文档库 最新最全的文档下载
当前位置:文档库 › 竖曲线计算范例

竖曲线计算范例

竖曲线计算范例
竖曲线计算范例

第8讲

课 题:第三节 竖曲线 第四节 公路平、纵线形组合设计

教学内容:理解竖曲线最小半径的确定;能正确设置竖曲线;掌握竖曲线的要素计算、竖曲线与路基设计标高的计算;能正确进行平、纵线形的组合设计。

重 点:1、竖曲线最小半径与最小长度的确定;2、竖曲线的设置; 3、平、纵线形的组合设计。

难 点:竖曲线与路基设计标高的计算;平、纵线形的组合设计。

第三节 竖曲线设计

纵断面上相邻两条纵坡线相交的转折处,为了行车平顺用一段曲线来缓和,这条连接两纵坡线的曲线叫竖曲线。

竖曲线的形状,通常采用平曲线或二次抛物线两种。在设计和计算上为方便一般采用二次抛物线形式。

纵断面上相邻两条纵坡线相交形成转坡点,其相交角用转坡角表示。当竖曲线转坡点在曲线上方时为凸形竖曲线,反之为凹形竖曲线。

一、竖曲线

如图所示,设相邻两纵坡坡度分别为i 1 和i 2,则相邻两坡度的代数差即转坡角为ω= i 1-i 2 ,其中i 1、i 2为本身之值,当上坡时取正值,下坡时取负值。

当 i 1- i 2为正值时,则为凸形竖曲线。当 i 1 - i 2 为负值时,则为凹形竖曲线。 (一)竖曲线基本方程式

我国采用的是二次抛物线形作为竖曲线的常用形式。其基本方程为:

Py x 22=

若取抛物线参数P 为竖曲线的半径 R ,则有:

Ry x 22

= R

x y 22

= (二)竖曲线要素计算公式

竖曲线计算图示

1、切线上任意点与竖曲线间的竖距h 通过推导可得:

==PQ h )()(2112

li y l x R y y A A q p ---=-R

l 22=

2、竖曲线曲线长: L = R

ω 3、竖曲线切线长: T= T A =T B ≈ L/2 =

2

ω

R 4、竖曲线的外距: E =R

T 22

⑤竖曲线上任意点至相应切线的距离:R

x y 22

= 式中:x —为竖曲任意点至竖曲线起点(终点)的距离, m ;

R —为竖曲线的半径,m 。

二、竖曲线的最小半径 (一)竖曲线最小半径的确定

1.凸形竖曲线极限最小半径确定考虑因素 (1)缓和冲击

汽车行驶在竖曲线上时,产生径向离心力,使汽车在凸形竖曲线上重量减小,所以确定竖曲线半径时,对离心力要加以控制。

(2)经行时间不宜过短

当竖曲线两端直线坡段的坡度差很小时,即使竖曲线半径较大,竖曲线长度也有可能较短,此时汽车在竖曲线段倏忽而过,冲击增大,乘客不适;从视觉上考虑也会感到线形突然

转折。因此,汽车在凸形竖曲线上行驶的时间不能太短,通常控制汽车在凸形竖曲线上行驶时间不得小于3秒钟。

(3)满足视距的要求

汽车行驶在凸形竖曲线上,如果竖曲线半径太小,会阻挡司机的视线。为了行车安全,对凸形竖曲线的最小半径和最小长度应加以限制。

2.凹形竖曲线极限最小半径确定考虑因素

(1)缓和冲击:

在凹形竖曲线上行驶重量增大;半径越小,离心力越大;当重量变化程度达到一定时,就会影响到旅客的舒适性,同时也会影响到汽车的悬挂系统。

(2)前灯照射距离要求

对地形起伏较大地区的路段,在夜间行车时,若半径过小,前灯照射距离过短,影响行车安全和速度;在高速公路及城市道路上有许多跨线桥、门式交通标志及广告宣传牌等,如果它们正好处在凹形竖曲线上方,也会影响驾驶员的视线。

(3)跨线桥下视距要求

为保证汽车穿过跨线桥时有足够的视距,汽车行驶在凹形竖曲线上时,应对竖曲线最小半径加以限制。

(4)经行时间不宜过短

汽车在凹形竖曲线上行驶的时间不能太短,通常控制汽车在凹形竖曲线上行驶时间不得小于3秒钟。

a凸、凹形竖曲线都要受到上述缓和冲击、视距及行驶时间三种因素控制。

b竖曲线极限最小半径是缓和行车冲击和保证行车视距所必须的竖曲线半径的最小值,该值只有在地形受限制迫不得已时采用。

c通常为了使行车有较好的舒适条件,设计时多采用大于极限最小半径1.5~2.0倍,该值为竖曲线一般最小值。我国按照汽车在竖曲线上以设计速度行驶3s行程时间控制竖曲线最小长度。

d各级公路的竖曲线最小长度和半径规定见教材表3-6所列,在竖曲线设计时,不但保证竖曲线半径要求,还必须满足竖曲线最小长度规定。

公路竖曲线最小半径和竖曲线最小长度表

3—6

三、竖曲线的设计和计算 (一)竖曲线设计

竖曲线设计,首先应确定合适的半径。在不过分增加工程量的情况下,宜选择较大的竖曲线半径;只有当地形限制或其它特殊困难时,才选用极限最小半径。

从视觉观点考虑,竖曲线半径通常选用表3-6所列一般最小值的1.5~4.0倍,即如下表所示(见教材表3-7):

1.同向竖曲线:特别是两同向凹形竖曲线间如果直线坡段不长,应合并为单曲线或复曲线形式的竖曲线,避免出现断背曲线。

2.反向竖曲线:反向竖曲线间应设置一段直线坡段,直线坡段的长度一般不小于设计速度的3秒行程。

3.竖曲线设置应满足排水需要。 (二)竖曲线计算

竖曲线计算的目的是确定设计纵坡上指定桩号的路基设计标高,其计算步骤如下: (1)计算竖曲线的基本要素:竖曲线长:L ;切线长:T ;外距:E 。

(2)计算竖曲线起终点的桩号:竖曲线起点的桩号 = 变坡点的桩号-T

竖曲线终点的桩号 = 变坡点的桩号+T

(3)计算竖曲线上任意点切线标高及改正值:

切线标高 = 变坡点的标高±(x T -)?i ;改正值:y=R

x

22

(4)计算竖曲线上任意点设计标高 某桩号在凸形竖曲线的设计标高 = 该桩号在切线上的设计标高- y 某桩号在凹形竖曲线的设计标高 = 该桩号在切线上的设计标高 + y

