文档库 最新最全的文档下载
当前位置:文档库 › 600MW汽轮机组集电环振动偏大原因分析及处理

600MW汽轮机组集电环振动偏大原因分析及处理

收稿日期:2008204201作者简介:张 煜(1974-),男,工程师,主要从事转动机械振动监测及故障处理工作。

600MW 汽轮机组集电环振动

偏大原因分析及处理

Cause Analysis and Management on Large Vibration of 600MW

Turbo 2Generator Unit Ring Header

张 煜,刘贤东,安洪坤

(神华河北国华沧东发电有限责任公司,河北 沧州 061113)

摘 要:结合汽轮发电机组集电环转子轴承在启动及运行期间出现的振动现象,从设备出厂质量、安装和调整等方面对造成振动偏大的原因进行分析和判断,并根据结论制定相应的治理措施,措施实施后减振效果显著。关键词:集电环;轴承;振动;不平衡

Abstract :Combining with vibration phenomena of ring header rotator bearing during start 2up and operation ,vibration cau 2ses are analyzed f rom the aspects of equipment quality ,in 2stallation ,and adjusting.The managements are set down and implemented ,vibration is reduced after actualizing.

K ey words :ring header ;bearing ;vibration ;imbalance ;connec 2tion

中图分类号:TM311文献标志码:B

文章编号:100129898(2008)S020034203

神华河北国华沧东发电有限责任公司(简称“沧

东电厂”)2号机组为亚临界、600MW 、一次中间再

热、抽汽凝汽式汽轮机组。机组轴系由高压转子、中压转子、低压Ⅰ转子、低压Ⅱ转子、发电机转子及集电环装置组成,共有11个支撑轴承和1个推力轴承。该机组在调试及运行中多次发生集电环转子轴承(即11号轴承)振动偏高的现象,在停机检修中实施了全面治理,取得良好效果。

1 概述

沧东电厂2号机组于2006年11月12日首次启动,升速过程中11号轴承的2个方向轴振平稳,在通过集电环和发电机转子的临界转速时,振动峰值分别约为100μm 和110μm ,幅值和相位变化均没有大的异常。在转速达到3000r/min 稳定后,11号轴承振幅保持在45μm 左右,但在并网后,振幅随负荷的升高逐步加大,其中Y 方向较为明显,幅

值最终波动于90~107μm ,此时绝对振动(轴振与

瓦振的矢量和)幅值也达到了80μm ,整体虽振动合格,但超过了新机组的优良要求。

机组在2007年5月进行了停机检修,启动后11号轴承整体振动幅值均有所下降,由原来的Y 方向较高变化为X 方向较高,但运行一段时间后,仍出现了缓慢上升现象,至2007年10月,11号轴振2个方向的振动幅值分别为:X 方向110μm 左右,Y 方向75μm 左右,绝对振动84μm 左右。从10月至11月底,11号轴振在2个方向开始出现明显振荡趋势,振幅峰值呈现出向上的发散迹象,如图1

图1 11号轴振的发散现象

11号轴承的振动偏大,它主要由两部分振动分

量组成,即转速分量和二倍频分量,并且升高过程也以二者的变化为主。

由11号轴承振动趋势可以看出:11号轴承振

动的加大主要在于其一倍频和二倍频分别发生了上涨走势,导致整体振动幅值变大。其中一倍频的相位在幅值上升的同时,还出现了相位的波动和变化,说明转子受力状态发生了明显改变。

2 原因分析

2.1 原始热平衡量较大

机组在启动过程中振动较平稳,过临界期间曲线显示相位拐点清晰,2个方向轴振最大峰值为100μm 左右,且3000r/min 空负荷状态良好,振幅小于50

?

43?

μm,说明集电环轴段的一阶残余不平衡量较小。但机组在并网后,振动随着负荷的增加而增大,其主要以一倍频增大为主,尤其是Y方向的一倍频成分在振动最大时更是达到了82μm,热不平衡现象明显。

振动中的一倍频变化意味着转子平衡状态在发生改变,其中包括集电环发电机转子系统平衡状况不良及其连接配合异常等方面,尤其是过程中的相位变化也说明这一点。该机组集电环发电机转子采用三支撑方式,发电机受热产生的不平衡在11号轴承振动上有更明显的反映。经观察,在带负荷期间, 9号轴承振动相对较平稳,但10号轴承振动在同期却增大约25μm,说明发电机转子在励磁侧确实存在不均衡热变形现象。由于集电环装置在形式上为发电机转子的外伸端,并负载较轻,因此11号轴振不可避免的产生了明显变化。

另外,现场检查发现集电环的风扇槽平衡面上原加重达22块,有1300多g,扇面角度接近120°。由平衡知识可知,配重质量应尽量集中,以减少安装角度过大产生的质量相互抵消和计算误差,而大量配重块说明该机组集电环发电机转子系统的原始不平衡量较大,使发电机转子运行中发生不均衡热变形情况时不平衡响应表现明显,轴承振动产生波动并增大、发散。

因此,并网后发电机转子产生不均衡热变形,集电环发电机转子系统原始热平衡量较大是造成11号轴振偏高的根本原因。

2.2 二倍频升高

二倍频升高是促使11号轴承整体振动异常的另一方面原因。通常对振动的二倍频产生影响的有以下几个原因。

2.2.1 发电机刚性异常

考察发电机的各有关测点,温度相差不大,如定子铁芯端部对称点温度、定子上下层绕组温度等,其温差均在合格范围内,同时由于2号机组投运时间较短,发电机刚性出现异常的可能性也很小。

由于在其他电厂的该型机组发生过电动机壳体振动异常的现象,故对该发电机壳体两侧振动也进行了相应的测量,测量位置见图2、测量结果见表1。

图2 发电机壳体测量位置

表1 发电机壳体两侧振动测量结果 μm 时间

测量位置

123456789101112 200720721310521617492410402013311 20072082221963189481311442918721 200720922814582012403010461712712 200721021116571811463316411314615 200721122814552226512015401514813 由图2和表1可以看出,发电机壳体振动虽有一定的不对称情况,但并未有所发展,同时测量后可知发电机两侧轴承振动稳定,因此,11号轴承振动异常与发电机振动的不对称关联较小。

2.2.2 电磁干扰

由于没有能够测量空间电磁信号的仪器,无法对电磁干扰进行直接判断,但从振动趋势情况看,没有出现振幅瞬间的突升和突降现象,说明取样信号比较准确。另外检查了信号传输电缆的完整性,未发现存在破损现象,电缆的屏蔽效果正常,并在对探头外部用铝铂纸进行包裹进一步屏蔽后,振动信号无明显变化,因此说明不存在明显的电磁干扰现象。

2.2.3 对轮螺栓紧力下降及连接状况不良

对轮连接异常会导致对中变化,从而使振动成分中的二倍频明显,并会放大一倍频的作用。因为对于刚性转子,转轴在旋转过程中,每转180°,处于对称位置的螺栓由于紧力不同,自身会受到交变的拉伸和压缩应力一次,作用在半联轴节上的应力也交变一次,旋转360°,则作用力交变二次,即产生了振动中的二倍频分量,当对轮连接偏差特别明显时,将表现出存在一倍频的现象,二者共同作用最终使振动总量上升。

观察集电环轴承振动波动期间的机组运行参数,发现同期与之相关性较为突出的为集电环进风温度。即:进风温度降低,振动明显上升,反之,进风温度升高,振动下降。2007年10月21日将集电环小间内空气对流状况加以改善,提高了进风温度,11号轴承振动迅速由0.11mm减少为0.06~0.07 mm。根据集电环轴振频谱组成,观察到其振动值随进风温度的增减主要是一倍频幅值变化的结果,即进风温度影响了集电环转子的平衡状态,分析原因如下:

现场设备布置情况为集电环发电机对轮连接处跨越集电环小间外壁,即对轮两侧一半位于小间外,一半位于小间内。稳定运行时,小间内、外存在温差,当其内通风状况改变时,小间内温度变化幅度可达15℃,对轮螺栓的紧力会随螺栓伸长量变化而发

?

