文档库 最新最全的文档下载
当前位置:文档库 › 物理选修3-5-知识点总结综述

物理选修3-5-知识点总结综述

物理选修3-5-知识点总结综述
物理选修3-5-知识点总结综述

高中物理选修3-5知识点梳理

一、动量 动量守恒定律

1、动量:P = mv 。单位是s m kg ?.动量是矢量,其方向就是瞬时速度的方向。因为速度是相对的,所以动量也是相对的。

冲量:Ft I = 冲量是矢量,在作用时间内力的方向不变时,冲量的方向与力的方向相同;如果力的方向是变化的,则冲量的方向与相应时间内物体动量变化量的方向相同。若力为同一方向均匀变化的力,该力的冲量可以用平均力计算;若力为一般变力,则不能直接计算冲量。同一方向上动量的变化量=这一方向上各力的冲量和。 动量定理:00P P mv mv I t t -=-=

动量与力的关系:物体动量的变化率等于它所受的力。

2、动量守恒定律:当系统不受外力作用或所受合外力为零,则系统的总动量守恒。(适用于目前物理学研究的一切领域。)

动量守恒定律成立的条件:①系统不受外力作用。②系统虽受到了外力的作用,但所受合外力为零。③系统所受的外力远远小于系统内各物体间的内力时,系统的总动量近似守恒(碰撞,击打,爆炸,反冲)。④系统所受的合外力不为零,但在某一方向上合外力为零,则系统在该方向上动量守恒。⑤系统受外力,但在某一方向上内力远大于外力,也可认为在这一方向上系统的动量守恒。

常见类型:①由弹簧组成的系统,在物体间发生相互作用的过程中,当弹簧被压缩到最短或拉伸到最长时,弹簧两端的两个物体的速度必然相等。②在物体滑上斜面(斜面放在光滑水平面上)的过程中,由于物体间弹力的作用,斜面在水平方向上将做加速运动,物体滑到斜面上最高点的临界条件是物体与斜面沿水平方向具有共同的速度,物体到达斜面顶端时,在竖直方向上的分速度等于零。③子弹刚好击穿木块的临界条件为子弹穿出时的速度与木块的速度相同,子弹位移为木块位移与木块厚度之和。

二、验证动量守恒定律(实验、探究) Ⅰ 【注意事项】

1.“水平”和“正碰”是操作中应尽量予以满足的前提条件. 2.入射球的质量应大于被碰球的质量.

3.入射球每次都必须从斜槽上同一位置由静止开始滚下.方法是在斜槽上的适当高度处固定一档板,小球靠着档板后放手释放小球.

4.若利用气垫导轨进行实验,调整气垫导轨时注意利用水平仪器确保导轨水平。 【误差分析】

误差来源于实验操作中,两个小球没有达到水平正碰,一是斜槽不够水平,二是两球球心不在同一水平面上,给实验带来误差.每次静止释放入射小球的释放点越高,两球相碰时作用力就越大,动量守恒的误差就越小.应进行多次碰撞,落点取平均位置来确定,以减小偶然误差.

三、碰撞与爆炸

1.碰撞的特点:①相互作用的时间极短,可忽略不计。②系统的内力远大于外力,外力可忽略。③速度发生突变,物体发生的位移极小,可认为碰撞前后物体处于同一位置。

2.爆炸的特点:作用时间短,内力非常大,机械能增加,动能会增加。

3.碰撞中遵循的规律:动量守恒,动能不增加。

4.一维碰撞:两个物体碰撞前后斗艳同一直线运动,这种碰撞叫做一维碰撞。

5.碰撞的广义性:只要通过短时间作用,物体的动量发生了明显的变化,都可视为碰撞,与物体是否发生“接触”无关。

6.碰撞的分类

从运动角度分类;碰撞前后两球的运动速度方向与两球心的连线在同一条直线上的碰撞称为正碰(对心碰撞);反之则为斜碰(非对心碰撞)。

从能量角度分类:①弹性碰撞:碰撞过程中无机械能的损失(碰撞后能分离)②非弹性碰撞:碰撞过程中机械能有了损失③完全非弹性碰撞:非弹性碰撞的一种,机械能损失最大(转化为内能等),碰撞物体粘合在一起,或具有相同的速度。

7.弹性正碰的讨论

在光滑水平面上质量为m1的小球以速度v0与质量为m2的静止小球发生弹性正碰,碰撞后它们的速度分别为v1,v2

结论:①当m1=m2时,v1=0,v2=v0,即碰撞后小球A静止,小球B以小球A的初速度运动,两球交换速度,且小球A的动能完全传递给小球B,因此,m1=m2是动能传递最大的条件。

②当m1>m2时,v1>0,即小球A、B向同一方向运动,因<,所以速度大小为v1<v2,即两小球不会发生第二次碰撞。

若m1>>m2时,v1=v0,v2=2v0,即当质量很大的物体A碰撞质量很小的物体B时,物体A的速度几乎不变,物体B以2倍于物体A的速度向前运动。

③当m1<m2时,则v1<0,即物体A反向运动。

若m1<

四、反冲运动人船模型

1.反冲:一个静止的物体在内力作用下分裂为两部分,一部分向某一个方向运动,另一部分必然向相反的方向运动的现象。(实质是相互作用的物体或同一物体的两部分之间的作用力和反作用力产生的效果。物体间发生相互作用时,有其他形式的能转变为机械能,所以系统的总动能增加,作用力和反作用力都做正功。)

2.反冲运动中有时遇到的速度是两物体的相对速度,应将相对速度转换成对地速度。

3.人船模型:两个原来静止的物体发生相互作用,若所受外力的矢量和零,则当其中一个物体相对于另一物体运动时,另一物体反向运动,这样的问题为“人船模型”。满足m1v1-m2v2=0 m1x1-m2v2=0 L船=X船+X人 V人相对于船=V船+V人 V 喷出气体相对于火箭=V火箭+V气体

五、波粒二象性

一、黑体和黑体辐射

1.热辐射现象

任何物体在任何温度下都要发射各种波长的电磁波,并且其辐射

能量的大小及辐射能量按波长的分布都与温度有关。

这种由于物质中的分子、原子受到热激发而发射电磁波的现象称

为热辐射。

①.物体在任何温度下都会辐射能量。

②.物体既会辐射能量,也会吸收能量。物体在某个频率范围内

发射电磁波能力越大,则它吸收该频率范围内电磁波能力也越

大。

辐射和吸收的能量恰相等时称为热平衡。此时温度恒定不变。

实验表明:物体辐射能多少决定于物体的温度(T)、辐射的波长、时间的长短和发射的面积。

2.黑体

黑体是指在任何温度下,全部吸收任何波长的辐射的物体。(只与黑体的温度有关) 3.实验规律:

1)随着温度的升高,黑体的辐射强度都有增加;

2)随着温度的升高,辐射强度的极大值向波长较短方向移动。 二、量子论

量子论的主要内容:

普朗克认为振动着的带电粒子的能量只能是某一最小能量ε的整数倍,这个不可再分的最小能量值ε叫做能量子;并且ε=h ν,ν是电磁波的频率,h 为普朗克常量,h=6.63?10

34

-J ·s ;光子的能量为h ν。

三、光的粒子性 1、光电效应

⑴光电效应在光(包括不可见光)的照射下,从物体发射出电子的现象称为光电效应。照

射到金属表面的光使金属中的电子从表面逸出的现象;逸出的电子称为光电子。 ⑵光电效应的实验规律:装置:如右图。

①任何一种金属都有一个截止频率,入射光的频率必须大于这个截止频率才能发生光电效应。

②光电子的最大初动能与入射光的强度无关,随入射光频率的增大而增大。从金属表面直接飞出的光电子才具有最大初动能。

③大于截止频率的光照射金属时,光电流强度(反映单位时间发射出的光电子数的多少),与入射光强度成正比。

④金属受到光照,光电子的发射一般不超过10-9

秒。

⑤遏止电压:使光电流减小到0的反向电压Uc 。对于一定颜色的光,无论光的强弱如何,遏止电压都相同。 2、光子说 ⑴.光子论:1905年爱因斯坦提出:空间传播的光本身就是由一个个不可分割的能量子组成的,这些能量子被称为光子。4、光子论对光电效应的解释

金属中的自由电子,获得光子后其动能增大,当功能大于脱出功时,电子即可脱离金属表面,入射光的频率越大,光子能量越大,电子获得的能量才能越大,飞出时最大初功能也越大。 ⑵光电效应方程:0W h E k -=ν

E k 是光电子的最大初动能,当E k =0 时,W 。为金属的逸出功。νc 为极限频率,νc =

h

W 0

. 3.康普顿效应

①光的散射:光在介质中与物质微粒相互作用,因而传播方向发生改变的现象。

②康普顿效应:在光的散射中,除了与入射波长相同的成分外,还有波长大于入射波长的成分的现象。 表明光子除了能量之外还有动量,深入地及时了光的粒子性的一面。 4.光子的动量:p=

c h ν=λ

h 。

四、光的波粒二象性 物质波 不确定性关系Ⅰ

1.光既表现出波动性,又表现出粒子性。光既不同于宏观概念的粒子,也不同于宏观概念的波。

2.光的波动性的实验基础:干涉,衍射。

3.大量光子表现出的波动性强,少量光子表现出的粒子性强;频率高的光子表现出的粒子性强,频率低的光子表现出的波动性强.

