文档库 最新最全的文档下载
当前位置:文档库 › 焊缝焊接收缩量ANSYS仿真分析

焊缝焊接收缩量ANSYS仿真分析

焊缝焊接收缩量ANSYS仿真分析
焊缝焊接收缩量ANSYS仿真分析

焊缝焊接收缩量的ANSYS仿真分析

摘要:现代焊接技术趋于完善,对焊接变形的数值已有很多经验公式计算,但是都是实测数据,环境不一样,焊接收缩就不一样。本文运用ansys的热分析功能对焊接的收缩进行仿真。该仿真存在的难点是热结构耦合、单元生死、材料的弹塑性、apdl参数化设计。关键词:焊缝焊接收缩量ansys

中图分类号: p755.1文献标识码: a 文章编号:

第一步:输入材料特性,建立模型,设定焊接速度,计算热源值。输入材料特性;

本计算模型采用q345qd钢材的材料特性,设初始温度为室温25℃,且材料密度不变化。材料密度设为7.85×103 kg/m3,热膨胀系数为1.75×10-5,初始弹性模量为e=2.0×1011mpa,泊松比0.25,初始导热系数为18.6w/m·℃,比热容设为502j/(kg·℃),初始热焓值6.13×109,这些材料特性随温度变化而变化,如下表1、2、3所示:

表1:钢材弹模与温度的关系

表2:钢材导热系数、比热与温度的关系

表3:钢材热焓值与温度的关系

由于材料会进入塑性变形区,采用多线性随动强化和双线性随动

焊接过程数值模拟的发展

内蒙古科技大学 本科生课程论文 题目:焊接过程数值模拟的发展 学生姓名:孑然De90后 学号:096110。。。。 专业:材料成型及控制工程 班级:成型09—1班 指导教师:

焊接过程数值模拟的发展 摘要: 介绍了焊接数值模拟技术在焊接接头微观组织分析、焊接温度场分析、焊接应力应变分析、氢扩散分析方面的研究现状,并对焊接数值模拟技术在这几方面的模拟方法、原理及模型的建立进行了较为详细的介绍,最后,对我国焊接数值模拟技术的发展进行了展望。 焊接数值模拟方法一直是研究和电阻点焊过程的有效方法。详细介绍了焊接过程数值模拟技术的研究现状和进展。并指出了焊接过程数值模拟及应用的发展方向。 关键词:焊接;微观组织;温度场;数值模拟 The Welding Process of The Development of Numerical Simulation Abstract: This article introduced research status of welding numerical simulation technology from several aspects,suchas microstructure analysis on welding joints,welding temperature field analysis,welding stress and strain analysis,researchstatus of hydrogen diffusion。and detailedly introduced its simulation method,principle and modeling.Finallytheprospect of China welding numericM simulation technology is carried out. Welding numerical simulation methods has been research and the effective method of resistance spot process. Detailed introduces the welding process of numerical simulation technology research and progress. And points out the welding process and application of the numerical simulation development direction. Key words: welding;microstructure;temperature field;stress-strain;hydrogen diffusion;numerical simulation 1引言 1.1 背景 焊接是一个涉及电弧物理、传质传热、冶金和力学的复杂过程,单纯采用理。

ANSYS软件介绍与实例讲解

一简述ANSYS软件的发展史。 1970年,Doctor John Swanson博士洞察到计算机模拟工程应该商品化,于是创立了ANSYS公司,总部位于美国宾夕法尼亚州的匹兹堡。30年来,ANSYS 公司致力于设计分析软件的开发,不断吸取新的计算方法和技术,领导着世界有限元技术的发展,并为全球工业广泛接受,其50000多用户遍及世界。 ANSYS软件的第一个版本仅提供了热分析及线性结构分析功能,像当时的大多数程序一样,它只是一个批处理程序,且只能在大型计算机上运行。 20世纪70年代初。ANSYS软件中融入了新的技术以及用户的要求,从而使程序发生了很大的变化,非线性、子结构以及更多的单元类型被加入到子程序。70年代末交互方式的加入是该软件最为显著的变化,它大大的简化了模型生成和结果评价。在进行分析之前,可用交互式图形来验证模型的几何形状、材料及边界条件;在分析完成以后,计算结果的图形显示,立即可用于分析检验。 今天软件的功能更加强大,使用更加便利。ANSYS提供的虚拟样机设计法,使用户减少了昂贵费时的物理样机,在一个连续的、相互协作的工程设计中,分析用于整个产品的开发过程。ANSYS分析模拟工具易于使用、支持多种工作平台、并在异种异构平台上数据百分百兼容、提供了多种耦合的分析功能。 ANSYS公司对软件的质量非常重视,新版的必须通过7000道标准考题。业界典范的质保体系,自动化规范化的质量测试使ANSYS公司于1995年5月在设计分析软件中第一个通过了ISO9001的质量体系认证。 ANSYS公司于1996年2月在北京开设了第一个驻华办事机构,短短几年的时间里发展到北京、上海、成都等多个办事处。ANSYS软件与中国压力容器标准化技术委员会合作,在1996年开发了符合中国JB4732-95国家标准的中国压力容器版。作为ANSYS集团用户的铁路机车车辆总公司,在其机车提速的研制中,ANSYS软件已经开始发挥作用。 二节点﹑单元﹑单元类型的基本概念。 节点:几何模型通过划分网格,转化为有限元模型,节点构成了网格的分布和形状,是构成有限元模型的基本元素。 单元:有限元模型的组成元素,主要有点、线、面、体。 单元类型:根据实体模型划分网格时所要确定的单元的形状,是单元属性的一部分,单元类型决定了单元的自由度,包括线单元(梁、杆、弹簧单元)、壳单元(用于薄板或曲面模型)、二维实体单元、三维实体单元、线性单元、二次单元和P–单元。 三用ANSYS软件进行分析的一般过程。 1建立有限元模型 (1)指定工作文件名和工作标题。 该项工作并不是必须要求做的,但是做对多个工程问题进行分析时推荐使用工作文件名和工作标题。

