文档库 最新最全的文档下载
当前位置:文档库 › 测定六价铬方法的改进

测定六价铬方法的改进

测定六价铬方法的改进
测定六价铬方法的改进

0169,按RU N键后,计算器即显示81307050082-3。此即非离子氨浓度等于01008m g L。这样,不仅省去查表之苦和大量键操作,而且计算精确度可与计算机相媲美。当程序输入后永久生效,不影响计算器其它功能的使用。

测定硫化物样品预处理

方法的改进

台明青

(河南南阳市环境监测站,南阳 473060)

本文采用全玻蒸馏器酸化蒸馏法代替酸化吹气法进行前处理,操作条件控制如下:采集样品时加醋酸锌和氢氧化钠溶液保存,蒸馏时要充分摇匀样品,视其浓度高低取适量样品用水稀释至200m l蒸馏,加1+1磷酸使其蒸馏中瓶中溶液pH<2,吸收液用2%N aO H溶液20m l。蒸馏时应控制馏出液速度,以每分钟馏出3m l为宜,馏出液总体积为100m l。蒸馏结束后其它操作条件同规定分析方法。注意事项:蒸馏初期要防止蒸馏速度过快。本法优点:整个处理装置简单,中间环节少,易于操作控制,处理速度快;有冷凝系统,可提高吸收率;回收率可达95~105%;可用实验室现有蒸馏装置,不必增添新设备。

两点定位测定水样中的氟

王祥峰

(山东德州市环境监测站,德州 253013)

分别取氟标准使用液(10ΛgF- m l)1100、20100m l,加入10100m l总离子强度调节液(142g六次甲基四胺和85g硝酸钾,91978g钛铁试剂,加去离子水至1000m l,pH5~6),以消除氢离子和高价阳离子干扰。二者的摩尔浓度分别为11053×10-5、21105×10-4m o l l,在不断搅拌下读取二者稳定的电极电位,将两组所对应的数据通过微处理离子计键盘输入,自动给出一条曲线,检验曲线斜率和截距,定位结束。实际测量时,取含氟水样25100m l,加10100m l总离子强度剂,经相应操作,仪器可直接显示F-的摩尔浓度。方法标准偏差015~510%,加标回收率93~106%。注意事项:所测样品浓度须在两定位浓度之间;电极要在含氟稀溶液中活化24小时;定位溶液温度与被测溶液的温度须一致。

COD M n测定中K对Vo的影响

张亚鸾 李益群

(江苏如皋市环境监测站,如皋 226500)

C K M nO

4

:高锰酸钾的摩尔浓度(m o l l);V:高锰酸钾浓度标定时,高锰酸钾溶液消耗量(m l);K:高锰酸钾溶液校正系数;V0:空白试验中高锰酸钾溶液消耗量(m l)。影响V0的因素除蒸馏水中有机物含量外,还有配制的高锰酸钾浓度:

C K M nO

4

↑,V↓,K>1,V0↓甚至为零;

C K M nO

4

↓,V↑,K<1,V0↑。

因此,①在不考虑K值(或者说高锰酸钾浓度)情况下,单纯从V0值不能推断蒸馏水质量的好与差;②为保证分析结果的准确性,必须将K控制在可测出V0的范围内,即将文献介绍的0185

测定六价铬方法的改进

王惠勇 薛念涛

(山东临沂市环境监测站,临沂 276001)

用草酸调节溶液酸度,六价铬与二苯碳酰二肼反应生成紫红色络合物,其吸光度与六价铬浓度成正比。显色剂为012500g固体草酸和610m g固体二苯碳酰二肼研磨均匀而成。以丙酮为溶剂。实验方法:将显色剂放入50m l比色管中,加2m l丙酮使二苯碳酰二肼溶解,加入10100m l铬标准使用液(1100Λg m l),用水稀至标线,摇匀,待15m in显色稳定后,于542nm

45

中国环境监测 Environm en talM on ito ring in Ch ina1996,12(6)

波长处,用30mm比色皿,以纯水作参比测定吸光度。检出限2×10-3m g L,n=6时,变异系数412~419%,回收率98~102%,准确度和精密度均与《水和废水监测分析方法》相同。对地面水、地下水、污染源水样实际样品测定结果亦令人满意。本法操作相当简单,显色剂于避光、干燥条件下可保存一年而不影响显色效果。

氨氮测定中水样混凝沉淀

预处理的改进

陈淑贞

(福建连江县环境监测站,连江 350500)

改取100m l水样于100m l比色管,加10% ZnSO4溶液1m l混匀后加24%N aO H溶液012m l,使pH为1015,这时浓度>10m g L Ca2 CO3的水样可自然形成矾花,易于澄清;当水样浓度<10m g L CaCO3,则24%N aO H先加011m l形成矾花后再加011m l,或一次加012m l 并立即加入固体N aC l015g,摇匀。本改进法处理的水样静置5~10m in,矾花即沉降底部,可倾出上清液直接纳氏比色,解决了标准方法中混凝沉淀操作中时常发生的乳状液难于过滤的现象。

零浓度参加回归的问题

关镜辉

(广东顺德市环境监测站,顺德 528300)

回归校准曲线方程时包括零浓度及其校正信号值(0,0),不妥。理由:①只能使用校准曲线最低检出浓度至测定上限间的直线,而最低浓度点至零点的线段无实用价值。②无法证实最低浓度至零点之间线段是否与工作段重合。③吸光度为零时,测量误差应是离群值,参加回归是人为引入误差。④利用校准曲线的响应值推测样品的浓度值时,其浓度应在所作校准曲线的浓度范围以内,不得将校准曲线任意

外延。将最低检出浓度与零浓度连线,实质上是随意外延,不符合校准曲线使用规则。

啤酒厂排放废水中COD与

B OD5的相关性分析

唐韵雯

(四川峨眉山市环境监测站,峨眉 614200)

在本文测定的废水条件下,COD对BOD5的回归直线方程为:BOD5=-7318+ 018384COD。说明,①本文所用28组统计数据是从56组数据中选出,凡耗氧率在40~70%范围之外的数据予以剔除。否则,若把那些数据引入计算,看起来增大了统计样本,实则降低了用方程预估BOD5值的准确性。②采用本文回归方程,对四年(1991~1994)BOD5计算值与实测值比较结果,两者相对偏差在-4146~+4105%之间。③本文虽从该厂排放废水中的实测数据求得回归方程,但统计方程式具有显著的专一性和相对性,它只适用于取得原始实测数据的废水和与之类同的废水测定时参考。废水性质不同,回归方程的斜率和常数项会有差别,应分别求得。

用去离子水代替无酚水

配制试剂测定水中挥发性酚

尚春林

(淮河流域水环境监测中心,安徽蚌埠 233001)

用深层地下水为水源生产的去离子水代替无酚水,①分别用去离子水和无酚水绘制标准曲线,相关系数分别为019999、019994。②取中、低浓度的两处淮河水样,测定4次的相对标准偏差分别为114%、110%。③用去离子水分别测定酚加标量为0110m g L、0150m g L时的加标回收率为98%、101%。以上表明,用去离子水代替无酚水测定水中挥发酚,能满足工作要求,在大批量样品分析和突发性水污染事故的水质分析中具有实用意义。