4.实物粒子也具有波动性,这种波称为德布罗意波,也叫物质波。物质波具有普遍性。物质波不同于机械波。满足下

列关系:P

h h

=

=

λε

ν, 5.从光子的概念上看,光波是一种概率波。物质波也是概率波。

6.不确定性关系:在微观物理学中,不可能同时准确的知道微观粒子位置和动量,这种关系叫不确定关系。表达式△x △p ≥h/4π.其中△x 表示粒子位置的不确定量,△p 表示粒子在x 方向上的动量的不确定量,h 是普朗克常量。

五、原子核式结构模型

1、电子的发现和汤姆生的原子模型: ⑴电子的发现:

1897年英国物理学家汤姆生,对阴极射线进行了一系列研究,从而发现了电子。

电子的发现表明:原子存在精细结构,从而打破了原子不可再分的观念。且进一步研究发现电子是原子的组成部分。 ⑵汤姆生的原子模型:

1903年汤姆生设想原子是一个带电小球,它的正电荷均匀分布在整个球体内,而带负电的电子镶嵌在正电荷中。 2、粒子散射实验和原子核结构模型

⑴α粒子散射实验:1909年,卢瑟福及助手盖革和马斯顿完成的.(α射线:从放射性物质中发射出来的快速运动的粒子,带有两个单位的正电荷,质量为氢原子的4倍。)

①装置:如右图(在真空中)。 ②现象:

a. 绝大多数粒子穿过金箔后,仍沿原来方向运动,不发生偏转。

b. 有少数粒子发生较大角度的偏转

c. 有极少数粒子的偏转角超过了90°,有的几乎达到180°,即被反向弹回。 ⑵原子的核式结构模型:

由于粒子的质量是电子质量的七千多倍,所以电子不会使粒子运动方向发生明显的改变,只有原子中的正电荷才有可能对粒子的运动产生明显的影响。如果正电荷在原子中的分布,像汤姆生模型那模均匀分布,穿过金箔的粒了所受正电荷的作用力在各方向平衡,粒了运动将不发生明显改变。散射实验现象证明,原子中正电荷不是均匀分布在原子中的。

1911年,卢瑟福通过对粒子散射实验的分析计算提出原子核式结构模型:在原子中心存在一个很小的核,称为原子核,原子核集中了原子所有正电荷和几乎全部的质量,带负电荷的电子在核外空间绕核旋转。

原子核半径约为10-15m ,原子轨道半径约为10-10

m 。

⑶光谱

①观察光谱的仪器,分光镜 (光栅或棱镜)

②光谱的分类,产生和特征

发 射 光 谱

连 续 光 谱

产 生

特 征

由炽热的固体、液体和高压气体发光产生的 由连续分布的,一切波长的光组成 明 线 光 谱

由稀薄气体或金属的蒸汽发光产生的 由不连续的一些亮线

组成。 吸 收 光 谱

高温物体发出的白光,

通过物质后某些波长的光被吸收而产生的,(得到的是所经物质的光谱)如太阳光谱。

在连续光谱的背景上,由一些不连续的暗线组成的光谱

③ 光谱分析:

一种元素,在高温下发出一些特点波长的光,在低温下,也吸收这些波长的光,所以把明线光波中的亮线和吸收光谱中的暗线都称为该种元素的特征谱线,(各种原子的线状谱中的明线比它的吸收光谱中的暗线多一些。)用来进行光谱分析。只有线状谱和吸收光谱可用于光谱分析。(不能通过光谱分析鉴别月球的物质成分,因为月球是靠反射太阳光才能使我们看到它。)

六、氢原子光谱 Ⅰ(原子光谱可间接反映原子结构的特征) 氢原子是最简单的原子,其光谱也最简单。

1885年,巴耳末对当时已知的,在可见光区的14条谱线作了分析,发现这些谱线的波长可以用一个公式表示:

)121(

1

22n

R -=λ

n=3,4,5,… 式中R 叫做里德伯常量,=1.10×107m -1

这个公式称为巴尔末公式。(n>7时氢原子所发出的光肉眼不能直接观察到。)

除了巴耳末系(电子从较高能级跃迁到n=2能级发出

的谱线属于巴耳末系),后来发现的氢光谱在红外和

紫个光区的其它谱线也都满足与巴耳末公式类似的

关系式。

氢原子光谱是线状谱,具有分立特征。用经典的电磁

理论无法解释原子的稳定性和原子光谱的分立特征。

七、原子的能级 Ⅰ 玻尔的原子模型

⑴原子核式结构模型与经典电磁理论的矛盾(两方面)

a 电子绕核作圆周运动是加速运动,按照经典理论,加速运动的电荷,要不断地向周围发射电磁波,电子的能量就要不断减少,最后电子要落到原子核上,这与原子通常是稳定的事实相矛盾。

b 电子绕核旋转时辐射电磁波的频率应等于电子绕核旋转的频率,随着旋转轨道的连续变小,电子辐射的电磁波的频率也应是连续变化,因此按照这种推理原子光谱应是连续光谱,这种原子光谱是线状光谱事实相矛盾。 ⑵玻尔理论

①定态假设:原子只能处于一系列不连续的能量状态中,在这些状态中原子是稳定的,电子虽然做加速运动,但并不向外在辐射能量,这些状态叫定态。

②跃迁假设:原子从一个定态(设能量为E m )跃迁到另一定态(设能量为E n )时,它辐射或吸收一定频率的光子,它的电子会放出或吸收能量,光子的能量由这两个定态的能量差决定,即 hv =E m -E n ③轨道量子化假设,原子的不同能量状态,跟电子不同的运行轨道相对应。原子的能量不连续因而电子可能轨道的分布也是不连续的。 ⑶玻尔的氢子模型:

①氢原子的能级公式和轨道半径公式:玻尔在三条假设基础上,利用经典电磁理论和牛顿力学,计算出氢原子核外电子的各条可能轨道的

半径r n =n 2

r 1,n=1,2,3,...(其中r 1=0.053nm );以及电子在各条轨道

上运行时原子的能量,对氢原子有E n =E 1/n 2

,n=1,2,3...(其中E 1=-13.6eV )(包括电子的动能和原子的热能。)

②氢原子的能级图:氢原子的各个定态的能量值,叫氢原子的能级。按能量的大小用图开像的表示出来即能级图。

其中n =1的定态称为基态。n =2以上的定态,称为激发态。

③处于n 能级的电子向低能级跃迁时有C n 2

种可能情况。

⑶试原子发生跃迁的两种粒子:①原子若是吸收光子的能量而被激发,其光子的能量必须等于两能级的能量差,否则不被吸收。(但当光子能

量E ≥13.6eV 时,氢原子仍能吸收此光子并发生电离。)②原子还可吸收外来实物粒子(例如自由电子)的能量而被

410.29 397.12 434.17 486.27 656.47 λ∕nm H ε H δ H γ H β H α

激发,由于实物粒子的动能可全部或部分地被原子吸收,所以只要入射粒子的能量大于或等于两能级的能量差就可使原子发生能级跃迁。(电子撞击原子时其能量不能全部传递给原子,光子照射原子时其能量可全部被原子吸收。) ⑷当原子从高能级向低能级跃迁时,轨道半径减小,库仑引力做正功,原子的电势能减小,电子动能增大,原子能量减小。反之,原子电势能增大,电子动能减小,原子能量增大。

⑸玻尔理论的局限性:无法解释复杂一些的原子的光谱现象。保留了经典粒子的观念,把电子的运动看做经典力学描述下的轨道运动。 八、原子核的组成 原子核

1、天然放射现象 ⑴天然放射现象的发现:1896年法国物理学,贝克勒耳发现铀或铀矿石能放射出某种人眼看不见的射线。这种射线可穿透黑纸而使照相底片感光。 放射性:物质能发射出上述射线的性质称放射性 放射性元素:具有放射性的元素称放射性元素

天然放射现象:某种元素自发地放射射线的现象,叫天然放射现象。这表明原子核存在精细结构,是可以再分的。

⑵放射线的成份和性质:用电场和磁场来研究放射性元素射出的射线,在电场中轨迹,如:图1(三种射线都来自原子核。) 射 线 种 类

射 线 组 成 性 质

电 离 作 用 贯 穿 能 力 α射线

氦核组成的粒子流 很 强 很 弱(用纸能

挡住) β射线

高速电子流 较 强 较 强(穿透几毫米的铝板) γ射线

高频光子(电磁波)

很 弱

很 强(穿透几厘米的铅板)

2、元素的放射性与元素以单质还是化合物的存在形式无关,放射性强度也不受温度,外界压强的影响。

3、原子核的组成

原子核的组成:原子核是由质子和中子组成,质子和中子统称为核子

在原子核中有:质子数等于电荷数、核子数等于质量数、中子数等于质量数减电荷数

九、原子核的衰变 半衰期 Ⅰ

⑴衰变:原子核由于放出某种粒子而转变成新核的变化称为衰变在原子核的衰变过程中,电荷数和质量数守恒 衰

变 类 型

衰 变 方 程

衰 变 规 律 α 衰 变

He Y X M Z M Z

42

42

+→

--

新 核

42质量数减少电荷数减少

β 衰 变

e Y X M Z M

Z

01

1-++→

新 核

质量数不变

电荷数增加

γ辐射伴随着α衰变和β衰变产生,不能单独发生γ衰变,这时放射性物质发出的射线中就会同时具有α、β和

γ三种射线。

匀强的磁场中静止的原子核发生α衰变时,α粒子与新生核的轨迹外切,若发生β衰变,β粒子与新生核的轨迹内切。

⑵半衰期:放射性元素的原子核的半数发生衰变所需要的时间,称该元素的半衰期。(质量减少很小)