焊接过程的数值模拟

《焊接过程的数值模拟》课程简介 课程编号:02044906 课程名称:焊接过程的数值模拟/ Numerical simulation of welding process 学分:2 学时:32 (课内实验(践):上机:16 课外实践:) 适用专业:焊接技术与工程专业 建议修读学期:7 开课单位:材料科学与工程学院材料加工工程系 课程负责人:卢云 先修课程:焊接冶金学、计算机基础、VB语言及程序设计 考核方式与成绩评定标准:采用平时成绩+上机考试成绩相结合的方式,平时成绩占课程考核成绩的50%,平时成绩考核采用作业、上机实验和报告相结合的方式;上机考试成绩占课程考核成绩的50%。 教材与主要参考书目: 主要参考书目:1、焊接数值模拟技术及其应用,汪建华,上海交通大学出版社,2003 2、计算材料学,D.罗伯编著,项金钟、吴兴惠译,化学工业出版社,2002 内容概述: 本课程初步介绍焊接过程中数值模拟技术的一些基本原理,基本方法,研究进展和研究内容。初步探讨使用有限元软件作为平台实现焊接的数值模拟过程。重点介绍焊接热传导在有限元程序中的使用及应用。通过本课程的学习,使学生了解焊接数值模拟的基本方法,学会综合运用其它方面的知识来实现简单焊接过程的数值模拟,并能够对模拟的结果进行有效的分析。初步具备分析和解决焊接工程问题的能力。 This course introduces some basic principles, methods, research progress and contents of the numerical simulation technology in the welding process. The realization of numerical Simulation of welding based on finite element software platform is also discussed briefly. The application of welding heat conduction in the finite element program is emphasized on. Through this course, the students should understand the basic methods of numerical simulation of welding, learn the integrated use of the knowledge of other aspects to achieve a simple welding numerical simulation, and can effectively analyze the simulation results. This course is to present the practical analysis and solve for welding engineering problems.

ANSYS中简支梁的模拟计算

1 E c ; / E c lE s _2卜+僅 12 (5-30) 通过大型有限元软件ANSYS 对简支梁进行模拟计算 下面以钢筋混凝土简支梁的 ANSYS ①程序数值模拟的应用实例,对ANSYS ⑧程序的应用方法及 模拟效果进行验证,梁的尺寸、配筋及荷载如图5-9所示。钢筋采用H 级钢,混凝土强度等级为 C30。 2.1单元类型 i )混凝土单元:采用 ANSYS ①程序单元库中 SOLID65单元。 (ii )纵向钢筋:PIPE20 (iii )横向箍筋:PIPE20 2.2材料性质 i )、混凝土材料 [16~ 19] 混凝土立方体抗压强 度 f cu ( N / mm 2) 弹性模量E c 2 (N/mm ) 泊松 比 V 单轴抗压强度f c ' 2 (N/mm ) 单轴抗拉强度f r (N/mm ) 裂缝间剪力 传递 系数P t 张开 闭合 30 24000 0.20 25.0 3.1125 0.35 0.75 ?单轴受压应力-应变曲线(二-;曲线) 在ANSYS @程序分析中,需要给出混凝土单轴受压下的应力应变曲线。在本算例中,混凝土单 轴受压下的应力应变采用 Sargin 和Saenz 模型[17,18]: ①22①22 E20 ①22 RCBEAM-03 图5-9 2①82①82①8 2①82①82①8 ① 8@75@75@75 2①22①22①22 150 150 150 150 RCBEAM-01 150150150 RCBEAM-02 (b )、梁断面图 梁尺寸、配筋及荷载示意图 f ①24 ①24 ①22 150 150 ■4- ------------- P P 125 1200 600 (a )、梁的几何尺寸及荷载示意图 600