55

中国环境监测 Environm en talM on ito ring in Ch ina1996,12(6)

六价铬的检测方法样本

六价铬的检测方法

目次 前言..................................................................... III 引言...................................................................... IV 1 范围 (1) 2 规范性引用文件 (1) 3 X射线荧光光谱法 (1) 3.1 原理 (1) 3.2 试剂和材料 (1) 3.3 仪器和设备 (2) 3.4 样品制备 (2) 3.5 分析步骤 (2) 3.6 结果分析 (3) 4 金属防腐镀层中六价铬定性试验 (3) 4.1 原理 (3) 4.2 试剂和材料 (4) 4.3 仪器和设备 (4) 4.4 样品制备 (4) 4.5 试验 (4) 5 金属防腐镀层中六价铬含量测定 (6) 5.1 原理 (6) 5.2 试剂和材料 (6) 5.3 仪器和设备 (6) 5.4 样品制备 (6) 5.5 分析步骤 (6) 5.6 结果计算 (7)

5.7 精密度 (8) 6 聚合物材料和电子材料中六价铬含量测定 (8) 6.1 原理 (8) 6.2 试剂和材料 (8) 6.3 仪器和设备 (9) 6.4 样品制备 (9) 6.5 分析步骤 (9) 6.6 结果计算 (10) 6.7 精密度 (11) 7 皮革材料中六价铬含量测定 (11) 7.1 原理 (11) 7.2 试剂和材料 (11) 7.3 仪器和设备 (11) 7.4 样品制备 (12) 7.5 分析步骤 (12) 7.6 结果计算 (13) 7.7 回收率和检出限 (14) 8 试验报告 (14) 附录A( 资料性附录) 紧固件镀层表面积计算方法 (15) A.1 紧固件表面积计算公式 (15) A.2 螺栓、螺母表面积计算数据 (15) 附录B( 规范性附录) 聚合物材料和电子材料中六价铬含量测定方法回收率的测定和检出限的确定 (18) B.1 回收率的测定 (18) B.2 检出限的确定 (18)

国标法测定水溶液六价铬

六价铬的测定二苯碳酰二肼分光光度法 Water quality-Determination of chromium(VI)-1.5Diphenylcarbohydrazide spectrophotometric method 1 适用范围 1.1本标准适用于地面水和工业废水中六价铬的测定。 1.2测定范围 试份体积为50ml,使用光程长为30mm的比色皿,本方法的最小检出量为0.2μg六价铬,最低检出浓度为0.004mg/L,使用光程为10mm的比色皿,测定上限浓度为1.0mg/L。 1.3 干扰 含铁量大于1mg/L显色后呈黄色。六价钼和汞也和显色剂反应,生成有色化合物,但在本方法的显色酸度下,反应不灵敏,钼和汞的浓度达200mg/L不干扰测定。钒有干扰,其含量高于4mg/L即干扰显色。但钒与显色剂反应后10min,可自行褪色。 2原理 在酸性溶液中,六价铬与二苯碳酰二肼反应生成紫红色化合物,于波长540nm 处进行分光光度测定。 3 试剂 测定过程中,除非另有说明,均使用符合国家标准或专业标准的分析纯试剂和蒸镏水或同等纯度的水,所有试剂应不含铬。 3.1 丙酮。 3.2 硫酸 3.2.1 1+1硫酸溶液。 将硫酸(H2SO4,ρ=1.84g/ml,优级纯)缓缓加入到同体积的水中,混匀。3.3 磷酸:1+1磷酸溶液。 将磷酸(H3PO4,ρ=1.69g/ml,优级纯)与水等体积混合。 3.4 氢氧化钠:4g/L氢氧化钠溶液。 将氢氧化钠(NaOH)1g溶于水并稀释至250ml。 3.5氢氧化锌共沉淀剂 3.5.1硫酸锌:8%(m/v)硫酸锌溶液。 称取硫酸锌(ZnSO4·7H2O)8g,溶于100ml水中。 3.5.2氢氧化钠:2%(m/v)溶液。 称取2.4g氢氧化钠,溶于120ml水中。 用时将3.5.1和3.5.2两溶液混合。 3.6高锰酸钾:40g/L溶液。 称取高锰酸钾(KMnO4)4g,在加热和搅拌下溶于水,最后稀释至100ml。3.7 铬标准贮备液。 称取于110℃干燥2h的重铬酸钾(K2Cr2O7,优级纯)0.2829±0.0001g,用水溶解后,移入1000ml容量瓶中,用水稀释至标线,摇匀。此溶液1ml含0.10mg 六价铬。 3.8 铬标准溶液。 称取5.00ml铬标准贮备液(3.7)置于500ml容量瓶中,用水稀释至标线,摇匀。此溶液1ml含1.0

六价铬的测定方法(二苯碳酰二肼分光光度法)

GB/T 7467 六价铬的测定方法(二苯碳酰二肼分光光度法) 1 适用范围 1.1 本标准适用于地面水和工业废水中六价铬的测定 1.2 测定范围 试份体积为50ml,使用光程长为30mm的比色皿,本方法的最小检出量为0.2μg六价铬,最低检出浓度为0.004mg/L,使用光程为10mm的比色皿,测定上限浓度为1.0mg/L。 1.3 干扰 含铁量大于1mg/L显色后呈黄色。六价钼和汞也和显色剂反应,生成有色化合物,但在本方法的显色酸度下,反应不灵敏,钼和汞的浓度达200mg/L不干扰测定。钒有干扰,其含量高于4mg/L 即干扰显色。但钒与显色剂反应后10min,可自行褪色。 2 原理 在酸性溶液中,六价铬与二苯碳酰二肼反应生成紫红色化合物,于波长540nm处进行分光光度测定。 3 试剂 测定过程中,除非另有说明,均使用符合国家标准或专业标准的分析纯试剂和蒸镏水或同等纯度的水,所有试剂应不含铬。 3.1 丙酮。 3.2 硫酸 3.2.1 1+1硫酸溶液 将硫酸(H2SO4,ρ=1.84g/ml,优级纯)缓缓加入到同体积的水中,混匀。 3.3 磷酸:1+1磷酸溶液。 将磷酸(H3PO4,ρ=1.69g/ml,优级纯)与水等体积混合。 3.4 氢氧化钠:4g/L氢氧化钠溶液。 将氢氧化钠(NaOH)1g溶于水并稀释至250ml。 3.5 氢氧化锌共沉淀剂 3.5.1 硫酸锌:8%(m/v)硫酸锌溶液。 称取硫酸锌(ZnSO4?7H2O)8g,溶于100ml水中。 3.5.2 氢氧化钠:2%(m/v)溶液。 称取2.4g氢氧化钠,溶于120ml水中。 用时将3.5.1和3.5.2两溶液混合。 3.6 高锰酸钾:40g/L溶液。 称取高锰酸钾(KMnO4)4g,在加热和搅拌下溶于水,最后稀释至100ml。 3.7 铬标准贮备液。 称取于110℃干燥2h的重铬酸钾(K2Cr2O7,优级纯)0.2829±0.0001g,用水溶解后,移入1000ml 容量瓶中,用水稀释至标线,摇匀。此溶液1ml含0.10mg六价铬。 3.8 铬标准溶液。 称取5.00ml铬标准贮备液(3.7)置于500ml容量瓶中,用水稀释至标线,摇匀。此溶液1ml含1.00μg六价铬。使用当天配制此溶液。