5

3

?

生变化。经计算,在进风温度变化15℃时,对轮的紧固力矩将变化约150Nm,接近总力矩值的10%。随工况变化,螺栓反复膨胀和收缩,紧力时大时小,最终使集电环装置连接情况恶化,甚至出现“摆尾”现象,支撑系统振幅也出现爬升并发散。另一方面,由于集电环发电机轴系扭矩的传递是通过集电环发电机对轮之间接合面的摩擦作用实现的,如对轮平面存在瓢偏、加工质量差等缺陷或连接异常时,会产生相对滑动和错位,也表现为轴承振动波动,相位变化,尤其是负载较轻的11号轴承会更加明显。因此,集电环发电机对轮螺栓紧力下降、连接状态出现偏差是导致振动中二倍频升高、一倍频放大的重要原因,同时也是此次振动发散、波动变大的直接因素。

2.3 轴承状况变化

机组运行期间,集电环轴承温度维持在63℃左右,低于9号、10号轴承的68~70℃水平。图3为机组启动转速上升至3000r/min期间的轴心位置变化情况。可以看出,11号轴承处轴颈在启动后上浮接近0.2mm,标准规定11号轴承直径间隙为0. 25~0.35mm,故此时轴心已处于轴承水平偏上的位置。根据轴承相关知识可知,当旋转机械轴心位置较高时,轴承油膜的建立状况与设计偏差较多,转子易发生“漂浮”现象,此时转子的运动不会被轴承限制,支撑系统的稳定性会变差,发生轴承轻载状

况,表现出轴承温度较低,轴承振动偏高的现象

图3 轴心位置图显示的轴颈上浮状况

3 处理措施

根据以上分析,判断该机组11号轴承振幅偏高、爬升和发散的主要原因为:转子平衡状况不良及对轮螺栓紧力下降,并有一定程度的轴承轻载现象,故制定并实施消振方案。

3.1 现场高速动平衡

该项措施可以减小作用于转子的不平衡激振力,从而降低一倍频分量和总体振幅。实际11号轴承振动组成中,11X分量比例也确实较高,幅值接近80μm,有降低的空间,因此,在检修中将原有配重合成、调整,重新计算了加重位置和重量,同时更换为大质量配重块,以减小加重角度范围,最终在启动后11号轴承振动的一倍频量控制在25μm以下。

3.2 对轮配合及螺栓力矩调整

对轮配合面的接触情况直接影响摩擦力矩的传递质量,故在检修中对集电环发电机对轮表面进行了仔细检查和研磨,并将两侧面的瓢偏均调整在0.02mm以下,使其在相互贴合时接触严密。另外,考虑到机组负荷变化的影响,将对轮螺栓旋紧力矩加大,以保证在运行中对轮连接紧固、不发生松动现象。

3.3 中心复查及标高调整

中心偏差是振动产生的重要因素,在一定程度上会影响转子挠曲变形状况,并改变支撑系统的载荷分布,导致轴承轻载,稳定性变差。鉴于此,对集电环发电机转子系统对中情况进行复查并参考同类机组的经验,将11号轴承标高上抬约0.1mm,对轮下张口由原来的0.12mm调整为0.15mm,加大了11号轴承的负载程度和运行稳定性。

3.4 集电环台板垫片调整

现场检查集电环底座下部垫片过多,约10层,部分垫片有毛刺、褶皱现象,即使在轴承座螺栓紧力正常的情况下,也会出现一定程度的“虚接”现象,从而使支撑系统振动波动,后在检修中垫片数量调整为4层。

4 改进效果

经过全方面的振动分析和对策实施,机组启动11号轴承的振动平稳,两个方向振幅均在0.04~0.05mm,达到了优良标准。可见,平衡的实施和有针对性的调整大大降低了振动中占主要成分的一倍频分量,总体的振动幅值也明显减少。

5 结束语

600MW汽轮发电机组11号轴承振动大有制造、安装及调整等多方面的因素,其中各个过程中的一些细节,如对轮连接螺栓紧力、轴承承载状况等,应引起生产、维护人员的足够重视,消振措施也应全面考虑,其振动偏大的问题才会得到根本改善。

参考文献:

[1] 施维新.汽轮发电机组振动及事故[M].北京:中国电力出版

社,1999.

[2] 沈庆根,郑水英.设备故障诊断[M].北京:化学工业出版社,

2006.

本文责任编辑:丁 力

?

6

3

?

汽轮机振动大的原因分析及其解决方法[1]

汽轮机振动大的原因分析及其解决方法 摘要:为了保障城市经济的发展与居民用电的稳定,加强汽轮机组日常保养与维护,保障城市供电已经成为了火力发电厂维护部门的重要任务。文章就汽轮机异常振动的原因进行了分析与故障的排除,在振动监测方面应做的工作进行了简要的论述。 关键词:汽轮机;异常振动;故障排除;振动监测;汽流激振现象 对转动机械来说,微小的振动是不可避免的,振动幅度不超过规定标准的属于正常振动。这里所说的振动,系指机组转动中振幅比原有水平增大,特别是增大到超过允许标准的振动,也就是异常振动。任何一种异常振动都潜伏着设备损坏的危险。比如轴系质量失去平衡(掉叶片、大轴弯曲、轴系中心变化、发电机转子内冷水路局部堵塞等)、动静磨擦、膨胀受阻、轴承磨损或轴承座松动,以及电磁力不平衡等等都会表面在振动增大,甚至强烈振动。 而强烈振又会导致机组其他零部件松动甚至损坏,加剧动静部分摩擦,形成恶性循环,加剧设备损坏程度。异常振动是汽轮发电机运转中缺陷,隐患的综合反映,是发生故障的信号。因此,新安装或检修后的机组,必须经过试运行,测试各轴承振动及各轴承处轴振在合格标准以下,方可将机组投入运行。振动超标的则必须查找原因,采取措施将振动降到合格范围内,才能移交生产或投入正常运行。 一、汽轮机异常振动原因分析 汽轮机组担负着火力发电企业发电任务的重点。由于其运行时间长、关键部位长期磨损等原因,汽轮机组故障时常出现,这严重影响了发电机组的正常运行。汽轮机组异常振动是汽轮机常见故障中较为复杂的一种故障。由于机组的振动往往受多方面的影响,只要跟机本体有关的任何一个设备或介质都会是机组振动的原因,比如进汽参数、疏水、油温、油质、等等。因此,针对汽轮机异常震动原因的分析就显得尤为重要,只有查明原因才能对症维修。针对导致汽轮机异常振动的各个原因分析是维修汽轮机异常振动的关键。 二、汽轮机组常见异常震动的分析与排除 引起汽轮机组异常振动的主要原因有以下几个方面,汽流激振、转子热变形、摩擦振动等。 (一)汽流激振现象与故障排除 汽流激振有两个主要特征:一是应该出现较大量值的低频分量;二是振动的增大受运行参数的影响明显,且增大应该呈突发性,如负荷。其原因主要是由于叶片受不均衡的气体来流冲击就会发生汽流激振;对于大型机组,由于末级较长,气体在叶片膨胀末端产生流道紊乱也可能发生汽流激振现象;轴封也可能发生汽流激振现象。针对汽轮机组汽流激振的特征,其故障分析要通过长时间的记录每次机组振动的数据,连同机组满负荷时的数据记录,做出成组曲线,观察曲线的变化趋势和范围。通过改变升降负荷速率,从5T/h到50T/h的给水量逐一变化的过程,观察曲线变化情况。通过改变汽轮机不同负荷时高压调速汽门重调特性,消除气流激振。简单的说就是确定机组产生汽流激振的工作状态,采用减低负荷变化率和避开产生汽流激振的负荷范围的方式来避免汽流激振的产生。 (二)转子热变形导致的机组异常振动特征、原因及排除 转子热变形引发的振动特征是一倍频振幅的增加与转子温度和蒸汽参数有密切关系,大都发生在机组冷态启机定速后带负荷阶段,此时转子温度逐渐升高,材质内应力释放引起转子热变形,一倍频振动增大,同时可能伴随相位变化。由于引起了转子弯曲变形而导致机组异常振动。转子永久性弯曲和临时性弯曲是