〔例4-1〕:某山岭区二级公路,变坡点桩号为 K3+030 .00,高程为427 .68 ,前坡为上坡,i 1= +5%,后坡为下坡,i 2 = - 4%,竖曲线半径 R=2000m 。试计算竖曲线诸要素以及桩号为 K3+000.00 和K3+100.00处的设计标高。

(1)计算竖曲线要素

ω= i 1 - i 2 = 5% - (-4%) =0.09 所以该竖曲线为凸形竖曲线 曲线长:L = R ω=2000 ×0.09 = 180 m 切线长:T = L/2 =180 / 2 = 90m

外距 : E =03.22000

29022

2=?=R T m

(2)竖曲线起、终点桩号

竖曲线起点桩号=(K3+030.00)- 90 = K2+940.00 竖曲线终点桩号= (K3+030.00) + 90 = K3 +120.00 (3)K3+000.00、K3+100.00的切线标高和改正值

K3+000.00的切线标高= 427.68 -(K3+030.00-K3+000.00)×5%= 426.18m

K3+000.00的改正值 =m K K 90.02000

2)00.940200.0003(2

=?+-+

K3+100.00的切线标高=427.68 -(K3+100.00- K3+030.00)×4%= 424.88m

K3+100.00的改正值=m K K 10.02000

2)00.100300.1203(2

=?+-+

4)K3+000.00和K3+100.00的设计标高

K3+000.00的设计标高= 426.18 - 0.9 = 425.28m K3+100.00的设计标高= 424.88 - 0.1 =424.78 m

竖曲线高程计算

4.3 某条道路变坡点桩号为K25+460.00,高程为780.72.m,i1=0.8%,i2=5%,竖曲线半径为5000m。(1)判断凸、凹性;(2)计算竖曲线要素;(3)计算竖曲线起点、K25+400.00、K25+460.00、K25+500.00、终点的设计高程。 解:ω=i2-i1=5%-0.8%=4.2%凹曲线 L=R?ω=5000×4.2%=210.00 m T=L/2=105.00 m E=T2/2R=1.10 m 竖曲线起点桩号:K25+460-T=K25+355.00 设计高程:780.72-105×0.8%=779.88 m K25+400: 横距:x=(K25+400)-(K25+355.00)=45m 竖距:h=x2/2R=0.20 m 切线高程:779.88+45×0.8%=780.2 m 设计高程:780.24+0.20=780.44 m K25+460:变坡点处 设计高程=变坡点高程+E=780.72+1.10=781.82 m 竖曲线终点桩号:K25+460+T=K25+565 设计高程:780.72+105×5%=785.97 m K25+500:两种方法 1、从竖曲线起点开始计算 横距:x=(K25+500)-(K25+355.00)=145m 竖距:h=x2/2R=2.10 m 切线高程(从竖曲线起点越过变坡点向前延伸):779.88+145×0.8%=781.04m 设计高程:781.04+2.10=783.14 m 2、从竖曲线终点开始计算 横距:x=(K25+565)-(K25+500)=65m 竖距:h=x2/2R=0.42 m 切线高程 (从竖曲线终点反向计算):785.97-65×5%=782.72m 或从变坡点计算:780.72+(105-65)×5%=782.72m 设计高程:782.72+0.42=783.14 m

竖曲线习题

竖曲线练习题 1、设在桩号K2 +600 处设一竖曲线变坡点,高程m . i1 =1%, i2 = -2%,竖曲线半径3500 m试计算竖曲线个点高程(20m整桩即能被20整除的桩号) 解:ω= i2 -i1 = -2% -1% = -3% 为凸曲线。 曲线长L = Rω= 3500× = 105 m . 切线长T = L/2 = 105÷2 = m 竖曲线起点桩号= (K2 +600 ) -= K2 + 竖曲线终点桩号= ( K2 +600) += K2 + 竖曲线起点高程= -× = m 竖曲线终点高程= -× = m 各20 m整桩 K2+560 X1 = (K2 + 560)-( K2 + = m h1 =X2/2R = ÷7000 = m 切线高程: -[(K2 + 600) -(K2 + 560)] X = m 设计高程-= m K2+580 X1 = (K2 + 580)-( K2 + = m h1 =X2/2R = ÷7000 = m 切线高程: -((K2 + 600) -(K2 + 580)) X = m 设计高程-= m K2+600 X1 = T =(K2 + 6000)-( K2 + = m h1 =X2/2R = ÷7000 = m 切线高程: m 设计高程-= m K2+620 X1 = (K2 + )-( K2 +620) = m h1 =X2/2R = ÷7000 = m 切线高程: -((K2 + 620) -(K2 + 600)) X = 设计高程-= 9m K2+640 X1 = (K2 + )-( K2 +640) = m h1 =X2/2R = ÷7000 = m 切线高程: -[(K2 + 640 -(K2 + 600)] X = m 长度不小于500 m 。试确定竖曲线最小半径值并计算K1 +800 、K1 +840、K1 +860 设计高程。 解:ω= i2 -i1 = % -(-)% = 4% 为凹曲线。

竖曲线计算方法

竖曲线计算书 一、 变坡点桩号为220k28+,变坡点标高为m 135.873,两相邻路段的纵坡为 %303.0%0.39921-=+=i i 和,m R 15000=凸。 1. 计算竖曲线的基本要素 竖曲线长度 )(105.3)00303.000399.0(15000m R L =+?==ω 切线长度 )(7.522 3.1052m L T === 外距 )(09.015000 27 .52*7..5222m R T E =?== 2. 求竖曲线的起点和终点桩号 (1) 竖曲线起点桩号:3.167287.522202822028+=-+=-+K K T K 竖曲线起点高程:135.873-52.7 ?0.00399=135.663 (2) 竖曲线终点桩号:7.272287.522202822028+=++=++K K T K 竖曲线终点高程:135.873-52.7?0.00303=135.713 3. 求各桩号标高和竖曲线高程

二、 变坡点桩号为23029+K ,变坡点标高为m 809.132,两相邻路段的纵坡为 %401.0%303.021+=-=i i 和,m R 9000=凹。 1. 计算竖曲线的基本要素 竖曲线长度 )(36.63)]00303.0(00401.0[9000m R L =--?==ω 切线长度 )(68.312 36.632m L T === 外距 )(06.09000 268 .31*68.3122m R T E =?== 2. 求竖曲线的起点和终点桩号 (1) 竖曲线起点桩号:32.1982968.312302923029+=-+=-+K K T K 竖曲线起点高程:132.809+31.68?0.00303=132.905 (2) 竖曲线终点桩号:68.2612968.312302923029+=++=++K K T K 竖曲线终点高程:132.809+31.68?0.00401=132.936 3. 求各桩号标高和竖曲线高程