六价铬测定方法

C r6+的测定(二苯碳酰二肼分光光度法) 1.适用范围 1.1 本标准适用于地面水和工业废水中六价铬的测定。 1.2 测定范围 试份体积为50ml,使用光程长为30mm的比色皿,本方法的最小检出量为0.2μg六价铬,最低检出浓度为0.004mg/L,使用光程为10mm的比色皿,测定上限浓度为1.0mg/L。 1.3 干扰 含铁量大于1mg/L显色后呈黄色。六价钼和汞也和显色剂反应,生成有色化合物,但在本方法的显色酸度下,反应不灵敏,钼和汞的浓度达200mg/L不干扰测定。钒有干扰,其含量高于4mg/L即干扰显色。但钒与显色剂反应后10min,可自行褪色。 2.原理 在酸性溶液中,六价铬与二苯碳酰二肼反应生成紫红色化合物,于波长540nm处进行分光光度测定。 3.试剂 测定过程中,除非另有说明,均使用符合国家标准或专业标准的分析纯试剂和蒸镏水或同等纯度的水,所有试剂应不含铬。 3.1 丙酮。 3.2 硫酸 3.2.1 1+1硫酸溶液。 将硫酸(H2SO4,ρ=1.84g/ml,优级纯)缓缓加入到同体积的水中,混匀。 3.3 磷酸:1+1磷酸溶液。 将磷酸(H3PO4,ρ=1.69g/ml,优级纯)与水等体积混合。 3.4 氢氧化钠:4g/L氢氧化钠溶液。 将氢氧化钠(NaOH)1g溶于水并稀释至250ml。 3.5 氢氧化锌共沉淀剂 3.5.1 硫酸锌:8%(m/v)硫酸锌溶液。 称取硫酸锌(ZnSO4·7H2O)8g,溶于100ml水中。 3.5.2 氢氧化钠:2%(m/v)溶液。 称取2.4g氢氧化钠,溶于120ml水中。用时将3.5.1和3.5.2两溶液混合。 3.6 高锰酸钾:40g/L溶液。 称取高锰酸钾(KMnO4)4g,在加热和搅拌下溶于水,最后稀释至100ml。 3.7 铬标准贮备液。

六价铬的测定方法(二苯碳酰二肼分光光度法)

六价铬的测定方法(二苯碳酰二肼分光光度法)GB/T 7467 1 适用范围 1.1 本标准适用于地面水和工业废水中六价铬的测定 1.2 测定范围 试份体积为50ml,使用光程长为30mm的比色皿,本方法的最小检出量为 0.2μg六价铬,最低检出浓度为0.004mg/L,使用光程为10mm的比色皿,测定上限浓度为1.0mg/L。 1.3 干扰 含铁量大于1mg/L显色后呈黄色。六价钼和汞也和显色剂反应,生成有色化合物,但在本方法 的显色酸度下,反应不灵敏,钼和汞的浓度达200mg/L不干扰测定。钒有干扰,其含量高于4mg/L 即干扰显色。但钒与显色剂反应后10min,可自行褪色。 2 原理 在酸性溶液中,六价铬与二苯碳酰二肼反应生成紫红色化合物,于波长540nm 处进行分光光度测定。 3 试剂 测定过程中,除非另有说明,均使用符合国家标准或专业标准的分析纯试剂和蒸镏水或同等纯度 的水,所有试剂应不含铬。 3.1 丙酮。 3.2 硫酸 3.2.1 1+1硫酸溶液

将硫酸(H2SO4,ρ=1.84g/ml,优级纯)缓缓加入到同体积的水中,混匀。 3.3 磷酸:1+1磷酸溶液。 将磷酸(H3PO4,ρ=1.69g/ml,优级纯)与水等体积混合。 3.4 氢氧化钠:4g/L氢氧化钠溶液。 将氢氧化钠(NaOH)1g溶于水并稀释至250ml。 3.5 氢氧化锌共沉淀剂 3.5.1 硫酸锌:8%(m/v)硫酸锌溶液。 称取硫酸锌(ZnSO4?7H2O)8g,溶于100ml水中。 3.5.2 氢氧化钠:2%(m/v)溶液。 称取2.4g氢氧化钠,溶于120ml水中。 用时将3.5.1和3.5.2两溶液混合。 3.6 高锰酸钾:40g/L溶液。 称取高锰酸钾(KMnO4)4g,在加热和搅拌下溶于水,最后稀释至100ml。 3.7 铬标准贮备液。 称取于110?干燥2h的重铬酸钾(K2Cr2O7,优级纯)0.2829?0.0001g,用水溶解后,移入1000ml容量瓶中,用水稀释至标线,摇匀。此溶液1ml含0.10mg六价铬。 3.8 铬标准溶液。 称取5.00ml铬标准贮备液(3.7)置于500ml容量瓶中,用水稀释至标线,摇匀。此溶液1ml含 1.00μg六价铬。使用当天配制此溶液。 3.9 铬标准溶液。 称取25.00ml铬标准贮备液(3.7)置于500ml容量瓶中,用水稀释至标线,摇匀。此溶液1ml含5.00μg六价铬。使用当天配制此溶液。 3.10 尿素:200g/L尿素溶液。

深圳水质中六价铬的检测方法

铬通常存在于电镀、冶炼、制革、纺织、制药等工业废水污染的水体中。通常铬以三价和六价的形式存在于水中,六价铬的毒性比三价铬强,并有致癌的危害。因此我国规定生活饮用水中,六价铬的含量不得超过0.05mg/L。一般可以通过分光光度法和原子吸收法来检测铬在水质中的具体参数。 用分光光度法测定六价铬 在使用分光光度法测定六价铬时常用二苯碳酰二肼(DPCI)作显色剂。在微酸性条件下(1.0mol/LH2SO)生成紫红色的配合物。其颜色深浅与六价铬的含量成正比,最大吸收波长为540nm。可以通过标准曲线法或者相关水质检测仪器测出六价铬的含量。 干扰水质中六价铬的检测因素 一般低价汞离子Hg+和高价汞离子Hg2+能够与DPCI作用生成蓝色或蓝紫色配合物,但在本实验所控制的酸度条件下,反应的灵敏度不够,所以大家操作时要多加注意即可。 而铁的浓度大于1mg/L时,特别容易与试剂生成黄色化合物,对整个的六价铬测定产生干扰,分析人员要特别注意,在分析时可以通过加入H1PO4与Fe3+配位而消除干扰。 另外五价钒V+与DPCI反应生成棕黄色化合物,但该化合物很不稳定,一般在20min后颜色就会自动褪去,故大家可以不用考虑。不过少量Cu2+、Ag、Au2在一定程度上对分析测定有干扰。 如果水质中钼低于100mg/L时不会对实验测定产生影响,另外水中的异性还原性物质也不干扰测定。