(完整word版)汽轮机异常振动分析及处理

汽轮机异常振动分析及处理 一、汽轮机设备概述 国华宝电汽轮机为上海汽轮机有限公司制造的超临界、一次中间再热、两缸两排汽、单轴、直接空冷凝汽式汽轮机,型号为NZK600-24.2/566/566。具有较高的效率和变负荷适应性,采用数字式电液调节(DEH)系统,可以采用定压和定—滑—定任何一种运行方式。定—滑—定运行时,滑压运行范围40~90%BMCR。本机设有7段非调整式抽汽向三台高压加热器、除氧器、三台低压加热器组成的回热系统及辅助蒸汽系统供汽。 高中压转子、低压转子为无中心孔合金钢整锻转子,高中压转子和低压转子之间装有刚性法兰联轴器,低压转子和发电机转子通过联轴器刚性联接。整个轴系轴向位置是靠高压转子前端的推力盘来定位的,由此构成了机组动静之间的相对死点。整个轴系由 7个支持轴承支撑,高中压缸、低压缸和碳刷共五个支持轴承为四瓦块可倾瓦,发电机两个轴承为可倾瓦端盖式轴承,推力轴承安装在前轴承箱内。推力轴承采用LEG轴承,工作瓦块和定位瓦块各八块。盘车装置安装在发电机与低压缸之间,为链条、蜗轮蜗杆、齿轮复合减速摆动啮合低速盘车装置,盘车转速为2.38r/min。 运行中为提高机组真空严密性,将机组轴封密封蒸汽压力由设计28kp提高至 40kp—60kp(以轴封漏汽量而定)。虽然提高了运行经济性但也增大了轴封漏汽量,可能会使润滑油带水并影响到机组胀差和振动,现为试验中,无法得出准确结论。#1机组大修后启机发生过因转子质量不平衡引起多瓦振动,经调整平衡块后得以改善。正常停机时出现过因胀差控制不当造成多瓦振动,也可能和滑销系统卡涩有一定关系。#2机组正常运行中(无负荷变化)偶尔会出现单各瓦振动上升现象,不做运行调整,振动达到高点之后迅速回落,一段时间后又会恢复正常,至今未查明原因。机组采用顺序阀运行时,在高低负荷变换时会发生#1瓦振动短时增大现象,暂定为高压调阀开关时汽流激振引起的振动。机组异常振动是经常发生又十分复杂的故障,要迅速做出判断处理,才能将危害降到最低。 二、机组异常振动原因 1、机组运行中心不正引起振动 (1)汽轮机启动时,如暖机时间不够,升速或加负荷过快,将引起汽缸受热膨胀不均匀,或滑销系统有卡涩,使汽缸不能自由膨胀,均会造成汽缸对转子发生相对偏斜,机组出现不正常的位移,产生振动。 (2)机组运行中,若真空下降,将使低压缸排汽温度升高,后轴承座受热上抬,因而破坏机组的中心,引起振动。

一种典型的基础刚性不足引发机组振动的故障诊断

一种典型的基础刚性不足引发机组振动的故障诊断 罗伟,赵林芳,施建忠 (江苏永钢集团机动处,江苏张家港215628) 摘要:通过对机组进行振动监测,采用频谱分析技术进行故障诊断,并制定解决方案,采取相应措施解决了一例典型的基础刚性不足引发机组振动的故障。 关键词:电机;振动;刚性;频率;故障 1 前言 江苏永钢集团是大型钢铁联合企业,年炼钢、轧钢能力680万t。大型旋转设备作为生产的关键设备,一直是公司设备管理的重中之重。公司共有大型高压、直流电动机400余台均能实现精密点检,开展设备状态分析与故障诊断工作。 但是,随着近年来公司跨越式的发展,新建项目逐步增多,大型旋转设备的设计、安装质量问题也偶有发生。 2 机组故障情况 该公司烧结三厂新建300m2带烧生产线一条,其中二次混料机为高压电机经液力耦合器调速驱动齿轮箱带动混料滚筒转动,实现将配料均匀混合的生产过程。该机组具有转动惯量大、负荷重、转矩大等特点。从2011年12月11日开始,发现该分厂二次混料机高压电机非负载侧和负载侧垂直径向振动发生突变,振动数值快速上升并严重超标,严重影响了设备的正常运行。 3 诊断过程 (1)、设备参数及测点布置图电机型号:YKK560-6,电机编号560Y1020624,功率800kW,转数986r/min,测点布置见图1。 (2)数据采集该电机12月3日与12日的振动数据如表1所示(注:1 Av代表非负载侧轴向振动速度,1 Hv代表非负载侧水平径向振动速度,1 Vv代表非负载侧垂直径向振动速度)。 (3)数据分析由表1数据可以看出该机组负载侧振动较大,特别是负载侧垂直径向振动严重超标,而且从12月3日到12日之间有一个明显的上升趋势。其时域波形图如图2所示,频谱图如图3所示。由图2可以看出在波峰A至波峰B之间存在较为明显的单一方向的振动能量,且峰峰间距均为16.25 Hz(即1×r/min,转频成分)。对应的频谱图显示最大振动幅值在49.375 Hz处,达7.02 mm/s,整个谱图存在较为明显的3倍频成分,且垂直方向振动明显大于轴向和水平,说明存在松动和刚性不足的可能。