城市道路规划例题

1. 道路中线一转折处A ,转折角0 60=α,其旁有一重要建筑物,基础尺寸为m m 85?. 外边缘距A 点最短距离为25m,欲保留该建筑物,已知该路的设计车速为40h km /,道路宽度为24m,路拱横坡为2%,1.0=μ,问该弯道的可能最小半径值? 解:(1)按地形地物控制计算平曲线半径 )(422 24 525min m E =+ += 根据公式 )(7.2721 30sec 42 1 2 sec 0max min m E R =-= -= α 地形 取 )(300m R = (2)按满足设计车速、行车舒适和经济要求计算 根据公式 )(160) 02.01.0(1271600)(1272min m i V R =-?=-=μ 因为地形地物条件许可,且min min R R ≥地形,所以取 )(300m R = 该弯道的可能最小半径为300m 2. 某二级汽车专用公路上有一变坡点,桩号为,20010+k 切线标高为120.28m,两相邻路段 的纵坡为m R i i 5000%,3%,521=-==凸,试设计该变坡处的竖曲线。 解:(1)竖曲线长度 )(400m R L ==ω 切线长度 )(2002 m L T == 外距 )(422 m R T E == (2)求竖曲线的起点的终点桩号 起点桩号 0001020020010+=-+K K 终点桩号 4001020020010+=++K K (3)求各桩号的设计标高 竖曲线起点00010+K 切线标高 )(28.11005.020028.120m =?- 设计标高 )(28.110m 处10010+K 至起点距离 x =10100-10000=100m

竖曲线自动计算表格

竖曲线自动计算表格 篇一:Excel竖曲线计算 利用Excel表格进行全线线路竖曲线的统一计算 高速公路纵断面线型比较复杂,竖曲线数量比较多。由于相当多的竖曲线分段造成了设计高程计算的相对困难,为了方便直接根据里程桩号计算设计高程,遂编制此计算程序。程序原理: 1、根据设计图建立竖曲线参数库; 2、根据输入里程智能判断该里程位于何段竖曲线上; 3、根据得到的竖曲线分段标志调取该分段的曲线参数到计算表格中; 4、把各曲线参数带入公式进行竖曲线高程的计算; 5、对程序进<0 = J=0; M-P=0 = J=1 B: K<=D =B=-M ; KD = B=P 程序特色: 1、可以无限添加竖曲线,竖曲线数据库不限制竖曲线条数; 2、直接输入里程就可以计算设计高程,不需考虑该里程所处的竖曲线分段;

3、对计算公式进行保护,表格中不显示公式,不会导致公式被错误修改或恶意编辑。 程序的具体编制步骤: 1、新建Excel工作薄,对第一第二工作表重新命名为“参数库”和“计算程序”,根据设计图建立本标段线路竖曲线的参数库,需要以下条目: (1)、竖曲线编号; (2)、竖曲线的前后坡度(I1、I2)不需要把坡度转换为小数; (3)、竖曲线半径、切线长(不需要考虑是凸型或凹型);(4)、竖曲线交点里程、交点高程; (5)、竖曲线起点里程、终点里程(终点里程不是必要参数,只作为复核检测用);如图1所示: 图1 2、进行计算准备: (1)、根据输入里程判断该里程所处的曲线编号: 需要使用lookup函数,函数公式为“LOOKUP(A2,参数库!H3:H25,参数库!A3:A25)”。如图2所示: 里程为K15+631的桩号位于第11个编号的竖曲线处,可以参照图1 进行对照 (2)、在工作表“程序计算”中对应“参数库”相应的格式建立表格

竖曲线计算范例

第8讲 课 题:第三节 竖曲线 第四节 公路平、纵线形组合设计 教学内容:理解竖曲线最小半径的确定;能正确设置竖曲线;掌握竖曲线的要素计算、竖曲线与路基设计标高的计算;能正确进行平、纵线形的组合设计。 重 点:1、竖曲线最小半径与最小长度的确定;2、竖曲线的设置; 3、平、纵线形的组合设计。 难 点:竖曲线与路基设计标高的计算;平、纵线形的组合设计。 第三节 竖曲线设计 纵断面上相邻两条纵坡线相交的转折处,为了行车平顺用一段曲线来缓和,这条连接两纵坡线的曲线叫竖曲线。 竖曲线的形状,通常采用平曲线或二次抛物线两种。在设计和计算上为方便一般采用二次抛物线形式。 纵断面上相邻两条纵坡线相交形成转坡点,其相交角用转坡角表示。当竖曲线转坡点在曲线上方时为凸形竖曲线,反之为凹形竖曲线。 一、竖曲线 如图所示,设相邻两纵坡坡度分别为i 1 和i 2,则相邻两坡度的代数差即转坡角为ω= i 1-i 2 ,其中i 1、i 2为本身之值,当上坡时取正值,下坡时取负值。 当 i 1- i 2为正值时,则为凸形竖曲线。当 i 1 - i 2 为负值时,则为凹形竖曲线。 (一)竖曲线基本方程式 我国采用的是二次抛物线形作为竖曲线的常用形式。其基本方程为: Py x 22= 若取抛物线参数P 为竖曲线的半径 R ,则有: Ry x 22 = R x y 22 = (二)竖曲线要素计算公式

竖曲线计算图示 1、切线上任意点与竖曲线间的竖距h 通过推导可得: ==PQ h )()(2112 li y l x R y y A A q p ---=-R l 22= 2、竖曲线曲线长: L = R ω 3、竖曲线切线长: T= T A =T B ≈ L/2 = 2 ω R 4、竖曲线的外距: E =R T 22 ⑤竖曲线上任意点至相应切线的距离:R x y 22 = 式中:x —为竖曲任意点至竖曲线起点(终点)的距离, m ; R —为竖曲线的半径,m 。 二、竖曲线的最小半径 (一)竖曲线最小半径的确定 1.凸形竖曲线极限最小半径确定考虑因素 (1)缓和冲击 汽车行驶在竖曲线上时,产生径向离心力,使汽车在凸形竖曲线上重量减小,所以确定竖曲线半径时,对离心力要加以控制。 (2)经行时间不宜过短 当竖曲线两端直线坡段的坡度差很小时,即使竖曲线半径较大,竖曲线长度也有可能较短,此时汽车在竖曲线段倏忽而过,冲击增大,乘客不适;从视觉上考虑也会感到线形突然

道路工程(计算题)

