文档库 最新最全的文档下载
当前位置:文档库 › Effect of single-walled carbon nanotubes on thermal and electricof silicon nitride using sps

Effect of single-walled carbon nanotubes on thermal and electricof silicon nitride using sps

Available online at https://www.wendangku.net/doc/2515397804.html, Journal of the European Ceramic Society31(2011)

391–400

Effect of single-walled carbon nanotubes on thermal and electrical properties of silicon nitride processed using spark plasma sintering Erica L.Corral a,?,1,Hsin Wang b,Javier Garay c,Zuhair Munir d,Enrique V.Barrera e

a The University of Arizona,Materials Science&Engineering Department,1235James E.Rogers Way,Tucson,AZ85721,USA

b Oak Ridge National Laboratory,Materials Science and Technology Division,P.O.Box2800,Oak Ridge,TN37831,USA

c University of California at Riverside,Riverside,CA,USA

d University of California at Davis,Chemical Engineering and Materials Scienc

e Department,1Shields Ave.,Davis,CA95616-5294,USA

e Rice University,Department o

f Mechanical Engineerin

g and Materials Science-MS321,P.O.Box1892,Houston,TX77251,USA

Received23July2010;received in revised form5October2010;accepted11October2010

Abstract

Si3N4nanocomposites reinforced with1-,2-,and6-vol%single-walled carbon nanotubes(SWNTs)were processed using spark plasma sintering (SPS)in order to control the thermal and electrical properties of the ceramic.Only2-vol%SWNTs additions were used to decrease the room temperature thermal conductivity by62%over the monolith and6-vol%SWNTs was used to transform the insulating ceramic into a metallic electrical conductor(92S m?1).We found that densi?cation of the nanocomposites was inhibited with increasing SWNT concentration however, the phase transformation from?-to?-Si3N4was not.After SPS,we found evidence of SWNT survival in addition to sintering induced defects detected by monitoring SWNT peak intensity ratios using Raman spectroscopy.Our results show that SWNTs can be used to effectively increase electrical conductivity and lower thermal conductivity of Si3N4due to electrical transport enhancement and thermal scattering of phonons by SWNTs using SPS.

?2010Elsevier Ltd.All rights reserved.

Keywords:Single-wall carbon nanotubes;High-temperature materials;Thermal properties;Electrical properties;Composites

1.Introduction

SWNTs are considered to be ideal?ber reinforcements for the creation of multifunctional nanocomposites with enhanced fracture toughness and strength,and enhanced electrical and thermal conductivities in polymeric,ceramic, and metallic based nanocomposites.1–4SWNTs possess exceptional mechanical(E>1TPa and TS>7GPa)5ther-mal(k~1750–5800W m?1K?1),5–7and electrical properties (σ~106S m?1)5,8and have considerably high aspect ratios (1,000up to10,000)that are critical for their use in the design of nanocomposites.SWNTs have high electrical conductivity along the tube axis and depending on the type of the arrange-ment of bond structure chirality within the nanotube,a SWNT ?Corresponding author.

E-mail address:elcorral@https://www.wendangku.net/doc/2515397804.html,(E.L.Corral).

1Based in part on dissertation submitted by E.L.Corral for a Ph.D.in Materials Science at Rice University,Houston,TX,2005.can be either metallically conducting or semiconducting.Exper-imental results show that a SWNT rope has a longitudinal electrical conductivity of106S m?1at300K.5,9Theory pre-dicts high thermal conductivity values(5800W m?1K?1)for the room temperature longitudinal thermal conductivity of an individual SWNT.7However,experimental measurements of aligned bundles of SWNTs showed a measured thermal conduc-tivity of only250W m?1K?1at room temperature.8Although, SWNTs have high thermal conductivity,it is very dif?cult to realize this effect in a composite.This is mainly because SWNTs are not continuous throughout the bulk composite.Therefore, they create more interfacial defects,which may lower the lat-tice thermal conductivity.In addition,depending on the SWNT synthesis method,lot-to-lot variability,chirality of the structure, defects,and single vs.bundles of SWNTs there are a number of additional variables that make it dif?cult to fully under-stand the effect of SWNTs on thermal and electrical properties when used as additives in nanocomposites.Clearly,ongoing efforts focused on enhancing the production quality,length scale, chiral structure and defects,and quantity of SWNTs9–12will

0955-2219/$–see front matter?2010Elsevier Ltd.All rights reserved. doi:10.1016/j.jeurceramsoc.2010.10.020

392 E.L.Corral et al./Journal of the European Ceramic Society31(2011)391–400

help promote an understanding of their effects in nanocom-posite systems.Once,continuous and uniform SWNTs are processed into a composite will the potential for enhanced ther-mal conductivity properties be realized and may lead to the use of SWNTs for high-performance thermal management sys-tems.