关于汽轮机振动分析及处理

关于汽轮机振动分析及处理 火力发电是我们公司主要安装的机组为了保证机组运行稳定,我们安装必须按照图纸施工。汽轮机作为发电系统的重要组成部分,其故障率的减少对于整个系统都有着重要的意义。汽轮机异常振动是发电厂常见故障中比较难确定故障原因的一种故障,针对这样的情况,加强汽轮机异常振动分析,为安装部门提供基础分析就显得极为必要。 一、汽轮机异常振动原因分析。 由于机组的振动往往受多方面的影响,只要跟机本体有关的任何一个设备或介质都会是机组振动的原因,比如进汽参数、疏水、油温、油质、等等。因此,针对汽轮机异常震动原因的分析就显得尤为重要,只有查明原因才能对症维修。针对导致汽轮机异常振动的各个原因分析是维修汽轮机异常振动的关键。 二、汽轮机组常见异常震动的分析与排除。 引起汽轮机组异常振动的主要原因有以下几个方面,汽流激振、转子热变形、摩擦振动等。针对着三个主要方面以下进行了详细的论述。 (一)汽流激振现象与故障排除(安装不需考虑)。 汽流激振有两个主要特征:一是应该出现较大量值的低频分量;二是振动的增大受运行参数的影响明显,如负荷,且增大应该呈突发性。其原因主要是由于叶片受不均衡的气体来流冲击就会发生汽流激振;对于大型机组,由于末级较长,气体在叶片膨胀末端产生流道紊乱也可能发生汽流激振现象;轴封也可能发生汽流激振现象。针对汽轮机组汽流激振的特征,其故障分析要通过长时间(一年以上)记录每次机组振动的数据,连同机组满负荷时的数据记录,做出成组曲线,观察曲线的变化趋势和范围。通过改变升降负荷速率,从5T/h到50/h 的给水量逐一变化的过程,观察曲线变化情况。通过改变汽轮机不同负荷时高压调速汽门重调特性,消除气流激振。简单的说就是确定机组产生汽流激振的工作状态,采用减低负荷变化率和避开产生汽流激振的负荷范围的方式来避免汽流激振的产生。 (二)转子热变形导致的机组异常振动特征、原因及排除。 转子热变形引发的振动特征是一倍频振幅的增加与转子温度和蒸汽参数有密切关系,大都发生在机组冷态启机定速后带负荷阶段,此时转子温度逐渐升高,材质内应力释放引起转子热变形,一倍频振动增大,同时可能伴随相位变化。由于引起了转子弯曲变形而导致机组异常振动。转子永久性弯曲和临时性弯曲是两种不同的故障,但其故障机理相同,都与转子质量偏心类似,因而都会产生与质量偏心类似的旋转矢量激振力。 与质心偏离不同之处在于轴弯曲会使两端产生锥形运动,因而在轴向还会产生较大的工频振动。另外,转轴弯曲时,由于弯曲产生的弹力和转子不平衡所产生的离心力相位不同,两者之间相互作用会有所抵消,转轴的振幅在某个转速下会有所减小,即在某个转速上,转轴的振幅会产生一个“凹谷”,这点与不平衡转子动力特性有所不同。当弯曲的作用小于不衡量时,振幅的减少发生在临界转速以下;当弯曲作用大于不平衡量时,振幅的减少就发生在临界转速以上。针对转子热变形的故障处理就是更换新的转子以减低机组异常振动。没有了振动力的产生机组也就不会出现异常振动。 (三)摩擦振动的特征、原因与排除 摩擦振动的特征:一是由于转子热弯曲将产生新的不平衡力,因此振动信号的主频仍为工频,但是由于受到冲击和一些非线性因数的影响,可能会出现少量分频、倍频和高频分量,有时波形存在“削顶”现象。二是发生摩擦时,振动的幅值和相位都具有波动特性,波动持续时间可能比较长。摩擦严重时,幅值和相位不再波动,振幅会急剧增大。三是降速过临界时的振动一般较正常升速时大,停机后转子静止时,测量大轴的晃度比原始值明显增加。摩

汽轮发电机组振动监测方案及故障预防措施示范文本

汽轮发电机组振动监测方案及故障预防措施示范文 本 In The Actual Work Production Management, In Order To Ensure The Smooth Progress Of The Process, And Consider The Relationship Between Each Link, The Specific Requirements Of Each Link To Achieve Risk Control And Planning 某某管理中心 XX年XX月

汽轮发电机组振动监测方案及故障预防 措施示范文本 使用指引:此解决方案资料应用在实际工作生产管理中为了保障过程顺利推进,同时考虑各个环节之间的关系,每个环节实现的具体要求而进行的风险控制与规划,并将危害降低到最小,文档经过下载可进行自定义修改,请根据实际需求进行调整与使用。 1. 编制目的 为保证太仓电厂#2号机组顺利投产,避免振动问题的 发生,在收集有关资料的基础上,特制定本措施。 2. 编制依据 2.1 《火电工程启动调试工作规定》1996年5月 2.2 《火力发电厂基本建设工程启动及竣工验收规程》 1996年版 2.3 《火电工程调整试运质量检验及评定标准》 2.4 《电力建设施工及验收技术规范》电力工业部 2.5 《CLN600-24.2/566/566型汽轮机主机说明书》

哈尔滨汽轮机厂有限责任公司 2.6 《机组运行规程》太仓电厂 3. 调试质量目标 符合部颁《火电工程调整试运质量检验及评定标准(1996年版)》中有关系统及设备的各项质量标准要求,全部检验项目合格率100%,优良率90%以上,满足机组整套启动要求。 专业调试人员、专业组长应按附录1(调试质量控制点)对调试质量的关键环节进行重点检查、控制,发现问题应及时向上级领导汇报,以便协调解决,保证启动调试工作顺利进行。 4. 调试对象及简要特性介绍 该汽轮机系哈尔滨汽轮机厂与日本三菱公司联合设

接触网对电力线路的感应电危害分析

浅谈接触网对电力线路的感应电危害 摘要:近年来,随着电气化铁路的发展,呼和浩特铁路局管内大包、包惠等主要干线已全部完成电化改造。但是,由于既有的自闭、贯通线路基本都是沿着铁路线架设的,与新架设的接触线平行路程较长、间距较短,带电接触网产生的电磁感应和静电感应,在自闭、贯通线路上会产生较高的感应电压,危及作业人员的生命安全。因此,必须深入了解感应电压的形成原理及大小,从而采取有效的防护措施,防止因感应电导致人身伤亡事故的发生,确保作业安全。关键词:接触网电磁感应静电感应自闭贯通安全 电气化铁路开通以来,由于牵引供电高电压、大电流、强磁场的运行特点,对铁路沿线设备影响较大,特别是对邻近的电力线路影响显著。呼铁局管内的10kv电力贯通线、自闭电力线大都是架空线路,与接触网平行架设,其最小距离有的不足8米,由于接触网的强磁场,电力线产生较强的感应电压,对电力线的检修运行带来较大安全隐患。 1、感应电的认知 现场作业的职工经常提到在检修电力贯通线、自闭线过程中,在线路停电后用验电器验电,验电器有时仍会报警;在挂完接地封线后,上杆作业有时仍有麻电的现象发生。职工在作业时有惧怕心理,思想负担较重,因而必须弄清楚感应电产生的机理、感应电的危害,制定出有针对性的措施防止感应电伤害。 接近线路产生感应电压的机理有两个因素。一是导体之间存在着

互感的电磁感应,二是存在电容耦合的静电感应。接触网对自闭、贯通线路的感应电压指的是带电运营的接触线通过电磁感应和静 电感应在自闭、贯通线路上产生的电磁感应电压和静电感应电压之和。根据电磁感应原理,导体流过交流电流时,在其周围即产生交变磁场,处于交变磁场中的其他导体即产生感应电势。感应电势 e=-l*di/dt,它的大小与导体之间的互感及电流的变化率成正比。导线之间的互感,与导线的平行长度成正比,与导线之间的距离成反比(非线性关系)。因此两条线路平行长度越长,平行距离越近,线路电流越大,感应电势就越高。对电容耦合来说,线路平行长度越长,平行距离越近,线路电压越高,其静电感应电动势也越高。综合上述两种因素,感应电势的大小,与线路的平行长度、电压高低、电流大小成正比,而与平行线路之间的距离成反比。对带电导线附近的横担、爬梯等金属物件,同样存在这种感应电势。而且线路电流超大(发生短路故障)时,感应电势的放电电流也随之上升,因此危险性会更大。另外潮湿的空气如雨、雪、雾等,因电磁介质能力增强,加在停电线路上的感应电压也会增大。当出现大风天气时,线索的摆动,也会增强停电线索在带电设备的电磁场中做切割磁力线的运动,导致感应电压增大。 2、感应电的危害 应电的存在给停电线路作业带来了诸多不利因素,如果作业人员缺乏对感应电的认识,稍不注意就会被感应电所伤。感应电流通过人体的表皮或体内后,其对人体的伤害程度取决于电流的大小、持