放射性元素衰变的快慢是由核内部自身因素决定的,跟原子所处的化学状态和外部条件没有关系。

N 余=N 原(1/2)t/T

N 原表示衰变前的原子数,N 余表示衰变后的尚未发生衰变的原子数,t 表示衰变时间,T 表示半衰期。

十.放射性的应用与防护 放射性同位素

1.探测放射线的方法主要是利用放射线粒子与其他物质作用时产生的一些现象来探知放射线的存在,这些现象主要是:①使气体或液体电离,放射线中的粒子可使过饱和蒸气产生雾滴或使过热液体产生气泡;②放射线中的粒子会使照相树胶感光;③放射线中的粒子会使荧光物质产生荧光。 仪器:威尔逊云室,气泡室,盖革-米勒计数器。

2.放射性同位素:有些同位素具有放射性,叫做放射性同位素

3.同位素:具有相同的质子和不同中子数的原子互称同位素,放射性同位素:具有放射性的同位素叫放射性同位素。

4.正电子的发现:用粒子轰击铝时,发生核反应。(实质:用栗子轰击原子核并不是粒子与核碰撞将原子核打开,而是粒子打入原子核内部使核子重组,形成新核。)

5.与天然的放射性物质相比,人造放射性同位素:放射强度容易控制、可以制成各种需要的形状、半衰期更短、放射性废料容易处理。

6.放射性同位素的应用: ①利用它的射线

A 、由于γ射线贯穿本领强,可以用来γ射线检查金属内部有没有砂眼或裂纹,所用的设备叫γ射线探伤仪.

B 、利用射线的穿透本领与物质厚度密度的关系,来检查各种产品的厚度和密封容器中液体的高度等,从而实现自动控制

C 、利用射线使空气电离而把空气变成导电气体,以消除化纤、纺织品上的静电

D 、利用射线照射植物,引起植物变异而培育良种,也可以利用它杀菌、治病等 ②作为示踪原子:用于工业、农业及生物研究等.

棉花在结桃、开花的时候需要较多的磷肥,把磷肥喷在棉花叶子上,磷肥也能被吸收.但是,什么时候的吸收率最高、磷在作物体内能存留多长时间、磷在作物体内的分布情况等,用通常的方法很难研究.如果用磷的放射性同位素制成肥料喷在棉花叶面上,然后每隔一定时间用探测器测量棉株各部位的放射性强度,上面的问题就很容易解决. 7.放射性的防护:

⑴在核电站的核反应堆外层用厚厚的水泥来防止放射线的外泄 ⑵用过的核废料要放在很厚很厚的重金属箱内,并埋在深海里 ⑶在生活中要有防范意识,尽可能远离放射源 十一、核反应方程

1.熟记一些实验事实的核反应方程式。

⑴卢瑟福用α粒子轰击氦核打出质子:H O He N 1

117842147+→+

⑵贝克勒耳和居里夫人发现天然放射现象: α衰变:

He Th U 4223490238

92

+→ β衰变:e Pa Th 0

12349123490-+→

⑶查德威克用α粒子轰击铍核打出中子:n C He Be 1

01264294+→+ ⑷居里夫人发现正电子:

e

Si P n

P He Al 01

30

143015

1030154227

13+→+→+

⑸轻核聚变:γ+→+H H n 21

111

⑹重核裂变:n

Kr Ba n U Sr

n Xe n U 1

089361445610235

9290

38101365410235

92

310++→+++→+ 2.熟记一些粒子的符号

α粒子(He 4

2)、质子(H 1

1)、中子(n 10)、电子(e 01-)、氘核(H 21)、氚核(H 3

1)3.注意在核反应方程式中,质量数和电荷数是守恒的。

十二.四种基本相互作用

1.核力(强力):把核子紧紧的束缚在核内,形成稳定原子核的力。在原子核的尺度内,核力比库仑力大得多。核力

作用范围在1.5*10-15m 之内,核力在大于0.8*10-15m 时表现为吸引力,且随距离增大而减小,超过1.5*10-15

m ,核力急

剧下降几乎消失;而在距离小于0.8*10-15

m 时,核力表现为斥力。每个核子之和临近的核子发生核力作用。 2.弱力:存在于原子核内,是引起原子核β衰变的原因。力程为10-18

m ,作用强度比电磁力小。

3.四种基本相互作用包括短程力(强相互作用,弱相互作用),长程力(电磁力,万有引力)(在相同距离上,电磁

力大约比万有引力强1035

倍。

4.万有引力在宏观和宇观尺度上维系了行星、恒星、星系团的运转关系,电磁力使电子绕原子核运转而构成原子,原子又组成分子,形成固体、液体、气体;核力使核子聚集在一起且不能融合在一起而构成原子核;弱相互作用使中子和质子转变,引起β衰变。

5.已发现的粒子分为:强子(质子、中子、介子、超子);轻子(电子、电子中微子、μ子、μ子中微子、τ子、τ子中微子);媒介子(光子、中间玻色子、胶子)

6.强子由夸克构成,电子电荷不再是电荷的最小单元,即存在分数电荷。 十三.原子核中质子和中子的比例

自然界中较轻的原子核,质子数和中子数大致相等;较重的原子核,中子数大于质子数,且越重的元素,两者差越多。 十四、结合能和质量亏损

1.结合能:原子核是核子凭借核力结合在一起构成的,要把它们分开,也需要能量,这就是原子核的结合能。(核力把核子紧紧地束缚在一起,核力做正功,放出能量,即为结合能。)

2.比结合能:原子核的结合能与其核子数之比,也叫平均结合能。比结合能越大,原子核中的核子结合得越牢固,原子核越稳定。中等质量的原子核最稳定。

3.质量亏损:原子核的质量小于组成它的核子的质量之和的现象。

爱因斯坦质能方程:E=mc 2或△E=△mc 2 1u=931MeV (△E=△m ×931MeV ) 1eV=1.6*10-19J

核反应中的质量亏损,并不是这部分质量消失或质量转变为能量,物体的质量应包括静止质量和运动质量,质量亏损是静止质量的减少,减少的静止质量转化为和辐射能量相联系的运动质量。

4.核能的计算方法:①根据质量亏损计算;②根据能量守恒和动量守恒来计算;③利用平均结合能来计算:原子核的结合能=核子的平均结合能×核子数。核反应中反应前系统内所有原子核的总结和能与反应后生成的所有新核的总结和能之差,就是该次核反应所释放(或吸收)的核能。④应用阿伏伽德罗常数计算:若要计算具有宏观质量的物质中所有原子核都发生核反应所放出的总能量,思路:求出原子核的个数N=N A n=N A ×(m/M) 再由题设条件求出一个原子核与另一个原子核反应放出或吸收的能量E 0, 根据E=NE 0求出总能量。

十五、重核裂变 核聚变 Ⅰ

释放核能的途径——裂变和聚变 ⑴裂变反应:

①裂变:重核在一定条件下转变成两个中等质量的核的反应,叫做原子核的裂变反应。

例如:n Kr Ba n U 1

089361445610235923++→+

②链式反应:在裂变反应用产生的中子,再被其他铀核浮获使反应继续下去。

链式反应的条件: 临界体积(裂变物质能够发生链式反应的最小体积),极高的温度. ③

U 23592

裂变时平均每个核子放能约200Mev 能量

1kg

U 23592

全部裂变放出的能量相当于2800吨煤完全燃烧放出能量!

④核反应堆的组成:a.燃料:铀棒。b.慢化剂(使中子变为慢中子):常采用石墨、重水或普通水。c.控制棒:镉棒(吸收中子)。d.保护层:反应堆外层是很厚的水泥壁。

⑵聚变反应:

①聚变反应(又叫热核反应):轻的原子核聚合成较重的原子核的反应,称为聚变反应。

例如: MeV 6.171

0423121++→+n He H H

②一个氘核与一个氚核结合成一个氦核时(同时放出一个中子),释放出17.6MeV 的能量,平均每个核子放出的能量3MeV 以上。比裂变反应中平均每个核子放出的能量大3~4倍。

③聚变反应的条件;几百万摄氏度的高温(氢弹需要用原子弹爆炸产生的高温高压引发核爆炸)。

④太阳能就来自于太阳内部聚变释放的核能。

⑤聚变的难点:地球上没有任何容器能够经受热核反应的高温。 控制方法:磁约束、惯性约束。

高中物理选修3-3知识点整理

选修3—3考点汇编 1、物质是由大量分子组成的 (1)单分子油膜法测量分子直径 (2)1mol 任何物质含有的微粒数相同2316.0210A N mol -=? (3)对微观量的估算 ①分子的两种模型:球形和立方体(固体液体通常看成球形,空气分子占据的空间看成立方体) ②利用阿伏伽德罗常数联系宏观量与微观量 a.分子质量:mol A M m N = b.分子体积:mol A V v N = c.分子数量:A A A A mol mol mol mol M v M v n N N N N M M V V ρρ= === 2、分子永不停息的做无规则的热运动(布朗运动 扩散现象) (1)扩散现象:不同物质能够彼此进入对方的现象,说明了物质分子在不停地运动,同时还说明分子 间有间隙,温度越高扩散越快 (2)布朗运动:它是悬浮在液体中的固体微粒的无规则运动,是在显微镜下观察到的。 ①布朗运动的三个主要特点: 永不停息地无规则运动;颗粒越小,布朗运动越明显;温度越高,布朗运动越明显。 ②产生布朗运动的原因:它是由于液体分子无规则运动对 固体微小颗粒各个方向撞击的不均匀性造成的。 ③布朗运动间接地反映了液体分子的无规则运动,布朗运 动、扩散现象都有力地说明物体内大量的分子都在永不停息地