焊接虚拟仿真培训系统,DOC

焊接虚拟仿真培训系 统,D O C(总3页) -CAL-FENGHAI.-(YICAI)-Company One1 -CAL-本页仅作为文档封面,使用请直接删除

1、焊接培训行业状况 焊接是一项对过程要求很高的工作,在现有的手工焊接生产中,采用MAG/MIG焊接的约占50%,TIG焊接约占30%,MMA焊接约占20%;如:在造船行业中,MAG约占70%,MMA约占30%;那么,这就需要焊工要有扎实的操作手法、规范的动作。而在焊接培训过程中传统方式存在以下多种问题: (1)消耗大量的焊条(丝)、焊件和保护气体等材料; (2)对学员的培训过程难以准确掌握; (3)对学员的焊接水平难以评价; (4)培训效果不尽理想; (5)培训过程环境污染严重,有害健康; (6)培训过程安全性差。 2、项目实施目的 1)减少甚至避免焊接练习过程中强光、高温、明火及烟尘以及有毒气体的产生,全面保护教师和学员的身体健康; 2)减少或者避免焊接实训过程中对空气污染的有害气体的排放,防止对环境造成污染; 3)能够让无工作经验的学员快速、真实的投入到焊接实训中,提高培训效率,避免由于无经验操作产生的事故。同时能够让有经验的训练者有更高的训练平台,提高焊接技术; 4)节省真实焊材、工件等焊接材料以及工业用电,降低培训成本; 方便教学。 3、焊接仿真模拟器概述 电焊操作训练模拟器系统是由武汉科码软件有限公司独立自主研发的焊接虚拟仿真培训系统。该系统是基于虚拟计算机系统,是以中高度仿真的教学培训系统,能让学员在接近真实的模拟环境下进行焊接技术的训练。该系统能促进焊接技能向实际工况焊接的有效转换。与传统的焊接培训相比减少了焊材的浪费。该设备结合了:焊工的动作、仿真焊接焙池、焊接声音及焊接手感,使用该系统的受训者能够感受到几乎真实的焊接过程。 电焊模拟实训系统是新一代环保、节能、通用型操作技能实训与评价平台。 该系统采用分布式仿真实训技术、虚拟现实技术、微机测控技术、声音仿真技术及计算机图像实时生成技术。在不需要真实焊机的情况下,通过仿真主控系统、位置追踪系统,将焊接演练过程中焊枪的位置、速度和角度等进行采集处理,并实时生成虚拟焊缝。 该系统将仿真操作设备、实时3D技术及渲染引擎相结合,演练过程真实,视觉效果、操作手感与真实一致。在焊接演练的过程中,学员能够看到焊接电弧以及焊液从生成、流动到冷却的过程,同时听到相应的焊接音效。 该系统与传统的焊接技艺教学能有机的融合在一起,是实现灵活、高效、安全、节约、绿色无污染的焊接模拟培训教学与考核的最佳教学方法。 通过电焊模拟实训系统,学员不仅仅可以获得与传统实训相同的操作经验,同时通过系统内置的数据采集、智能专家辅助模块和量化考核评价系统等一系列先进独特的教学功能,配合合理明晰的焊接知识穿插讲解,使学员可以获得在传统教学实践过程中难以量化的精确焊接培训指导,大幅度提升学员在培训过程中的方向性和目的性,有效缩短学员的培训周期,降低教师的教学负担,达到以低成本、低投入实现“精教、精学、精炼”的焊接培训机制。

数值模拟在焊接中的应用

数值模拟在焊接中的应用 摘要:焊接是一复杂的物理化学过程,借助计算机技术,对焊接现象进行数值模拟,是国内外焊接工作者的热门研究课题,并得到了越来越广泛的应用。概括介绍了数值分析方法,综述了国内外焊接数值模拟在热过程分析、残余应力分析、焊接热源分析方面的研究现状及发展趋势。 关键词:焊接;数值模拟;研究现状 焊接是一个涉及电弧物理、传质传热、冶金和力学的复杂过程,单纯采用理论方法,很难准确的解决生产实际问题。因此,在研究焊接生产技术时,往往采用试验手段作为基本方法,其模式为“理论—试验—生产”,但大量的焊接试验增加了生产的成本,且费时费力。计算机技术的飞速发展给各个领域带来了深刻的影响。结合数值计算方法和技术的不断改进,工程和科学中越来越多的问题都可以采用计算机数值模拟的方法进行研究。采用科学的模拟技术和少量的实验验证,以代替过去一切都要通过大量重复实验的方法,不仅可以节省大量的人力和物力,而且还可以通过数值模拟解决一些目前无法在实验室里直接进行研究的复杂问题。用数值方法仿真实际的物理过程,有时被称为“数值实验”。作为促进科学研究和提高生产效率的有效手段,数值实验的地位已经显得越来越重要了。在工程学的一些领域中,已经视为和物理实验同等重要。与焊接生产领域采用的传统经验方法和实验方法相比,数值模拟方法具有以下优点: (l)可以深入理解焊接现象的本质,弄清焊接过程中传热、冶金、和力学的相互影响和作用; (2)可以优化结构设计和工艺设计,从而减少实验工作量,缩短生产周期,提高焊接质量,降低工艺成本。 一、焊接数值模拟中的数值分析方法 数值模拟是对具体对象抽取数学模型,然后用数值分析方法,通过计算机求解。经过几十年的发展,开发了许多不同的科学方法,其中有:(1)解析法,即数值积分法;(2)蒙特卡洛法; (3)差分法;(4)有限元法。数值积分法用在原函数难于找到的微积分计算中。常用的数值积分法有梯形公式、辛普生公式,高斯求积法等。蒙特卡洛法又称随机模拟法。即对某一问题做出一个适当的随机过程,把随机过程的参数用由随机样本计算出的统计量的值来估计,从而由这个参数找出最初所述问题中的所含未知量。差分法的基础是用差商代替微商,相应的就把微分方程变为差分方程来求解。差分法的主要优点是对于具有规则的几何特性和均匀的材料特性问题,其程序设计和计算简单,易于掌握理解,但这种方法往往局限于规则的差分网格,不够灵活。在焊接研究中差分法常用于焊接热传导、熔池流体力学氢扩散等问题的分析。有限元法起源于20世纪50年代航空工程中飞机结构的矩阵分析,现在它已被用来求解几乎所有的连续介质和场的问题。在焊接领域,有限元法已经广泛的用于焊接热传导、焊接热弹塑性应力和变形分析、焊接结构的断裂力学分析等。在工程应用中,上述数值方法常相互交叉和渗透。 二、焊接熔池的传热与流体流动模拟进展 焊接熔池的传热和流体流动计算机模拟是焊接模拟领域的一个重要领域,同时也是焊接冶金模拟中最为复杂的一个方向之一。因为焊接过程中大部分非平衡的物理、化学反应都在短时间内集中在焊接熔池这一局部高温区域内,这部分区域存在着很大程度上的成分、组织和性能的不均匀性。而对焊接熔池的物理测试十分困难,且费用大,因此大部分的研究是基于数值模拟的基础进行的。对焊接熔池的数值模拟有助于人们从更深层次上理解焊接过程的物理实质,模拟的结果有利于实现对焊接过程的控制。但目前关于焊接熔池的传热与流体流动模型都是建立在大量的假设和简化基础上的[1~3],因而模拟结果与实际有一定的出入,需要