汽轮机异常振动分析与排除 贾峰

汽轮机异常振动分析与排除贾峰 发表时间:2018-11-18T20:20:10.497Z 来源:《防护工程》2018年第20期作者:贾峰王舰[导读] 在我们国家,广大的北方区域因为水少,大多是依靠火力来发电的。只有做好了电力供应才可以确保城市的稳定。 抚顺石化工程建设有限公司第七分公司辽宁抚顺 113008 摘要:在我们国家,广大的北方区域因为水少,大多是依靠火力来发电的。只有做好了电力供应才可以确保城市的稳定。为确保供电合理,电厂的维修机构都会在规定的时间中对设备开展详细的分析和维护。然而汽轮机作为发电体系中非常关键的一个构成要素,它的问题率的降低对于综合体系的发展来讲,意义非常多关键。它的不正常振动是目前来讲,非常难以应对的一个问题。对于这种状态,强化对 其不正常振动的探索,为维修机构提供必需的分析就变得非常的关键。 关键词:汽轮机;异常振动成因;排除措施 1汽轮机异常振动的原因 1.1汽流激振现象造成的异常振动 当大型汽轮机在运行过程中出现异常振动问题时,首先应当分析是否是由汽流激振造成的故障问题。由于大型汽轮机的末级较长,当汽轮机在运行时极易出现叶片膨胀造成汽流流道紊乱的情况,从而造成汽流激振现象。汽流激振现象具有两个较为明显的特征:第一,当汽轮机出现汽流激振现象会出现较大值的低频分量;第二,运行参数会突然增大影响汽轮机的振动情况。在判断汽轮机是否出现汽流激振现象时,需要通过大量汽轮机振动记录信息进行判断,通过对汽轮机长时间的振动数据进行分析,可以有效判断汽轮机的汽流激振现象。 1.2转子热变形造成的异常振动 汽轮机在运行过程中会出现转子热变形造成的异常振动情况,需要工作人员对转子热变形的成因进行分析,尽可能避免汽轮机的异常振动情况。造成汽轮机转子热变形的原因有很多,主要原因包括:汽轮机运行引发转子热度过热、汽轮机气缸出现进水情况、气缸中进入冷空气与气缸造成摩擦、汽轮机中心孔进油、汽轮机发电机转子冷却温度出现差异,以上原因均能造成汽轮机转子热变形情况的发生。当转子由于温度过热出现变形问题时,会直接造成汽轮机的异常振动,由于转子热变形情况可能是临时危害,也可能是永久危害,需要工作人员对转子热变形的危害情况进行判断,避免转子热变形对汽轮机的正常运行造成过于严重的影响。 1.3摩擦造成的异常振动 汽轮机由于长时间运行,对各个零部件均会造成不同程度的摩擦损伤,当零部件的摩擦损害过于严重时,则会造成汽轮机的异常振动问题。汽轮机摩擦出现异常振动的特征如下:第一,转子热变形会对汽轮机造成不平衡力,使汽轮机的振动信号受到影响,会出现少量分频、倍频以及高频分量等现象;第二,当汽轮机发生摩擦时,汽轮机的振动会出现波动,波动的持续时间较长。而汽轮机摩擦过于严重时,汽轮机的振动幅度会大幅增加;第三,汽轮机在延缓运行过程中,下降速度超过临界点时,汽轮机的振动幅度会增大。当汽轮机停止转动后,汽轮机的测量轴会出现明显晃动。简而言之,汽轮机由于摩擦出现异常振动是由于摩擦致使汽轮机温度升高,局部温度过热造成转子热变形,产生不平衡力造成的异常振动。 2汽轮机组常见异常振动排除 引起汽轮机组异常振动的主要原因有以下几个方面,汽流激振、转子热变形、摩擦振动等。针对着三个主要方面以下进行了详细的论述。 2.1汽流激振现象与故障排除 汽流激振有两个主要特征:一是应该出现较大量值的低频分量;二是振动的增大受运行参数的影响明显,如负荷,且增大应该呈突发性。其原因主要是由于叶片受不均衡的气体来流冲击就会发生汽流激振;对于大型机组,由于末级较长,气体在叶片膨胀末端产生流道紊乱也可能发生汽流激振现象;轴封也可能发生汽流激振现象。针对汽轮机组汽流激振的特征,其故障分析要通过长时间(一年以上)记录每次机组振动的数据,连同机组满负荷时的数据记录,做出成组曲线,观察曲线的变化趋势和范围。通过改变升降负荷速率,从5T/h到50T/h的给水量逐一变化的过程,观察曲线变化情况。通过改变汽轮机不同负荷时高压调速汽门重调特性,消除气流激振。简单的说就是确定机组产生汽流激振的工作状态,采用减低负荷变化率和避开产生汽流激振的负荷范围的方式来避免汽流激振的产生。 2.2转子热变形导致的机组异常振动特征原因及排除 转子热变形引发的振动特征是一倍频振幅的增加与转子温度和蒸汽参数有密切关系,大都发生在机组冷态启机定速后带负荷阶段,此时转子温度逐渐升高,材质内应力释放引起转子热变形,一倍频振动增大,同时可能伴随相位变化。由于引起了转子弯曲变形而导致机组异常振动。转子永久性弯曲和临时性弯曲是两种不同的故障,但其故障机理相同,都与转子质量偏心类似,因而都会产生与质量偏心类似的旋转矢量激振力。与质心偏离不同之处在于轴弯曲会使两端产生锥形运动,因而在轴向还会产生较大的工频振动。另外,转轴弯曲时,由于弯曲产生的弹力和转子不平衡所产生的离心力相位不同,两者之间相互作用会有所抵消,转轴的振幅在某个转速下会有所减小,即在某个转速上,转轴的振幅会产生一个“凹谷”,这点与不平衡转子动力特性有所不同。当弯曲的作用小于不衡量时,振幅的减少发生在临界转速以下;当弯曲作用大于不平衡量时,振幅的减少就发生在临界转速以上。针对转子热变形的故障处理就是更换新的转子以减低机组异常振动。没有了振动力的产生机组也就不会出现异常振动。 2.3摩擦振动的特征原因与排除 一是由于转子热弯曲将产生新的不平衡力,因此振动信号的主频仍为工频,但是由于受到冲击和一些非线性因数的影响,可能会出现少量分频、倍频和高频分量,有时波形存在“削顶”现象。二是发生摩擦时,振动的幅值和相位都具有波动特性,波动持续时间可能比较长。摩擦严重时,幅值和相位不再波动,振幅会急剧增大。三是降速过临界时的振动一般较正常升速时大,停机后转子静止时,测量大轴的晃度比原始值明显增加。摩擦振动的机理:对汽轮机转子来讲,摩擦可以产生抖动、涡动等现象,但实际有影响的主要是转子热弯曲。动静摩擦时圆周上各点的摩擦程度是不同的,由于重摩擦侧温度高于轻摩擦侧,导致转子径向截面上温度不均匀,局部加热造成转子热弯曲,产生一个新的不平衡力作用到转子上引起振动。