做无规则运动。 (3)热运动:分子的无规则运动与温度有关,简称热运动,温度越高,运动越剧烈 3、分子间的相互作用力 分子之间的引力和斥力都随分子间距离增大而减小。但是分子间斥力随分子间距离加大而减小得更快些,如图1中两条虚线所示。分子间同时存在引力和斥力,两种力的合力又叫做分子力。在图1图象中实线曲线表示引力和斥力的合力(即分子力)随距离变化的情况。当两个分子间距在图象横坐标0r 距离时,分子间的引力与斥力平衡,分子间作用力为零,0r 的数量级为1010 -m ,相当于0r 位置叫做平衡位置。当分子距离的数量级大于 m 时,分子间的作用力变得十分微弱,可以忽略不 计了 4、温度 宏观上的温度表示物体的冷热程度,微观上的温度是物体大量分子热运动平均动能的标志。热力学温度与摄氏温度的关系:273.15T t K =+ 5、内能 ①分子势能 分子间存在着相互作用力,因此分子间具有由它们的相对位置决定的势能,这就是分子势能。分子势能的大小与分子间距离有关,分子势能的大小变化可通过宏观量体积来反映。(0r r =时分子势能最小) 当0r r >时,分子力为引力,当r 增大时,分子力做负功,分子势能增加 当0r r <时,分子力为斥力,当r 减少时,分子力做负功,分子是能增加 ②物体的内能 物体中所有分子热运动的动能和分子势能的总和,叫做物体的内能。一切物体都是由不停地做无规则热运动并且相互作用着的分子组成,因此任何物体都是有内能的。(理想气体的内能只取决于温度) ③改变内能的方式

人教版高中物理选修3-5知识点总结

选修3-5知识梳理 一.量子论的建立黑体和黑体辐射Ⅰ (一)量子论 1.创立标志:1900年普朗克在德国的《物理年刊》上发表《论正常光谱能量分布定律》的论文,标志着量子论的诞生。 2.量子论的主要内容: ①普朗克认为物质的辐射能量并不是无限可分的,其最小的、不可分的能量单元即“能量子”或称“量子”,也就是说组成能量的单元是量子。 ②物质的辐射能量不是连续的,而是以量子的整数倍跳跃式变化的。 3.量子论的发展 ①1905年,爱因斯坦奖量子概念推广到光的传播中,提出了光量子论。 ②1913年,英国物理学家玻尔把量子概念推广到原子内部的能量状态,提出了一种量子化的原子结构模型,丰富了量子论。 ③到1925年左右,量子力学最终建立。 4.量子论的意义 ①与量子论等一起,引起物理学的一场重大革命,并促进了现代科学技术的突破性发展。 ②量子论的革命性观念揭开了微观世界的奥秘,深刻改变了人们对整个物质世界的认识。 ③量子论成功的揭示了诸多物质现象,如光量子论揭示了光电效应 ④量子概念是一个重要基石,现代物理学中的许多领域都是从量子概念基础上衍生出来的。 量子论的形成标志着人类对客观规律的认识,开始从宏观世界深入到微观世界;同时,在量子论的基础上发展起来的量子论学,极大地促进了原子物理、固体物理和原子核物理等科学的发展。 (二)黑体和黑体辐射

1.热辐射现象 任何物体在任何温度下都要发射各种波长的电磁波,并且其辐射能量的大小及辐射能量按波长的分布都与温度有关。 这种由于物质中的分子、原子受到热激发而发射电磁波的现象称为热辐射。 ①.物体在任何温度下都会辐射能量。 ②.物体既会辐射能量,也会吸收能量。物体在某个频率范围内发射电磁波能力越大,则它吸收该频率范围内电磁波能力也越大。 辐射和吸收的能量恰相等时称为热平衡。此时温度恒定不变。 实验表明:物体辐射能多少决定于物体的温度(T)、辐射的波长、时间的长短和发射的面积。 2.黑体 物体具有向四周辐射能量的本领,又有吸收外界辐射 来的能量的本领。 黑体是指在任何温度下,全部吸收任何波长的辐射的 物体。 3.实验规律: 1)随着温度的升高,黑体的辐射强度都有增加; 2)随着温度的升高,辐射强度的极大值向波长较短方向移动。 二.光电效应光子说光电效应方程Ⅰ 1、光电效应

高中物理重要知识点详细全总结(史上最全)

【精品文档,百度专属】完整的知识网络构建,让复习备考变得轻松简单! (注意:全篇带★需要牢记!) 高 中 物 理 重 要 知 识 点 总 结 (史上最全)

高中物理知识点总结 (注意:全篇带★需要牢记!) 一、力物体的平衡 1.力是物体对物体的作用,是物体发生形变和改变物体的运动状态(即产生加速度)的原因. 力是矢量。 2.重力(1)重力是由于地球对物体的吸引而产生的. [注意]重力是由于地球的吸引而产生,但不能说重力就是地球的吸引力,重力是万有引力的一个分力. 但在地球表面附近,可以认为重力近似等于万有引力 (2)重力的大小:地球表面G=mg,离地面高h处G/=mg/,其中g/=[R/(R+h)]2g (3)重力的方向:竖直向下(不一定指向地心)。 (4)重心:物体的各部分所受重力合力的作用点,物体的重心不一定在物体上. 3.弹力(1)产生原因:由于发生弹性形变的物体有恢复形变的趋势而产生的. (2)产生条件:①直接接触;②有弹性形变. (3)弹力的方向:与物体形变的方向相反,弹力的受力物体是引起形变的物体,施力物体是发生形变的物体.在点面接触的情况下,垂直于面; 在两个曲面接触(相当于点接触)的情况下,垂直于过接触点的公切面. ①绳的拉力方向总是沿着绳且指向绳收缩的方向,且一根轻绳上的张力大小处处相等. ②轻杆既可产生压力,又可产生拉力,且方向不一定沿杆. (4)弹力的大小:一般情况下应根据物体的运动状态,利用平衡条件或牛顿定律来求解.弹簧弹力可由胡克定律来求解. ★胡克定律:在弹性限度内,弹簧弹力的大小和弹簧的形变量成正比,即F=kx.k为弹簧的劲度系数,它只与弹簧本身因素有关,单位是N/m. 4.摩擦力 (1)产生的条件:①相互接触的物体间存在压力;③接触面不光滑;③接触的物体之间有相对运动(滑动摩擦力)或相对运动的趋势(静摩擦力),这三点缺一不可. (2)摩擦力的方向:沿接触面切线方向,与物体相对运动或相对运动趋势的方向相反,与物体运动的方向可以相同也可以相反. (3)判断静摩擦力方向的方法: ①假设法:首先假设两物体接触面光滑,这时若两物体不发生相对运动,则说明它们原来没有相对运动趋势,也没有静摩擦力;若两物体发生相对运动,则说明它们原来有相对运动趋势,并且原来相对运动趋势的方向跟假设接触面光滑时相对运动的方向相同.然后根据静

物理选修3-4知识点(全)

选修3—4考点汇编 一、机械振动(*振动图象是历年考查的重点:同一质点在不同时刻的位移) 1、只要回复力满足F kx =-或位移满足sin()x A t ω?=+的运动即为简谐运动。 说明:①做简谐运动的物体,加速度、速度方向可能一致,也可能相反。 ②做简谐运动的物体,在平衡位置速度达到最大值,而加速度为零。 ③做简谐运动的物体,在最大位移处加速度达到最大值,而速度为零。 2、质点做简谐运动时,在T/4内通过的路程可能大于或等于或小于A (振幅),在3T/4内通过的路程可能大于或等于或小于3A 。 3、质点做简谐运动时,在1T 内通过的路程一定是4A ,在T/2内通过的路程一定是2A 。 4、简谐运动方程sin()x A t ω?=+中t ω?+叫简谐运动的相位,用来表示做简谐运动的质点此时正处于一个运动周期中的哪个状态。 5、单摆的回复力是重力沿振动方向(垂直于摆线方向)的分力,而不是摆球所受的合外力(除两个极端位置外)。 6、单摆的回复力sin /F mg mgx L θ=≈-,其中x 指摆球偏离平衡位置的位移,x 前面的是常数mg/L ,故可以认为小角度下摆球的摆动是简谐运动。 7、摆的等时性是意大利科学家伽利略发现的,而单摆的周期公式是由荷兰科学家惠更斯发现的,把调准的摆钟,由北京移至赤道,这个钟变慢了,要使它变准应该增加摆长。(附单摆的周期公式:2L T g π=) 8、阻尼振动是指振幅逐渐减小的振动,无阻尼振动是指振幅不变的振动。 9、物体做受迫振动时,频率由驱动力频率决定与固有频率无关。 10、如果驱动力频率等于振动系统的固有频率,受迫振动的振幅最大,这种现象叫共振,共振现象的应用有转速计和共振筛等,军队过桥要便步走,火车过桥要慢行,厂房建筑物的固有频率要远离机器运转的频率范围之内都是为了减小共振。 11、轮船航行时,如果左右摆动有倾覆危险,可采用改变航向和速度,使波浪冲击力的频率远离轮船摇摆的固有频率。这是共振防止的一种方法。 12、简谐波中,其他质点的振动都将重复振源质点的振动,既是振源带动下的振动,故应为受迫振动。 13、一切复杂的振动虽不是简谐振动,但它们都可以看作是由若干个振幅和频率不同的简谐运动合成的。 二、机械波(*波形图为历年来考查的重点:一列质点在同一时刻的位移) 14、有机械波必有机械振动,有机械振动不一定有机械波。 15、当波动的振源停止振动时,已形成的波动将仍能往前传播,直至能量衰减至零为止。 16、发生地震时,从地震源传出的地震波,既有横波,也有纵波。 17、机械波传播的只是振动形式,质点本身并不随波一起传播,在波的传播过程中,任一质点的起振方向都与波源的起振方向相同。 18、机械波的传播需要介质,当介质中本来静止的质点,随着波的传来而发生振动,表示质点获得能量。波不但传递着能量,而且可以传递信息。 19、在波动中振动相位总是相同两个相邻质点间的距离叫做波长,在波动中振动相位总是相反两个质点间的距离为半个波长的奇数倍。 20、任何振动状态相同的点组成的圆叫波面,与之垂直的线叫波线,表示了波的传播方向。 21、惠更斯原理是指介质中任一波面上的点都可以看作发射子波的波源,其后任意时刻,这些子波在波德

