文档库 最新最全的文档下载
当前位置:文档库 › 基于小波变换的图像融合程序

基于小波变换的图像融合程序

基于小波变换的图像融合程序
基于小波变换的图像融合程序

set(handles.text4,'visible','on')

pause(1)

[X,map]=imread('C:\Users\Administrator\Desktop\matlab\image1.jpg') ;

%map是色谱,map每一行分别代表R、G、B,涵盖了图像中出现的所有颜色组合。

%X是像素颜色值,数据矩阵X的值指向map的某一行。

X1=X;

map1=map;

subplot(2,2,1);

image(X1);

colormap(map1);%指当前显示的figure窗口色图按照指定map1进行搭配,用MAP矩阵映射当前图形的色图title('原始图像1')

axis square

[X,map]=imread('C:\Users\Administrator\Desktop\matlab\image2.jpg') ;

X2=X;

map2=map;

subplot(2,2,2);

image(X2);

colormap(map2);

title('原始图像2');

axis square

if ndims(X1)==3 %表示三位矩阵

X3=rgb2gray(X1);%满足这个条件时,把X1转换成灰度图赋值给X3

else

X3=X1;%·否则直接赋值

end

if ndims(X2)==3

X4=rgb2gray(X2);%满足这个条件时,把X2转成灰度图赋值给X4

else

X4=X2;

end

X3=double(X3);%转换成双精度数据

X4=double(X4);

%matlab读入图像的数据是uint8,而matlab中数值一般采用double型(64位)存储和运算。所以要先将图像转为double格式的才能运算,如果不转换,计算会产生溢出

%%进行小波变换

[C1,L1]=wavedec2(X3,2,'sym4');%小波变换

[C2,L2]=wavedec2(X4,2,'sym4');%小波变换

%wavedec2:二维信号的多层小波分解

%2:就是小波包的层数,小波分解可以按照树形结构一层一层的往下分解,分解到多细,主要看你想分析的频段是什么,如果是2层小波包分解的话,就是把频率分成了4等分,显示出每个频段的小波系数

&sym4:是小波的名字,小波分解不同于傅里叶分解,他可以自己选取“基”,这里就是选取sym4小波作为函数空间的基。这个不是重点,对于一般的函数,选不同的基差别不大。只有一些比较极端的函数,需要特殊的基来分析。

%%融合

C=(C1+C2)*0.5;%给C赋值

X=waverec2(C,L1,'sym4');%调用函数waverec2

% waverec2:二维信号的多层小波重构

X=uint8(X);%把矩阵转化成uint8类型,uint8(8位无符号整数),

subplot(223)%画2行2列第3个图

title('基于小波变换的图像融合');

imshow(X);%画图

set(handles.text4,'visible','off')

set(handles.pushbutton1,'visible','off')

像素级图像融合讲解

山东大学(威海)毕业论文 毕业设计(论文)设计(论文)题目像素级图像融合方法 姓名:李桂楠 学号:201100800668 学院:机电与信息工程学院 专业:自动化 年级2011级 指导教师:孙甲冰

目录 摘要 (4) Abstract (5) 第一章绪论 (1) 1.1课题背景及来源 (1) 1.2图像融合的理论基础和研究现状 (1) 1.3图像融合的应用 (1) 1.4图像融合的分类 (1) 第二章像素级图像融合的预处理 (3) 2.1图像增强 (3) 2.2图像校正 (6) 2.3图像配准 (6) 第三章像素级图像融合的方法综述 (8) 3.1加权平均图像融合方法 (8) 3.2 HIS空间图像融合方法 (8) 3.3 主成分分析图像融合方法 (8) 3.4 伪彩色图像融合方法 (9) 第四章基于小波变换的像素级图像融合概述 (10) 4.1 小波变换的基本理论 (10) 4.2 基于小波变换的图像融合 (11) 4.3基于小波变换的图像融合性能分析 (12)

第五章像素级图像融合方法的研究总结与展望 (19) 参考文献 (20) 谢辞................................. 错误!未定义书签。

摘要 近些年,随着科学技术的飞速发展,各种各样的图像传感器出现在人们的视野前,这种样式繁多的图像传感器在不同的成像原理和不同的工作环境下具有不同功能。而因为多传感器的不断涌现,图像融合技术也越来越多的被应用于医学、勘探、海洋资源开发、生物学科等领域。 图像融合主要有像素级、决策级和特征级三个层次,而像素级图像融合作为基础能为其他层次的融合提供更准确、全面、可依赖的图像信息。本文的主要工作是针对像素级的图像融合所展开的。 关键词 图像融合理论基础、加权平均、图像融合方法、小波变换、

小波变换图像去噪综述

科技论文写作大作业小波变换图像去噪综述 院系: 班级: 学号: 姓名:

摘要小波图象去噪已经成为目前图象去噪的主要方法之一.在对目前小波去噪文献进行理解和综合的基础上,首先通过对小波去噪问题的描述,揭示了小波去噪的数学背景和滤波特性;接着分别阐述了目前常用的3类小波去噪方法,并从小波去噪中常用的小波系数模型、各种小波变换的使用、小波去噪和图象压缩之间的联系、不同噪声场合下的小波去噪等几个方面,对小波图象去噪进行了综述;最后,基于对小波去噪问题的理解,提出了对小波去噪方法的一些展望 关键词:小波去噪小波萎缩小波变换图象压缩 1.前言 在信号数据采集及传输时,不仅能采集或接收到与所研究的问题相关的有效信号,同时也会观测到各种类型的噪声。在实际应用中,为降低噪声的影响,不仅应研究信号采集的方式方法及仪器的选择,更重要的是对已采集或接收的信号寻找最佳的降噪处理方法。对于信号去噪方法的研究可谓是信号处理中一个永恒的话题。传统的去噪方法是将被噪声污染的信号通过一个滤波器,滤除掉噪声频率成分。但对于瞬间信号、宽带噪声信号、非平稳信号等,采用传统方法具有一定的局限性。其次还有傅里叶(Fourier)变换也是信号处理中的重要手段。这是因为信号处理中牵涉到的绝大部分都是语音或其它一维信号,这些信号可以近似的认为是一个高斯过程,同时由于信号的平稳性假设,傅立叶交换是一个很好的信号分析工具。但也有其不足之处,给实际应用带来了困难。 小波变换是继Fourier变换后的一重大突破,它是一种窗口面积恒定、窗口形状可变(时间域窗口和频率域窗口均可改变)的时频局域化分析方法,它具有这样的特性;在低频段具有较高的频率分辨率及较低的时间分辨率,在高频段具有较高的时间分辨率及较低的频率分辨率,实现了时频窗口的自适应变化,具有时频分析局域性。小波变换的一个重要应用就是图像信号去噪。将小波变换用于信号去噪,它能在去噪的同时而不损坏信号的突变部分。在过去的十多年,小波方法在信号和图像去噪方面的应用引起学者广泛的关注。本文阐述小波图像去噪方法的原理,概括目前的小波图像去噪的主要方法,最后对小波图像去噪方法的发展和应用进行展望。 2小波图像去噪的原理 所谓小波变化,即:

基于小波变换的图像融合

基于小波变换的图像融合 摘要:图像融合是通过某种算法,将两幅或多幅不同的图像进行合并以形成一一幅新的图像的过程,其的主要目的是通过对多幅图像间的冗余数据的处理来提高图像的可靠性,通过对多幅图像间的互补信息的处理来提高图像的清晰度。本文的研究重点是基于小波变换实现图像的初步融合,完成将两幅不同的图像进行合并以形成一幅新的图像。关键词:图像融合,小波变换,融合算法,图像信息 Abstract The image fusi on is a procedure that comb ine more tha n two images in order to get a new image, and it ' s main purpose of image fusi on of multiple images is enhance the reliability of image through deal with the ultra data of the in itial image, and improve the defi niti on of the image through deal with the compleme ntary in formatio n of the images. The key point of this article is realized the image fusi on based on the wavelet tran sform and comb ines two images to get a new image. Key Words : image fusion, wavelet transform, fusion algorithm, image in formatio n 一、引言 图像融合是通过某种算法,将两幅或多幅不同的图像进行合并以形成一幅新的图像的过程。在众多的图像融合技术,基于小波变换的图像融合方法已成为现今的个热点,图像融合技术是数据融合技术的一种特定情形,它是以图像的形式来表达具 体的信息,它对人的视觉产生作用。图像融合具体来说是根据某一算法,将所获得的针对同一目标场景的多幅配准后的图像进行综合处理,从而得到一幅新的、满足某种条件的、对目标或场景的描述更为准确、更为全面、更为可靠的图像。融合后的图像应该比原始图像更加清晰可靠和易于分辨。图像融合充分利用了多个原始图像所包含的冗余信息和互补信息,能够起到扩大传感范围、提高系统可靠性和图像信息利用率的作用。 二、小波变换图像融合 传统的信号理论,是建立在Fourier分析基础上的,而Fourier变换作为一种全局性的变化,其有一定的局限性。在实际应用中人们开始对Fourier变换进行各种 改进,小波分析由此产生了。小波分析是一种新兴的数学分支,它是泛函数、Fourier 分析、调和分析、数值分析的最完美的结晶;在应用领域,特别是在信号处理、图像处理、语音处理以及众多非线性科学领域,它被认为是继Fourier分析之后的又 一有效的时频分析方法。小波变换与Fourier变换相比,是一个时间和频域的局域 变换因而能有效地从信号中提取信息,通过伸缩和平移等运算功能对函数或信号进行多尺度细化分析(Multiscale Analysis ),解决了Fourier变换不能解决的许多困难问题。 近些年来,小波变换倍受科技界的重视,它不仅在数学上已形成了一个新的分支,

数字图像处理课程设计-小波变换

摘要 小波变换的理论是近年来兴起的新的数学分支,素有“数学显微镜”的美称。它是继1822年傅立叶提出傅立叶变换之后又一里程碑式的领域,解决了很多傅立叶变换不能解决的困难问题。小波变换可以使得信号的低频长时特性和高频短时特性同时得到处理,具有良好的局部化性质,能有效地克服傅氏变换在处理非平稳复杂信号时存在的局限性,具有极强的自适应性,因此在图像处理中具有极好应用价值。本设计主要分析了基于小波变换的图像分解和图像压缩技术,并运用Matlab软件对图像进行分解,然后提取其中与原图像近似的低频信息,达到对图像进行压缩的目的。分别作第一层分解和第二层分解,并比较图像压缩的效果。 关键词:小波变换;Matlab;图像分解;图像压缩

目录 摘要 ..................................................................................................... I 第1章绪论 (1) 1.1设计背景 (1) 1.2设计要求 (1) 1.3设计思路简介 (1) 第2章小波变换处理图像设计过程 (2) 2.1小波变换的分解和重构算法 (2) 2.2小波变换在图像压缩中的应用 (4) 第3章软件设计与仿真 (6) 3.1MATLAB程序 (6) 3.2结果及分析 (7) 第4章总结与展望 (9) 参考文献 (10)