感应电的危害与预防word精品

感应电的危害与预防 目录 、感应电的分类 (2) (一)静电感应: (2) 1.静电感应的产生原理: (2) 2.处于强电场下电线路中的静电感应 (3) (二)电磁感应: (4) 1.直导体在磁场中运动产生的感生电动势 (4) 2.自感和互感现象 (5) 、交流电气化线路的感应电干扰、影响及危害 (5) (一)交流电气化线路的感应电对通信线路的影响 (5) (二)感应电对作业安全的影响及危害 (5) (三)接触网“ V ”停作业电气干扰的分析和预防 (6) 1.”停作业的电气干扰因素分析 (6) 2.“V停作业的电气干扰防护措施 (7) 、消除感应电的方法 (7) (一)接触网作业消除感应电的措施 (8) (二)电力作业消除感应电的措施 (9) 1.零电位作业 (10) 2.作业人员使用“保安线” (11) 3.其他经验 (11) 电能是自然界中蕴藏的一种可用不可摸的高效资源,自从被科学家发现它的利用价值以来,飞速的推动了社会生产力的进步、科学技术的发展和人类的生活质量。当今社会,各行各业都在广泛的使用电能,人们的生活也离不开电能,没有电,社会生产活动就要停滞不前,人们的正常生活秩序也会发生混乱,造成一定的恐慌。电能在给人们的生产生活带来诸多方便的同时,如果在使用中违反正确的操作方法,不按规定的安全操作规程操作,就会发生用电设施工作的不正常、损坏甚至危害人身安全事情。 感应电是一种比较特殊的电能,在社会生产和生活的一些领域有着广泛的利用,但在一些领域中,必须防止和消除它的存在,如果不及时消除,就会对设备及人身安全造成危害,必须引起高度重视。在电力行业(包括铁路牵引供电)的检修作业中,停电检修设施中产生的感应电对作业人员来说,是一种严重威胁作业安全的隐患,如果作业中操作不当或违反安全规程中规定的安全措施、或不按规定的要求设置安全措施,就会发生设备损坏仍至人身伤害事故。 近年来,在我们兰州供电段先后发生了夏官营“7.31”、天祝“11.2”、甘草店“7.29”三起人身触电事故,经事故原因调查,我们发现都是由感应电所致。为此,需要全段职工对感应电的产生及危害性预防有一个新的认识。 感应电到底是什么东西?有什么危害?如何预防感应电的危害呢?下面,我们一同走进感应电的世界,了解感应电的产生原理,掌握感应电生产的规律,以达到预防感应电损坏设备、威胁或伤害作业人员安全的目的。

机组轴系振动诊断及处理方法研究

机组轴系振动诊断及处理方法研究 发表时间:2017-07-17T16:02:39.080Z 来源:《电力设备》2017年第8期作者:王新雷[导读] 摘要:我们针对某机组在汽轮机高压转子临界转速下及带负荷过程中振动幅度大、随机性波动,以及转子后瓦轴振周期性波动、振幅增大等故障进行了分析诊断。 (中国电建集团河南工程公司河南省郑州市 450000) 摘要:我们针对某机组在汽轮机高压转子临界转速下及带负荷过程中振动幅度大、随机性波动,以及转子后瓦轴振周期性波动、振幅增大等故障进行了分析诊断。结果表明,引起振动的原因分别为汽轮机高压缸膨胀不畅、油挡积碳、发电机转子滑环以及发电机转子热不平衡等。我们对以上问题进行了诊断和处理的定向研究,希望通过本文的研究能够更加全面的掌握机组轴系机构及产生机组振动的重要原 因,同时也为后期更好的处理机组振动问题提供参考。关键词:轴系振动;高压缸;膨胀;积碳;动静碰摩;热不平衡。 1、引言在发电企业运行过程中,机组轴系的正常运转与机组的发电效率有密切的联系,实际工作中,机组工作环境复杂,经常出现振动,危害较大,因此在现阶段加强对于机组轴系振动的研究具有重要的现实意义,能够更加全面的掌握关于机组轴系的机构引发振动的主要原因,从而更好的保障机组轴系的正常运行,保障良好的运行效率。 2、机组轴系结构概述本文主要针对某型号双缸双排汽的轮机机组进行研究。该机组在高、中压部分采用合缸结构,双层缸设计为低压缸部分。在工作运行中负荷或蒸汽参数等变化,导致波动出现在低压转子两端轴振的幅值和相位上。在机组运行过程中负荷变动,轴承处轴振(分别为低压转子前、后轴承处)随时间呈类似周期性变化。而且凝汽器真空变化引起轴承处轴振的变化。使轴承处轴变化轨迹呈不规则的状态,轴振“削波”现象比较明显。机组轴承瓦温偏高,在运行中震动不稳定,而且轴振低频分量较大。根据上述异常现象在机组运行过程中的具体体现,我们推断有可能在低压缸中心存在动态偏移问题,使低压汽缸的中心与轴系的中心不符,导致局部区域动、静间隙消失,产生摩擦振动。为了确定导致轴瓦发生异常振动的真正原因,需对该问题进行分析研究。机组轴系由高、中压转子、低压转子、发电机转子和励磁机转子组成。各转子之间分别用常规刚性联轴器连接。高中压转子为落地式轴承,低压转子轴承安装在排汽缸上,而另一部分发电机轴承为端盖式轴承。还有一些轴承与励磁机安装在台板上,低压转子轴瓦、发电机转子轴瓦和励磁机转子轴瓦都为椭圆瓦,分别支撑在6个轴承上。 3、机组轴系振动原因分析对于高压缸膨胀故障,随着运行时间的延长,机组在升速通过临界转速时汽轮机高压转子振幅越来越高,并且在定速带负荷过程中出现大幅度爬升、回落的不稳定的现象。现场检查发现,汽轮机高压缸立销垫片己经拉毛、卷曲,严重影响汽轮机高压缸的膨胀及收缩。垫片的损坏直接影响了机组的正常工作。同时,在无任何操作的正常运行状态下的机组,汽轮机高压转子相对轴振出现无规律的波动现象最高振幅处于报警状态。由于工作转速下汽轮机高压转子呈现二阶振型的弯曲,转子两端靠近振型高点,所以应该在汽封处存在动静接触部位。通过检查也发现,汽轮机高压转子轴封发生严重漏气。由于热辐射的原因,机组长期运行将使油挡积碳,使动静间隙消失,从而导致汽轮机高压转子碰摩振动。而在机组起动定速以后,发电机转子后瓦轴振呈周期性波动。由此我们发现发电机转子振动以基频分量为主,且处于不稳定状态。据此分析,发电机转子由于较为明显的热弯曲和外伸端不平衡响应导致存在持续性、轻微的动静碰摩。引起周期性震动。但是随着机组功率的升高,发电机转子相对轴振幅值大幅度爬升,额定负荷工况下的测点处于报警状态。根据振动与负荷的趋势特征,我们分析发现该振动为发电机转子存在热不平衡所致。机组由于转子热不平衡造成了匝间短路故障、氢气冷却风道局部堵塞、转子线棒膨胀受阻。 4、机组轴系振动的处理方法我们通过对高压机故障进行系统排查得知,汽轮机高压转子轴振与汽轮机高压缸膨胀有关,更换垫片后,机组轴系的振动正常。而且通过排查发现,在机组运行过程中,由于发电机转子振动、滑环晃度过大、碳刷过硬以及安装紧力过大等因素的影响,均会引起发电机转子产生较为明显的热弯曲,对于外伸端不平衡响应灵敏度较高的发电机转子,则会引起明显的周期性振动。调整碳刷安装紧力后,发电机转子轴振周期性波动消失。我们在机组供热期操作时,应尽量缓慢调整抽汽量,避免瞬间增大或减小。同时严密监视机组、供热管道等振动。利用机组停机检修机会,做好高中压缸进汽部位汽缸保温,进一步检查阻碍汽缸膨胀的收缩因素,如滑销系统,抽汽管道以及支吊架等。而在正常运行中观察瓦轴振和瓦振以及偏心实时在线监控曲线,一旦发现当振动有增大趋势且继续上升时,应立即采用减小供热量,降低负荷等措施,及早控制振动的进一步增大,及时汇报和做好记录。机组正常运行当中,应尽量缓慢调整负荷,要符合规程的进行各主要参数的幅度变化。同时我们在根据负荷及热网供水温度的要求在调整热网加热器进汽时,要兼顾调整中压缸至低压缸蝶阀。并检查其中排压力和温度的变化,防止超压或者压力低于规程规定值。机组在停运时,轴瓦外油档应该进行认真清理,使油档下部回油孔增大,并加装挡汽隔热板在油档外侧。对高、中压汽缸进汽侧垂直部位加装保温,减少积碳的产生。机组在停运后,检修人员要严格执行检修工艺,避免再次泄漏。在揭缸检修中,对高中压缸汽封、立销间隙进行检查和调整,避免径向碰磨。现在,故障诊断在机械、电子、能源、化工、交通运输、航空航天、军事等各个领域得到了广泛应用。应用对象包括旋转机械、往复机械、流程工业、加工过程、仪器仪表等。由于旋转机械是各行各业用得最多的一类机械设备,所以,旋转机械的故障诊断问题始终是设备诊断技术研究的热门课题。汽轮机组是大型旋转机械,而且用途非常广泛,其故障诊断问题引起了有关单位和人员的高度重视。 5、结语通过以上防范措施,机组各瓦振动值均稳定有力的证明我们所采取的措施是有效的,这为以后类似机组维护提供了宝贵的经验,也为未来更好的处理同类型机组问题提供了参考。参考文献