计算题 1. 某城市道路相邻两段纵坡分别为1i =-3%,2i =2%,变坡点里K1+150,变坡点高程200.53m ,要使变坡点处得设计高程不小于201.80,则该竖曲线半径最小为多少(取到千米整数倍) 解:ω=2i -1i =2%-(-3%)=5% E+200.53≥201.80 ∴221+200.53201.808 R i -≥(i ),R ≥4064 取R=5000m 2. 城市道路相邻变坡分别为1i =3%,2i =-2%,变坡点里程为K1+150,变坡点高程为200.53m ,该竖曲线半径为5000m 。 (1) 计算竖曲线坡差ω并判断其竖曲线类型,计算竖曲线长,切线长,竖曲线外距 (2) 求竖曲线起点、终点桩号 (3) 计算K1+130桩号设计高程 解:(1)ω=2i -1i =-2%-3%=-5% L=R ω=5000×5%=250m T=L/2=250/2=125m E= 2 2T R =1.56m (2)QD=(K1+150)-125=K1+025.00 ZD=(K1+150)+125=K1+275.00 (3)K1+130装号设计标高:用变坡点里程为K1+150,故该桩号在变坡点前x=125-20=105m ,又因为切线长为125m,故该桩号在竖曲线起点和终点范围内, 2 2x y R ==1.10m ,H 切=200.53-20×3%=199.93m ,H 求=H 切-y=199.93-1.10=198.83m 3.某路线平面部分设计资料如下: JD1=K0+819.562 JD2=K1+270.427 ZH1=K0+619.150 ZH2=K1+095.155 HY1=K0+734.150 YH1=K0+849.351 HZ1=K0+964.351 (1) 试计算弯道1的切线长,曲线长,缓和曲线长及曲线中点桩号 (2) 试计算交点1和交点2间距 (3) 若交点1与交点2的曲线是属于反向曲线,且该道路设计速度v=80km/h ,曲线 1和曲线2之间的直线长度,该曲线间的直线长度是否满足直线最小长度的要求,为什么? 解:(1)切线长l 切=200.412m 曲线长l 曲=345.201m 缓和曲线长l 缓=115m QZ1=K0+791.751m

纬地计算实例,你肯定用的着

首先,我是一个软件菜鸟,对于纬地道路也是听说了很久却不会用,待到真要使用的时候按照网上搜来的步骤总是运行不下去,苦苦钻研几天,也询问了一些同学,好在最终可以完成路线的平、纵、横断面布置及相关图表的输出。先将成果分析给有需求的人,赠人玫瑰,手留余香~ 纬地道路详细步骤: 1、首先在目的硬盘新建一个文件夹,按喜好为文件夹命名,比如说abc。 2、打开纬地系统,点击左上角“项目”→新建项目,在弹出的对话框填写新建项目名称abc,点击浏览为项目文件指定存放路径,找到所建文件夹abc的位置,并为新建项目文件命名,这里为abc.prj,点击确定,完成项目新建。 3、打开电子图(CAD .dwg文件类型)。 4、搞清楚各个图层的状态需要进行什么约束{(等高线╱约束线)、(地形点╱地形点的)}。 5、然后关闭图形,不进行修改 6、数模→数模组管理→新建数模→确定→关闭。 7、数模→三维数据读入→DWG 或 DXF 格式→找到刚打开的电子图读入将等高线设为约束线→地形点设为地形点→点击开始读入。 8、①数模→三角构网②数模→网格显示→显示所有网格→确定。 9、数模→数模组管理,弹出的对话框中选中显示的数模文件,点击保存数模,指定路径并命名为abc,文件后缀为(.dtm)→再次选中对话框中的文件,点击保存数模组,生成并保存.gtm文件,路径保持默认,即为文件夹abc,最后一次选中对话框中的文件,点击打开数模→关闭

10、打开地形图,设计→主线平面设计→找到自己要设计的路线起点→点击后→点插入→是→对除起终点之外的其他交点进行“拖动R”来设置平曲线→计算绘图→点存盘→是,得到“.jd”文件,并根据提示将交点文件自动转化为“.pm”文件。 11、项目→设计向导→下一步(多次重复下一步)自动计算超高加宽→完成(根据提示自动建立:路幅宽度变化数据文件(*.wid)、超高过渡数据文件(*.sup)、设计参数控制文件(*.ctr)、桩号序列文件(*.sta)等数据文件。 12、数模-→数模应用→纵断面插值,弹出对话框,勾选插值控制选项,点击开始插值,生成纵断面地面线文件(*.dmx)以及地面高程文件(*.zmx)。 13、数模-→数模应用→横断面插值,弹出对话框,选取绘制三维地面线及输出组数(其他默认),点击开始插值,生成横断面地面线文件(*.hdm)。) 14、CAD 新建→选择最后一个文件夹→打开→打开acadiso. 文件(样板文件)。 15、设计→纵断面设计→计算显示→确定。 16、设计→纵断面设计→选点(此时可以打开cad的栅格显示,在最下边)→在图上选第一个高程点点(左边端点起),再接着点击插入,插入几个变坡点,最后一个右边端点→点击实时修改对纵坡顶修改(将竖曲线调整到合理)→存盘→计算显示→删除纵断面图。 17、设计→路基设计计算→点击“... ”→保存→搜索全线→确定→计算 18、设计→横断面设绘图→选中土方数据文件→点击“... ”→保存→绘图控制→(选中记录三维数据、插入图框、绘出路槽图)→计算绘图→保存,在CAD合适位置完成横断面设计图的输出。 19、点击“表格“按需要输出各种表格。

公路竖曲线计算

公路竖曲线计算

————————————————————————————————作者:————————————————————————————————日期:

课 题:第三节 竖曲线 第四节 公路平、纵线形组合设计 教学内容:理解竖曲线最小半径的确定;能正确设置竖曲线;掌握竖曲线的要素计算、竖曲线与路基设计标高的计算;能正确进行平、纵线形的组合设计。 重 点:1、竖曲线最小半径与最小长度的确定;2、竖曲线的设置; 3、平、纵线形的组合设计。 难 点:竖曲线与路基设计标高的计算;平、纵线形的组合设计。 第三节 竖曲线设计 纵断面上相邻两条纵坡线相交的转折处,为了行车平顺用一段曲线来缓和,这条连接两纵坡线的曲线叫竖曲线。 竖曲线的形状,通常采用平曲线或二次抛物线两种。在设计和计算上为方便一般采用二次抛物线形式。 纵断面上相邻两条纵坡线相交形成转坡点,其相交角用转坡角表示。当竖曲线转坡点在曲线上方时为凸形竖曲线,反之为凹形竖曲线。 一、竖曲线 如图所示,设相邻两纵坡坡度分别为i 1 和i 2,则相邻两坡度的代数差即转坡角为ω= i 1-i 2 ,其中i 1、i 2为本身之值,当上坡时取正值,下坡时取负值。 当 i 1- i 2为正值时,则为凸形竖曲线。当 i 1 - i 2 为负值时,则为凹形竖曲线。 (一)竖曲线基本方程式 我国采用的是二次抛物线形作为竖曲线的常用形式。其基本方程为: Py x 22= 若取抛物线参数P 为竖曲线的半径 R ,则有: Ry x 22 = R x y 22 = (二)竖曲线要素计算公式 竖曲线计算图示 1、切线上任意点与竖曲线间的竖距h 通过推导可得: ==PQ h )()(2112 li y l x R y y A A q p ---=-R l 22= 2、竖曲线曲线长: L = R ω 3、竖曲线切线长: T= T A =T B ≈ L/2 = 2 ω R 4、竖曲线的外距: E =R T 22 ⑤竖曲线上任意点至相应切线的距离:R x y 22 = 式中:x —为竖曲任意点至竖曲线起点(终点)的距离, m; R —为竖曲线的半径,m 。