ANSYS塑性变形模拟例子

/一个周边简支的圆盘,其中心受到一个冲杆的周期作用(假定冲杆是刚性的),需要进行圆盘在冲杆的周期作用下的塑性分析。本实例的模型简图如图19.1所示,材料特性如下所示,塑性时的应力-应变关系如表19.1,载荷历史如表19.2所示。 弹性模量:EX=70000,泊松比:NUXY=0.325 /PREP7 /TITLE,Circular Plate Loaded by a Circular Punch - Kinematic Hardening !* 下面定义建模分析时需要的参数 EXX=70000 RPL=65 RPU=5 H=6.5 STS1=55 STN1=STS1/EXX STS2=112 STN2=0.00575 STS3=172 STN3= 0.02925 STS4=241 STN4= 0.1 NEX=15 NET=2 NEX1=nint(0.8*NET) NEX2=NEX-NEX1 !* ET,1,42,,,1 !定义单元PLANE42,设置为轴对称 !* MP,EX,1,EXX !定义材料属性 MP,NUXY,1,0.325 !* TB,KINH,1,1,4, !定义多线性随动强化准则 TBPT,,STN1,STS1 TBPT,,STN2,STS2 TBPT,,STN3,STS3 TBPT,,STN4,STS4 !* 创建节点 N,1,RPL,,,,,, N,2,0,,,,,, N,3,,H/2,,,,, !* 创建关键点 K,1,,-(H/2),, K,2,RPU,-(H/2),, K,3,RPL,-(H/2),, KGEN,2,ALL, , , ,H, ,3,0 !复制并平移关键点

ansys二次开发及实例

ansys二次开发教程+实例 第3章ANSYS基于VC++6.0的二次开发与相互作用分析在ANSYS中的实现 3.1 概述 ANSYS是一套功能十分强大的有限元分析软件,能实现多场及多场耦合分析;是实现前后处理、求解及多场分析统一数据库的 一体化大型FEA软件;支持异种、异构平台的网络浮动,在异种、异构平台上用户界面统一、数据文件全部兼容,强大的并行计算功能 支持分布式并行及共享内存式并行。该软件具有如下特点: (1) 完备的前处理功能 ANSYS不仅提供了强大的实体建模及网格划分工具,可以方便地构造数学模型,而且还专门设有用户所熟悉的一些大型通用有 限元软件的数据接口(如MSC/NSSTRAN,ALGOR,ABAQUS等),并允许从这些程序中读取有限元模型数据,甚至材料特性和边 界条件,完成ANSYS中的初步建模工作。此外,ANSYS还具有近200种单元类型,这些丰富的单元特性能使用户方便而准确地构建出 反映实际结构的仿真计算模型。 (2) 强大的求解器 ANSYS提供了对各种物理场量的分析,是目前唯一能融结构、热、电磁、流体、声学等为一体的有限元软件。除了常规的线性、 非线性结构静力、动力分析外,还可以解决高度非线性结构的动力分析、结构非线性及非线性屈曲分析。提供的多种求解器分别适用于 不同的问题及不同的硬件配置。 (3) 方便的后处理器 ANSYS的后处理分为通用后处理模块(POST1)和时间历程后处理模块(POST26)两部分。后处理结果可能包括位移、温度、应力、应变、速度以及热流等,输出形式可以有图形显示和数据列表两种。 (4) 多种实用的二次开发工具 ANSYS除了具有较为完善的分析功能外,同时还为用户进行二次开发提供了多种实用工具。如宏(Marco)、参数设计语言(APDL)、用户界面设计语言(UIDL)及用户编程特性(UPFs),其中APDL(ANSYS Parametric Design Language)是一种非常类似于Fortran77的参数化设计解释性语言,其核心内容为宏、参数、循环命令和条件语句,可以通过建立参数化模型来自动完成一些通用性强的任务;UIDL(User Interf ace Design Language)是ANSYS为用户提供专门进行程序界面设计的语言,允许用户改变ANSYS的图形用户界面(GUI)中的一些组项,提供了一种允许用户灵活使用、按个人喜好来组织设计ANSYS图形用户界面的强有力工具;UPFs(User Programmable Features)提供了一套Fortran77函数和例程以扩展或修改程序的功能,该项技术充分显示了ANSYS的开放体系,用户 不仅可以采用它将ANSYS程序剪裁成符合自己所需的任何组织形式(如可以定义一种新的材料,一个新的单元或者给出一种新的屈服 准则),而且还可以编写自己的优化算法,通过将整个ANSYS作为一个子程序调用的方式实现。 鉴于上述特点,近几年来,ANSYS软件在国内外工程建设和科学研究中得到了广泛的应用。但这些应用大多局限于直接运用ANSYS软件进行实际工程分析,对利用ANSYS提供的二次开发工具进行有限元软件设计却很少涉及。本文首次利用ANSYS软件的二次开发功能,以VC++6.0为工具,运用APDL语言,对ANSYS进行二次开发,编制框筒结构-桩筏基础-土相互作用体系与地震反应分析程序。 3.2 程序设计目标 针对某一实际工程问题,ANSYS所提供的APDL语言可对ANSYS软件进行封装。APDL语言即ANSYS软件提供的参数化设计 语言,它的全称是ANSYS Parametric Design Language。使用APD L语言可以更加有效地进行分析计算,可以轻松地进行自动化工作(循环、分支、宏等结构),而且,它是一种高效的参数化建模手段。使用APDL语言进行封装的系统可以只要求操作人员输入前处理 参数,然后自动运行ANSYS进行求解。但完全用APDL编写的宏还存在弱点。比如用APDL语言较难控制程序的进程,虽然它提供了 循环语句和条件判断语句,但总的来说还是难以用来编写结构清晰的程序。它虽然提供了参数的界面输入,但功能还不是太强,交互性 不够流畅。针对这种情况,本文用VC++6.0开发框筒结构-桩筏基础-土相互作用有限元分析程序(简称LW S程序)。

