作变速圆周运动,由于轻杆能对质点提供支持力和拉力,所以质点过最高点时受的合力可以为零,质点在最高点可以处于平衡状态。 所以质点过最高点的最小速度为零,(1)当时,轻杆对质点有竖直向上的支持力,其大小等于质点的重力,即;(2)当时,;(3)当,质点的重力不 足以提供向心力,杆对质点有指向圆心的拉力;且拉力随速度的增大而增大;(4)当 时,质点的重力大于其所需的向心力,轻杆对质点的竖直向上的支持力,支持力随的增大而减小,;(5)质点在只有重力做功的情况下,最低点的速度,才能运动到最高点。过最高点的最小向心加速度。 过最低点时,轻杆和轻绳都只能提供拉力,向心力的表达式相同,即,向

专题:竖直平面内的圆周运动

专题:竖直平面内的圆周运动 教学名称:专题:竖直平面内的圆周运动 教学班级:高三(1)班 教学时间:2007 年11 月5 教学目标: 1掌握向心力、向心加速度的有关知识,理解向心力、向心加速度的概念 3、熟练应用向心力、向心加速度的有关公式分析和计算有关冋题 重点难点: 1. 重点:理解向心力、向心加速度的概念并会运用它们解决实际问题 2. 难点:熟练应用向心力、向心加速度的有关公式分析和计算有关问题。 教学过程 一、引入 圆周运动是一种最常见的曲线运动,与日常生活联系密切,对圆周运动的考查主要表现在两个方面:一是对线速度、角速度、向心加速度等概念的理解和它们之间关系的运用;二是对向心力的分析,特别是与牛顿运动定律、动能定理、动量守恒定律等规律综合在一起考查?题型既有选择题,又有计算题,难度一般中等或中等以上?主要表现为对竖直平面内的变速圆周运动的考查 二、知识再现 竖直平面内的圆周运动是典型的变速圆周运动,对于物体在竖直平面内做变 速圆周运动的问题,中学物理中只研究物体通过最高点和最低点的情况,并且经常出现临界状态? 1、如图所示,没有物体支撑的小球,在竖直平面内做圆周运动过最高点的情况: ①临界条件:小球达最高点时绳子的拉力(或轨道的弹力)刚好等于零,小球的 v N m mg r ③不能过最高点的条件:VVV临界(实际上小球还没有到最高点就已脱离了轨道) 2、如图所示,有物体支持的小球在竖直平面内做圆周运动过最高点的情况: ②能过最高点的条件:v > v临界.此时小球对轨道有压力或绳对小球有拉力 上式中的v临界是小球通过最高点的最小速度,通常叫临界速度, v临界=.rg . 2 重力提供其做圆周运动的向心力,即 2 mv 临界 mg= r

圆周运动经典习题带详细答案

1. 在观看双人花样滑冰表演时,观众有时会看到女运动员被男运动员拉着离开冰面在空中做水平方向的匀速圆周运动.已知通过目测估计拉住女运动员的男运动员的手臂和水平冰面的夹角约为45°,重 力加速度为g =10 m/s 2 ,若已知女运动员的体重为35 k g ,据此可估算该女运动员( ) A .受到的拉力约为350 2 N B .受到的拉力约为350 N C .向心加速度约为10 m/s 2 D .向心加速度约为10 2 m/s 2 图4-2-11 2.中央电视台《今日说法》栏目最近报道了一起发生在某区湘府路上的离奇交通事故. 家住公路拐弯处的先生和先生家在三个月连续遭遇了七次大卡车侧翻在自家门口的场面,第八次有辆卡车冲进先生家,造成三死一伤和房屋严重损毁的血腥惨案.经公安部门和交通部门协力调查,画出的现场示意图如图4-2-12所示.交警根据图示作出以下判断,你认为正确的是( ) A .由图可知汽车在拐弯时发生侧翻是因为车做离心运动 B .由图可知汽车在拐弯时发生侧翻是因为车做向心运动 C .公路在设计上可能(东)高外(西)低 D .公路在设计上可能外(西)高(东)低 图4-2-12 3. (2010·部分重点中学联考)如图4-2-13所示,质量为m 的小球置于正方体的光滑盒子中,盒子的边长 略大于球的直径.某同学拿着该盒子在竖直平面做半径为R 的匀速圆周运动,已知重力加速度为g ,空气阻力不计,要使在最高点时盒子与小球之间恰好无作用力,则( ) A .该盒子做匀速圆周运动的周期一定小于2πR g B .该盒子做匀速圆周运动的周期一定等于2πR g C .盒子在最低点时盒子与小球之间的作用力大小可能小于2mg D .盒子在最低点时盒子与小球之间的作用力大小可能大于2mg 图4-2-13 4.图示所示, 为某一皮带传动装置.主动轮的半径为r 1,从动轮的半径为r 2.已知主动轮做顺时针转动,转 速为n ,转动过程中皮带不打滑.下列说确的是( ) A .从动轮做顺时针转动 B .从动轮做逆时针转动 C .从动轮的转速为r 1r 2n D .从动轮的转速为r 2 r 1 n