检测六价铬时需要注意的问题 1.在进行水质检测前所有的实验玻璃器皿要进行清洗,需要注意不能使用重铬酸钾,可以用硝酸或硫酸等混合液进行洗涤,在清洗之后要用纯水清洗干净,另外需要保证玻璃器皿表面及内壁光洁完整,内壁不能有划痕,以防铬被内壁表面吸附。 2.在检测时铬的标准溶液有两种浓度,其中1μg/mL的六价铬标准溶液适用于低浓度的水质样品,若为高浓度的水质样品就需要采用另一种浓度的铬标准溶液。 3.二苯碳酰二肼在于六价铬反应时,显色的酸度应该控制在0.05-0.3mol/L。其中酸度在0.2mol/L时显色效果最佳。 深圳市华太检测有限公司现有场所面积3000多平方米,满足开展相应检验检测工作的需要。注册资金500万,拥有700余万元的固定资产,拥有国内先进的微机控制伺服泵源万能试验机,压力试验机,甲醛测试试件平衡预处理恒温恒湿室,甲醛释放量测试气候箱(智能式)、气相色谱质谱联用仪(GC-MS)、气相色谱仪(GC)、电感耦合等离子体发射光谱仪(ICP-OES)、原子吸收光谱仪、原子荧光光谱仪等大型仪器设备280多台,能满足现有检测项目的要求。

水中六价铬的测定分光光度法

水中六价铬的测定—分光光度法 废水中铬的测定常用分光光度法,其原理基于:在酸性溶液中,六价铬离子与二苯碳酰二肼反应,生成紫红色化合物,其最大吸收波长为540nm,吸光度与浓度的关系符合比尔定律。如果测定总铬,需先用高锰酸钾将水样中的三价铬氧化为六价铬,再用本法测定。 一.实验目的 掌握分光光度法测定六价铬的原理和方法; 二.六价铬的测定 1.仪器 ①分光光度计、比色皿(1cm) ②50mL具塞比色管、移液管、容量瓶等。 2.试剂 (1)丙酮。 (2)(1+1)硫酸。 (3)(1+1)磷酸。 (4) 0.2%(m/V)氢氧化钠溶液。 (5)铬标准贮备液:称取于120℃干燥2h的重铬酸钾(优级纯)0.2829g,用水溶解,移入1000mL容量瓶中,用水稀释至标线,摇匀。每毫升贮备液含0.100mg六价铬。 (6)铬标准使用液:吸取5.00mL铬标准贮备液于500mL容量瓶中,用水稀释至标线,摇匀。每毫升标准使用液含1.00μg六价铬。使用当天配制。 (7) 二苯碳酰二肼溶液:称取二苯碳酰二肼(简称DPC,C13H14N4O)0.2g,溶于50mL丙酮中,加水稀释至100mL,摇匀,贮于棕色瓶内,置于冰箱中保存。颜色变深后不能再用。 3.测定步骤 (1)水样预处理: 对不含悬浮物、低色度的清洁地面水,可直接进行测定。 (2)标准曲线的绘制:取9支50mL比色管,依次加入0、0.20、0.50、1.00、2.00、4.00、6.00、8.00和10.00mL铬标准使用液,用水稀释至标线,加入1+1硫酸0.5mL和1+1磷酸0.5mL,摇匀。加入2mL显色剂溶液,摇匀。5~10min 后,于540nm波长处,用1cm或3cm比色皿,以水为参比,测定吸光度并做空白校正。以吸光度为纵坐标,相应六价铬含量为横坐标绘出标准曲线。 (3)水样的测量:取适量(含Cr6+少于50μg)无色透明或经预处理的水样于50mL比色管中,用水稀释至标线,以下步骤同标准溶液测定。进行空白校正后根据所测吸光度从标准曲线上查得Cr6+含量。 4.计算 Cr6+(mg·L-1)=m/V 式中:m—从标准曲线上查得的Cr6+量,μg; V—水样的体积,mL; 第 1 页共1 页

紫外分光光度计测定水中的六价铬

紫外分光光度计测定水中的六价铬 六价铬为吞入性毒物/吸入性极毒物,皮肤接触可能导致敏感;更可能造成遗传性基因缺陷,吸入可能致癌,对环境有持久危险性。但这些是六价铬的特性,铬金属、三价或四价铬并不具有这些毒性。 铬是生物体必需的微量元素之一。铬的缺乏会导致糖、脂肪等物质的代谢紊乱,但摄入量过高对生物和人类有害。铬的毒性与其存在形态有极大的关系: 三价铬化合物几乎无毒,且是人和动物所必需的; 相反,六价铬化合物具有强氧化性,且有致癌性。一般来说,六价铬的毒性要比三价铬大100倍。我国规定铬在地面水中最高允许浓度: 三价铬为0.5 mg/L,六价铬为0.1 mg/L,生活饮水最高允许浓度( 六价铬) 为0.055 mg/L。因此对六价铬需要一种简单、有效的分析方法。六价铬的测定方法有很多: 如二苯碳酰二肼可见分光光度法、示波极谱滴定法、原子吸收分光光度法、动力学光度法、流动注射光度法等,但大多由于仪器价昂难以普及使用。分光光度法则以仪器价廉,操作简单等优点,目前在我国仍具有广泛的实用价值。本文研究了在碱性条件下对六价铬的测定,碱性条件下六价铬在紫外区有一较强的吸收峰,因此建立了对六价铬的测定方法。 1 主要仪器和试剂配制紫外可见分光光度计,可见分光光度计,酸度计。 六价铬标准溶液: 称取于120℃干燥2 h 的K2Cr2O7( 优级纯) 0.282 9 g,溶于少量水中并稀释定容至1 L,摇匀得浓度为0.100 mg/mL 的储备液。2%(m/V) 氢氧化钾溶液: 称取2 g 氢氧化钾溶于100 mL蒸馏水中。1∶1 硫酸溶液: 将浓硫酸缓慢加入到等体积水中,混合均匀。 所用试剂均为分析纯,实验用水为二次蒸馏水。所用的玻璃器皿均在1 mol /L 的HNO3 溶液中浸泡12 h 以上。 2 方法与结果 2.1 六价铬的吸收光谱准确移取1 mL 铬标准和适量的氢氧化钾溶液置于25 mL 容量瓶中,定容后用1 cm 比色皿在波长200~400 nm 范围内扫描吸收曲线,结果产物的λmax 为372 nm; 故本文选372 nm 作为测试波长。 用移液管分别移取铬标准溶液0.00、0.50、1.00、2.00、3.00、4.00、5.00 mL 于50 mL 容量瓶中,分别加适量氢氧化钾溶液,然后用蒸馏水稀释至刻度,摇匀; 得到Cr(VI) 的浓度分别是0.00、1.00、2.00、4.00、6.00、8.00、10.00 mg/L,用1 cm 比色皿以蒸馏水为参比,在波长372 nm 处测定其吸光度分别为0.002、0.078、0.158、0.309、0.452、0.587、0.745 mg/L,得到六价铬