建筑工程钢结构焊接过程模拟与焊接变形、焊接ansys应力有限元分析(详细图解分析)

焊接过程模拟与焊接变形、焊接Ansys应力有限元分析 1.1 焊接变形与焊接应力 焊接时,加热和冷却循环总会导致一定程度的变形,焊接变形对尺寸稳定性以及结构力学性能都有很大的影响,控制焊接变形在焊接加工中是一个关键的任务。 在钢结构焊接中,焊接工艺会使构件温度场产生不均匀变化,从而在构件中产生复杂的残余应力分布。残余应力是一种自相平衡的力系,当构件承受荷载时,如受拉、受压等,荷载引起的应力将与截面残余应力相叠加,从而使构件某些部位提前达到屈服强度,并发生塑性变形,故会严重降低构件的刚度和稳定性以及结构疲劳强度。 对构件进行焊接,在焊件上产生局部高温的不均匀温度场,焊接中心处温度可达1600℃,高温区的钢材会发生较大程度的膨胀伸长,但受到相邻钢材的约束,从而在焊件内引起较高的温度应力,并在焊接过程中,随时间和温度而不断变化,称其为焊接应力。焊接应力较高的部位,甚至将达到钢材的屈服强度而发生塑性变形,因而钢材冷却后将有残存于焊件内的应力,称为焊接残余应力。并且在冷却过程中,钢材由于不能自由收缩,而受到拉伸,于是焊件中出现了一个与焊件加热方向大致相反的内应力场。 1.2 Ansys有限元焊接分析 为通过对焊接过程的三维有限元模拟分析以及焊接后构件变形及残余应力分布分析,为评估焊接对焊件的影响提供更加合理、有效、可靠的分析数据,并为焊接工艺提供一定的指导,为采用的焊接过程提供一定的分析依据,采用大型有限元计算软件Ansys作为分析工具对焊接过程与焊件的变形与残余应力进行了分析。 ANSYS有2种方式来考虑热分析与力学分析之间的耦合,即直接耦合和间接耦合。 间接耦合法的处理思路为先进行温度场的模拟,然后将求出的结点温度作为体载荷施加在结构中,计算焊接残余应力与变形。即:

ANSYS应用实例:钢筋混凝土简支梁数值模拟

(ii )纵向钢筋:PIPE20 (iii )横向箍筋:PIPE20 2.2 材料性质 (i )、混凝土材料 表5-4 混凝土材料的输入参数一览表[16~19] ·单轴受压应力-应变曲线(εσ-曲线) 在ANSYS ○R 程序分析中,需要给出混凝土单轴受压下的应力应变曲线。在本算例中,混凝土单轴受压下的应力应变采用Sargin 和Saenz 模型[17,18]: 2 21??? ? ??+???? ??-+= c c s c c E E E εεεεε σ (5-30)

式中取4' 4')108.0028.1(c c c f f -=ε;

断面图配筋图断面图配筋图断面图配筋图RCBEAM-01 RCBEAM-02 RCBEAM-03 图5-12 各梁FEM模型断面图 (a)单元网格图(b)钢筋单元划分图 图5-13 算例(一)的FEM模型图 2.4 模型求解 在ANSYS○R程序中,对于非线性分析,求解步的设置很关键,对计算是否收敛关系很大,对于混凝土非线性有限元分析,在计算时间容许的情况下,较多的求解子步(Substeps)或较小的荷载步和一个非常大的最大子步数更容易导致收敛[2]。在本算例中,设置了100个子步。最终本算例收敛成功,在CPU为P41.6G、内存为256MB的微机上计算,耗时约为8小时。 2.5 计算结果及分析 2.5.1 荷载—位移曲线 图5-14为ANSYS○R程序所得到的各梁的荷载-跨中挠度曲线,从图中可以看出: (i)、梁RCBEAM-01:曲线形状能基本反映钢筋混凝土适筋梁剪切破坏的受力特点,而且荷载-跨中挠度曲线与钢筋混凝土梁的弯剪破坏形态非常类似,即当跨中弯矩最大截面的纵筋屈服后,由于裂缝的开展,压区混凝土的面积逐渐减小,在荷载几乎不增加的情况下,压区混凝土所受的正应力和剪应力还在不断增加,当应力达到混凝土强度极限时,剪切破坏发生,荷载突然降低。