竖曲线计算(优.选)

竖曲线计算 竖曲线定义:纵断面上两个坡段的转折处,为了便于行车用一段曲线缓和,这条连接两个纵坡线的曲线称为竖曲线。 竖曲线作用: 1)以平缓曲线取代折线可消除汽车在变坡点处冲击, 2)确保道路纵向行车视距; 3)将竖曲线与平曲线恰当地组合,有利于路面排水和改善行车的视线诱导以及舒适感。 变坡点:在道路纵断面上两个相邻纵坡线的交点。 竖曲线分类:竖曲线常采用圆曲线,可以分为凸形和凹形两种。 凹凸竖曲线判断:如上图,当前坡段坡度大于后坡段坡度时为凸型曲线;当前坡段坡度小于后坡段坡度时为凹曲线;坡度:通常把坡面的垂直高度h和水平宽度l的比叫做坡度。(注:判断是凹凸竖曲线时,坡度含正负号,例如,前坡段坡度为-2.3%,后坡段坡度为-1.4%,因为-2.3%<-1.4%,故此竖曲线为凹形竖曲线,我们习惯把上坡段用“+”表示,下坡段用“-”表示) 道路纵断面线形常采用直线、竖曲线两种 线形,二者是纵断面线形的基本要素。竖曲线 技术指标主要有竖曲线半径和竖曲线长度。凸 形的竖曲线的视距条件较差,应选择适当的半 径以保证安全行车的需要。凹形的竖曲线,视 距一般能得到保证,但由于在离心力作用下汽 车要产生增重,因此应选择适当的半径来控制 离心力不要过大,以保证行车的平顺和舒适。 竖曲线基本要素: 竖曲线长:L 切线长:T 外距:E 半径:R 竖曲线起终点桩号计算: 竖曲线起点桩号:变坡点桩号-T

竖曲线终点桩号:变坡点桩号+T 如右图所示,两个相邻的纵坡为i1和i2,竖曲线半径为R,则测设元素为: 曲线长L=R ×α 由于竖曲线的转角α很小,故可以认为: α=i1-i2;所以L=R (i1-i2) 切线长T=Rtan 2 α 因为α很小,tan 2α=2α;所以可以推出: T=R ·2α=2L =21R (i1-i2) 又因为α很小,可以认为:DF=E;AF=T 根据三角形ACO与三角形ACF相似,根据相似三角形“边角边”定理得出: R:T=T:2E; 于是如上图外距E=R T 22 , 同理可导出竖曲线上任意一点P距切线纵距的计算公式:y =R x 22 式中:x —竖曲线上任意一点P 到竖曲线起点或终点的水平距离 Y —值在凹形竖曲线中为正号,在凸形竖曲线中为负号。 故竖曲线中任意一点的高程: H=O H ±x ·i R x 22 式中:O H —竖曲线起点或终点的高程(O H =变坡点的高程±T ·i ,) i —纵坡的坡度 x —竖曲线上任意一点P 到竖曲线起点或终点的水平距离 例题:竖曲线半径R=3000m,相邻坡段坡度为i1=+3.1%,i2=+1.1%,变坡点桩号为K16+770,其高程为396.67m ,若曲线上每10米设置一个桩,计算竖曲线上整10m 桩点的高程。 解:(1)计算竖曲线测设元素 根据如上公式:L =R ×α= R (i1-i2)=3000×(3.1%-1.1%)=60m T=2L =2 60=30m ;E=R T 22=30002302 =0.15 (2)计算竖曲线起、终点桩号和高程

公路竖曲线计算

课 题:第三节 竖曲线 第四节 公路平、纵线形组合设计 教学内容:理解竖曲线最小半径的确定;能正确设置竖曲线;掌握竖曲线的要素计算、竖曲线与路基设计标高的计算;能正确进行平、纵线形的组合设计。 重 点:1、竖曲线最小半径与最小长度的确定;2、竖曲线的设置; 3、平、纵线形的组合设计。 难 点:竖曲线与路基设计标高的计算;平、纵线形的组合设计。 第三节 竖曲线设计 纵断面上相邻两条纵坡线相交的转折处,为了行车平顺用一段曲线来缓和,这条连接两纵坡线的曲线叫竖曲线。 竖曲线的形状,通常采用平曲线或二次抛物线两种。在设计和计算上为方便一般采用二次抛物线形式。 纵断面上相邻两条纵坡线相交形成转坡点,其相交角用转坡角表示。当竖曲线转坡点在曲线上方时为凸形竖曲线,反之为凹形竖曲线。 一、竖曲线 如图所示,设相邻两纵坡坡度分别为i 1 和i 2,则相邻两坡度的代数差即转坡角为ω= i 1-i 2 ,其中i 1、i 2为本身之值,当上坡时取正值,下坡时取负值。 当 i 1- i 2为正值时,则为凸形竖曲线。当 i 1 - i 2 为负值时,则为凹形竖曲线。 (一)竖曲线基本方程式 我国采用的是二次抛物线形作为竖曲线的常用形式。其基本方程为: Py x 22= 若取抛物线参数P 为竖曲线的半径 R ,则有: Ry x 22 = R x y 22 = (二)竖曲线要素计算公式 竖曲线计算图示 1、切线上任意点与竖曲线间的竖距h 通过推导可得: ==PQ h )()(2112 li y l x R y y A A q p ---=-R l 22= 2、竖曲线曲线长: L = R ω 3、竖曲线切线长: T= T A =T B ≈ L/2 = 2 ω R 4、竖曲线的外距: E =R T 22 ⑤竖曲线上任意点至相应切线的距离:R x y 22 = 式中:x —为竖曲任意点至竖曲线起点(终点)的距离, m ; R —为竖曲线的半径,m 。