六价铬的测定 二苯碳酰二肼分光光度法

六价铬的测定方法(二苯碳酰二肼分光光度法) 1 适用范围 1.1 本标准适用于地面水和工业废水中六价铬的测定 1.2 测定范围 试份体积为50ml,使用光程长为30mm的比色皿,本方法的最小检出量为0.2μg六价铬,最低检出浓度为0.004mg/L,使用光程为10mm的比色皿,测定上限浓度为1.0mg/L。 1.3 干扰 含铁量大于1mg/L显色后呈黄色。六价钼和汞也和显色剂反应,生成有色化合物,但在本方法的显色酸度下,反应不灵敏,钼和汞的浓度达200mg/L不干扰测定。钒有干扰,其含量高于4mg/L即干扰显色。但钒与显色剂反应后10min,可自行褪色。 2 原理 在酸性溶液中,六价铬与二苯碳酰二肼反应生成紫红色化合物,于波长540nm处进行分光光度测定。 3 试剂 测定过程中,除非另有说明,均使用符合国家标准或专业标准的分析纯试剂和蒸镏水或同等纯度的水,所有试剂应不含铬。 3.1 丙酮。 3.2 硫酸 3.2.1 1+1硫酸溶液 将硫酸(H2SO4,ρ=1.84g/ml,优级纯)缓缓加入到同体积的水中,混匀。 3.3 磷酸:1+1磷酸溶液。 将磷酸(H3PO4,ρ=1.69g/ml,优级纯)与水等体积混合。 3.4 氢氧化钠:4g/L氢氧化钠溶液。 将氢氧化钠(NaOH)1g溶于水并稀释至250ml。 3.5 氢氧化锌共沉淀剂 3.5.1 硫酸锌:8%(m/v)硫酸锌溶液。 称取硫酸锌(ZnSO4?7H2O)8g,溶于100ml水中。 3.5.2 氢氧化钠:2%(m/v)溶液。 称取2.4g氢氧化钠,溶于120ml水中。 用时将3.5.1和3.5.2两溶液混合。 3.6 高锰酸钾:40g/L溶液。 称取高锰酸钾(KMnO4)4g,在加热和搅拌下溶于水,最后稀释至100ml。 3.7 铬标准贮备液。 称取于110℃干燥2h的重铬酸钾(K2Cr2O7,优级纯)0.2829±0.0001g,用水溶解后,移入1000ml容量瓶中,用水稀释至标线,摇匀。此溶液1ml含0.10mg六价铬。 3.8 铬标准溶液。 称取5.00ml铬标准贮备液(3.7)置于500ml容量瓶中,用水稀释至标线,摇匀。此溶液1ml含1.0 0μg六价铬。使用当天配制此溶液。 3.9 铬标准溶液。 称取25.00ml铬标准贮备液(3.7)置于500ml容量瓶中,用水稀释至标线,摇匀。此溶液1ml含5. 00μg六价铬。使用当天配制此溶液。 3.10 尿素:200g/L尿素溶液。 将尿素〔(NH2)2CO〕20g溶于水并稀释至100ml。 3.11 亚硝酸钠:20g/L溶液。

六价铬的测定

实验六 六价铬的测定 一、实验目的 (1)学会六价铬的水样采集保存、预处理及测定方法。 (2)学会各种标准溶液的配制方法和标定方法。 二、概述 铬(Cr )的化合物常见的价态有三价和六价。在水体中,六价铬一般以- 24CrO 、HCrO - 4二种阴子形式存在,受水中pH 值、有机物、氧化还原物质、温度及硬度等条件影响,三价铬和六价铬的化合物可以互相转化。 铬是生物体所必需的微量元素之一。铬的毒性与其存在价态有关,通常认为六价铬的毒性比三价铬高100倍,六价铬更易为人体吸收而且在体内蓄积。但即使是六价铬,不同化合物的毒性也不相同。当水中六价铬浓度为1mg/L 时,水呈淡黄色并有涩味,三价铬浓度为1mg/L 时,水的浊度明显增加,三价铬化合物对鱼的毒性比六价铬大。 铬的工业来源主要是含铬矿石的加工、金属表面处理、皮革鞣制、印染等行业。 三、水样保存 水样应用瓶壁光洁的玻璃瓶采集。如测总铬水样采集后,加入硝酸调节pH<2;如测六价铬,水样采集后,加NaOH 使pH 为8~9;均应尽快测定,如放置不得超过24h 。 四、干扰及清除 含铁量大于1mg/L 水样显黄色,六价钼和汞也和显色剂反应生成有色化合物,但在本方法的显色酸度下反应不灵敏。钼和汞达200mg/L 不干扰测定。钒有干扰,其含量高于4mg/L 即干扰测定。但钒与显色剂反应后10min ,可自行褪色。 氧化性及还原性物质,如:ClO —、Fe 2+、SO 32-、S 2O 32-等,以及水样有色或混浊时,对 测定均有干扰,须进行预处理。 五、方法的选择 铬的测定可采用二苯碳酰二胼分光光度法、原子吸收分光光度法和滴定法。清洁的水样可直接用二苯碳酰二肼分光光度法测六价铬。如测总铬,用高锰酸钾将三价铬氧化成六价铬,再用二苯碳酰二肼分光光度法测定。 六、测定方法(二苯碳酰二肼分光光度法) 1. 实验原理 在酸性溶液中,六价铬离子与二苯碳酰二肼反应,生成紫红色络合物,其最大吸收波长为540nm ,吸光度与浓度的关系符合比尔定律。反应式如下: 如果测定总铬,需先用高锰酸钾将水样中的三价铬氧化为六价,再用本法测定。 O =C NH —NH —C 6H 5 NH —NH —C 6H 5 二苯碳酰二肼 +Cr 6+→O =C NH —NH —C 6H 5 N = N —C 6H 5 苯肼羟基偶氮苯 +Cr 3+→紫色络合物