(完整版)高一物理必修2圆周运动复习知识点总结及经典例题详细剖析

匀速圆周运动专题 从现行高中知识体系来看,匀速圆周运动上承牛顿运动定律,下接万有引力,因此在高一物理中占据极其重要的地位,同时学好这一章还将为高二的带电粒子在磁场中的运动及高三复习中解决圆周运动的综合问题打下良好的基础。 (一)基础知识 1. 匀速圆周运动的基本概念和公式 (1)线速度大小,方向沿圆周的切线方向,时刻变化; (2)角速度,恒定不变量; (3)周期与频率; (4)向心力,总指向圆心,时刻变化,向心加速度,方向与向心力相同; (5)线速度与角速度的关系为,、、、的关系为 。所以在、、中若一个量确定,其余两个量也就确定了,而还和有关。 2. 质点做匀速圆周运动的条件 (1)具有一定的速度; (2)受到的合力(向心力)大小不变且方向始终与速度方向垂直。合力(向心力)与速度始终在一个确定不变的平面内且一定指向圆心。 3. 向心力有关说明 向心力是一种效果力。任何一个力或者几个力的合力,或者某一个力的某个分力,只要其效果是使物体做圆周运动的,都可以认为是向心力。做匀速圆周运动的物体,向心力就是

物体所受的合力,总是指向圆心;做变速圆周运动的物体,向心力只是物体所受合外力在沿着半径方向上的一个分力,合外力的另一个分力沿着圆周的切线,使速度大小改变,所以向心力不一定是物体所受的合外力。 (二)解决圆周运动问题的步骤 1. 确定研究对象; 2. 确定圆心、半径、向心加速度方向; 3. 进行受力分析,将各力分解到沿半径方向和垂直于半径方向; 4. 根据向心力公式,列牛顿第二定律方程求解。 基本规律:径向合外力提供向心力 (三)常见问题及处理要点 1. 皮带传动问题 例1:如图1所示,为一皮带传动装置,右轮的半径为r,a是它边缘上的一点,左侧是一轮轴,大轮的半径为4r,小轮的半径为2r,b点在小轮上,到小轮中心的距离为r,c点和d点分别位于小轮和大轮的边缘上,若在传动过程中,皮带不打滑,则() A. a点与b点的线速度大小相等 B. a点与b点的角速度大小相等 C. a点与c点的线速度大小相等 D. a点与d点的向心加速度大小相等 图1 解析:皮带不打滑,故a、c两点线速度相等,选C;c点、b点在同一轮轴上角速度相等,半径不同,由,b点与c点线速度不相等,故a与b线速度不等,A错;同样可判定a与c角速度不同,即a与b角速度不同,B错;设a点的线速度为,则a点向