高中物理选修34知识点

电磁波 电磁波的发现:麦克斯韦电磁场理论:变化的磁场产生电场,变化的电场 产生磁场→预言电磁波的存在 赫兹证实电磁波的存在 电磁振荡:周期性变化的电场能与磁场能周期性变化,周期和频率 电磁波的发射和接收 电磁波与信息化社会:电视、雷达等 电磁波谱:无线电波、红外线、可见光、紫外线、x 射线、ν射线 选 修3—4 一、知识网络 周期:g L T π2= 机械振动 简谐运动 物理量:振幅、周期、频率 运动规律 简谐运动图象 阻尼振动 受力特点 回复力:F= - kx 弹簧振子:F= - kx 单摆:x L mg F - = 受迫振动 共振 波的叠加 干涉 衍射 多普勒效应 特性 实例 声波,超声波及其应用 机械波 形成和传播特点 类型 横波 纵波 描述方法 波的图象 波的公式:vT =λ x=vt

二、考点解析 考点80 简谐运动 简谐运动的表达式和图象 要求:I 1)如果质点所受的力与它偏离平衡位置位移的大小成正比,并且总是指向平衡位置,质点的运动就是简谐运动。 简谐运动的回复力:即F = – kx 注意:其中x 都是相对平衡位置的位移。 区分:某一位置的位移(相对平衡位置)和某一过程的位移(相对起点) ⑴回复力始终指向平衡位置,始终与位移方向相反 ⑵“k ”对一般的简谐运动,k 只是一个比例系数,而不能理解为劲度系数 ⑶F 回=-kx 是证明物体是否做简谐运动的依据 2)简谐运动的表达式: “x = A sin (ωt +φ)” 3)简谐运动的图象:描述振子离开平衡位置的位移随时间遵从正弦(余弦)函数的规律变化的,要求能将图象与恰当的模型对应分析。可根据简谐运动的图象的斜率判别速度的方向,注意在振幅处速度无方向。 A 、简谐运动(关于平衡位置)对称、相等 ①同一位置:速度大小相等、方向可同可不同,位移、回复力、加速度大小相等、方向相同. ②对称点:速度大小相等、方向可同可不同,位移、回复力、加速度大小相等、方向相反. ③对称段:经历时间相同 ④一个周期内,振子的路程一定为4A (A 为振幅); 半个周期内,振子的路程一定为2A ; 四分之一周期内,振子的路程不一定为A 相对论简介 相对论的诞生:伽利略相对性原理 狭义相对论的两个基本假设:狭义相对性原理;光速不变原理 时间和空间的相对性:“同时”的相对性 长度的相对性: 2 0)(1c v l l -= 时间间隔的相对性:2 )(1c v t -?= ?τ 相对论的时空观 狭义相对论的其他结论:相对论速度变换公式:2 1c v u v u u '+'= 相对论质量: 2 0)(1c v m m -= 质能方程2mc E = 广义相对论简介:广义相对性原理;等效原理 广义相对论的几个结论:物质的引力使光线弯曲 引力场的存在使得空间不同位置的时间进程出现差别

高中物理重要知识点详细全总结(史上最全)

完整的知识网络构建,让复习备考变得轻松简单! (注意:全篇带★需要牢记!) 物 理 重 要 知 识 点 总 结 (史上最全) 高中物理知识点总结 (注意:全篇带★需要牢记!) 一、力物体的平衡

1.力是物体对物体的作用,是物体发生形变和改变物体的运动状态(即产生加速度)的原因. 力是矢量。 2.重力(1)重力是因为地球对物体的吸引而产生的. [注意]重力是因为地球的吸引而产生,但不能说重力就是地球的吸引力,重力是万有引力的一个分力. 但在地球表面附近,能够认为重力近似等于万有引力 (2)重力的大小:地球表面G=mg,离地面高h处G/=mg/,其中g/=[R/(R+h)]2g (3)重力的方向:竖直向下(不一定指向地心)。 (4)重心:物体的各部分所受重力合力的作用点,物体的重心不一定在物体上. 3.弹力(1)产生原因:因为发生弹性形变的物体有恢复形变的趋势而产生的. (2)产生条件:①直接接触;②有弹性形变. (3)弹力的方向:与物体形变的方向相反,弹力的受力物体是引起形变的物体,施力物体是发生形变的物体.在点面接触的情况下,垂直于面; 在两个曲面接触(相当于点接触)的情况下,垂直于过接触点的公切面. ①绳的拉力方向总是沿着绳且指向绳收缩的方向,且一根轻绳上的张力大小处处相等. ②轻杆既可产生压力,又可产生拉力,且方向不一定沿杆. (4)弹力的大小:一般情况下应根据物体的运动状态,利用平衡条件或牛顿定律来求解.弹簧弹力可由胡克定律来求解. ★胡克定律:在弹性限度内,弹簧弹力的大小和弹簧的形变量成正比,即F=kx.k为弹簧的劲度系数,它只与弹簧本身因素相关,单位是N/m. 4.摩擦力 (1)产生的条件:①相互接触的物体间存有压力;③接触面不光滑;③接触的物体之间有相对运动(滑动摩擦力)或相对运动的趋势(静摩擦力),这三点缺一不可. (2)摩擦力的方向:沿接触面切线方向,与物体相对运动或相对运动趋势的方向相反,与物体运动的方向能够相同也能够相反. (3)判断静摩擦力方向的方法: ①假设法:首先假设两物体接触面光滑,这时若两物体不发生相对运动,则说明它们原来没有相对运动趋势,也没有静摩擦力;若两物体发生相对运动,则说明它们原来有相对运动趋势,并且原来相对运动趋势的方向跟假设接触面光滑时相对运动的方向相同.然后根据静摩擦力的方向跟物体相对运动趋势的方向相反确定静摩擦力方向. ②平衡法:根据二力平衡条件能够判断静摩擦力的方向. (4)大小:先判明是何种摩擦力,然后再根据各自的规律去分析求解. ①滑动摩擦力大小:利用公式f=μF N实行计算,其中F N是物体的正压力,不一

【人教版】版高中物理选修35知识点清单

精品“正版”资料系列,由本公司独创。旨在将“人教 版”、”苏教版“、”北师大版“、”华师大版“等涵盖几 乎所有版本的教材教案、课件、 导学案及同步练习和检测题分 享给需要的朋友。 本资源创作于2020年12月, 是当前最新版本的教材资源。 包含本课对应内容,是您备课、 上课、课后练习以及寒暑假预 习的最佳选择。 通过我们的努力,能 够为您解决问题,这是我们的 宗旨,欢迎您下载使用! 一、动量 动量守恒定律 高中物理选修 3-5 知识点 第十六章 动量守恒定律 1、动量:可以从两个侧面对动量进行定义或解释:①物体的质量跟其速度的乘积, 叫做物体的动量。②动量是物体机械运动的一种量度。 动量的表达式 P = mv 。单位是kg m s .动量是矢量, 其方向就是瞬时速度的方向。 因为速度是相对的, 所以动量也是相对的。 2、动量守恒定律:当系统不受外力作用或所受合外力为零, 则系统的总动量守恒。动量守恒定律根据实际情况有多种表达式, 一般常用等号左右分别表示系统作用前后的总动量。 运用动量守恒定律要注意以下几个问题: ①动量守恒定律一般是针对物体系的, 对单个物体谈动量守恒没有意义。 ②对于某些特定的问题, 例如碰撞、爆炸等, 系统在一个非常短的时间内, 系统内部各物体相互作用力, 远比它们所受到外界作用力大, 就可以把这些物体看作一个所受合外力为零的系统处理, 在这一短暂时间内遵循动量守恒定律。

③计算动量时要涉及速度, 这时一个物体系内各物体的速度必须是相对于同一惯性参照系的, 一般取地面为参照物。 ④动量是矢量, 因此“系统总动量”是指系统中所有物体动量的矢量和, 而不是代数和。 ⑤动量守恒定律也可以应用于分动量守恒的情况。有时虽然系统所受合外力不等于零, 但只要在某一方面上的合外力分量为零, 那么在这个方向上系统总动量的分量是守恒的。 ⑥动量守恒定律有广泛的应用范围。只要系统不受外力或所受的合外力为零, 那么系统内部各物体的相互作用, 不论是万有引力、弹力、摩擦力, 还是电力、磁力, 动量守恒定律都适用。系统内部各物体相互作用时, 不论具有相同或相反的运动方向;在相互作用时不论是否直接接触;在相互作用后不论是粘在一起,