固体六价铬的测定方法

FHZHJGF0006 固体废物六价铬的测定二苯碳酰二肼分光光度法 F-HZ-HJ-GF-0006 固体废物—六价铬的测定—二苯碳酰二肼分光光度法 1 范围 本方法规定了固体废物浸出液中六价铬的测定,用二苯碳酰二肼分光光度法。 本方法适用于固体废物浸出液中六价铬的测定。 测定范围:试料为50mL,使用30mm光程比色皿,方法的检出限为0.004mg/L。使用10mm 光程比色皿,测定上限为1.0mg/L。 试液有颜色、混浊,或者有氧化性、还原性物质及有机物等均干扰测定。铁含量大于1.0mg/L 也干扰测定。钼、汞与显色剂生成络合物有干扰,但是在方法的显色酸度下,反应不灵敏。钒浓度大于4.0mg/L干扰测定,但在显色10min后,可自行退色。 2 原理 在酸性溶液中,六价铬与二苯碳酰二肼反应生成紫红色络合物。于最大吸收波长540nm 进行分光光度法测定。 3 试剂 本方法所用试剂除另有说明外,均用符合国家标准或专业标准的分析纯试剂和蒸馏水或同等纯度的水; 3.1 丙酮(C3H6O)。 3.2 硫酸(H2SO4),ρ=1.84g/mL 3.3 磷酸(H3PO4),ρ=1.69g/mL。 3.4 重铬酸钾(K2Cr2O7,优级纯)。 3.5 二苯碳酰二肼(C13H14N4O)。 3.6 硫酸溶液,1+1:将硫酸(3.2)缓慢加到同体积的水中,边加边搅,待冷却后使用。 3.7 磷酸溶液,1+1:将磷酸(3.3)与等体积水混匀。 3.8 高锰酸钾(KMnO4),4%。 3.9 脲素溶液,20g/100mL:将脲素[(NH2)2CO] 20g,溶于水中,并稀释至100mL。 3.10 亚硝酸钠,2g/100mL:将亚硝酸钠(NaNO2)2g,溶于水中,并稀释至100mL。 3.11 铬标准贮备淮,0.1000mg Cr6+/mL:称取于120℃烘2h的重铬酸钾(3.4)0.2829g,用少量水溶解后,移入1000mL容量瓶中,用水稀释至标线,摇匀。 3.12 铬标准溶液,1.00μg/mL。吸取5.0mL铬标准贮备溶液(3.11)于500mL容量瓶中,用水稀释至标线,摇匀。用时现配。 3.13 铬标准溶液,5.00μg/mL。吸取25.00mL铬标准贮备溶液(3.11)于500mL容量瓶中,用水稀释至标线,摇匀。 3.14 显色剂1:称取二苯碳酰二肼(3.5)0.2g,溶于50mL丙酮(3.1)中,加水稀释至100mL,摇匀,于棕色瓶中,在低温下保存。 3.15 显色剂2:称取二苯碳酰二肼(3.5)2.0g,溶于50mL内酮(3.1)中,加水稀释至100mL,摇匀,于棕色瓶中,在低温下保存。 注:显色剂颜色变深,则不能使用。 4 仪器 一般实验用仪器及分光光度计。 5 操作步骤 5.1 样品的保存 将浸出液用氢氧化钠调pH值为8。在24h内测定。 5.2 样品的预处理

六价铬的测定―二苯碳酰二肼分光光度法.doc

六价铬的测定—二苯碳酰二肼分光光度法 一、实验目的 掌握六价铬的测定方法 熟悉 722 型分光光度计的使用 二、实验原理 在酸性溶液中,六价铬离子与二苯碳酰二肼反应,生成紫红色化合物,其最大吸收波长为 540nm,吸光度与浓度的关系符合比耳定律。 三、实验仪器 分光光度计比色皿 50ml 具塞比色管,移液管,容量瓶等 四、实验试剂 ( 1)硫酸( 1+1): 将硫酸(密度为 1.84g/ml)缓缓加入到同体积水中,混匀; ( 2)磷酸( 1+1): 将磷酸(密度为 1.69g/ml)与等体积水混合; ( 3)铬标准储备液: 称取于 120℃干燥 2h 的重铬酸钾( K 2Cr 2O 7,优级纯) 0.2829g,用水溶解后,移入 1000ml 容量瓶中,用水稀释至标线,摇匀。此溶液 1ml 含 0.10mg 六价铬;

( 4)铬标准溶液使用液: 吸取 5.00ml 铬标准储备液于 500ml 容量瓶中,用水稀释至标线,摇匀。此 溶液 1ml 含有 1.00 μg的六价铬; (5)显色剂: 二苯碳酰二肼溶液(称取二苯碳酰二肼C 13N 14H 4O 0.2g,溶于 50ml 丙酮中,加水稀释至 100ml,摇匀,储于棕色瓶,置冰 箱中。 (6)待测六价铬水样(本实验采用模拟水 样)五、实验步骤 1.标准曲线的绘制: ( 1)向一组 50ml 的比色管中,依次加入 0、0. 50、1. 00、2. 00、4. 00、8.00 和 10.00ml 的铬标准使用液,用水稀释至标线,依次加入硫酸(1+1)0.5ml 和磷酸( 1+1)0.5ml,摇匀。 ( 2)显色:

六价铬的测定

水质六价铬的测定二苯碳酰二肼分光光度法(GB 7467-87) 1 适用范围 1.1本标准适用于地面水和工业废水中六价铬的测定。 1.2 测定范围 试样体积为50 mL,使用光程长为30 mm的比色皿,本方法的最小检出量为0.2 μg六价铬,最低检出浓度为0.004 mg/L,使用光程为10 mm的比色皿,测定上限浓度为1.0 mg/L。 1.3 干扰 含铁量大于1 mg/L显色后呈黄色。六价钼和汞也和显色剂反应,生成有色化合物,但在本方法的显色酸度下,反应不灵敏,钼和汞的浓度达200 mg/L不影响测定。钒有干扰,其含量高于4 mg/L即干扰显色。但钒与显色剂反应后10 min,可自行褪色。 2 原理 在酸性溶液中,六价铬与二苯碳酰二肼反应生成紫红色化合物,于波长540 nm处进行分光光度测定。 3 试剂 测定过程中,除非另有说明,均使用符合国家标准或专业标准的分析纯试剂和蒸馏水或同等纯度的水,所有试剂应不含铬。 3.1丙酮。 3.2硫酸:1+1硫酸溶液。将硫酸(ρ=1.84 g/mL,优级纯)缓缓加入到同体积的水中,混匀。 3.3 磷酸:1+1磷酸溶液。将磷酸(ρ=1.69 g/mL,优级纯)与水等体积混合。 3.4 氢氧化钠:4 g/L氢氧化钠溶液。将氢氧化钠1 g溶于水并稀释至250 mL。 3.5 氢氧化锌共沉淀剂 3.5.1 硫酸锌:8%(m/V)硫酸锌溶液。称取硫酸锌(ZnSO4·7H2O)8 g,溶于100 mL水中。