圆周运动经典题型归纳

一、圆周运动基本物理量与传动装置 1共轴传动 例1.如图所示,一个圆环以竖直直径AB为轴匀速转动,则环上M、N两 点的角速度之比为_____________,周期之比为___________,线速度之比 为___________. 2皮带传动 例二.图示为某一皮带传动装置。主动轮的半径为r1,从动轮的半径为r2。已知主动轮做顺时针转动,转速为n,转动过程中皮带不打滑。下列说法正确的是 A.从动轮做顺时针转动 B.从动轮做逆时针转动 C.从动轮的转速为n D.从动轮的转速为n 3齿轮传动 例3如图所示,A、B两个齿轮的齿数分别是z1、z2,各自固定在 过O1、O2的轴上,其中过O1的轴与电动机相连接,此轴每分钟转 速为n1.求: (1)B齿轮的转速n2; (2)A、B两齿轮的半径之比; (3)在时间t内,A、B两齿轮转过的角度之比 4、混合题型 图所示的传动装置中,B、C两轮固定在一起绕同一轴转动,A、B两 轮用皮带传动,三轮半径关系是rA=rC=2rB;若皮带不打滑,则A、B、 C轮边缘的a、b、c三点的角速度之比ωa:ωb:ωc= ; 线速度之比va:vb:vc= 二、向心力来源 1、由重力、弹力或摩擦力中某一个力提供 例1:洗衣机的甩干桶竖直放置.桶的内径为20厘米,工作被甩的衣物 贴在桶壁上,衣物与桶壁的动摩擦因数为.若不使衣物滑落下去,甩干 桶的转速至少多大 2、在匀速转动的水平盘上,沿半径方向放着三个物体A,B,C,Ma=Mc=2Mb,他们与盘间的摩擦因数相等。他们到转轴的距离的关系为Ra<Rb<Rc,当转盘的转速逐渐增大时,哪个物体先开始滑动,相对盘向哪个方向滑 A. B先滑动,沿半径向外 B B先滑动,沿半径向内 C C先滑动,沿半径向外 D C先滑动,沿半径想内 3、一质量为的小球,用长的细线拴住在竖直面内作圆周运动,(1)当小球恰好能通过最高点时的速度为多少(2)当小球在最高点速度为4m/s时,细线的拉力是多少(取g=10m/s 2 ) 2、向心力由几个力的合力提供 (1)由重力和弹力的合力提供

(完整版)圆周运动典型例题及答案详解

“匀速圆周运动”的典型例题 【例1】如图所示的传动装置中,A、B两轮同轴转动.A、B、C三轮的半径大小的关系是R A=R C=2R B.当皮带不打滑时,三轮的角速度之比、三轮边缘的线速度大小之比、三轮边缘的向心加速度大小之比分别为多少? 【例2】一圆盘可绕一通过圆盘中心O且垂直于盘面的竖直轴转动.在圆盘上放置一木块,当圆盘匀速转动时,木块随圆盘一起运动(见图),那么 [ ] A.木块受到圆盘对它的摩擦力,方向背离圆盘中心 B.木块受到圆盘对它的摩擦力,方向指向圆盘中心

C.因为木块随圆盘一起运动,所以木块受到圆盘对它的摩擦力,方向与木块的运动方向相同 D.因为摩擦力总是阻碍物体运动,所以木块所受圆盘对它的摩擦力的方向与木块的运动方向相反 E.因为二者是相对静止的,圆盘与木块之间无摩擦力 【例3】在一个水平转台上放有A、B、C三个物体,它们跟台面间的摩擦因数相同.A的质量为2m,B、C各为m.A、B离转轴均为r,C为2r.则 [ ] A.若A、B、C三物体随转台一起转动未发生滑动,A、C的向心加速度比B大 B.若A、B、C三物体随转台一起转动未发生滑动,B所受的静摩擦力最小 C.当转台转速增加时,C最先发生滑动 D.当转台转速继续增加时,A比B先滑动 【例4】如图,光滑的水平桌面上钉有两枚铁钉A、B,相距L0=0.1m.长L=1m 的柔软细线一端拴在A上,另一端拴住一个质量为500g的小球.小球的初始位置在AB连线上A的一侧.把细线拉直,给小球以2m/s的垂直细线方向的水平速度,使它做圆周运动.由于钉子B的存在,使细线逐步缠在A、B上. 若细线能承受的最大张力T m=7N,则从开始运动到细线断裂历时多长? 【说明】圆周运动的显著特点是它的周期性.通过对运动规律的研究,用递推法则写出解答结果的通式(一般表达式)有很重要的意义.对本题,还应该熟练掌握数列求和方法.