焊接模拟sysweld详细教程

目录1、模型的建立 1.1创建Points 1.2由Points生成Lines 1.3由Lines生成Edges 1.4由Edges生成Domains 1.5离散化操作 1.6划分2D网格 1.7生成Volumes 1.8离散Volumes 1.9生成体网格 1.10划分换热面 1.11划分1D网格 1.12合并节点 1.13保存模型 1.14组的定义操作 1.15保存 2、焊接热源校核 2.1建立模型并修改热源参数 2.2检查显示结果 2.3保存函数 2.4热源查看 2.5保存热源 2.6高斯热源校核 3、焊接模拟向导设置 3.1材料的导入 3.2热源的导入 3.3材料的定义 3.4焊接过程的定义 3.5热交换的定义

3.6约束条件的定义 3.7焊接过程求解定义 3.8冷却过程求解定义 3.9检查 4、后处理与结果显示分析 4.1计算求解 4 .2导入后处理文件 4.3结果显示与分析

1、模型的建立 1.1创建points 根据所设计角接头模型的规格,选定原点,然后分别计算出各节点的坐标,按照Geom./Mesh.→geometry→point步骤,建立一下十个点:(0,0,0)、(0,0,10)、(0,0,50)、(10,0,50)、(10,0,20)、(10,0,10)、(20,0,10)、(50,0,10)、(50,0,0)、(10,0,0)。 1.2由Points生成Lines 按照Geom./Mesh.→geometry→1Dentities步骤,按照一定的方向性将各点连接成如下图所示的Lines: 1.3由Lines生成Edges 按照Geom./Mesh.→geometry→EDGE步骤,点击选择各边,依次生成如下图所示各Edges:

焊接数值模拟

电阻点焊过程数值模拟技术研究进展及应用 摘要:数值模拟方法一直是研究和电阻点焊过程的有效方法。详细介绍了电阻 点焊过程数值模拟技术的研究现状和进展及其工业应用。并指出了电阻点焊过程数值模拟及应用的发展方向。 1 引言 电阻点焊以其生产效率高、焊接质量易保证、易实现自动化等优点而在汽车、航空及航天等工业领域获得了广泛的应用【1】。然而电阻点焊又是一个高度非线性的电、热、力等变量作用的耦合过程,其中包括焊接时的电磁、传热过程、金属的熔化和凝固、冷却时的相变、焊接应力与变形等,且电阻点焊熔核形成过程的不可见性和焊接过程的瞬时性给试验研究带来了很大困难,使人们对电阻点焊的过程机理一直缺乏比较深入的认识。计算机技术和数值模拟技术的发展为电阻点焊研究提供了有效的理论分析手段,国内外的学者一直在尝试利用数值模拟的方法来研究点焊过程,已相继建立了许多数值模型,并取得了很多突破。 2 点焊过程数值模拟分析方法的演化过程【2】 数值模拟技术应用于电阻点焊源自20 世纪60 年代,研究者们依据描述力、热、电过程的基本方程并对方程中参数变化和边界条件进行简化和假设,建立了点焊过程的数学模型,进而用数值模拟的方法对点焊过程温度场、电流场、电势和应力、应变场进行求解,用以研究点焊过程机理。其分析方法从有限差分发展到有限元,模型从一维发展到三维,从单场分析发展到多物理场耦合分析,考虑的因素越来越多并且越来越接近实际。学者Chang 【3】对此有过详细的总结。总的来说,点焊数值模拟分析方法的演化大致可以分为以下4个阶段。 (1)有限差分法【3】。有限差分法在早期对碳钢电阻点焊电热分析中应用得非常多。其优点是计算简单,收敛性好,但是有限差分法无法求解力学问题。 因此,焊接过程中的力效应和热电效应的相互作用无法通过有限差分法来表征和求解。 (2)有限单元法【3】。1984 年,学者Nied 【4】首次采用有限单元法来模拟电阻点焊过程中的预压阶段和通电阶段,他指出忽视预压阶段接触半径的变化是产生后续误差的根源,并通过计算获得了预压阶段电极和工件(E /W)及工件之间(W/W)的实际接触面积,并以此计算结果来进行热、电耦合分析。与有限差分法相比,有限单元法充分考虑了电极压力对焊接 过程中电极和工件、工件之间接触状态的作用。但是, Nied 的分析方法仍忽视了电极压力对电流密度和接触电阻的影响。 (3)完全耦合的有限元法【3】。1993 年,Syed 等【5】意识到焊接阶段由于电极压力和受热区热膨胀的相互作用,W/W 界面的实际接触面积会不断发生 变化。因此,他们提出了一种将电热分析和热力分析反复迭代、完全耦合的“电一热一力”分析方法。这种完全耦合的算法在理论上是严谨而精确的,它是电阻点焊数值建模方法的一次重大突破。然而这种分析方法计算 量巨大,并有可能产生无法收敛的数学问题。 (4)增量耦合的有限元法。它是Browne 【6】于1995年提出的一种更加稳健的算法,将热力分析得到的接触状态结果以时间步长为增量更新到电热分析