第1章绪论 1.1设计背景 小波分析是当前应用数学和工程学科中一个迅速发展的新领域,经过近10年的探索研究,重要的数学形式化体系已经建立,理论基础更加扎实。与Fourier变换相比,小波变换是空间(时间)和频率的局部变换,因而能有效地从信号中提取信息。通过伸缩和平移等运算功能可对函数或信号进行多尺度的细化分析,解决了Fourier变换不能解决的许多困难问题。小波变换联系了应用数学、物理学、计算机科学、信号与信息处理、图像处理、地震勘探等多个学科。小波分析是一个新的数学分支,它是泛函分析、Fourier分析、样调分析、数值分析的完美结晶;小波分析是时间—尺度分析和多分辨分析的一种新技术,它在信号分析、语音合成、图像识别、计算机视觉、数据压缩、地震勘探、大气与海洋波分析等方面的研究都取得了有科学意义和应用价值的成果。 1.2设计要求 利用小波变换的基本原理在MATLAB环境下编写程序对静态图像进行分解并压缩,并观察分析其处理效果。 1.3设计思路简介 一个图像作小波分解后,可得到一系列不同分辨率的子图像,不同分辨率的子图像对应的频率是不相同的。高分辨率(即高频)子图像上大部分点都接近于0,越是高频这种现象越明显。对一个图像来说,表现一个图像最主要的部分是低频部分,所以利用小波分解就可以达到去掉图像的高频部分而只保留低频部分的目的。 MATLAB是矩阵实验室(Matrix Laboratory)的简称,它在数学类科技应用软件中在数值计算方面首屈一指。MATLAB可以进行矩阵运算、绘制函数和数据、实现算法、创建用户界面、连接其它编程语言的程序等,主要应用于工程计算、控制设计、信号处理与通讯、图像处理、信号检测、金融建模设计与分析等领域。 本设计利用MATLAB工具箱中的Wavele Toolbox——小波工具箱对图像进行小波变换。

小波变换的基本原理

10.2小波变换的基本原理 地质雷达的电磁波信号和地震波信号都是非平稳随机时变信号,长期以来,因非平稳信号处理的理论不健全,只好将其作为平稳信号来处理,其处理结果当然不满意。近年来,随着科学技术的发展和进步,国内外学术界已将注意力转向非平稳随机信号分析与处理的研究上,其中非平稳随机信号的时频表示法是研究热点之一。在这一研究中,戈勃展开、小波变换、维格纳分布与广义双线性时频分布等理论发展起来,这些方法既可以处理平稳信号过程,也可以处理非平稳随机时变信号。 小波变换是上世纪80年代中后期逐渐发展起来的一种数学分析方法。1984年法国科学家J.M OLET在分析地震波的局部特性时首先使用了小波这一术语,并用小波变换对地震信号进行处理。小波术语的含义是指一组衰减震动的波形,其振幅正负相间变化,平均值为零,是具有一定的带宽和中心频率波组。小波变换是用伸缩和平移小波形成的小波基来分解(变换)或重构(反变换)时变信号的过程。不同的小波具有不同带宽和中心频率,同一小波集中的带宽与中心频率的比是不变的,小波变换是一系列的带通滤波响应。它的数学过程与傅立叶分析是相似的,只是在傅立叶分析中的基函数是单频的调和函数,而小波分析中的基函数是小波,是一可变带宽内调和函数的组合。 小波变换在时域和频域都具有很好的局部化性质,较好地解决了时域和频域分辨率的矛盾,对于信号的低频成分采用宽时窗,对高频成分采用窄时窗。因而,小波分析特别适合处理非平稳时变信号,在语音分析和图象处理中有广泛的应用,在地震、雷达资料处理中将有良好的应用前景。 下边就小波分析的基本原理、主要作用及在雷达资料处理中的应用三方面作以介绍。 10.2.1小波分析的基本原理 小波函数的数学表达

基于小波变换的图像处理.

基于小波变换的数字图像处理 摘要:本文先介绍了小波分析的基本理论,为图像处理模型的构建奠定了基础,在此基础上提出了小波分析在图像压缩,图像去噪,图像融合,图像增强等图像处理方面的应用,最后在MATLAB环境下进行仿真,验证了小波变化在图像处理方面的优势。 关键词:小波分析;图像压缩;图像去噪;图像融合;图像增强 引言 数字图像处理是利用计算机对科学研究和生产中出现的数字化可视化图像 信息进行处理,作为信息技术的一个重要领域受到了高度广泛的重视。数字化图像处理的今天,人们为图像建立数学模型并对图像特征给出各种描述,设计算子,优化处理等。迄今为止,研究数字图像处理应用中数学问题的理论越来越多,包括概率统计、调和分析、线性系统和偏微分方程等。 小波分析,作为一种新的数学分析工具,是泛函分析、傅立叶分析、样条分析、调和分析以及数值分析理论的完美结合,所以小波分析具有良好性质和实际应用背景,被广泛应用于计算机视觉、图像处理以及目标检测等领域,并在理论和方法上取得了重大进展,小波分析在图像处理及其相关领域所发挥的作用也越来越大。在传统的傅立叶分析中,信号完全是在频域展开的,不包含任何时频的信息,其丢弃的时域信息可能对某些应用同样非常重要,所以人们对傅立叶分析进行了推广,提出了很多能表征时域和频域信息的信号分析方法,如短时傅立叶变换,Gabor变换,时频分析,小波变换等。但短时傅立叶分析只能在一个分辨率上进行,所以对很多应用来说不够精确,存在很大的缺陷。而小波分析则克服了短时傅立叶变换在单分辨率上的缺陷,在时域和频域都有表征信号局部信息的能力,时间窗和频率窗都可以根据信号的具体形态动态调整。 本文介绍了小波变换的基本理论,并介绍了一些常用的小波函数,然后研究了小波分析在图像处理中的应用,包括图像压缩,图像去噪,图像融合,图像增强等,本文重点在图像去噪,最后用Matlab进行了仿真[1]。