The vast majority of SWNT nanocomposites have been focused on polymeric systems due to favorable processing meth-ods that allow chemical handling of each material at room or low temperature conditions.However,for both metal and ceramic nanocomposite development the challenge lies with incorpo-rating SWNTs at high temperature either though conventional melting casting or sintering methods.This becomes a signi?-cant hurdle to overcome when SWNTs are not stable at high temperatures>600?C(in air)13and oxidize.Therefore,expos-ing SWNTS to extreme temperatures(>1800?C)and pressures (50MPa)using conventional ceramic sintering methods puts them at higher risk for oxidation and structural damage.The challenge for researchers to process SWNTs in high-temperature ceramic matrices such as,carbides,nitrides,and borides,is primarily during sintering where temperature requirements usu-ally exceed1800?C,using conventional sintering methods.14–16 In addition,creating processing methods that enable homoge-neous dispersions of SWNTs and ceramic particles is critical for obtaining uniform densi?cation and physical properties of the ceramic nanocomposites.The most promising method for dispersing SWNTs in a ceramic is to use colloidal process-ing in order to manipulate interparticle pair potential in order to create homogeneous aqueous or solvent based dispersions of powders and SWNTs.Our previously published work14and work published by others17–19has shown that colloidal process-ing methods are highly effective in obtaining well dispersed homogeneous SWNTs in oxide and non-oxide ceramics.The basis for this approach is to treat the ceramic particle and the SWNT as a colloid particle and employ conventional colloidal processing methods that involved manipulating the inter-particle and inter-tube pair potentials.20

Despite the processing challenge presented by creating ceramic nanocomposites and the variability between individ-ual and bundles of SWNTs there have been promising results for oxide and non-oxide based SWNT ceramic nanocompos-ites.Recent work by others and us shows the potential to enhance toughness of brittle ceramics and to tailor their electri-cal and thermal conductivity properties.4,16,21–24For example, the SWNT–Al2O3nanocomposites processed using SPS and conventional ceramic powder mixing/blending methods have shown to increase fracture toughness by30%,22while also cre-ating a metallic electrically conductive ceramic with anisotropic thermal properties.23In addition,Balani et al.25,26enhanced the fracture toughness of alumina by42%over the monolith. Recently,the work by Zhang et al.19has shown for the?rst time that pressure-less sintering can be used to densify and con-solidate MWNT-Al2O3nanocomposites at1500?C for2h and obtain~99%theoretical density without detectable damage to the MWNT structure.Their results also show modest enhance-ments to fracture toughness due to pull out of the MWNTs and signi?cant increases in?exural strength over the monolith.Recently,Inam et al.27reported that using5-wt%MWNTs in Al2O3they were able to create excellent electrical conductors with conductivity values greater than500S m?1.

However,there has been limited success in creating ceramic nanocomposites with signi?cant enhancements to thermal con-ductivity,which is an important physical property that helps us understand how heat transfers through a solid.Bakshi et al.28 were able to enhance the thermal conductivity of Al2O3coat-ings using4-wt%MWNTs.Also,Sivakumar et al.29reported a70%increase in thermal conductivity of SiO2using10-vol% MWNTs.However,the improvements they measured fall short of the enhancements predicted by rule of mixtures calcula-tions.On the other hand,Zhan et al.21observed a decrease in thermal conductivity with increasing vol%SWNT.There are a number of reasons for the lower thermal conductiv-ity values that take into consideration that SWNT bundles have lower thermal conductivity values than individual SWNTs and that the number of interfaces between the Al2O3and the SWNTs creates high thermal resistivity thus limiting thermal conduction in the nanocomposites.It is also important to note that residual porosity within the ceramic nanocomposite also serves to scatter phonons and limit thermal conduction within a ceramic.

Our previous work shows we can enhance the fracture toughness of Si3N4by30%upon optimization of SWNT con-centration(2-vol%SWNT)and SPS temperature(1600?C).14 In addition,others have published results for MWNT rein-forced Si3N4showing that for high concentrations of MWNTs (>4wt%)they react to form SiC thus decreasing the density of the nanocomposite.However,using a lower concentration of MWNTs they were able to maintain the high strength and toughness of the monolith.16Thus,the main challenge with processing non-oxide based MWNT or SWNT reinforced ceramic nanocomposites in addition to dispersion of the nan-otubes is achieving high density after high-temperature and high pressure assisted sintering.Furthermore,Balazsi et.al.30pro-cessed MWNT based Si3N4nanocomposites using SPS and hot-pressing and report that the SPS method is superior to hot-isostatic pressure assisted sintering method in obtaining high density and MWNT damage-free structures in Si3N4.They also created MWNT–Si3N4nanocomposites with electrical conduc-tivity values greater than100S m?1.Recently,SPS has been shown to be a very powerful tool to develop functionally graded and MWNT based nanocomposites.Belmonte et al.31have shown that they can process high density nanocomposites and show that SPS can be used to limit MWNT degradation at tem-perature and that SPS is a powerful tool to develop silicon nitride with controlled microstructures.32

The goal of this paper is to investigate the effect of SWNTs on the electrical and thermal properties of Si3N4after densi?cation using SPS.The purpose of the manuscript is to discuss the effect of SPS temperature on SWNT stability at high-temperatures (>1700?C)and demonstrate that our approach that uses col-loidal processing and SPS is successful in retaining pristine and dispersed SWNTs in the sintered microstructure that allow for the enhancement and decrease of the electrical and thermal conductivity properties,respectively.