Excel竖曲线计算

利用Excel表格进行全线线路竖曲线的统一计算 高速公路纵断面线型比较复杂,竖曲线数量比较多。由于相当多的竖曲线分段造成了设计高程计算的相对困难,为了方便直接根据里程桩号计算设计高程,遂编制此计算程序。 程序原理: 1、根据设计图建立竖曲线参数库; 2、根据输入里程智能判断该里程位于何段竖曲线上; 3、根据得到的竖曲线分段标志调取该分段的曲线参数到计算表格中; 4、把各曲线参数带入公式进行竖曲线高程的计算; 5、对程序进行优化和简化,去掉中间环节,进行直接计算; 6、防止计算过程中的误操作,对计算表进行相应的保护。 竖曲线的高程计算原理公式: H=G+B*A+(-1)^J*X2÷(2R) H: 计算里程的设计高程 K: 计算点里程 D: 竖曲线交点里程 G: 竖曲线交点的高程 R: 竖曲线半径 T: 切线长 M: 前坡度I1 P: 后坡度I2 A: A=Abs(K-D) X: A>T => X=0; A X=T-A J: M-P<0 => J=0; M-P>=0 => J=1 B: K<=D =>B=-M ; K>D => B=P 程序特色: 1、可以无限添加竖曲线,竖曲线数据库不限制竖曲线条数; 2、直接输入里程就可以计算设计高程,不需考虑该里程所处的竖曲线分段; 3、对计算公式进行保护,表格中不显示公式,不会导致公式被错误修改或恶意编辑。 程序的具体编制步骤: 1、新建Excel工作薄,对第一第二工作表重新命名为“参数库”和“计算程序”,根据设计图建立本标段线路竖曲线的参数库,需要以下条目: (1)、竖曲线编号; (2)、竖曲线的前后坡度(I1、I2)不需要把坡度转换为小数; (3)、竖曲线半径、切线长(不需要考虑是凸型或凹型); (4)、竖曲线交点里程、交点高程; (5)、竖曲线起点里程、终点里程(终点里程不是必要参数,只作为复核检测用); 如图1所示:

竖曲线高程计算公式推导过程及计算流程

竖曲线高程计算公式推导过程及计算流程

竖曲线高程计算公式推导及计算流程 1. 竖曲线介绍 竖曲线是指在纵断面内,两个坡线之间为了延长行车视距或者减小行车的 冲击力,而设计的一段曲线。一般可以用圆曲线和抛物线来充当竖曲线。由于圆曲线的计算量较大,所以,通常采用抛物线作为竖曲线,以减少计算量。 2. 竖曲线高程计算流程 竖曲线计算的目的是确定设计纵坡上指定桩号的路基设计标高,其计算步骤如下: a. 计算竖曲线的基本要素:竖曲线长L ;切线长T ;外失距E b. 计算竖曲线起终点的桩号:竖曲线起点的桩号=变坡点的桩号-T c. 计算竖曲线上任意点切线标高及改正值: 切线标高=变坡点的标高±(x T -)?i 改正值:2 21x R y = d. 计算竖曲线上任意点设计标高 某桩号在凹形竖曲线的设计标高 = 该桩号在切线上的设计标高+ y 某桩号在凸形竖曲线的设计标高 = 该桩号在切线上的设计标高-y 3. 竖曲线高程计算公式推导 已知条件: 第一条直线的坡度为1i ,下坡为负值, 第一条直线的坡度为2i ,上坡为正值, 变坡点的里程为K ,高程为H , 竖曲线的切线长为B A T T T ==, 待求点的里程为X K 曲线半径R

竖曲线特点: 抛物线的对称轴始终保持竖直,即:X 轴沿水平方向,Y 轴沿竖直方向,从而保证了X 代表平距,Y 代表高程。 抛物线与相邻两条坡度线相切,抛物线变坡点两侧一般不对称,但两切线长相等。 竖曲线高程改正数计算公式推导 设抛物线方程为: ()021≠++=a c bx ax y 设直线方程为: ()02≠+=k b kx y 由图可知,抛物线与直线都经过坐标系222Y O X 的原点2O ,所以可得: 00==b c ; 分别对21y y 、求导可得: b ax y +=2'1 k y ='2 当0=x 时,由图可得: b i y ==1'1 k i y ==1'2 O O 2 Y 1 X 1 Y 2 X 2 P Q BPD L T A T B x i 1 i 2 ω

竖曲线计算实例

第二节 竖曲线设计 纵断面上相邻两条纵坡线相交的转折处,为了行车平顺用一段曲线来缓和,这条连接两纵坡线的曲线叫竖曲线。 竖曲线的形状,通常采用平曲线或二次抛物线两种。在设计和计算上为方便一般采用二次抛物线形式。 纵断面上相邻两条纵坡线相交形成转坡点,其相交角用转坡角表示。当竖曲线转坡点在曲线上方时为凸形竖曲线,反之为凹形竖曲线。 一、竖曲线 如图所示,设相邻两纵坡坡度分别为i 1 和i 2,则相邻两坡度的代数差即转坡角为ω= i 1-i 2 ,其中i 1、i 2为本身之值,当上坡时取正值,下坡时取负值。 当 i 1- i 2为正值时,则为凸形竖曲线。当 i 1 - i 2 为负值时,则为凹形竖曲线。 (一)竖曲线基本方程式 我国采用的是二次抛物线形作为竖曲线的常用形式。其基本方程为: Py x 22= 若取抛物线参数P 为竖曲线的半径 R ,则有: Ry x 22 = R x y 22= (二)竖曲线要素计算公式 竖曲线计算图示 1、切线上任意点与竖曲线间的竖距h 通过推导可得: ==PQ h )()(2112 li y l x R y y A A q p ---=-R l 22= 2、竖曲线曲线长: L = R ω

3、竖曲线切线长: T= T A =T B ≈ L/2 = 2 ω R 4、竖曲线的外距: E =R T 22 ⑤竖曲线上任意点至相应切线的距离:R x y 22 = 式中:x —为竖曲任意点至竖曲线起点(终点)的距离, m ; R —为竖曲线的半径,m 。 二、竖曲线的最小半径 (一)竖曲线最小半径的确定 1.凸形竖曲线极限最小半径确定考虑因素 (1)缓和冲击 汽车行驶在竖曲线上时,产生径向离心力,使汽车在凸形竖曲线上重量减小,所以确定竖曲线半径时,对离心力要加以控制。 (2)经行时间不宜过短 当竖曲线两端直线坡段的坡度差很小时,即使竖曲线半径较大,竖曲线长度也有可能较短,此时汽车在竖曲线段倏忽而过,冲击增大,乘客不适;从视觉上考虑也会感到线形突然转折。因此,汽车在凸形竖曲线上行驶的时间不能太短,通常控制汽车在凸形竖曲线上行驶时间不得小于3秒钟。 (3)满足视距的要求 汽车行驶在凸形竖曲线上,如果竖曲线半径太小,会阻挡司机的视线。为了行车安全,对凸形竖曲线的最小半径和最小长度应加以限制。 2.凹形竖曲线极限最小半径确定考虑因素 (1)缓和冲击: 在凹形竖曲线上行驶重量增大;半径越小,离心力越大;当重量变化程度达到一定时,就会影响到旅客的舒适性,同时也会影响到汽车的悬挂系统。 (2)前灯照射距离要求 对地形起伏较大地区的路段,在夜间行车时,若半径过小,前灯照射距离过短,影响行车安 全和速度;在高速公路及城市道路上有许多跨线桥、门式交通标志及广告宣传牌等,如果它们正好处在凹形竖曲线上方,也会影响驾驶员的视线。 (3)跨线桥下视距要求 为保证汽车穿过跨线桥时有足够的视距,汽车行驶在凹形竖曲线上时,应对竖曲线最小半径加以限制。