竖直平面内的圆周运动 绳 杆模型 学校学案

竖直平面内的圆周运动(绳、杆模型)学习目标: 1、加深对向心力的认识,会在绳、杆两类问题中分析向心力的来源。 2、知道两类问题的“最高点”、“最低点”临界条件。 注意知识点: 1、对于物体在竖直平面内做的圆周运动是一种典型的变速曲线运动,该类运动常有临界问题,并伴有“最大”、“最小”、“刚好”等词语,常分析两种模型:绳模型、杆模型。两种模型过最高点的临界条件不同,其实质原因主要是: (1)“绳”(或圆轨道内侧)不能提供支撑力,只能提供拉力。 (2)“杆”(或在圆环状细管内)既能承受压力,又能提供支撑力。 一、绳模型: 如图所示小球在细绳的约束下,在竖直平面内做圆周运动,小球质量为m,绳长为R,1、在最低点时,对小球受力分析,小球受到重力、绳 的拉力。由牛顿第二定律得:向心力由重力mg和拉力 F的合力提供: F-mg =2v m R 得:F =mg+2v m R

在最低点拉力大于重力 2、在最高点时,我们对小球受力分析如图,小球受到 重力、绳的拉力。可知小球做圆周运动的向心力由重力 mg和拉力F共同提供: F+mg =2v m R 在最高点时,向心力由重力和拉力共同提供, v越大,所需的向心力越大,重力不变,因此大力就越大;反过来,v越小,所需的向心力越小,重力不变,因此拉力也就越小。如果v不断减小,那么绳的拉力就不断减小,在某时刻绳的拉力F 就会减小到0,这时小球的向心力最小F 向 =mg,这时只有重力提供向心力。故:(1)小球能过最高点的临界条件:绳子(或轨道)对小球刚好没有力的作用 ,只有重力提供向心力,小球做圆周运动刚好能过最高点。 mg =2v m R v 临界 =Rg (2)小球能过最高点条件:v≥Rg (当v >Rg时,绳对球产生拉力或轨道对球产生压力,向心力由重力和绳的拉力共同提供) (3)不能过最高点条件:v