格构梁的ANSYS有限元模拟分析实例运用

龙源期刊网 https://www.wendangku.net/doc/1010371759.html, 格构梁的ANSYS有限元模拟分析实例运用作者:张少剑刘真 来源:《城市建设理论研究》2013年第10期 摘要:本文通过一工程实例运用ansys模拟计算。针对格构梁的研究,合理地简化模型,取出1.5米宽的土体、梁和面层单元,两边加对称约束,从而达到模拟空间结构梁的目的。本文还模拟了基坑的开挖过程的时空效应,共分七步,土体在自重应力作用下的沉降为第一步,梁与面层的激活、力的施加和土层杀死共分六步。梁的最大受力状态并不发生在最后一步完成后,而是在第六工况。 关键词:格构梁有限元分析模拟分析 中图分类号:K826.16 文献标识码:A 文章编号: 1 土体、梁、锚索和混凝土面层共同作用 基坑支护的受力机理是土体的土压力作用在格构梁和混凝土面层上,混凝土面层的力传递到格构梁上,格构梁再把它受到的力传递到和它相连的锚索上,锚索则和被支护土体嵌固为一体,格构梁和混凝土面层除起到承受土压力外,格构梁还起到平均弯矩和变形的作用,喷射混凝土面层则有保护土体表面,防止土体表面非格构梁作用部位坍塌的作用。 2模型简化及技术处理 根据基坑开挖深度,根据实际的土体性质建立土体模型。格构梁的作用是承受弯矩的,可以选用Beam4梁单元,考虑到钢筋混凝土格构梁中有钢筋的作用,其弹性模量、泊松比等设置有所调整。在建模时,如果混凝土面层的长宽与厚度的比都大于5,所以在有限元分析中采用板壳单元可以全面地反映其变形特征和应力分布规律。混凝土面层用Shell63单元模拟,其参数的取值和梁单元相同。 由于格构梁的受力性状,锚索的模拟对格构梁的受力影响较小,本模型忽略考虑锚索的模拟。预应力锚索的作用简化为作用在纵横梁交点处的集中力。 对于格构梁和土体、混凝面层之间的接触,模型采用节点耦合,以实现共同变形和受力。 3.1ANSYS有限元模拟计算 3.1.1模型的参数 1.土体的参数见下表:

焊接操作仿真训练模拟器

武汉科码焊接操作仿真训练模拟器 产品采用分布式仿真实训技术、虚拟现实技术、微机测控技术、声音仿真技术及计算机图像实时生成技术。在不需要真实焊机的情况下,通过仿真主控系统、位置追踪系统,将焊接演练过程中焊枪的位置、速度和角度等进行采集处理,并实时生成虚拟焊缝。 将仿真操作设备、实时3D技术及渲染引擎相结合,演练过程真实,视觉效果、操作手感与真实一致。在焊接演练的过程中,学员能够看到焊接电弧以及焊液从生成、流动到冷却的过程,同时听到相应的焊接音效。 可实现教师端各项功能,分别是:监控、课程设计、任务设计、学生管理、成绩管理、任务共享和系统设置。教师机用于制定任务,供学生练习和考试,在考试完成后可以查看考试成绩,并对学生进行管理。 1、教师软件功能 (1)监控 选择虚拟焊接设备,向其发送训练或考试任务。每台设备应可以同时接受不同类型的课程,或进入不同的模式。 (2)课程设计 可以对课程内容进行设置,应包括:课程名称、任务等,并可方便的添加和删除。应可以查看课程信息:选择一个节点,显示出该节点的详细信息。 (3)任务设计 应可以对任务内容进行设置,须包括:任务名称、目的、焊机类型、接口类型、焊接位置、坡口类型和母材厚度等。 应可查看该教师设计的任务:选择一个节点显示出该节点的详细信息。 (4)学生管理 应可以新建年级、新建专业、新建班级、新建学生、修改学生信息、删除信息等。 (5)成绩管理 须可以查看自己所管理班级的课程成绩单、学生考试成绩单、任务详细成绩单。须能以文字报告、焊接参数曲线显示训练结果。 (6)任务共享

须实现查看其它教师所设计的任务并能共享。选择要查看的教师,任务列表中须显示出所有的任务,单击某一任务应可以查看任务详细信息。 (7)系统设置 须可将学员列表中的自由设备添加到自己的教学组。可以修改登录密码、设置公差等级的具体参数。 2、管理员功能 须可向虚拟焊接设备发送任务;能查看课程信息、任务信息、学生信息和成绩;对教师进行管理;分配虚拟焊接设备设备。管理员分为七个部分:设备监控、课程设计、任务设计、教师管理、学生管理、成绩管理和系统设置。 (1)设备监控 须可以查看当前焊接设备,通过选择教师(管理员“设备监控”可以“选择教师”,其他功能与教师“监控”相同)、课程及任务向学员机发送任务。 (2)课程设计 管理员端“课程设计”可以“选择教师”,须可以查看其教师名下的课程及详细任务信息。其他功能与教师登录的“课程设计”相同。 (3)任务设计 管理员的“任务设计”须可以“选择教师”,并能查看其任务列表,详细任务信息等。 (4)教师管理 须具有管理员权限的人员,可添加和修改教师账户信息。 (5)学生管理 须可以选择教师,查看其管理的学生信息。 (6)成绩管理 须可以选择教师查看其管理学生的考试信息等。 (7)系统设置 通过设备管理应可以方便的添加和删除设备。通过设备分组须可以给每个教师分配学员。 3.模拟焊接的内容与种类