高中物理选修3-4知识点总结及讲义

高中物理选修3-4知识及讲义目录: 一、简谐运动 二、机械波 三、电磁波电磁波的传播 四、电磁振荡电磁波的发射和接收 五、振动和波(机械振动与机械振动的传播) 一.简谐运动 1、机械振动: 物体(或物体的一部分)在某一中心位置两侧来回做往复运动,叫做机械振动。机械振动产生的条件是:(1)回复力不为零。(2)阻力很小。使振动物体回到平衡位置的力叫做回复力,回复力属于效果力,在具体问题中要注意分析什么力提供了回复力。 2、简谐振动: 在机械振动中最简单的一种理想化的振动。对简谐振动可以从两个方面进行定义或理解: (1)物体在跟位移大小成正比,并且总是指向平衡位置的回复力作用下的振动,叫做简谐振动。 (2)物体的振动参量,随时间按正弦或余弦规律变化的振动,叫做简谐振动,在高中物理教材中是以弹簧振子和单摆这两个特例来认识和掌握简谐振动规律的。 3、描述振动的物理量 描述振动的物理量,研究振动除了要用到位移、速度、加速度、动能、势能等物理量以外,为适应振动特点还要引入一些新的物理量。 (1)位移x:由平衡位置指向振动质点所在位置的有向线段叫做位移。位移是矢量,其最大值等于振幅。 (2)振幅A:做机械振动的物体离开平衡位置的最大距离叫做振幅,振幅是标量,表示振动的强弱。振幅越大表示振动的机械能越大,做简揩振动物体的振幅大小不影响简揩振动的周期和频率。 (3)周期T:振动物体完成一次余振动所经历的时间叫做周期。所谓全振动是指物体从某一位置开始计时,物体第一次以相同的速度方向回到初始位置,叫做完成了一次全振动。 (4)频率f:振动物体单位时间内完成全振动的次数。 (5)角频率:角频率也叫角速度,即圆周运动物体单位时间转过的弧度数。引入这个参量来描述振动的原因是人们在研究质点做匀速圆周运动的射影的运动规律时,发现质点射影做的是简谐振动。因此处理复杂的简谐振动问题时,可以将其转化为匀速圆周运动的射影进行处理,这种方法高考大纲不要求掌握。 周期、频率、角频率的关系是:。 (6)相位:表示振动步调的物理量。现行中学教材中只要求知道同相和反相两种情况。 4、研究简谐振动规律的几个思路:

关于高二物理知识点汇总高二上学期物理知识点总结归纳

高二物理知识点汇总2017高二上学期物理知识点总结高二物理中所涉及到的物理知识是物理学中的最基本的知识,学好高二物 理的相关知识点尤其重要,下面是学而思的2017高二上学期物理知识点总结,希望对你有帮助。 高二上学期物理知识点 一、三种产生电荷的方式: 1、摩擦起电:(1)正点荷:用绸子摩擦过的玻璃棒所带电荷;(2)负电荷:用毛皮摩擦过的橡胶棒所带电荷;(3)实质:电子从一物体转移到另一物体; 2、接触起电:(1)实质:电荷从一物体移到另一物体;(2)两个完全相同的物体相互接触后电荷平分;(3)、电荷的中和:等量的异种电荷相互接触,电荷相合抵消而对外不显电性,这种现象叫电荷的中和; 3、感应起电:把电荷移近不带电的导体,可以使导体带电;(1)电荷的基本性质:同种电荷相互排斥、异种电荷相互吸引;(2)实质:使导体的电荷从一部分移到另一部分;(3)感应起电时,导体离电荷近的一端带异种电荷,远端带同种电荷; 4、电荷的基本性质:能吸引轻小物体; 二、电荷守恒定律:电荷既不能被创生,亦不能被消失,它只能从一个物体转移到另一物体,或者从物体的一部分转移到另一部分;在转移过程中,电荷的总量不变。 三、元电荷:一个电子所带的电荷叫元电荷,用e表示。1、e=1.610-19c;2、一个质子所带电荷亦等于元电荷;3、任何带电物体所带电荷都是元电荷的整数倍; 四、库仑定律:真空中两个静止点电荷间的相互作用力,跟它们所带电荷量的乘积成正比,跟它们之间距离的二次方成反比,作用力的方向在它们的连线上。电荷间的这种力叫库仑力,1、计算公式:F=kQ1Q2/r2(k=9.0109N.m2/kg2)2、库仑定律只适用于点电荷(电荷的体积可以忽略不计)3、库仑力不是万有引力; 五、电场:电场是使点电荷之间产生静电力的一种物质。1、只要有电荷存在,在电荷周围就一定存在电场;2、电场的基本性质:电场对放入其中的电荷(静止、运动)有力的作用;这种力叫电场力;3、电场、磁场、重力场都是一种物质

江苏省高考物理选修35知识点梳理.pdf

选修3-5 动量 动量守恒定律Ⅱ 1、冲量 冲量可以从两个侧面的定义或解释。①作用在物体上的力和力的作用时间的乘积, 叫做该力对这物体的冲量。②冲量是力对时间的累积效应。力对物体的冲量, 使物体的动量发生变化; 而且冲量等于物体动量的变化。 冲量的表达式 I = F ·t 。单位是牛顿·秒 冲量是矢量, 其大小为力和作用时间的乘积, 其方向沿力的作用方向。如果物体在时间t 内受到几个恒力的作用, 则合力的冲量等于各力冲量的矢量和, 其合成规律遵守平行四边形法则。 2、动量 可以从两个侧面对动量进行定义或解释。①物体的质量跟其速度的乘积, 叫做物体的动量。②动量是物体机械运动的一种量度。动量的表达式P = mv 。单位是千克米 / 秒。动量是矢量, 其方向就是瞬时速度的方向。因为速度是相对的, 所以动量也是相对的, 我们啊 3、动量定理 物体动量的增量, 等于相应时间间隔力, 物体所受合外力的冲量。表达式为I = ?P 或12mv mv Ft ?=。 运用动量定理要注意①动量定理是矢量式。合外力的冲量与动量变化方向一致, 合外力的冲量方向与初末动量方向无直接联系。②合外力可以是恒力, 也可以是变力。在合外力为变力时, F 可以视为在时间间隔t 内的平均作用力。③动量定理不仅适用于单个物体, 而且可以推广到物体系。 4、动量守恒定律 当系统不受外力作用或所受合外力为零, 则系统的总动量守恒。动量守恒定律根据实际情况有多种表达式, 一般常用P P P P A B A B +='+'等号左右分别表示系统作用前后的总动量。 运用动量守恒定律要注意以下几个问题: ①动量守恒定律一般是针对物体系的, 对单个物体谈动量守恒没有意义。 ②对于某些特定的问题, 例如碰撞、爆炸等, 系统在一个非常短的时间内, 系统内部各物体相互作用力, 远比它们所受到外界作用力大, 就可以把这些物体看作一个所受合外力为零的系统处理, 在这一短暂时间内遵循动量守恒定律。 ③计算动量时要涉及速度, 这时一个物体系内各物体的速度必须是相对于同一惯性参照系的, 一般取地面为参照物。 ④动量是矢量, 因此“系统总动量”是指系统中所有物体动量的矢量和, 而不是代数和。 ⑤动量守恒定律也可以应用于分动量守恒的情况。有时虽然系统所受合外力不等于零, 但只要在某一方面上的合外力分量为零, 那么在这个方向上系统总动量的分量是守恒的。 ⑥动量守恒定律有广泛的应用范围。只要系统不受外力或所受的合外力为零, 那么系统内部各物体的相互作用, 不论是万有引力、弹力、摩擦力, 还是电力、磁力, 动量守恒定律都适用。系统内部各物体相互作用时, 不论具有相同或相反的运动方向; 在相互作用时不论是否直接接触; 在相互作用后不论是粘在一起, 还是分裂成碎块, 动量守恒定律也都适用。 5、动量与动能、冲量与功、动量定理与动能定理、动量守恒定律与机械能守恒定律的比较。动量与动能的比较: ①动量是矢量, 动能是标量。 ②动量是用来描述机械运动互相转移的物理量而动能往往用来描述机械运动与其他运动(比如热、光、电等)相互转化的物理量。比如完全非弹性碰撞过程研究机械运动转移——速度的变化可以用动量守恒, 若要研究碰撞过程改变成内能的机械能则要用动能为损失去