(完整版)圆周运动经典习题

1.物体做匀速圆周运动的条件是[] A.物体有一定的初速度,且受到一个始终和初速度垂直的恒力作用 B.物体有一定的初速度,且受到一个大小不变,方向变化的力的作用 C.物体有一定的初速度,且受到一个方向始终指向圆心的力的作用 D.物体有一定的初速度,且受到一个大小不变方向始终跟速度垂直的力的作用 2.小球m用细线通过光滑水平板上的光滑小孔与砝码M相连,且正在做匀速圆周运动。如果适当减少砝码个数,让小球再做匀速圆周运动,则小球有关物理量的变化情况是 A.向心力变小 B.圆周半径变小 C.角速度变小 D.线速度变小 3.物体质量m,在水平面内做匀速圆周运动,半径R,线速度V,向心力F,在增大垂直于线速度的力F量值后,物体的轨道 A.将向圆周内偏移 B.将向圆周外偏移 C.线速度增大,保持原来的运动轨道 D.线速度减小,保持原来的运动轨道 4.关于洗衣机脱水桶的有关问题,下列说法中正确的是 ( ) A.如果衣服上的水太多脱水桶就不能进行脱水 B.脱水桶工作时衣服上的水做离心运动,衣服并不做离心运动 C.脱水桶工作时桶内的衣服也会做离心运动。所以脱水桶停止工作时衣服紧贴在桶壁上 D.白色衣服染上红墨水时,也可以通过脱水桶将红墨水去掉使衣服恢复白色 5,下列关于骑自行车的有关说法中,正确的是 ( ) A.骑自行车运动时,不会发生离心运动 B.自行车轮胎的破裂是离心运动产生的结果 C.骑自行车拐弯时摔倒一定都是离心运动产生的 D.骑自行车拐弯时速率不能太快,否则会产生离心运动向圆心的外侧跌倒 6.火车转弯做圆周运动,如果外轨和内轨一样高,火车能匀速通过弯道做圆周运动,下列说法中正确的是[] A.火车通过弯道向心力的来源是外轨的水平弹力,所以外轨容易磨损 B.火车通过弯道向心力的来源是内轨的水平弹力,所以内轨容易磨损 C.火车通过弯道向心力的来源是火车的重力,所以内外轨道均不磨损 D.以上三种说法都是错误的 7.一圆盘可以绕其竖直轴在水平面内转动,圆盘半径为R,甲、乙两物体的质量分别为M与m(M>m),它们与圆盘之间的最大静摩擦力均为正压力的μ倍,两物体用一根长为l(l<R)的轻绳连在一起,如图3所示,若将甲物体放在转轴的位置上,甲、乙之间接线刚好沿半径方向拉直,要使两物体与转盘之间不发生相对滑动,则转盘旋转的角速度最大值不得超过[] 8.甲、乙两球做匀速圆周运动,向心加速度a随半径r变化的关系图像如图6所示,由图像可知: A. 甲球运动时,角速度大小为2 rad/s B. 乙球运动时,线速度大小为6m/s C. 甲球运动时,线速度大小不变 D. 乙球运动时,角速度大小不变 9.如图11,轻杆的一端与小球相连接,轻杆另一端过O 平面内做圆周运动。当小球达到最高点A、最低点B时,杆对 小球的作用力可能是: A. 在A处为推力,B处为推力 B. 在A处为拉力,B处为拉力 a r 图6 8 2 甲 乙 /m·s-2 /m B O O A 11 A

高中物理--竖直平面内的圆周运动问题

B A 6122 --图6121 --图 专题二:竖直平面内的圆周运动的综合问题 【学习目标】 1. 了解竖直平面内的圆周运动的特点. 2. 了解变速圆周的运动物体受到的合力产生的两个效果,知道做变速圆周运动的物体受到的合力不指向圆心. 3. 掌握处理变速圆周运动正交分解的方法. 4. 学会用能量观点研究竖直平面内圆周运动. 【教材解读】 1. 竖直平面内的圆周运动的特点 竖直平面内的圆周运动分为匀速圆周运动和变速圆周运动两种.常见的竖直平面内的圆周运动是物体在轨道弹力(或绳、杆的弹力)与重力共同作用下运动,多数情况下弹力(特别是绳的拉力与轨道的弹力)方向与运动方向垂直对物体不做功,而重力对物体做功使物体的动能不断变化,因而物体做变速圆周运动.若物体运动过程中,还受其他力与重力平衡,则物体做匀速圆周运动. 2. 变速圆周运动所受合外力产生两个效果 做变速圆周运动的物体受到的合力不指向圆心(图6-12-1),它产生两个方向的效果. 12F F F ????????→?????????→?? 合产生向心加速度产生切线方向加速度半径方向的分力改变速度的方向切线方向的分力改变速度的大小 因此变速圆周运动的合外力不等于向心力,只是在半径方向的分力F 1提供向心力. 3. 变速圆周运动中的正交分解 应用牛顿运动定律解答圆周运动问题时,常采用正交分解法,其坐标原点是做圆周运动的物体(视为质点)所在的位置,建立相互垂直的两个坐标轴:一个沿法线(半径)方向,法线方向的合力F 1改变速度的方向;另一个沿切线方向,切线方向的合力F 2改变速度的大小.(想一想,图 6-12-1中物体的速度在增大还是减小?) 4. 处理竖直平面内圆周运动的方法 如前所述,通常情况下,由于弹力对物体不做功,只有重力(或其他力)对物体做功,因此,运用能量观点(动能定理、机械能守恒定律)和牛顿运动定律相结合是解决此类问 题的有效方法.另外要注意在不同约束条件下物体能完成圆周运动的条件不同:在绳(或沿圆轨道内侧运动)的约束下,最高点速度v ≥度v ≥ 0. 【案例剖析】 例1.如图6-12-2所示,质量为m 的小球自半径为R 的光滑半 圆形轨道最高点A 处由静止滑下,当滑至最低点B 时轨道对小球的 支持力是多大? 解析:小球下滑过程中轨道对小球的弹力不做功,只有重力对