竖曲线高程计算公式推导过程及计算流程

竖曲线高程计算公式推导及计算流程 1. 竖曲线介绍 竖曲线是指在纵断面内,两个坡线之间为了延长行车视距或者减小行车的 冲击力,而设计的一段曲线。一般可以用圆曲线和抛物线来充当竖曲线。由于圆曲线的计算量较大,所以,通常采用抛物线作为竖曲线,以减少计算量。 2. 竖曲线高程计算流程 竖曲线计算的目的是确定设计纵坡上指定桩号的路基设计标高,其计算步骤如下: a. 计算竖曲线的基本要素:竖曲线长L ;切线长T ;外失距E b. 计算竖曲线起终点的桩号:竖曲线起点的桩号=变坡点的桩号-T c. 计算竖曲线上任意点切线标高及改正值: 切线标高=变坡点的标高±(x T -)?i 改正值:2 21x R y = d. 计算竖曲线上任意点设计标高 某桩号在凹形竖曲线的设计标高 = 该桩号在切线上的设计标高+ y 某桩号在凸形竖曲线的设计标高 = 该桩号在切线上的设计标高-y 3. 竖曲线高程计算公式推导 已知条件: 第一条直线的坡度为1i ,下坡为负值, 第一条直线的坡度为2i ,上坡为正值, 变坡点的里程为K ,高程为H , 竖曲线的切线长为B A T T T ==, 待求点的里程为X K 曲线半径R

竖曲线特点: 抛物线的对称轴始终保持竖直,即:X 轴沿水平方向,Y 轴沿竖直方向,从而保证了X 代表平距,Y 代表高程。 抛物线与相邻两条坡度线相切,抛物线变坡点两侧一般不对称,但两切线长相等。 竖曲线高程改正数计算公式推导 设抛物线方程为: ()021≠++=a c bx ax y 设直线方程为: ()02≠+=k b kx y 由图可知,抛物线与直线都经过坐标系222Y O X 的原点2O ,所以可得: 00==b c ; 分别对21y y 、求导可得: b ax y +=2'1 k y ='2 当0=x 时,由图可得: b i y ==1'1 k i y ==1'2 当L x =时,由图可得:

竖曲线任意点标高计算方法

竖曲线任意点标高计算方法 一、曲线要素的计算 1、转坡角ω=(i1-i2)(上坡取正、下坡取负) 2、竖曲线曲线长 L = ω× R ( R为曲线半径) 3、切线长 T = L ÷ 2 4、外矢距 E = T2 ÷ 2R 二、任意点起始桩号、切线标高、改正值的计算 1、竖曲线起点桩号 = 变坡点里程-切线长 竖曲线终点桩号 = 变坡点里程+切线长 2、切线标高 = 变坡点标高(不考虑竖曲线标高)-(变坡点里程-待求点里程)× i1(所求点位于变坡点后乘i2) 23、改正值 = (待求点里程-起点里程)÷(2R)(所求点位于变坡点前) = (待求点里程-终点里程)2÷(2R)(所求点位于变坡点后) 4、待求点设计标高 = (切线点标高-改正值) 三、例: 某高速公路变坡点里程为DK555+550,高程为279.866m,前为上坡i1=17.6288‰,后为上坡i2=4.5‰,设计曲线半径R=30000m,试算竖曲线曲线要素及桩号为DK555+450及DK555+680处的设计标高? 1、计算曲线要素

转坡角ω=(i1-i2)=( 17.6288-4.5)‰=0.0131288 竖曲线曲线长 L = ω× R = 0.0131288×30000 =393.864(m) 切线长 T = L ÷ 2 = 393.864÷2 =196.932(m) 外矢距 E = T2 ÷ 2R = 196.9322 ÷(2×30000)=0.646(m) 2、竖曲线起、始桩号计算 起点桩号:(DK555+550)- 196.932 = DK555+353.068 终点桩号:(DK555+550)+ 196.932 = DK555+746.932 3、DK555+450、DK555+680的切线标高和改正值计算 DK555+450切线标高 = 279.866-(DK555+550-DK555+450)× 17.6288‰=278.103(m) 2DK555+450改正值 =(DK555+450-DK555+353.068)÷(30000×2)=0.157(m) DK555+680切线标高 = 279.866-(DK555+680-DK555+550)×4.5‰=280.451(m) 2DK555+680改正值 =(DK555+680-DK555+746.932)÷(30000×2)=0.075(m) 4、DK555+450、DK555+680设计标高计算 DK555+450设计标高 = 278.103 - 0.157=277.946(m) DK555+680设计标高 = 280.451 -0.075 =280.376(m)

竖曲线、缓和曲线计算公式

第三节竖曲线 纵断面上两个坡段的转折处,为方便行车,用一段曲线来缓和,称为竖曲线。可采用抛物线或圆曲线。 一、竖曲线要素的计算公式 相邻坡段的坡度为i1和i2,代数差为ω=i2 -i1 ω为正时,是凹曲线;ω为负,是凸曲线。 1.二次抛物线基本方程:

或 ω:坡度差(%); L:竖曲线长度; R:竖曲线半径 2.竖曲线诸要素计算公式

竖曲线长度或竖曲线半径R: (前提:ω很小) L=Rω 竖曲线切线长:T=L/2=Rω/2 竖曲线上任一点竖距h: 竖曲线外距: 二、竖曲线最小半径(三个因素) 1.缓和冲击对离心加速度加以控制。 ν(m/s) 根据经验,a=0.5~0.7m/s2比较合适。我国取a=0.278,则Rmin=V2/3.6 或 Lmin=V2ω/3.6 2.行驶时间不过短 3s的行程 Lmin=V.t/3.6=V/1.2 3.满足视距的要求