ansys实例-正确地模拟过盈配合

过盈配合在机械产品的装配中使用的相当普遍。比如轴与轴承、轴与轴瓦、汽车的制动盘等,都是通过一定的过盈量来使两个装配部件紧密地连接起来。 下面讨论如何在ANSYS 中正确地模拟过盈配合。 过盈配合在有限元分析中是一种典型的非线性接触行为。在有限元分析中设定了接触,从本质上来讲就是对相互接触的两个部件施加了某种约束,不同的接触算法对于接触约束的处理方法有所不同。接触约束的理论算法的选择,在ANSYS 中是通过设置contact 单元的KEOPT(2) 选项来实现的。 在ANSYS 中目前主要有5 种接触约束算法: KEYOPT(2)=0 Augmented Lagrangian - 加强的拉格朗日算法,这是ANSYS 的缺省选择; KEYOPT(2)=1 Penalty function - 罚函算法; KEYOPT(2)=2 Multipoint constraint (MPC) - 多点约束算法; KEYOPT(2)=3 Lagrange multiplier on contact normal and penalty on tangent - 接触法向采用拉格朗日乘子,接触切向采用罚函数的综合算法。 KEYOPT(2)=4 Pure Lagrange multiplier on contact normal and tangent - 法向和切向均采用拉格朗日乘子算法。 各种不同的约束算法各有其优缺点,各有各自最适用的场合,具体情况需要具体对待。大部分情况下,默认选择KEYOPT(2)=0 就够用了。 过盈配合所致的接触分析的难点在于如何确定初始接触状态。初始

接触状态设置得不对,会导致错误的计算结果或者不准确的计算结果,下面举两个例子来说明。ANSYS仿真计算代做:模态分析,瞬态动力学,谐响应分析和谱分析、械结构的疲劳、损伤,CFD流体;结构的强度评估和优化;企鹅:690294845 例1.两个圆柱体在几何上是刚好接触,划分网格后有限元模型有间隙。如图1 所示。 这两个圆柱体,在几何上是刚好相切的,即处于几何上刚好接触的初始状态。划分网格后,由于在圆周上用小段直线代替了弧线,两个圆柱体之间产生了一定的间隙,两个圆柱体的有限元模型的初始状态不再是接触的。此时,如果接触参数设置不当,就会因为初始约束不足,圆柱体出现刚体位移,得到错误的结果。

焊接模拟ansys实例(2020年整理).doc

焊接模拟ansys实例 !下面的命令流进行的是一个简单的二维焊接分析, 利用ANSYS单元生死和热-结构耦合分析功能进 !行焊接过程仿真, 计算焊接过程中的温度分布和应力分布以及冷却后的焊缝残余应力。 finish /clear /filnam,1-2D element birth and death /title,Weld Analysis by "Element Birth and Death" /prep7 /unit,si !采用国际单位制 !****************************************************** et,1,13,4 !13号二维耦合单元, 同时具有温度和位移自由度 et,2,13,4 !1号材料是钢 !2号材料是铝 !3号材料是铜 !铝是本次分析中的焊料, 它将钢结构部分和铜结构部分焊接起来 !下面是在几个温度点下, 各材料的弹性模量 mptemp,1,20,500,1000,1500,2000 mpdata,ex,1,1,1.93e11,1.50e11,0.70e11,0.10e11,0.01e11 mpdata,ex,2,1,1.02e11,0.50e11,0.08e11,0.001e11,0.0001e11 mpdata,ex,3,1,1.17e11,0.90e11,0.30e11,0.05e11,0.005e11 !假设各材料都是双线性随动硬化弹塑性本构关系 !下面是各材料在各温度点下的屈服应力和屈服后的弹性模量 tb,bkin,1,5 tbtemp,20,1 tbdata,1,1200e6,0.193e11 tbtemp,500,2 tbdata,1, 933e6,0.150e11 tbtemp,1000,3 tbdata,1, 435e6,0.070e11 tbtemp,1500,4 tbdata,1, 70e6,0.010e11 tbtemp,2000,5 tbdata,1, 7e6,0.001e11 ! tb,bkin,2,5 tbtemp,20,1 tbdata,1,800e6,0.102e11 tbtemp,500,2 tbdata,1,400e6,0.050e11 tbtemp,1000,3 tbdata,1, 70e6,0.008e11

simufact.welding焊接模拟教程

simufact.welding焊接模拟教程 案例文件,请使用simufact.welding3.1.0及以上版本打开 之前一直都是发的forming的教程,而simufact.welding网上的资料相对较少,其实simufact.welding软件也是一款很不错的软件,以往我们做焊接非线性大多数都是用marc,但是marc那个不人性化的界面,以及建模的复杂,让新手们望而却步。simufact基于marc和ife.weldsim两个求解器,取长补短,开发了极易使用的焊接模拟软件,今天我就带大家一起来体验一下吧。欢迎捧场噢! 1、打开simufact.welding3.1.0软件。点击新建按钮创建一个新的仿真模拟。 2、在弹出的界面中设定工作名称及保存位置。点击ok确定 3、在新弹出的界面中,设定重力方向、工件数量、工作平台数量、完全固定夹具数量、力固定夹具数量、机械手数量,设定完成后点击ok确定 重力方向:按照实际与所建立的几何模型坐标系来设定。如图所示,模型空间坐标系如下图所示,焊接构件放置于地面工作平台上,因此设定重力方向为Z的负方向。 工件数量:图示为两个工件焊接,上方柱形构件及下方平板行构件。数量设置为2 工作平台:起支撑作用,图示,蓝色构件下面的黄色构件为工作平台,一些复杂形状的构件焊接时,内部支撑夹具形状要复杂一些,但是道理是一样的。它们对工件起到支撑作用。 完全固定夹具:根据实际中夹具工装设定,意为XYZ方向均不可动。 里固定夹具:施加一定的力,使工件固定。如图示蓝色板类件上面的四个小圆柱,通过它们施加一定的力,让构件压在工作平台上。 机械手数量:焊接工艺中用到的机械手数量,有些工艺需要多个机械手同时进行焊接,按照实际定义即可。本案例为一个机械手,顺序焊接底部四条直线焊缝,没道焊缝之间间隔一段时间(机械手转向)。

相关文档