圆周运动典型基础练习题大全

1.甲、乙两物体都做匀速圆周运动,其质量之比为1∶2 ,转动半径之比为1∶2 ,在相等时间里甲转过60°,乙转过45°,则它们所受外力的合力之比为() A.1∶4 B.2∶3 C.4∶9 D.9∶16 2.如图所示,有一质量为M的大圆环,半径为R,被一轻杆固定后悬挂在O点,有两 个质量为m的小环(可视为质点),同时从大环两侧的对称位置由静止滑下。两小环同 时滑到大环底部时,速度都为v,则此时大环对轻杆的拉力大小为() A.(2m+2M)g B.Mg-2mv2/R C.2m(g+v2/R)+Mg D.2m(v2/R-g)+Mg 3.下列各种运动中,属于匀变速运动的有() A.匀速直线运动B.匀速圆周运动C.平抛运动 D.竖直上抛运动 4.关于匀速圆周运动的向心力,下列说法正确的是( ) A.向心力是指向圆心方向的合力,是根据力的作用效果命名的 B.向心力可以是多个力的合力,也可以是其中一个力或一个力的分力 C.对稳定的圆周运动,向心力是一个恒力 D.向心力的效果是改变质点的线速度大小 5.一物体在水平面内沿半径R = 20cm的圆形轨道做匀速圆周运动,线速度v=0.2m/s , 那么,它的向心加速度为______m/s2,它的周期为______s。 6.在一段半径为R=15m的圆孤形水平弯道上,已知弯道路面对汽车轮胎的最大静摩擦力等于车重的μ =0.70倍,则汽车拐弯时的最大速度是m/ s 7.在如图所示的圆锥摆中,已知绳子长度为L ,绳子转动过程中与竖直方向 的夹角为θ ,试求小球做圆周运动的周期。 8如图所示,质量m=1kg的小球用细线拴住,线长l=0.5m,细线所 受拉力达到F=18N时就会被拉断。当小球从图示位置释放后摆到悬 点的正下方时,细线恰好被拉断。若此时小球距水平地面的高度h=5m, 重力加速度g=10m/s2,求小球落地处到地面上P点的距离?求落地速 度?(P点在悬点的正下方) 9如图所示,半径R= 0.4m的光滑半圆轨道与粗糙的水平面相切于A点,质量为m= 1kg的小物体(可视为质点)在水平拉力F的作用下,从C点运动到A点, 物体从A点进入半圆轨道的同时撤去外力F,物体沿半圆轨道通 过最高点B后作平抛运动,正好落在C点,已知AC = 2m,F = 15N,g取10m/s2,试求:物体在B点时的速度以及此时半圆 轨道对物体的弹力? 20.如图所示,半径为R,内径很小的光滑半圆管竖直放置,两个质 量均为m的小球A、B以不同速率进入管内,A通过最高点C

高一物理必修2圆周运动复习知识点总结及经典例题详细剖析

高一物理必修2圆周运动复习知识点总结及经典例题详细 剖析 -CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN

匀速圆周运动专题 从现行高中知识体系来看,匀速圆周运动上承牛顿运动定律,下接万有引力,因此在高一物理中占据极其重要的地位,同时学好这一章还将为高二的带电粒子在磁场中的运动及高三复习中解决圆周运动的综合问题打下良好的基础。 (一)基础知识 1. 匀速圆周运动的基本概念和公式 (1)线速度大小,方向沿圆周的切线方向,时刻变化; (2)角速度,恒定不变量; (3)周期与频率; (4)向心力,总指向圆心,时刻变化,向心加速度,方向与向心力相同; (5)线速度与角速度的关系为,、、、的关系为 。所以在、、中若一个量确定,其余两个量也就确定了,而还和有关。 2. 质点做匀速圆周运动的条件 (1)具有一定的速度; (2)受到的合力(向心力)大小不变且方向始终与速度方向垂直。合力(向心力)与速度始终在一个确定不变的平面内且一定指向圆心。

3. 向心力有关说明 向心力是一种效果力。任何一个力或者几个力的合力,或者某一个力的某个分力,只要其效果是使物体做圆周运动的,都可以认为是向心力。做匀速圆周运动的物体,向心力就是物体所受的合力,总是指向圆心;做变速圆周运动的物体,向心力只是物体所受合外力在沿着半径方向上的一个分力,合外力的另一个分力沿着圆周的切线,使速度大小改变,所以向心力不一定是物体所受的合外力。 (二)解决圆周运动问题的步骤 1. 确定研究对象; 2. 确定圆心、半径、向心加速度方向; 3. 进行受力分析,将各力分解到沿半径方向和垂直于半径方向; 4. 根据向心力公式,列牛顿第二定律方程求解。 基本规律:径向合外力提供向心力

竖直平面内的圆周运动的几类问题

竖直平面内圆周运动的几类问题【关键词】:竖直平面圆周运动向心力 【摘要】:竖直平面内的圆周运动一般是变速圆周运动(带电粒子在匀强磁场中运动除外),运动的速度大小和方向在不断发生变化,运动过程复杂,合外力不仅要改变运动方向,还要改变速度大小。 竖直平面内的圆周运动一般是变速圆周运动(带电粒子在匀强磁场中运动除外),运动的速度大小和方向在不断发生变化,运动过程复杂,合外力不仅要改变运动方向,还要改变速度大小。解圆周运动问题的基本步骤:1.确定作圆周运动的物体作为研究对象。2.确定作圆周运动的轨道平面、圆心位置和半径。3.对研究对象进行受力分析。 4.运用平行四边形定则或正交分解法(取向心加速度方向为正方向)求出向心力F。 5.根据向心力公式,选择一种形式列方程求解。下面是我结合实例浅谈竖直平面内的圆周运动的几类问题: 一、最高点、最低点问题(如图) 竖直平面内的圆周运动最高点、最低点问题都是竖直方向的各力的合力提供向心力的情况。其中最低点问题如上图A,轨道对球的支持力和球的重力的合力提供给球做圆周所需的向心力,即 ;而最高点问题相对复杂点,我把它分成以下几种:

(一)、汽车过拱桥模型(如图) 例:汽车质量为1000kg, 拱形桥的半径为10m ,(g=10m/s2)则(1)当汽车以5m/s 的速度通过桥面最高点时,对桥的压力是多大?(2)如果汽车以10m/s 的速度通过桥面最高点时,对桥的压力又是多大呢? 分析:(1)汽车受力分析如图所示,分析可得 r v m N mg 2 =-,即 N 7500)N 105-(1010002 2=?=-=r v m mg N ;(2)当汽车以10m/s 的速度通过桥面最高点时,汽车对桥面的压力N=0,汽车达到最大安全速度,此时仅有重力提供向心力。 对上例最高点汽车受力分析可知,车在竖直方向上受到支持力和重力作用,取向心加速度方向为正方向,有 ,当速度ν增大时,向心力增大,故N要减小,直到N=0,速度ν增到了最大值,即仅有重力提供向心力 , 。因此,汽车过拱桥模型有个最 大速度(临界状态),如果速度大于 ,那么汽车将飞离桥面,做离心运动。 (二)、绳球模型 (如图)