图像融合的研究背景和研究意义

图像融合的研究背景和研究意义 1概述 2 图像融合的研究背景和研究意义 3图像融合的层次 像素级图像融合 特征级图像融合 决策级图像融合 4 彩色图像融合的意义 1概述 随着现代信息技术的发展,图像的获取己从最初单一可见光传感器发展到现在的雷达、高光谱、多光谱红外等多种不同传感器,相应获取的图像数据量也急剧增加。由于成像原理不同和技术条件的限制,任何一个单一图像数据都不能全面反应目标对象的特性,具有一定的应用范围和局限性。而图像融合技术是将多种不同特性的图像数据结合起来,相互取长补短便可以发挥各自的优势,弥补各自的不足,有可能更全面的反映目标特性,提供更强的信息解译能力和可靠的分析结果。图像融合不仅扩大了各图像数据源的应用范围,而且提高了分析精度、应用效果和使用价值,成为信息领域的一个重要的方向。图像配准是图像融合的重要前提和基础,其误差的大小直接影响图像融合结果的有效性。 作为数据融合技术的一个重要分支,图像融合所具有的改善图像质量、提高几何配准精度、生成三维立体效果、实现实时或准实时动态监测、克服目标提取与识别中图像数据的不完整性等优点,使得图像融合在遥感观测、智能控制、无损检测、智能机器人、医学影像(2D和3D)、制造业等领域得到广泛的应用,成为当前重要的信息处理技术,迅速发展的军事、医学、自然资源勘探、环境和土地、海洋资源利用管理、地形地貌分析、生物学等领域的应用需求更有力地刺激了图像融合技术的发展。 2 图像融合的研究背景和研究意义 Pohl和Genderen对图像融合做了如下定义:图像融合就是通过一种特定算法将两幅或多幅图像合成为一幅新图像。它的主要思想是采用一定的算法,把

小波变换去噪基础地的知识整理

1.小波变换的概念 小波(Wavelet)这一术语,顾名思义,“小波”就是小的波形。所谓“小”是指它具有衰减性;而称之为“波”则是指它的波动性,其振幅正负相间的震荡形式。与Fourier变换相比,小波变换是时间(空间)频率的局部化分析,它通过伸缩平移运算对信号(函数)逐步进行多尺度细化,最终达到高频处时间细分,低频处频率细分,能自动适应时频信号分析的要求,从而可聚焦到信号的任意细节,解决了Fourier变换的困难问题,成为继Fourier变换以来在科学方法上的重大突破。有人把小波变换称为“数学显微镜”。 2.小波有哪几种形式?常用的有哪几种?具体用哪种,为什么? 有几种定义小波(或者小波族)的方法: 缩放滤波器:小波完全通过缩放滤波器g——一个低通有限脉冲响应(FIR)长度为2N和为1的滤波器——来定义。在双正交小波的情况,分解和重建的滤波器分别定义。 高通滤波器的分析作为低通的QMF来计算,而重建滤波器为分解的时间反转。例如Daubechies和Symlet 小波。 缩放函数:小波由时域中的小波函数 (即母小波)和缩放函数 (也称为父小波)来定义。 小波函数实际上是带通滤波器,每一级缩放将带宽减半。这产生了一个问题,如果要覆盖整个谱需要无穷多的级。缩放函数滤掉变换的最低级并保证整个谱被覆盖到。 对于有紧支撑的小波,可以视为有限长,并等价于缩放滤波器g。例如Meyer小波。 小波函数:小波只有时域表示,作为小波函数。例如墨西哥帽小波。 3.小波变换分类 小波变换分成两个大类:离散小波变换 (DWT) 和连续小波转换 (CWT)。两者的主要区别在于,连续变换在所有可能的缩放和平移上操作,而离散变换采用所有缩放和平移值的特定子集。 DWT用于信号编码而CWT用于信号分析。所以,DWT通常用于工程和计算机科学而CWT经常用于科学研究。 4.小波变换的优点 从图像处理的角度看,小波变换存在以下几个优点: (1)小波分解可以覆盖整个频域(提供了一个数学上完备的描述) (2)小波变换通过选取合适的滤波器,可以极大的减小或去除所提取得不同特征之间的相关性 (3)小波变换具有“变焦”特性,在低频段可用高频率分辨率和低时间分辨率(宽分析窗口),在高频段,可用低频率分辨率和高时间分辨率(窄分析窗口) (4)小波变换实现上有快速算法(Mallat小波分解算法) 另: 1) 低熵性变化后的熵很低; 2) 多分辨率特性边缘、尖峰、断点等;方法, 所以可以很好地刻画信号的非平稳特性 3) 去相关性域更利于去噪; 4) 选基灵活性: 由于小波变换可以灵活选择基底, 也可以根据信号特性和去噪要求选择多带小波、小波包、平移不变小波等。 小波变换的一个最大的优点是函数系很丰富, 可以有多种选择, 不同的小波系数生成的小波会有不同的效果。噪声常常表现为图像上孤立像素的灰度突变, 具有高频特性和空间不相关性。图像经小波分解后可得到低频部分和高频部分, 低频部分体现了图像的轮廓, 高频部分体现为图像的细节和混入的噪声, 因此, 对图像去噪, 只需要对其高频系数进行量化处理即可。 5.小波变换的科学意义和应用价值