3.5.2 氢氧化钠:2%(m/V)溶液。称取2.4 g氢氧化钠,溶于120 mL水中。 用时将3.5.1和3.5.2两溶液混合。 3.6 高锰酸钾:40 g/L溶液。称取高锰酸钾4 g,在加热搅拌下溶于水,最后稀释至100 mL。 3.7 铬标准储备液:称取于110℃干燥 2 h的重铬酸钾(优级纯)0.2829±0.0001 g,用水溶解后,移入1000 mL容量瓶中,用水稀释至标线,摇匀。此溶液1 mL含0.10 mg六价铬。 3.8 铬标准溶液:吸取5.00 mL铬标准储备液(3.7)置于500 mL容量瓶中,用水稀释至标线,摇匀。此溶液1 mL含1.00 μg六价铬。使用当天配制此溶液。 3.9 铬标准溶液:吸取25.00 mL铬标准储备液(3.7)置于500 mL容量瓶中,用水稀释至标线,摇匀。此溶液1 mL含5.00 μg六价铬。使用当天配制此溶液。 3.10 尿素:200 g/L溶液。将尿素((NH2)2CO)20 g溶于水并稀释至100 mL。 3.11 亚硝酸钠:20 g/L溶液。将亚硝酸钠2 g溶于水并稀释至100 mL。 3.12 显色剂(Ⅰ):称取二苯碳酰二肼(C13H14N4O)0.2 g,溶于50 mL丙酮(3.1)中,加水稀释至100 mL,摇匀,贮于棕色瓶,置冰箱中。色变深后,不能使用。 3.13 显色剂(Ⅱ):称取二苯碳酰二肼2 g,溶于50 mL丙酮(3.1)中,加水稀释至100 mL,摇匀,贮于棕色瓶,置冰箱中。色变深后,不能使用。 注:显色剂(Ⅰ)也可按下法配制:称取4.0 g苯二甲酸酐(C6H4O),加到80 mL乙醇中,搅拌溶解(必要时可用水浴微温),加入0.5 g二苯碳酰二肼,用乙醇稀释至100 mL。此溶液于暗处可保存六个月。使用时要注意加入显色剂后立即摇匀,以免六价铬被还原。 4 仪器 一般实验室仪器和分光光度计。 注:所有玻璃器皿内壁须光洁,以免吸附铬离子。不得用重铬酸钾洗液洗涤。可用硝酸、硫酸混合液或合成洗涤剂洗涤,洗涤后要冲洗干净。 5 采样与样品 实验室样品应该用玻璃瓶采集。采集时,加入氢氧化钠,调节样品pH值约为8,并在采样后尽快测定,如放置,不要超过24 h。

紫外分光光度法测定六价铬的研究

紫外分光光度法测定六价铬的研究 铬是生物体必需的微量元素之一。铬的缺乏会导致糖、脂肪等物质的代谢紊乱, 但摄入量过高对生物和人类有害。铬的毒性与其存在形态有极大的关系: 三价铬化合物几乎无毒, 且是人和动物所必需的; 相反, 六价铬化合物具有强氧化性, 且有致癌性。一般来说, 六价铬的毒性要比三价铬大100倍。我国规定铬在地面水中最高允许浓度: 三价铬为0.5 mg/L, 六价铬为0.1 mg/L, 生活饮水最高允许浓度( 六价铬) 为0.055 mg/L。因此对六价铬需要一种简单、有效的分析方法。六价铬的测定方法有很多: 如二苯碳酰二肼可见分光光度法、示波极谱滴定法、原子吸收分光光度法、动力学光度法、流动注射光度法等, 但大多由于仪器价昂难以普及使用。分光光度法则以仪器价廉, 操作简单等优点,目前在我国仍具有广泛的实用价值。本文研究了在碱性条件下对六价铬的测定, 碱性条件下六价铬在紫外区有一较强的吸收峰, 因此建立了对六价铬的测定方法。 1 主要仪器和试剂配制 UV- 2201 紫外可见分光光度计, 722 可见分光光度计, PHS- 25B 型数字酸度计。 六价铬标准溶液: 称取于120℃干燥2 h 的K2Cr2O7( 优级纯) 0.282 9 g, 溶于少量水中并稀释定容至1 L, 摇匀得浓度为0.100 mg/mL 的储备液。2%(m/V) 氢氧化钾溶液: 称取2 g 氢氧化钾溶于100 mL蒸馏水中。1∶1 硫酸溶液: 将浓硫酸缓慢加入到等体积水中, 混合均匀。 所用试剂均为分析纯, 实验用水为二次蒸馏水。所用的玻璃器皿均在1 mol /L 的HNO3 溶液中浸泡12 h 以上。 2 方法与结果 2.1 六价铬的吸收光谱 准确移取1 mL 铬标准和适量的氢氧化钾溶液置于25 mL 容量瓶中, 定容后用1 cm 比色皿在波长200~400 nm 范围内扫描吸收曲线, 结果如图1 所示, 产物的λmax 为372 nm; 故本文选372 nm 作为测试波长。 图1 碱性介质中六价铬的紫外吸收光谱2.2 六价铬标准曲线 用移液管分别移取铬标准溶液0.00、0.50、1.00、2.00、3.00、4.00、5.00 mL 于50 mL 容量瓶中,分别加适量氢氧化钾溶液, 然后用蒸馏水稀释至刻度, 摇匀; 得到Cr(VI) 的浓 度分别是0.00、1.00、2.00、4.00、6.00、8.00、10.00 mg/L, 用1 cm 比色皿以蒸馏水为 参比, 在波长372 nm 处测定其吸光度分别为0.002、0.078、0.158、0.309、0.452、0.587、 0.745 mg/L,得到六价铬浓度C(mg/L) 与吸光度A 之间的线性关系: A=0.0736C+0.0084, r=0.9995。 2.3 样品测定方法 将澄清的待测样品( 河南省振兴化工有限公司提供铬渣水浸出物) 用蒸馏水稀释到可测范围内,用1 cm 比色皿以蒸馏水为参比, 于波长372 nm 处测定其吸光度通过校准曲线计 算六价铬的含量。

六价铬测试方法

4.11 六价铬测试 4.11.1 试验目的 评估磁铁镀层钝化膜的六价铬环保风险,进行定性测试 4.11.2 引用标准 《GGS0058器件产品环保技术标准》、《IEC 62321-7-1:2015》 4.11.3 试验准备 4.11.3.1测试样品: 抽样频次: 1)正常生产产品:至少1批次/天/钝化槽 2)长期库存(库存时间超过1月):出货之前每批次测试 3)长期库存(库存时间超过2月):出货前需反钝化并重新检测环保,且重新进行镀层粘接试验 样品总表面积之和50 cm2±5 cm2;磁铁不充磁,无磁性;样品表面不能有任何污染物、指印或其它外来污点,周转和取放时避免二次污染 4.11.3.2显色试剂:用50mL丙酮溶解0.5g二苯碳酰二肼。搅拌均匀,并以50mL去离 子水缓慢稀释。为实现最大稳定性,溶液储存在棕色玻璃瓶中冷藏;当溶液变色 时废弃 4.11.3.3空白对比样品:将50ml蒸馏水倒入烧杯中作为显色对比标样,与样品检测过程 相同处理。 4.11.3.4加热装置:2只100ml烧杯。 4.11.4 试验实施 4.11.4.1在一个100ml 烧杯中加入50ml 蒸馏水或超纯水,加热至沸腾,并继续加热至少10min后,将待测样品放入烧杯,确保样品完全浸没在沸水中,并用表面皿盖住烧杯,防止水分蒸发。 4.11.4.2继续加热,保持水沸腾10±0.5 min 后停止加热,将样品移出或将待测溶液转移 至另一个干燥烧杯并冷却至室温。若因水分蒸发导致待测溶液不足50ml,需重新 添加去蒸馏水或超纯水至50 mL。如果溶液呈乳状或有沉淀,用过滤膜过滤至另一