竖直平面内的圆周运动(绳、杆模型)学校学案

竖直平面内的圆周运动(绳、杆模型) 学习目标: 1、加深对向心力的认识,会在绳、杆两类问题中分析向心力的来源。 2、知道两类问题的“最高点”、“最低点”临界条件。 注意知识点: 1、对于物体在竖直平面内做的圆周运动是一种典型的变速曲线运动,该类运动常有临界问题,并伴有“最大”、“最小”、“刚好”等词语,常分析两种模型:绳模型、杆模型。两种模型过最高点的临界条件不同,其实质原因主要是: (1)“绳”(或圆轨道内侧)不能提供支撑力,只能提供拉力。 (2)“杆”(或在圆环状细管内)既能承受压力,又能提供支撑力。 一、绳模型: 如图所示小球在细绳的约束下,在竖直平面内做圆周运动,小球质量为m ,绳长为R , 1、在最低点时,对小球受力分析,小球受到重力、绳的拉力。由牛 顿第二定律得:向心力由重力mg 和拉力F 的合力提供: F-mg =2v m R 得:F =mg+2 v m R 在最低点拉力大于重力 2、在最高点时,我们对小球受力分析如图,小球受到重力、绳的拉 力。可知小球做圆周运动的向心力由重力mg 和拉力F 共同提供: F+mg =2 v m R 在最高点时,向心力由重力和拉力共同提供, v 越大,所需的向心力越大,重力不变,因此大力就越大;反过来,v 越小,所需的向心力越小,重力不变,因此拉力也就越小。如果v 不断减小,那么绳的拉力就不断减小,在某时刻绳的拉力F 就会减小到0,这时小球的向心力最小F 向=mg ,这时只有重力提供向心力。故: (1)小球能过最高点的临界条件:绳子(或轨道)对小球刚好没有力的作用 ,只有重力提供向心力,小球做圆周运动刚好能过最高点。 mg =2 v m R v 临界=Rg (2)小球能过最高点条件:v ≥ Rg (当v >Rg 时,绳对球产生拉力或轨道对球产生压力,向心力由重力和绳的拉力共同提供) (3)不能过最高点条件:v

圆周运动经典练习(有问题详解)

《圆周运动》练习题(一) 1.关于匀速圆周运动,下列说法正确的是() A.线速度不变 B.角速度不变 C.加速度为零 D.周期不变 2.如图所示,一个内壁光滑的圆锥筒的轴线垂直于水平面,圆锥筒固定不动,有两个质量相同的小球 A 和 B紧贴着内壁分别在图中所示的水平面内作匀速圆周运动,则下列说法正确的是() F N A F A G A F N B F B G Bα A.球 A 的线速度必定大于球 B 的线速度 B.球 A 的角速度必定小于球 B 的角速度 C.球 A 的运动周期必定小于球 B 的运动周期 D.球 A 对筒壁的压力必定大于球 B 对筒壁的压力 3.甲、乙两名滑冰运动员,M 甲80kg , M 乙40kg ,面对面拉着弹簧秤做匀速圆周运动的滑冰表演,如图 5 所示,两人相距0.9m ,弹簧秤的示数为9.2N ,下列判断中正确的是() A.两人的线速度相同,约为40m/s B.两人的角速度相同,为6rad/s C. 两人的运动半径相同,都是0.45m D. 两人的运动半径不同,甲为0.3m,乙为 0.6m 甲乙 图5 4. 下列说法正确的是() A.做匀速圆周运动的物体的加速度恒定 B.做匀速圆周运动的物体所受合外力为零 C.做匀速圆周运动的物体的速度大小是不变的 D.做匀速圆周运动的物体处于平衡状态 5.如图 1 所示,把一个长为 20cm,系数为 360N/m 的弹簧一端固定,作为圆心,弹簧的另一端连接一 个质量为0.50kg 的小球,当小球以360 r/ min的转速在光滑水平面上做匀速圆周运动时,弹簧的伸长 应为() A. 5.2cm B. 5.3cm C. 5.0cm D. 5.4cm m O

相关文档
相关文档 最新文档