基于小波变换的图像去噪

第1章绪论 由于各种各样的原因,现实中的图像都是带噪声的。噪声恶化了图像质量,使图像变得模糊。对同时含有高斯噪声和椒盐噪声的图像先进行混合中值滤波,在滤除椒盐噪声的同时,又很好地保留了图像中的物体细节和轮廓。小波域去噪处理具有很好的时频特性、多分辨分析特性等优点,可以看成特征提取和低通滤波功能的综合。小波模极大值去噪方法能有效地保留信号的奇异点信息,去噪后的信号没有多余振荡,具有较好的图画质量,改进后可以得到更满意的图像。小波相位滤波去噪算法是基于小波变换系数相关性去噪算法的,适于强噪声图像,去噪后也可以改善图像质量。 1.1课题背景 图像信息以其信息量大、传输速度快、作用距离远等优点成为人类获取信息的重要来源及利用信息的重要手段,而现实中的图像由于种种原因都是带噪声的。噪声恶化了图像质量,使图像模糊,甚至淹没和改变特征,给图像分析和识别带来困难。为了去除噪声,会引起图像边缘的模糊和一些纹理细节的丢失。反之,进行图像边缘增强也会同时增强图像噪声。因此在去除噪声的同时,要求最小限度地减小图像中的信息,保持图像的原貌。经典的图像去噪算法,如均值滤波、维纳滤波、中值滤波等,其去噪效果都不是很理想。 中值滤波是由图基(Turky)在1971年提出的,开始用于时间序列分析,后来被用于图像处理,在去噪复原中得到了较好的效果。它的基本原理是把数字图像或数字序列中的一点的值,用该点的一个邻域中的各点的中值代替。中值滤波在抑制椒盐噪声的同时又能较好地保持图像特征,图像也得到了平滑。对同时含有高斯噪声和椒盐(脉冲)噪声的图像,先进行混合中值滤波处理。基于极值的混合中值滤波兼容了中值滤波和线性滤波的优点,在滤除椒盐噪声的同时又对图像中的物体细节和轮廓进行了很好的保留。基于混合中值滤波和小波去噪相结合的方法,去噪效果好于单纯地使用小波变换去除噪声,或者单纯使用混合中值滤波去除噪声,能获得比单一使用任何一种滤波器更好的效果。

图像融合

图像融合 实验目的 1.熟悉图像融合的意义和用途,理解图像融合的原理; 2.掌握图像融合的一般方法; 3.掌握运用MATLAB软件进行图像融合的操作。 实验原理 图像融合(Image Fusion)技术是指将多源信道所采集到的关于同一目标的图像经过一定的图像处理,提取各自信道的信息,最后综合成同一图像以供观察或进一步处理。 高效的图像融合方法可以根据需要综合处理多源通道的信息,从而有效地提高了图像信息的利用率、系统对目标探测识别地可靠性及系统的自动化程度。其目的是将单一传感器的多波段信息或不同类传感器所提供的信息加以综合,消除多传感器信息之间可能存在的冗余和矛盾,以增强影像中信息透明度,改善解译的精度、可靠性以及使用率,以形成对目标的清晰、完整、准确的信息描述。 这诸多方面的优点使得图像融合在医学、遥感、计算机视觉、气象预报及军事目标识别等方面的应用潜力得到充分认识、尤其在计算机视觉方面,图像融合被认为是克服目前某些难点的技术方向;在航天、航空多种运载平台上,各种遥感器所获得的大量光谱遥感图像(其中分辨率差别、灰度等级差别可能很大)的复合融合,为信息的高效提取提供了良好的处理手段,取得明显效益。 一般情况下,图像融合由低到高分为三个层次:数据级融合、特征级融合、决策级融合。数据级融合也称像素级融合,是指直接对传感器采集来得数据进行处理而获得融合图像的过程,它是高层次图像融合的基础,也是目前图像融合研究的重点之一。这种融合的优点是保持尽可能多得现场原始数据,提供其它融合层次所不能提供的细微信息。 图像融合最简单的理解就是两个(或多个)图像间的相加运算。这一技术广泛

应用于多频谱图像理解和医学图像处理等领域。主要分为空域和频域相加。 一、应用MATLAB软件进行两幅图像的融合的主要方法有: 1.图像直接融合; 2.图像傅立叶变换融合; 3.图像小波变换融合。 图像融合的MATLAB程序如下: (1)调入、显示两幅图像的程序语句 load A; X1=X;map1=map; load B; X2=X;map2=map; %打开图像 subplot(1,2,1) image(X1),colormap(map1); title(‘图像map1’) subplot(1,2,2) image(X2),colormap(map2); title(‘图像map2’) %显示两幅图像 (2)两幅图像直接融合的程序语句 figure,subplot(1,3,1) image((X1+X2)/2),colormap(map2); %在空域内直接融合 title(‘两图像直接相加融合’) %显示融合后的图像,并命名为“两图像直接相加融合” (3)两幅图像傅立叶变换融合的程序语句 F1=fft2(X1); F2=fft2(X2); %分别计算两幅图像的快速傅立叶变换

小波变换图像去噪的算法研究自设阈值

基于小波的图像去噪 一、小波变换简介 在数学上,小波定义卫队给定函数局部化的新领域,小波可由一个定义在有限区域的函数()x ψ来构造,()x ψ称为母小波,(mother wavelet )或者叫做基本小波。一组小波基函数,()}{,x b a ψ,可以通过缩放和平移基本小波 来生成: ())(1 ,a b x a x b a -ψ=ψ (1) 其中,a 为进行缩放的缩放参数,反映特定基函数的宽度,b 为进行平移的平移参数,指定沿x 轴平移的位置。当a=2j 和b=ia 的情况下,一维小波基函数序列定义为: ()() 1222,-ψ=ψ--x x j j j i (2) 其中,i 为平移参数,j 为缩放因子,函数f (x )以小波()x ψ为基的连续小波变换定义为函数f (x )和()x b a ,ψ的内积: () dx a b x a x f f x W b a b a )(1)(,,,-ψ=ψ=?+∞ ∞- (3) 与时域函数对应,在频域上则有:

())(,ωωa e a x j b a ψ=ψ- (3) 可以看出,当|a|减小时,时域宽度减小,而频域宽度增大,而且()x b a ,ψ的窗口中心向|ω|增大方向移动。这说明连续小波的局部是变化的,在高频时分辨率高,在低频时分辨率低,这便是它优于经典傅里叶变换的地方。总体说来,小波变换具有更好的时频窗口特性。 二、图像去噪描述 所谓噪声,就是指妨碍人的视觉或相关传感器对图像信息进行理解或分析的各种因素。通常噪声是不可预测的随机信号。由于噪声影响图像的输入、采集、处理以及输出的各个环节,尤其是图像输入、采集中的噪声必然影响图像处理全过程乃至最终结果,因此抑制噪声已成为图像处理中极其重要的一个步骤。 依据噪声对图像的影响,可将噪声分为加性噪声和乘性噪声两大类。由于乘性噪声可以通过变换当加性噪声来处理,因此我们一般重点研究加性噪声。设f(x,y)力为理想图像,n(x,y)力为噪声,实际输入图像为为g(x,y),则加性噪声可表示为: g(x,y)= f(x,y)+ n(x,y), (4) 其中,n(x,y)和图像光强大小无关。 图像去噪的目的就是从所得到的降质图像以g(x,y)中尽可能地去除噪声n(x,y),从而还原理想图像f(x,y)。图像去噪就是为了尽量减少图像的均方误差,提高图像的信噪比,从而尽可能多地保留图像的特征信息。 图像去噪分为时域去噪和频域去噪两种。传统图像去噪方法如维纳滤波、中值滤波等都属于时域去噪方法。而采用傅里叶变换去噪则属于频域去噪。这些方法去噪的依据是一致的,即噪声和有用信号在频域的不同分布。我们知道,有用信号主要分布于图像的低频区域,噪声主要分布在图像的高频区域,但图像的细节信息也分布在高频区域。这样在去除高频区域噪声的同时,难免使图像的一些细节也变得模糊,这就是图像去噪的一个两难问题。因此如何构造一种既能降低图像噪声,又能保留图像细节特征的去噪方法成为图像去噪研究的一个重大课题。

数字图像处理课后题答案

1. 图像处理的主要方法分几大类 答:图字图像处理方法分为大两类:空间域处理(空域法)和变换域处理(频域法)。 空域法:直接对获取的数字图像进行处理。 频域法:对先对获取的数字图像进行正交变换,得到变换系数阵列,然后再进行处理,最后再逆变换到空 间域,得到图像的处理结果 2. 图像处理的主要内容是什么 答:图形数字化(图像获取):把连续图像用一组数字表示,便于用计算机分析处理。图像变换:对图像进 行正交变换,以便进行处理。图像增强:对图像的某些特征进行强调或锐化而不增加图像的相关数据。图 像复原:去除图像中的噪声干扰和模糊,恢复图像的客观面目。图像编码:在满足一定的图形质量要求下 对图像进行编码,可以压缩表示图像的数据。图像分析:对图像中感兴趣的目标进行检测和测量,从而获 得所需的客观信息。图像识别:找到图像的特征,以便进一步处理。图像理解:在图像分析的基础上得出 对图像内容含义的理解及解释,从而指导和规划行为。 3. 名词解释:灰度、像素、图像分辨率、图像深度、图像数据量。 答:像素:在卫星图像上,由卫星传感器记录下的最小的分立要素(有空间分量和谱分量两种)。通常,表 示图像的二维数组是连续的,将连续参数 x,y ,和 f 取离散值后,图像被分割成很多小的网格,每个网格 即为像素 图像分辨率:指对原始图像的采样分辨率,即图像水平或垂直方向单位长度上所包含的采样点 数。单位是“像素点/单位长度” 图像深度是指存储每个像素所用的位数,也用于量度图像的色彩分辨率.图像深度确定彩色图像的每个像素 可能有的颜色数,或者确定灰度图像的每个像素可能有的灰度级数.它决定了彩色图像中可出现的最多颜色 数,或灰度图像中的最大灰度等级(图像深度:位图图像中,各像素点的亮度或色彩信息用二进制数位来表 示,这一数据位的位数即为像素深度,也叫图像深度。图像深度越深,能够表现的颜色数量越多,图像的 色彩也越丰富。) 图像数据量:图像数据量是一幅图像的总像素点数目与每个像素点所需字节数的乘积。 4. , 5. 什么是采样与量化 答:扫描:按照一定的先后顺序对图像进行遍历的过程。采样:将空间上连续的图像变成离散点的操作。 采样过程即可看作将图像平面划分成网格的过程。量化:将采样得到的灰度值转换为离散的整数值。灰度 级:一幅图像中不同灰度值的个数。一般取0~255,即256个灰度级 5.说明图像函数 的各个参数的具体含义。 答:其中,x 、y 、z 是空间坐标,λ是波长,t 是时间,I 是像素点的强度。它表示活动的、彩色的、三维 的视频图像。对于静止图像,则与时间t 无关;对于单色图像,则波长λ为常数;对于平面图像,则与坐 标z 无关。 1.请解释马赫带效应,马赫带效应和同时对比度反映了什么共同的问题 答:马赫带效应:基于视觉系统有趋向于过高或过低估计不同亮度区域边界值的现象。同时对比度现象: 此现象表明人眼对某个区域感觉到的亮度不仅仅依赖它的强度,而与环境亮度有关 共同点: 它们都反映了人类视觉感知的主观亮度并不是物体表面照度的简单函数。 2. 色彩具有那几个基本属性描述这些基本属性的含义。 答:色彩是光的物理属性和人眼的视觉属性的综合反映。色彩具有三个基本属性:色调、饱和度和亮度 色调是与混合光谱中主要光波长相联系的(红绿蓝)饱和度表示颜色的深浅程度,与一定色调的纯度有关, 纯光谱色是完全饱和的,随着白光的加入饱和度逐渐减少。(如深红、浅红等)亮度与物体的反射率成正比。 颜色中掺入白色越多就越明亮,掺入黑色越多亮度越小。 { 3.什么是视觉的空间频率特性什么是视觉的时间特性 答:视觉的空间频率特性:空间频率是指视像空间变化的快慢。明亮的图像(清晰明快的画面)意味着有 ),,,,(t z y x f I λ=