汽轮机振动大的原因分析及其解决办法

汽轮机振动大的原因分析及其解决办法 发表时间:2017-09-06T10:38:48.377Z 来源:《电力设备》2017年第14期作者:唐昊 [导读] 摘要:为了保障城市经济的发展与居民用电的稳定,加强汽轮机组日常保养与维护,保障城市供电已经成为了火力发电厂维护部门的重要任务。 (阜新金山煤矸石热电有限公司辽宁省阜新市 123000) 摘要:为了保障城市经济的发展与居民用电的稳定,加强汽轮机组日常保养与维护,保障城市供电已经成为了火力发电厂维护部门的重要任务。文章就汽轮机异常振动的原因进行了分析与故障的排除,在振动测方面应做的工作进行了简要的论述。 关键词:汽轮机;异常振动;故障排除;振动监测;汽流激振现象 前言 对转动机械来说,微小的振动是不可避免的,振动幅度不超过规定标准的属于正常振动。这里所说的振动,系指机组转动中振幅比原有水平增大,特别是增大到超过允许标准的振动,也就是异常振动。任何一种异常振动都潜伏着设备损坏的危险。比如轴系质量失去平衡(掉叶片、大轴弯曲、轴系中心变化、发电机转子内冷水路局部堵塞等)、动静磨擦、膨胀受阻、轴承磨损或轴承座松动,以及电磁力不平衡等等都会表面在振动增大,甚至强烈振动。而强烈振又会导致机组其他零部件松动甚至损坏,加剧动静部分摩擦,形成恶性循环,加剧设备损坏程度。异常振动是汽轮发电机运转中缺陷,隐患的综合反映,是发生故障的信号。因此,新安装或检修后的机组,必须经过试运行,测试各轴承振动及各轴承处轴振在合格标准以下,方可将机组投入运行。振动超标的则必须查找原因,采取措施将振动降到合格范围内,才能移交生产或投入正常运行。 1.机组异常振动原因 汽轮机组担负着火力发电企业发电任务的重点。由于其运行时间长。关键部位长期磨损 等原因,汽轮机组故障时常出现,这严重影响了发电机组的正常运行。汽轮机组异常振动是汽轮机常见故障中较为复杂的一种故障。由于机组的振动往往受多方面的影响,只要跟机本体有关的任何一个设备或介质都会是机组振动的原因,比如进汽参数、疏水、油温、油质等。因此,针对汽轮机异常震动原因的分析就显得尤为重要,只有查明原因才能对症维修。针对导致汽轮机异常振动的各个原因分析是维修汽轮机异常振动的关键。 2.汽轮机组常见异常震动的分析与排除 引起汽轮机组异常振动的主要原因有以下几个方面,汽流激振转子热变形、摩擦振动等。 2.1汽流激振现象与故障排除 汽流激振有两个主要特征:一是应该出现较大量值的低频分量;二是振动的增大受运行参数的影响明显,且增大应该呈突发性,如负荷。其原因主要是由于叶片受不均衡的气体来流冲击就会发生汽流激振;对于大型机组,由于末级较长,气体在叶片膨胀末端产生流道紊乱也可能发生汽流激振现象;轴封也可能发生汽流激振现象。针对汽轮机组汽流激振的特征,其故障分析要通过长时间的记录每次机组振动的数据,连同机组满负荷时的数据记录,做出成组曲线,观察曲线的变化趋势和范围。通过改变升降负荷速率,从5T/h到50T/h的给水量逐一变化的过程,观察曲线变化情况。通过改变汽轮机不同负荷时高压调速汽门重调特性,消除气流激振。简单的说就是确定机组产生汽流激振的工作状态,采用减低负荷变化率和避开产生汽流激振的负荷范围的方式来避免汽流激振的产生。 2.2转子热变形导致的机组异常振动特征、原因及排除 转子热变形引发的振动特征是一倍频振幅的增加与转子温度和蒸汽参数有密切关系,大都发生在机组冷态启机定速后带负荷阶段,此时转子温度逐渐升高,材质内应力释放引起转子热变形,一倍频振动增大,同时可能伴随相位变化。由于引起了转子弯曲变形而导致机组异常振动。转子永久性弯曲和临时性弯曲是两种不同的故障,但其故障机理相同,都与转子质量偏心类似,因而都会产生与质量偏心类似的旋转矢量激振力。与质心偏离不同之处在于轴弯曲会使两端产生锥形运动,因而在轴向还会产生较大的工频振动。另外,转轴弯曲时,由于弯曲产生的弹力和转子不平衡所产生的离心力相位不同,两者之间相互作用会有所抵消,转轴的振幅在某个转速下会有所减小,即在某个转速上,转轴的振幅会产生一个凹谷,这点与不平衡转子动力特性有所不同。当弯曲的作用小于不衡量时,振幅的减少发生在临界转速以下;当弯曲作用大于不平衡量时,振幅的减少就发生在临界转速以上。针对转子热变形的故障处理就是更换新的转子以减低机组异常振动。没有了振动力的产生机组也就不会出现异常振动[1]。 2.3摩擦振动的特征、原因与排除 摩擦振动的特征:一是由于转子热弯曲将产生新的不平衡力,因此振动信号的主频仍为工频,但是由于受到冲击和一些非线性因数的影响,可能会出现少量分频、倍频和高频分量,有时波形存在削顶+现象。二是发生摩擦时,振动的幅值和相位都具有波动特性,波动持续时间可能比较长。摩擦严重时,幅值和相位不再波动,振幅会急剧增大。三是降速过临界时的振动一般较正常升速时大,停机后转子静止时,测量大轴的晃度比原始值明显增加。摩擦振动的机理:对汽轮机转子来讲,摩擦可以产生抖动、涡动等现象,但实际有影响的主要是转子热弯曲。动静摩擦时圆周上各点的摩擦程度是不同的,由于重摩擦侧温度高于轻摩擦侧,导致转子径向截面上温度不均匀,局部加热造成转子热弯曲,产生一个新的不平衡力作用到转子上引起振动。 3.如何查找汽轮机的异常震动 生产中经常遇到瓦盖振、轴振的异常变化,引起振动异常的原因很多。根据振动产生的集中原因,在查找振动主要来源时要注意下面几个要素:振动的频率是 1X,2X等。振动的相位是否有变化及相邻轴承相位的关系。振动的稳定性如何(指随转速、负荷、温度、励磁电流、时间、等的变化是否变化)。例如汽轮机转子质量不平衡会有下列现象:升速时振动与转速的二次方成正比,转速高振动大。特别过临界时振动比以往大得多。振动的频率主要是1X。振动的相位一般不变化及相邻轴承相位出现同或反相,振动的稳定性好(在振动没有引起磨擦的情况下),且重复性好,根据振动特征与日常检测维修记录多方面分析,找出故障原因最终排除。另外对于一些原本设计上有通病的机组,要做好心理准备并牢记其故障点,一旦出现情况首先要检查设计缺陷部件。 4.在振动监测方面应做好的工作 目前200M W 及以上的机组大都装设了轴系监控装置,对振动实施在线监控,给振动监测工作创造了良好的条件。其他中小型机组有的虽装有振动监测表,但准确度较差,要靠携带型振动表定期测试核对,有的机组仅靠推带振动表定期测试记录。对中小型机组的振动监