分别对凸凹曲线计算。 (一)凸形竖曲线最小半径和最小长度 按视距满足要求计算 1.当L

2) L≥ST L

坐标、高程计算公式

高速公路的一些线路坐标、高程计算公式(缓和曲线、竖曲线、圆曲线、匝道) 一、缓和曲线上的点坐标计算 已知:①缓和曲线上任一点离ZH点的长度:l ②圆曲线的半径:R ③缓和曲线的长度:l0 ④转向角系数:K(1或-1) ⑤过ZH点的切线方位角:α ⑥点ZH的坐标:xZ,yZ 计算过程: 说明:当曲线为左转向时,K=1,为右转向时,K=-1, 公式中n的取值如下: 当计算第二缓和曲线上的点坐标时,则: l为到点HZ的长度

α为过点HZ的切线方位角再加上180° K值与计算第一缓和曲线时相反 xZ,yZ为点HZ的坐标 切线角计算公式: 二、圆曲线上的点坐标计算 已知:①圆曲线上任一点离ZH点的长度:l ②圆曲线的半径:R ③缓和曲线的长度:l0 ④转向角系数:K(1或-1) ⑤过ZH点的切线方位角:α ⑥点ZH的坐标:xZ,yZ 计算过程:

说明:当曲线为左转向时,K=1,为右转向时,K=-1,公式中n的取值如下: 当只知道HZ点的坐标时,则: l为到点HZ的长度 α为过点HZ的切线方位角再加上180° K值与知道ZH点坐标时相反 xZ,yZ为点HZ的坐标 三、曲线要素计算公式

公式中各符号说明: l——任意点到起点的曲线长度(或缓曲上任意点到缓曲起点的长度)l1——第一缓和曲线长度 l2——第二缓和曲线长度 l0——对应的缓和曲线长度 R——圆曲线半径 R1——曲线起点处的半径

R2——曲线终点处的半径 P1——曲线起点处的曲率 P2——曲线终点处的曲率 α——曲线转角值 四、竖曲线上高程计算 已知:①第一坡度:i1(上坡为“+”,下坡为“-”) ②第二坡度:i2(上坡为“+”,下坡为“-”) ③变坡点桩号:SZ ④变坡点高程:HZ ⑤竖曲线的切线长度:T ⑥待求点桩号:S 计算过程:

公路勘测设计各章节习题及答案

第 3 章 一、填空题 1 .在公路路线纵断面图上,有两条主要的线:一条是 _____ ;另一条是 _____ 。 2 .纵断面设计就是根据汽车的 _____ 、 _____ 、 _____ 和 _____ ,以及当地气候、地形、地物、地质、水文、土质条件、排水要求、工程量等来研究这条空间线形的纵坡布置。 3 .纵断面的设计线是由 _____ 和 _____ 组成的。 4 .纵坡度表征匀坡路段纵坡度的大小,它是以路线 _____ 和 _____ 之比的百分数来量度的,即 i= 和 h/l (%)。 5 .理想的纵坡应当 _____ 平缓,各种车辆都能最大限度地以接近 _____ 速度行驶。 6 .最大纵坡的确定主要根据汽车的 _____ 、 _____ 、 _____ ,并要保证 _____ 。 7 .最小坡长通常以计算行车速度行驶 _____ 的行程来作规定。 8 .设置爬坡车道的目的主要是为了提高高速公路和一级公路的 _____ ,以免影响 _____ 的车辆行驶。 9 .纵断面线型的布置包括 _____ 的控制, _____ 和 _____ 的决定。 10 .纵断面图上设计标高指的是 _____ 的设计标高。 11 .转坡点是相邻纵坡设计线的 _____ ,两转坡点之间的水平距离称为 _____ 。 12 .调整纵坡线的方法有抬高、降低、 _____ 、 _____ 纵坡线和 _____ 、 _____ 纵坡度等。 13 .凸形竖曲线的最小长度和半径主要根据 _____ 和 _____ 来选取其中较大者。 14 .凹形竖曲线的最小长度和半径主要根据 _____ 和 _____ 来选取其中较大者。 15 .纵断面设计图反映路线所经中心 _____ 和 _____ 之间的关系。 16 .竖曲线范围内的设计标高必须改正,按公式 h= l 2 /2R 只计算, l 代表距 _____ 的距离,竖曲线上任一点 l 值在转坡点前从竖曲线 _____ 标起,在转坡点后从竖曲线 _____ 标起。 17 .凸形竖曲线的标高改正值为 _____ ,凹形竖曲线为 _____ , _____ ;设计标高:未设竖曲线的标高 _____ 。

竖曲线计算公式加强版

缓和曲线、竖曲线、圆曲线、匝道(计算公式)一、缓和曲线上的点坐标计算已知:①缓和曲线上任一点离ZH点的长度:l ②圆曲线的半径:R ③缓和曲线的长度:l0 ④转向角系数:K(1或-1) ⑤过ZH点的切线方位角:α ⑥点ZH的坐标:xZ,yZ 计算过程: 说明:当曲线为左转向时,K=1,为右转向时,K=-1, 公式中n的取值如下: 当计算第二缓和曲线上的点坐标时,则: l为到点HZ的长度 α为过点HZ的切线方位角再加上180° K值与计算第一缓和曲线时相反 xZ,yZ为点HZ的坐标 切线角计算公式: 二、圆曲线上的点坐标计算

已知:①圆曲线上任一点离ZH点的长度:l ②圆曲线的半径:R ③缓和曲线的长度:l0 ④转向角系数:K(1或-1) ⑤过ZH点的切线方位角:α ⑥点ZH的坐标:xZ,yZ 计算过程: 说明:当曲线为左转向时,K=1,为右转向时,K=-1,公式中n的取值如下: 当只知道HZ点的坐标时,则: l为到点HZ的长度 α为过点HZ的切线方位角再加上180° K值与知道ZH点坐标时相反 xZ,yZ为点HZ的坐标

三、曲线要素计算公式 公式中各符号说明: l——任意点到起点的曲线长度(或缓曲上任意点到缓曲起点的长度)l1——第一缓和曲线长度 l2——第二缓和曲线长度 l0——对应的缓和曲线长度 R——圆曲线半径 R1——曲线起点处的半径 R2——曲线终点处的半径 P1——曲线起点处的曲率

P2——曲线终点处的曲率 α——曲线转角值 四、竖曲线上高程计算 已知:①第一坡度:i1(上坡为“+”,下坡为“-”) ②第二坡度:i2(上坡为“+”,下坡为“-”) ③变坡点桩号:SZ ④变坡点高程:HZ ⑤竖曲线的切线长度:T ⑥待求点桩号:S 计算过程: S、SZ为里程数据,往往有些人计算时误入,用等实际计算的距离计算!! 五、超高缓和过渡段的横坡计算

相关文档