小波变换的原理及matlab仿真程序讲解学习

小波变换的原理及m a t l a b仿真程序

基于小波变换的信号降噪研究 2 小波分析基本理论 设Ψ(t)∈L 2( R) ( L 2( R) 表示平方可积的实数空间,即能量有限的信号空间) , 其傅立叶变换为Ψ(t)。当Ψ(t)满足条件[4,7]: 2 () R t dw w C ψψ =<∞? (1) 时,我们称Ψ(t)为一个基本小波或母小波,将母小波函数Ψ(t)经伸缩和平移后,就可以得到一个小波序列: ,()( )a b t b t a ψ -= ,,0a b R a ∈≠ (2) 其中a 为伸缩因子,b 为平移因子。 对于任意的函数f(t)∈L 2( R)的连续小波变换为: ,(,),()( )f a b R t b W a b f f t dt a ψψ-=<>= ? (3) 其逆变换为: 211()(,)()f R R t b f t W a b dadb C a a ψ ψ+-= ?? (4) 小波变换的时频窗是可以由伸缩因子a 和平移因子b 来调节的,平移因子b,可以改变窗口在相平面时间轴上的位置,而伸缩因子b 的大小不仅能影响窗口在频率轴上的位置,还能改变窗口的形状。小波变换对不同的频率在时域上的取样步长是可调节的,在低频时,小波变换的时间分辨率较低,频率分辨率较高:在高频时,小波变换的时间分辨率较高,而频率分辨率较低。使用小波变换处理信号时,首先选取适当的小波函数对信号进行分解,其次对分解出的参

数进行阈值处理,选取合适的阈值进行分析,最后利用处理后的参数进行逆小波变换,对信号进行重构。 3 小波降噪的原理和方法 3.1 小波降噪原理 从信号学的角度看 ,小波去噪是一个信号滤波的问题。尽管在很大程度上小波去噪可以看成是低通滤波 ,但由于在去噪后 ,还能成功地保留信号特征 ,所以在这一点上又优于传统的低通滤波器。由此可见 ,小波去噪实际上是特征提取和低通滤波的综合 ,其流程框图如图所示[6]: 小波分析的重要应用之一就是用于信号消噪 ,一个含噪的一维信号模型可表示为如下形式: (k)()()S f k e k ε=+* k=0.1…….n-1 其中 ,f( k)为有用信号,s(k)为含噪声信号,e(k)为噪声,ε为噪声系数的标准偏差。 假设e(k)为高斯白噪声,通常情况下有用信号表现为低频部分或是一些比较平稳的信号,而噪声信号则表现为高频的信号,下面对 s(k)信号进行如图结构的小波分解,则噪声部分通常包含在Cd1、Cd2、Cd3中,只要对 Cd1,Cd2,Cd3作相应的小波系数处理,然后对信号进行重构即可以达到消噪的目的。

小波变换图像去噪MATLAB实现

基于小波图像去噪的MATLAB 实现 一、 论文背景 数字图像处理(Digital Image Processing ,DIP)是指用计算机辅助技术对图像信号进行处理的过程。数字图像处理最早出现于 20世纪50年代,随着过去几十年来计算机、网络技术和通信的快速发展,为信号处理这个学科领域的发展奠定了基础,使得DIP 技术成为信息技术中最重要的学科分支之一。在现实生活中,DIP 应用十分广泛,医疗、艺术、军事、航天等图像处理影响着人类生活和工作的各个方面。 然而,在图像的采集、获取、编码和传输的过程中,都存在不同程度被各种噪声所“污染”的现象。如果图像被污染得比较严重,噪声会变成可见的颗粒形状,导致图像质量的严重下降。根据研究表明,当一图像信噪比(SNR)低于14.2dB 时,图像分割的误检率就高于0.5%,而参数估计的误差高于0.6%。通过一些卓有成效的噪声处理技术后,尽可能地去除图像噪声,我们在从图像中获取信息时就更容易,有利于进一步的对图像进行如特征提取、信号检测和图像压缩等处理。小波变换处理应用于图像去噪外,在其他图像处理领域都有着十分广泛的应用。本论文以小波变换作为分析工具处理图像噪声,研究数字图像的滤波去噪问题,以提高图像质量。 二、 课题原理 1.小波基本原理 在数学上,小波定义为对给定函数局部化的新领域,小波可由一个定义在有限区域的函数()x ψ来构造,()x ψ称为母小波,(mother wavelet )或者叫做基本小波。一组小波基函数,()}{,x b a ψ,可以通过缩放和平移基本小波 来生成:

())(1 ,a b x a x b a -ψ=ψ (1) 其中,a 为进行缩放的缩放参数,反映特定基函数的宽度,b 为进行平移的平移参数,指定沿x 轴平移的位置。当a=2j 和b=ia 的情况下,一维小波基函数序列定义为: ()() 1222,-ψ=ψ--x x j j j i (2) 其中,i 为平移参数,j 为缩放因子,函数f (x )以小波()x ψ为基的连续小波变换定义为函数f (x )和()x b a ,ψ的积: ( )dx a b x a x f f x W b a b a )(1)(,,,-ψ= ψ=?+∞∞- (3) 与时域函数对应,在频域上则有: ())(,ωωa e a x j b a ψ=ψ- (4) 可以看出,当|a|减小时,时域宽度减小,而频域宽度增大,而且()x b a ,ψ的窗口中心向|ω|增大方向移动。这说明连续小波的局部是变化的,在高频时分辨率高,在低频时分辨率低,这便是它优于经典傅里叶变换的地方。总体说来,小波变换具有更好的时频窗口特性。 2. 图像去噪综述 所谓噪声,就是指妨碍人的视觉或相关传感器对图像信息进行理解或分析的各种因素。通常噪声是不可预测的随机信号。由于噪声影响图像的输入、采集、处理以及输出的各个环节,尤其是图像输入、采集中的噪声必然影响图像处理全过程乃至最终结果,因此抑制噪声已成为图像处理中极其重要的一个步骤。 依据噪声对图像的影响,可将噪声分为加性噪声和乘性噪声两大类。由于乘性噪声可以通过变换当加性噪声来处理,因此我们一般重点研究加性噪声。设