高中物理选修3-4知识点总结

高中物理选修3-4知识点梳理 一、简谐运动、简谐运动的表达式和图象 1、机械振动: 物体(或物体的一部分)在某一中心位置两侧来回做往复运动,叫做机械振动。机械振动产生的条件是:①回复力不为零;②阻力很小。使振动物体回到平衡位置的力叫做回复力,回复力属于效果力,在具体问题中要注意分析什么力提供了回复力。 2、简谐振动: 在机械振动中最简单的一种理想化的振动。对简谐振动可以从两个方面进行定义或理解:①物体在跟位移大小成正比,并且总是指向平衡位置的回复力作用下的振动,叫做简谐振动。②物体的振动参量,随时间按正弦或余弦规律变化的振动,叫做简谐振动。 3、描述振动的物理量 研究振动除了要用到位移、速度、加速度、动能、势能等物理量以外,为适应振动特点还要引入一些新的物理量。 ⑴位移x :由平衡位置指向振动质点所在位置的有向线段叫做位移。位移是矢量,其最大值等于振幅。 ⑵振幅A :做机械振动的物体离开平衡位置的 最大距离叫做振幅,振幅是标量,表示振动的强弱。振幅越大表示振动的机械能越大,做简揩振动物体的振幅大小不影响简揩振动的周期和频率。 ⑶周期T :振动物体完成一次余振动所经历的时间叫做周期。所谓全振动是指物体从某一位置开始计时,物体第一次以相同的速度方向回到初始位置,叫做完成了一次全振动。 ⑷频率f :振动物体单位时间内完成全振动的次数。 ⑸角频率ω:角频率也叫角速度,即圆周运动物体单位时间转过的弧度数。引入这个参量来描述振动的原因是人们在研究质点做匀速圆周运动的射影的运动规律时,发现质点射影做的是简谐振动。因此处理复杂的简谐振动问题时,可以将其转化为匀速圆周运动的射影进行处理,这种方法高考大纲不要求掌握。周期、频率、角频率的关系是:T f = 1,T ω π 2=. ⑹相位?:表示振动步调的物理量。 4、研究简谐振动规律的几个思路: ⑴用动力学方法研究,受力特征:回复力F =- kx ;加速度,简谐振动是一种变加速运动。在平衡位置时速度最大,加速度为零;在最大位移处,速度为零,加速度最大。 ⑵用运动学方法研究:简谐振动的速度、加速度、位移都随时间作正弦或余弦规律的变化,这种用正弦或余弦表示的公式法在高中阶段不要求学生掌握。 ⑶用图象法研究:熟练掌握用位移时间图象来研究简谐振动有关特征是本章学习的重点之一。 ⑷从能量角度进行研究:简谐振动过程,系统动能和势能相互转化,总机械能守恒,振动能量和振幅有关。 5、简谐运动的表达式 )( )(002sin sin x ?π?ω+A =+=t Τt Α 振幅A ,周期T ,相位02?π +t Τ ,初相0? 6、简谐运动图象描述振动的物理量 1.直接描述量:①振幅A ;②周期T ;③任意时刻的位移t . 2.间接描述量:①频率f :T f 1= ;②角速度ω:T πω2=;③x-t 图线上一点的切线的斜率等于v

最详细的高中物理知识点总结(最全版)

高中物理知识点总结(经典版)

第一章、力 一、力F:物体对物体的作用。 1、单位:牛(N) 2、力的三要素:大小、方向、作用点。 3、物体间力的作用是相互的。即作用力与反作用力,但它们不在同一物体上,不是平衡力。作用力与 反作用力是同性质的力,有同时性。 二、力的分类: 1、按按性质分:重力G、弹力N、摩擦力f 按效果分:压力、支持力、动力、阻力、向心力、回复力。 按研究对象分:外力、内力。 2、重力G:由于受地球吸引而产生,竖直向下。G=mg 重心的位置与物体的质量分布与形状有关。质量均匀、形状规则的物体重心在几何中心上,不一定在物体上。 弹力:由于接触形变而产生,与形变方向相反或垂直接触面。F=k×Δx 摩擦力f:阻碍相对运动的力,方向与相对运动方向相反。 滑动摩擦力:f=μN(N不是G,μ表示接触面的粗糙程度,只与材料有关,与重力、压力无关。) 相同条件下,滚动摩擦<滑动摩擦。 静摩擦力:用二力平衡来计算。 用一水平力推一静止的物体并使它匀速直线运动,推力F与摩擦力f的关系如图所示。 力的合成与分解:遵循平行四边形定则。以分力F1、F2为邻边作平行四边形,合力F的大小和方向可用这两个邻边之间的对角线表示。 |F1-F2|≤F合≤F1+F2 F合2=F12+F22+ 2F1F2cosQ 平动平衡:共点力使物体保持匀速直线运动状态或静止状态。 解题方法:先受力分析,然后根据题意建立坐标 系,将不在坐标系上的力分解。如受力在三个以 内,可用力的合成。 利用平衡力来解题。 F x合力=0 F y合力=0 注:已知一个合力的大小与方向,当一个分力的 方向确定,另一个分力与这个分力垂直是最小 值。 转动平衡:物体保持静止或匀速转动状态。 解题方法:先受力分析,然后作出对应力的力臂(最长力臂是指转轴到力的作用点的直线距离)。分析正、负力矩。 利用力矩来解题:M合力矩=FL合力矩=0 或M正力矩= M负力矩 第二章、直线运动

物理选修35知识点总结

知识点梳理高中物理选修3-5动量守恒定律一、动量 kg ms mvP.。单位是1、动量:动量是矢量,其方向就是瞬时速度的方向。因为速度是相对的,所以动量也是相对的。= I Ft 冲量:冲量是矢量,在作用时间内力的方向不变时,冲量的方向与力的方向相同;如果力的方向是变化的,则冲量的方向与相应时间内物体动量变化量的方向相同。若力为同一方向均 匀变化的力,该力的冲量可以用平均力计算;若力为一般变力,则不能直接计算冲量。同一方向 上动量的变化量=这一方向上各力的冲量和。 1mv mv P P动量定理:otot 动量与力的关系:物体动量的变化率等于它所受的力。 2、动量守恒定律:当系统不受外力作用或所受合外力为零,则系统的总动量守恒。(适用于目前 物理学研究的一切领域。)_____ _ __ _____ _ _________ _____ __________ 动量守恒定律成立的条件:①系统不受外力作用。②系统虽受到了外力的作用,但所受合外 力为零。③系统所受的外力远远小于系统内各物体间的内力时,系统的总动量近似守恒(碰撞,击打,爆炸,反冲)。④系统所受的合外力不为零,但在某一方向上合外力为零,则系统在该方向上动量守恒。⑤系统受外力,但在某一方向上内力远大于外力,也可认为在这一方向上系统的 动量守恒。 常见类型:①由弹簧组成的系统,在物体间发生相互作用的过程中,当弹簧被压缩到最短或拉伸到最长时,弹簧两端的两个物体的速度必然相等。②在物体滑上斜面(斜面放在光滑水平面 上)的过程中,由于物体间弹力的作用,斜面在水平方向上将做加速运动,物体滑到斜面上最高点的临界条件是物体与斜面沿水平方向具有共同的速度,物体到达斜面顶端时,在竖直方向上的 分速度等于零。③子弹刚好击穿木块的临界条件为子弹穿出时的速度与木块的速度相同,子弹位 移为木块位移与木块厚度之和。 二、验证动量守恒定律(实验、探究)I 【注意事项】 1?“水平”和“正碰”是操作中应尽量予以满足的前提条件. 2.入射球的质量应大于被碰球的质量. 3?入射球每次都必须从斜槽上同一位置由静止开始滚下?方法是在斜槽上的适当高度处固定一档板,小球靠着档板后放手释放小球. 4.若利用气垫导轨进行实验,调整气垫导轨时注意利用水平仪器确保导轨水平。 【误差分析】 误差来源于实验操作中,两个小球没有达到水平正碰,一是斜槽不够水平,二是两球球心不在同 一水平面上,给实验带来误差.每次静止释放入射小球的释放点越高,两球相碰时作用力就越大, 动量守恒的误差就越小?应进行多次碰撞,落点取平均位置来确定,以减小偶然误差. 三、碰撞与爆炸 1.碰撞的特点:①相互作用的时间极短,可忽略不计。②系统的内力远大于外力,外力可忽略③速度发生突变,物体发生的位移极小,可认为碰撞前后物体处于同一位置。 2.爆炸的特点:作用时间短,内力非常大,机械能增加,动能会增加。 3.碰撞中遵循的规律:动量守恒,动能不增加。 4.一维碰撞:两个物体碰撞前后斗艳同一直线运动,这种碰撞叫做一维碰撞。

高中物理选修3-4知识点总结

高中物理选修3-4 一、简谐运动、简谐运动的表达式和图象 1、机械振动: 物体(或物体的一部分)在某一中心位置两侧来回做往复运动,叫做机械振动。机械振动产生的条件是:①回复力不为零;②阻力很小。使振动物体回到平衡位置的力叫做回复力,回复力属于效果力,在具体问题中要注意分析什么力提供了回复力。 2、简谐振动: 在机械振动中最简单的一种理想化的振动。对简谐振动可以从两个方面进行定义或理解: ①物体在跟位移大小成正比,并且总是指向平衡位置的回复力作用下的振动,叫做简谐振动。 ②物体的振动参量,随时间按正弦或余弦规律变化的振动,叫做简谐振动, 3、描述振动的物理量 研究振动除了要用到位移、速度、加速度、动能、势能等物理量以外,为适应振动特点还要引入一些新的物理量。 ⑴位移x :由平衡位置指向振动质点所在位置的有向线段叫做位移。位移是矢量,其最大值等于振幅。 ⑵振幅A :做机械振动的物体离开平衡位置的 最大距离叫做振幅,振幅是标量,表示振动的强弱。振幅越大表示振动的机械能越大,做简揩振动物体的振幅大小不影响简揩振动的周期和频率。 ⑶周期T :振动物体完成一次余振动所经历的时间叫做周期。所谓全振动是指物体从某一位置开始计时,物体第一次以相同的速度方向回到初始位置,叫做完成了一次全振动。 ⑷频率f :振动物体单位时间内完成全振动的次数。 ⑸角频率ω:角频率也叫角速度,即圆周运动物体单位时间转过的弧度数。引入这个参量来描述振动的原因是人们在研究质点做匀速圆周运动的射影的运动规律时,发现质点射影做的是简谐振动。因此处理复杂的简谐振动问题时,可以将其转化为匀速圆周运动的射影进行处理,这种方法高考大纲不要求掌握。 周期、频率、角频率的关系是:T f = 1,T ω π2=. ⑹相位?:表示振动步调的物理量。 4、研究简谐振动规律的几个思路: ⑴用动力学方法研究,受力特征:回复力F =- kx ;加速度,简谐振动是一种变加速运动。在平衡位置时速度最大,加速度为零;在最大位移处,速度为零,加速度最大。 ⑵用运动学方法研究:简谐振动的速度、加速度、位移都随时间作正弦或余弦规律的变化,这种用正弦或余弦表示的公式法在高中阶段不要求学生掌握。 ⑶用图象法研究:熟练掌握用位移时间图象来研究简谐振动有关特征是本章学习的重点之一。 ⑷从能量角度进行研究:简谐振动过程,系统动能和势能相互转化,总机械能守恒,振动能量和振幅有关。 5、简谐运动的表达式 )()(002sin sin x ?π?ω+A =+=t Τt Α 振幅A ,周期T ,相位02?π+t Τ ,初相0? 6、简谐运动图象描述振动的物理量 1.直接描述量: ①振幅A ;②周期T ;③任意时刻的位移t . 2.间接描述量:

高一物理知识点归纳大全

高一物理知识点归纳大全 从初中进入高中以后,就会慢慢觉得物理公式比以前更难学习了,其实学透物理公式并不是难的事情,以下是我整理的物理公式内容,希望可以给大家提供作为参考借鉴。 基本符号 Δ代表'变化的 t代表'时间等,依情况定,你应该知道' T代表'时间' a代表'加速度' v。代表'初速度' v代表'末速度' x代表'位移' k代表'进度系数' 注意,写在字母前面的数字代表几倍的量,写在字母后面的数字代表几次方. 运动学公式 v=v。+at无需x时 v2=2ax+v。2无需t时 x=v。+0.5at2无需v时 x=((v。+v)/2)t无需a时 x=vt-0.5at2无需v。时 一段时间的中间时刻速度(匀加速)=(v。+v)/2

一段时间的中间位移速度(匀加速)=根号下((v。2+v2)/2) 重力加速度的相关公式,只要把v。当成0就可以了.g一般取10 相互作用力公式 F=kx 两个弹簧串联,进度系数为两个弹簧进度系数的倒数相加的倒数 两个弹簧并联,进度系数连个弹簧进度系数的和 运动学: 匀变速直线运动 ①v=v(初速度)+at ②x=v(初速度)t+?at平方=v+v(初速度)/2×t ③v的平方-v(初速度)的平方=2ax ④x(末位置)-x(初位置)=a×t的平方 自由落体运动(初速度为0)套前面的公式,初速度为0 重力:G=mg(重力加速度)弹力:F=kx摩擦力:F=μF(正压力)引申:物体的滑动摩擦力小于等于物体的最大静摩擦 匀变速直线运动 1.平均速度V平=s/t(定义式) 2.有用推论Vt2-Vo2=2as 3.中间时刻速度Vt/2=V平=(Vt+Vo)/2 4.末速度Vt=Vo+at 5.中间位置速度Vs/2=[(Vo2+Vt2)/2]1/2 6.位移s=V平t=Vot+at2/2=Vt/2t 7.加速度a=(Vt-Vo)/t{以Vo为正方向,a与Vo同向(加速)a>0;反向则a<0} 8.实验用推论Δs=aT2{Δs为连续相邻相等时间(T)内位移之差} 9.主要物理量及单位:初速度(Vo):m/s;加速度(a):m/s2;末速度(Vt):m/s;

【精品】物理选修35_知识点总结提纲_精华版

高中物理选修3-5知识点梳理 一、动量动量守恒定律 1、动量:可以从两个侧面对动量进行定义或解释:①物体的质量跟其速度的乘积,叫做物体的动量。②动量是物体机械运动的一种量度。 动量的表达式P=mv.单位是s kg 。动量是矢量,其方向就是瞬时速度的方向。因为速度是相对的,所以动 m 量也是相对的。 2、动量守恒定律:当系统不受外力作用或所受合外力为零,则系统的总动量守恒。动量守恒定律根据实际情况有多种表达式,一般常用等号左右分别表示系统作用前后的总动量。 运用动量守恒定律要注意以下几个问题: ①动量守恒定律一般是针对物体系的,对单个物体谈动量守恒没有意义。 ②对于某些特定的问题,例如碰撞、爆炸等,系统在一个非常短的时间内,系统内部各物体相互作用力,远比它们所受到外界作用力大,就可以把这些物体看作一个所受合外力为零的系统处理,在这一短暂时间内遵循动量守恒定律。 ③计算动量时要涉及速度,这时一个物体系内各物体的速度必须是相对于同一惯性参照系的,一般取地面为参照物。 ④动量是矢量,因此“系统总动量”是指系统中所有物体动量的矢量和,而不是代数和。

⑤动量守恒定律也可以应用于分动量守恒的情况。有时虽然系统所受合外力不等于零,但只要在某一方面上的合外力分量为零,那么在这个方向上系统总动量的分量是守恒的. ⑥

动量守恒定律有广泛的应用范围。只要系统不受外力或所受的合外力为零,那么系统内部各物体的相互作用,不论是万有引力、弹力、摩擦力,还是电力、磁力,动量守恒定律都适用。系统内部各物体相互作用时,不论具有相同或相反的运动方向;在相互作用时不论是否直接接触;在相互作用后不论是粘在一起,还是分裂成碎块,动量守恒定律也都适用. 3、动量与动能、动量守恒定律与机械能守恒定律的比较。 动量与动能的比较: ①动量是矢量,动能是标量。 ②动量是用来描述机械运动互相转移的物理量而动能往往用来描述机械运动与其他运动(比如热、光、电等)相互转化的物理量。比如完全非弹性碰撞过程研究机械运动转移--速度的变化可以用动量守恒,若要研究碰撞过程改变成内能的机械能则要用动能为损失去计算了.所以动量和动能是从不同侧面反映和描述机械运动的物理量. 动量守恒定律与机械能守恒定律比较:前者是矢量式,有广泛的适用范围,而后者是标量式其适用范围则要窄得多。这些区别在使用中一定要注意。 4、碰撞:两个物体相互作用时间极短,作用力又很大,其他作用相对很小,运动状态发生显著化的现象叫做碰撞。 以物体间碰撞形式区分,可以分为“对心碰撞”(正碰),而物体碰前速度沿它们质心的连线;“非对心碰撞"——中学阶段不研究。 以物体碰撞前后两物体总动能是否变化区分,可以分为:“弹性碰撞”。碰撞前

高中物理知识点总结大全

高考总复习知识网络一览表物理

高中物理知识点总结大全 一、质点的运动(1)------直线运动 1)匀变速直线运动 1.平均速度V平=s/t(定义式) 2.有用推论Vt2-Vo2=2as 3.中间时刻速度Vt/2=V平=(Vt+Vo)/2 4.末速度Vt=Vo+at 5.中间位置速度Vs/2=[(Vo2+Vt2)/2]1/2 6.位移s=V平t=Vot+at2/2=Vt/2t 7.加速度a=(Vt-Vo)/t {以Vo为正方向,a与Vo同向(加速)a>0;反向则aF2) 2.互成角度力的合成: F=(F12+F22+2F1F2cosα)1/2(余弦定理)F1⊥F2时:F=(F12+F22)1/2 3.合力大小范围:|F1-F2|≤F≤|F1+F2| 4.力的正交分Fx=Fcosβ,Fy=Fsinβ(β为合力与x轴之间的夹角tgβ=Fy/Fx) 注: (1)力(矢量)的合成与分解遵循平行四边形定则; (2)合力与分力的关系是等效替代关系,可用合力替代分力的共同作用,反之也成立; (3)除公式法外,也可用作图法求解,此时要选择标度,严格作图; (4)F1与F2的值一定时,F1与F2的夹角(α角)越大,合力越小; (5)同一直线上力的合成,可沿直线取正方向,用正负号表示力的方向,化简为代数运算. 四、动力学(运动和力) 1.牛顿第一运动定律(惯性定律):物体具有惯性,总保持匀速直线运动状态或静止状态,直到有外力迫使它改变这种状态为止 2.牛顿第二运动定律:F合=ma或a=F合/ma{由合外力决定,与合外力方向一致} 3.牛顿第三运动定律:F=-F′{负号表示方向相反,F、F′各自作用在对方,平衡力与作用力反作用力区别,实际应用:反冲运动} 4.共点力的平衡F合=0,推广{正交分解法、三力汇交原理} 5.超重:FN>G,失重:FNr} 3.受迫振动频率特点:f=f驱动力 4.发生共振条件:f驱动力=f固,A=max,共振的防止和应用〔见第一册P175〕 5.机械波、横波、纵波〔见第二册P2〕 6.波速v=s/t=λf=λ/T{波传播过程中,一个周期向前传播一个波长;波速大小由介质本身所决定} 7.声波的波速(在空气中)0℃:332m/s;20℃:344m/s;30℃:349m/s;(声波是纵波) 8.波发生明显衍射(波绕过障碍物或孔继续传播)条件:障碍物或孔的尺寸比波长小,或者相差不大 9.波的干涉条件:两列波频率相同(相差恒定、振幅相近、振动方向相同) 10.多普勒效应:由于波源与观测者间的相互运动,导致波源发射频率与接收频率不同{相互接近,接收频率增大,反之,减小〔见第二册P21〕} 注: (1)物体的固有频率与振幅、驱动力频率无关,取决于振动系统本身;

相关文档
相关文档 最新文档