个干燥烧杯。 ◆ 4.11.4.3用移液管在待测溶液中分别加入1 mL 正磷酸溶液(75% m/m)和2ml <4.11.3.2>中配置的显色试剂,溶液充分混合,并放置5 min 至10 min 再观察颜 色。 ● 4.11.5 判定标准 ◆试验溶液<4.11.4.3>与空白对比样品<4.11.3.3>一同放在光照度800~1600Lx的日 光灯下对比并拍照:若溶液显示变色或红色(即阳性Positive),证明含有六价铬,判 定不合格;若溶液不变色(即阴性,Negative),判定合格。 注:以上是根据IEC62321沸水萃取法检测金属表面六价铬方法而制定的简易方法,不需要使用UV-Vis设备,但不能定量。推荐供方完全按照IEC 62321-7-1:2015进行金属表面镀层六价铬测试,需要购买UV-Vis设备,但可以实现定量,结果更准确。

电子电气产品中六价铬的测定

电子电气产品中六价铬的测定 方法:二苯碳酰二肼分光光度法 1 范围 适用于电子电气产品中六价铬的测定。 2 方法提要 使用碱性浸提液将样品中水溶性和非水溶性的六价铬化合物浸取出来,浸出液中的六价铬在酸性溶液中与二苯碳酰二肼反应生成紫红色络合物,在波长540nm处进行分光光度法测定。 3 试剂和材料 除非另有说明,在分析中仅使用确认为分析纯的试剂和蒸馏水或去离子水或相当纯度的水。 3.1 硝酸:优级纯。 3.2 硫酸:优级纯。 3.3 氢氧化钠。 3.4 无水碳酸钠。 3.5 磷酸氢二钾。 3.6 磷酸二氢钾。 3.7 重铬酸钾:基准物质。 3.8 二苯碳酰二肼。 3.9 丙酮。 3.10 硫酸溶液(1+9)。 3.11 硝酸溶液(5 mol/L):量取31 mL硝酸(3.1)加到69 mL水中,混匀。不应使用有棕色烟雾的硝酸来配制。 3.12 浸提液:称取20.0g氢氧化钠(3.3)和30.0g无水碳酸钠(3.4),用水溶解后移入1000mL容量瓶中并稀释至刻度,摇匀,转移至塑料瓶中保存。 3.13 缓冲液:溶解87.09g磷酸氢二钾(3.5)和68.04g磷酸二氢钾{3.6)于水中,移入1000mL容量瓶中并用水稀释至刻度(此缓冲液PH=7)。 3.14 六价铬标准储备液,100mg/L:准确称取于120℃下烘干2 h后的重铬酸钾(3.7)0.2828g,用水溶解后移入1000 mL容量瓶中,用水稀释至刻度,摇匀。 3.15 六价铬标准溶液,5.0 mg/L:吸取5.0ml标准储备液(3.14)于100 ml容量瓶中,用水稀释至刻度,摇匀。用时现配。 3.16 二苯碳酰二肼(DPC)显色剂:称取0.5g二苯碳酰二肼(3.8)溶于100 mL丙酮(3.9)中,保存在棕色瓶中。溶液退色时,应重新配制。 4 设备 4.1 紫外可见分光光度计TU-1901(或TU900)。 4.2 振荡水浴锅。

水质 六价铬的测定 二苯碳酰二肼分光光度法

FHZHJSZ0005 水质 六价铬的测定 二苯碳酰二肼分光光度法 F-HZ-HJ-SZ-0005 水质二苯碳酰二肼分光光度法  1 范围  1.1 本方法适用于地面水和工业废水中六价铬的测定 使用光程长为30mm的比色皿 最低检出浓度为0.004mg/L2a?¨é??T?¨?è?a 1.0mg/L áù???aoí1ˉò2oí??é??á·′ó|μ??ú±?·?·¨μ???é??á?è???aoí1ˉμ??¨?è′?200mg/L不干扰测定其含量高于4mg/L即干扰显色可自行褪色 六价铬与二苯碳酰二肼反应生成紫红色化合物 3 试剂  测定过程中均使用符合国家标准或专业标准的分析纯试剂和蒸馏水或同等纯度的水 3.1 丙酮 3.2.1 1+l硫酸溶液 ?优级纯)缓缓加入到同体积的水中 3.3 磷酸 将磷酸(H3PO4 1.69g/m L 3.4 氢氧化钠 将氢氧化钠(NaOH)1g溶于水并稀释至250mL 80g/L硫酸锌溶液 7H2O)8g 3.5.2 氢氧化钠 称取2.4g氢氧化钠 用时将3.5.1和3.5.2两溶液混合 40g/L溶液 在加热和搅拌下溶于水  3.7 铬标准贮备液 干燥2h的重铬酸钾(K2Cr2O70.0001gò?è?1000mL容量瓶中摇匀 3.8 铬标准溶液 用水稀释至标线此溶液1mL含1.00ìg六价格 3.9 铬标准溶液 用水稀释至标线此溶液1mL含5.00ìg六价铬 3.10 尿素

将尿素[(NH2)2CO]20g溶于水并稀释至100mL 20g/L溶液   3.12 显色剂( 称取二苯碳酰二肼(C13H14N4O)0.2g?ó????êí?á100mL ?üóú×?é???é?±?é?oó 3.13 显色剂( 称取二苯碳酸二肼2g?ó????êí?á100mL?üóú×?é???é?±?é?oó 注称取4.0g苯二甲酸酐(C6H4O)?á°èèü?a(必要时可用水浴微温)ó?òò′???êí?ál00mLê1ó?ê±òa×¢òa?óè???é??áoóá¢?′ò??è 4 仪器  一般实验室仪器和 注以免吸附铬离子可用硝酸 洗涤后要冲洗干净 采集时调节样品pH值约为8 è?·??? 6 操作步骤  6.1 样品的预处理 6.1.1 样品中不含悬浮物 6.1.2 色度校正按6.3步骤另取一份试样 其他步骤同6.3?ùDD???? ???ì×? 取适量样品(含六价铬少于100ìg)于150mL烧杯中滴加氢氧化钠溶液(3.4)在不断搅拌下 将此溶液转移至100mL容量瓶中用慢速滤纸干过滤 取其中50.0mL滤液供测定 当样品经锌盐沉淀分离法前处理后仍含有机物干扰测定时 即取50.0mL滤液于150mL锥形瓶中加入0.5mL硫酸溶液(3.2.1)摇匀如紫红色消褪 取下稍冷用水洗涤数次 加入1mL尿素溶液(3.10)ó?μ?1üμ??ó?????á??èüòo(3.11)?á???ì?á??μ?×?oìé???o?íêè¥′yèüòo?ú???YòY??ó?????êí?á±ê?? 6.1.4 二价铁硫代硫酸盐等还原性物质的消除 用水稀释至标线混匀加入1mL硫酸溶液(3.2)摇匀在540nm波长处以水做参比扣除空白试验测得的吸光度后用同法做校准曲线 取适量样品(含六价格少于50ìg)于50mL比色管中加入0.5mL硫酸溶液(3.2) 1.0mL尿素溶液(3.10)?eμ??óè?1mL亚硝酸钠溶液(3.11)ò?3yè¥óé1yá?μ??????á??ó??ò??·′ó|éú3éμ????Yò???2??èí?6.3(免去加硫酸溶液和磷酸溶液)

相关文档