危险作业风险及防范措施完整版

危险作业风险及防范措 施 HEN system office room 【HEN16H-HENS2AHENS8Q8-HENH1688】

危险作业风险及防范措施 在生产过程中,企业时常组织员工进行动火作业、受限空间作业、临时用电作业、高处作业等安全风险较大的作业项目。如何防范作业过程中的风险?企业应严格做好防护保障措施,员工应按照规程操作,以减少事故伤害。 【动火作业】 ☆易燃易爆物质危害 ☆泄漏电流(感应电)危害 ☆气瓶间距不足或放置不当 ☆电焊、气焊工具有缺陷 ☆易燃物外泄、火星飞溅 ☆通风不良、未定时监测 ☆应急设施不足或措施不当 ☆现场条件发生重大变化 安全要点 1.将动火设备、管道内的物料清洗、置换,并经分析合格后再作业。储罐内应存储清水或惰性气体进行保护,设备内通氮气、水蒸气进行保护。员工进入受限空间动火,必须办理受限空间作业证。 2.切断与动火设备相连通的设备管道,加盲板隔断,并办理抽堵盲板作业证。 3.清除动火点周围的易燃物,对附近的下水井、地漏、地沟、电缆沟等进行清理并封闭。

4.电焊回路线应搭接在焊件上,不得与其他设备搭接,禁止穿越下水道(井)。 5.高处动火需办理高处作业证,防范火花飞溅。若涉及高处、抽堵盲板、管道设备检修作业等,应同时办理相关作业许可证。 6.氧气瓶、溶解乙炔气瓶间距不小于5米,其与动火地点之间均不应小于10米,气瓶不得在烈日下暴晒,溶解乙炔气瓶禁止卧放。 7.动火作业前,应检查电焊、气焊工具,确保安全可靠。遇有跑料、串料和易燃气体泄漏,应立即停止动火。 8.在室内动火,应将门窗打开,对周围设备进行遮盖,密封水漏、清除油污,附近不得进行易燃物质清洗作业,可采用局部强制通风措施。中断动火时,现场不得留有余火。重新动火前,应检查现场条件是否有变化,如有变化,不得动火。 9.监测取样与动火间隔不得超过30分钟,采样点应有代表性,特殊动火的分析样品应保留至动火结束。 10.动火现场应备有蒸汽管、水管、灭火器等,固定泡沫灭火系统应进入预启动状态。监火人应熟悉现场环境,检查安全措施是否落实到位,掌握工况变化,并坚守现场。 【受限空间作业】 ☆隔绝不可靠 ☆机械伤害 ☆触电危害 ☆通风不良、氧气不足 ☆防护措施不当

影响汽轮发电机组振动的原因分析

影响汽轮发电机组振动的原因分析 在工业生产中,汽轮发电机组应用的比较广泛,是保证工业生产的主要设备。汽轮发电机组的振动对设备的稳定运行造成了一定的影响,所以要对其原因进行分析,然后找出解决的对策,保证汽轮发电机组的稳定运行,为工业生产的正常运行创造有利的条件。 标签:汽轮发电机组;振动;影响因素 前言 汽轮发电机组的振动对于设备的稳定运行有重要的影响,直接关系到企业的安全生产。对产生振动的影响因素进行分析,具有多方面的原因,设计、制造、安装以及后期的管理等,都可能会导致汽轮发电机组的振动。下面将从几个方面对影响振动的因素进行分析,为汽轮发电机组的稳定运行提供基础的理论依据。 1 设计制造环节的失误 汽轮发电机最为重要的运行设备,其设计的每一个环节都非常重要。在运行的过程中,其转子的运行速度非常快,如果在旋转中心方面发生偏离,将会对轴承造成激荡力,导致整个机组的振动。所以为了防止中心的偏离,在设计的过程中应该对生产工艺做出严格的规定,在进行转子装配时,每安装一级叶片就做一次平衡试验,在整体完成后再进行一次整体试验,只有保证整体的平衡性,才能够控制振动的产生。 在对机组进行加工制造的过程中,受到加工精度的影响会导致工艺质量不过关,易造成振动现象的产生。为了减少因为制造环节出现的振动,应该提高机械加工的精度,保证生产的质量。在生产的过程中,应该使用先进的生产工艺和材料,提高稳定性,降低因为生产环节造成的振动。 2 安装与检修方面的因素 对汽轮发电机组的安装需要具有很高的技术,并且在安装的过程中要严格按照说明书进行。在后期运行的过程中,要做好检修工作,保证汽轮发电机组能够正常的运行。在安装与检修的过程中,会因为工艺水平不高或者没有按照规范的要求执行,都会导致机组发生振动,所以在这两个环节要给予高度的重视。 2.1 轴承标高的选择 在汽轮发电机安装的过程中,需要轴承作为支撑,所以轴承的设置极为关键,两侧轴承的标高一定要在同一水平线上,保持汽轮发电机的平衡。如果两侧的轴承标高不同,那么其所承担的荷载也就不同,在负荷较轻的一端,就会出现自激振动,而较重的一端就会因为负荷较强而产生较大的力量,从而引起轴瓦温度的

电厂汽轮机振动过大原因及处理办法示范文本

电厂汽轮机振动过大原因及处理办法示范文本 In The Actual Work Production Management, In Order To Ensure The Smooth Progress Of The Process, And Consider The Relationship Between Each Link, The Specific Requirements Of Each Link To Achieve Risk Control And Planning 某某管理中心 XX年XX月

电厂汽轮机振动过大原因及处理办法示 范文本 使用指引:此管理制度资料应用在实际工作生产管理中为了保障过程顺利推进,同时考虑各个环节之间的关系,每个环节实现的具体要求而进行的风险控制与规划,并将危害降低到最小,文档经过下载可进行自定义修改,请根据实际需求进行调整与使用。 该文针对电厂汽轮机振动过大的一些原因进行分析讨 论,给出了汽轮机振动大的原因以及格尔木300MW燃气 电站汽轮机组常遇到的振动大的原因,并给出了减小汽轮 机振动的措施。 一、前言 格尔木300MW燃气电站汽轮机系上海汽轮机厂生 产,汽轮机型号:LZN55-5.6/0.65。下表是格尔木 300MW燃气电站转子振动值与轴承振动值的相关参数。 二、汽轮机发生振动的原因 (一) 机组在运行中中心不正引起的振动

(1) 汽轮机启机过程中,若暖机时间不够,升速或者加负荷过快,将引起气缸受热膨胀不均匀,或者滑销系统有卡涩,使气缸不能自由膨胀,将导致气缸相对于转子发生歪斜,机组产生不正常的位移,发生过大振动。 (2) 机组在运行当中如真空下降,将引起排气温度过高,后轴承上抬,破坏机组的中心,引起振动。 (3) 机组在进汽温度超过设计规范的条件下运行。将使胀差和汽缸变形增加,这样会造成机组中心移动超过允许的限度,引起振动。 (5) 间隙振荡。当转子因某种原因与汽缸不同心时,可能产生间隙振荡,造成机组振动值升高。 (二) 转子质量不平衡引起的振动 (1) 弹性弯曲而引起的振动。这种振动表现为轴向振动,尤其当通过临界转速时,其轴向振幅增大得更为显著。

相关文档
相关文档 最新文档