小波变换与PCNN在图像处理中的比较与结合

收稿日期:2005-10-25 基金项目:国家自然科学基金(60572011/f010204),“985”特色项目计划基金(LZ985-231-582627),甘肃省自然科学基金(YS021-A22-00910) 小波变换与PC NN 在图像处理中的比较与结合 田 勇,敦建征,马义德,夏春水,吴记群 (兰州大学信息科学与工程学院,甘肃兰州 730000) 摘 要: 主要介绍了小波变换和PCNN 的基本原理,结合它们在图像处理中的应用,比较说明了小波变换和PCNN 各自的优缺点.通过分析表明,将小波变换和PCNN 技术相结合在图像处理中会产生更好的效果. 关键词: 小波变换;脉冲耦合神经网络(PCNN);图像处理 中图分类号: TN 911.73 文献标识码: A 文章编号:1004-0366(2006)04-0053-03 The Comparison Between Wavelet Transform and PC NN in Image Processing and Their Combination TIAN Yo ng ,DUN Jian-zheng,M A Yi-de,X IA Chun-shui,W U J i-qun (School of Information Science &Engineering ,L anzhou University ,Lanzhou 730000,China ) Abstract : The ba sic principles of w av elet transfo rm and PCNN a re first https://www.wendangku.net/doc/1d12588689.html, bining their applicatio ns in the image processing ,w e analy ze their adva ntag es and draw backs respectiv ely.From the analysis ,it is co ncluded tha t w e will g et better effects if we co mbine the tw o techniques tog ether in the imag e processing . Key words : wav elet transform;pulse co upled neural netw o rk(PCNN);image processing 小波变换可对函数或信号进行多尺度的细化分析,解决了傅立叶变换不能解决的许多问题,被认为是时间——尺度分析和多分辨率分析的一种新技术[1] .目前,它已被广泛应用于分形、信号处理、图像处理、地震勘探、语音识别等应用领域[1~4].脉冲耦合神经网络PCNN (Pulse Co upled Neural Netw ork,PCNN)是一种不同于传统人工神经网络的新型神经网络.PCNN 有着生物学的背景,是根据对动物的大脑视觉皮层同步脉冲发放所获得的实验结果[5~8] ,建立起来的一种神经网络数学模型.PCNN 在图像处理中的应用已经取得巨大成果[9~12].PCNN 在旋转、平移、尺度不变性等方面起着重要的作用.而小波变换的长处在于它能够生成含有输入信息显著特征的系数并且能够对信号进行由粗及精的逐级多分辨率分析.我们发现小波变换和PCNN 有许多相似点,只是在性能和本质特征上有一些差别. 1 小波变换理论简介 [13~16] 小波(wav elet)即小区域的波.“小”是指在时域 具有紧支集或近似紧支集;“波”指小波具有正负交替的波动性.连续小波函数的确切定义为:设J (t )为一平方可积函数,即J (t )∈L 2(R ),若J (k )(其傅里叶变换)满足容许条件(Admissible Co nditio n) C J =∫ R |J (k )|2 |k |d k <∞(1) 则称J (t )为一个基本小波或母小波(M other Wav elet). 小波函数具有多样性,实际应用中应根据支撑长度、对称性、正则性等标准选择合适的小波.常用的小波有:Haar 小波,Daubechies (dbN )小波系,Bio rthog onal(biorN r.Nd)小波系,Coiflet(coifN )小波系,Sy mletsA (sym N )小波系,M orlet 小波,M exican Hat 小波,M eyer 小波,Battle-Lemarie 小 第18卷 第4期2006年12月 甘肃科学学报Journal of Gans u Sciences Vol.18 No.4 Dec.2006

基于小波变换的数字图像处理

基于小波变换的数字图像处理(MATLAB源代码) clear all; close all; clc; M=256;%原图像长度 N=64; %水印长度 [filename1,pathname]=uigetfile('*.*','select the image'); image1=imread(num2str(filename1)); subplot(2,2,1);imshow(image1); title('original image'); % orginal image for watermarking image1=double(image1); imagew=imread('dmg2.tif'); subplot(2,2,2);imshow(imagew);title('original watermark'); %original watermark %嵌入水印 [ca,ch,cv,cd] = dwt2(image1,'db1'); [cas,chs,cvs,cds] = dwt2(ca,'db1'); for i=1:N for j=1:N if imagew(i,j)==0 a=-1; else a=1; end Ca(i,j)=cas(i,j)*(1+a*0.03); end end IM= idwt2(Ca,chs,cvs,cds,'db1') ; markedimage=double(idwt2(IM,ch,cv,cd,'db1')); %显示嵌入后水印图像 subplot(2,2,3);colormap(gray(256));image(markedimage);title('marked image'); imwrite(markedimage,gray(256),'watermarked.bmp','bmp'); %提取水印 image1=imread(num2str(filename1));image1=double(image1); imaged=imread('watermarked.bmp'); [ca,ch,cv,cd] = dwt2(image1,'db1'); [cas,chs,cvs,cds]=dwt2(ca,'db1'); [caa,chh,cvv,cdd]=dwt2(imaged,'db1'); [caas,chhs,cvvs,cdds]=dwt2(caa,'db1'); for p=1:N for q=1:N

相关文档
相关文档 最新文档