E.L.Corral et al./Journal of the European Ceramic Society31(2011)391–400393

2.Materials and experimental methods

All of the nanocomposite and monolith specimens were made from powders that were dispersed using colloidal processing methods(as described in detail in our previous published work14 and as an approach used by others17)followed by SPS.The starting Si3N4powders are?-phase content>90mass%,with an average particle size of0.96?m and<10mass%sintering additives(Y2O3,MgO and Al2O3).Commercially available SWNTs(Carbon Nanotechnologies Inc.,Houston,TX,USA), in powder form and puri?ed to less than2-wt%residual metal catalyst were used as received.The nanocomposites made in this study each contain a mixture of well-dispersed single and bundled SWNTs.A cationic surfactant,cetyltrimethylammo-nium bromide(C16TAB)(Sigma–Aldrich Corp.,St.Louis,MO, USA)was used as a dispersant throughout this study.We used SPS(Dr.Sinter SPS-1050,Sumitomo Coal Mining Co.Ltd., Tokyo,Japan)to densify our nanocomposites using a maxi-mum pulse current of5000A and maximum pulse voltage of 10V.The pulse cycle was12ms on and2ms off with a heat-ing rate of200?C min?1.The temperature was monitored on the surface of the die wall using optical pyrometry.It has been experimentally estimated that the die surface temperature and the powder compact temperature can be up to150?C off the set-point temperature.An external pressure of25kN was applied as the powders were heated inside a graphite die lined with graphite foil to prevent surface reactions between the powder and the inner die wall.A vacuum of10?2Torr was used and sintering occurred under vacuum.

Bulk densities(ρ)were measured using the Archimedes method.Phase identi?cation of the sintered materials was per-formed by X-ray diffractometry(XRD)and the relative content of?/?phase in the dense bodies was determined from the relative intensities of selected diffraction peaks.33Structural characterization of SWNT after high temperature sintering in a ceramic was performed using Raman spectroscopy.The sintered microstructures were examined by scanning electron microscopy(SEM,JEOL6500F,JEOL USA Inc.,Peabody, MA).

The thermal diffusivity(α)of the monolith and composites were measured from room temperature to1000?C,by laser-?ash method,using a thermal-constant analyzer(FL5000,Anter Corporation,Pittsburgh,PA).To evaluate the thermal diffusivity, 20mm diameter and3mm thick disc specimens were used.The thermal conductivityκat room temperature was calculated using the equation:

κ=αC Pρ.

The room temperature speci?c heat(C P)of the specimens was calculated using the rule of mixtures for SWNT–Si3N4com-posites.We did not measure room temperature or at temperature speci?c heat values.The room temperature speci?c heat val-ues calculated were0.67,0.6502,0.6504,and0.6512J g?1K?1 for0,1,2and6-vol%SWNT nanocomposites were used to calculate room temperature thermal conductivity values.Room temperature electrical conductivity(σ)measurements of the SWNT–Si3N4nanocomposites were made using a four-point probe technique,in observation with ASTM B193-02,using a combination of volt-meters(Hewlett-Packard4339A,High Resistance Meter(Agilent345A81/2Digital Multimeter). 3.Results

3.1.Spark plasma sintering of silicon nitride and

SWNT–Si3N4nanocomposites

High-density monolithic ceramics and nanocomposites were obtained using SPS as seen in Table1.The monolithic ceramic density values averaged around95%theoretical density(T.D.) when sintered at1600,1700or1800?C(0-or3-min hold time) where the highest density monolith(97%T.D.)was sintered at 1800?C,3-min hold.Shrinkage displacement pro?les obtained

Table1

Sintering density and electrical and thermal properties for Si3N4and SWNT–Si3N4nanocomposites,measured and calculated at room temperature.

Material SPS temp.

(?C)SPS time

(min)

Theoretical

density(%)

Electrical

conductivity(S m?1)

Thermal diffusivity

(cm2s?1)

Thermal conductivity

(W m?1K?1)

Si3N41600096.4 3.1E?110.07515.77 1600393.1 3.6E?110.12024.15

1700095.08.0E?110.08016.47

1700394.2 3.0E?110.13627.70

1800397.2 1.5E?110.11223.49 1.0vol%1300382.5 6.2E?60.037 5.22

1600087.3 1.8E?90.06211.38

1600395.4 4.7E?50.06512.93

1690095.0 1.8E?80.10120.06 2.0vol%1300382.5 4.4E?60.0508.642

1600091.0 4.7E?50.06612.42

1600390.50.10720.16

1680096.6 1.8E?80.06513.07 6.0vol%1300376.522.010.043 6.78

1600391.091.910.07714.40

1800084.30.690.05910.14

394 E.L.Corral et al./Journal of the European Ceramic Society 31(2011)

391–400

Fig.1.Shrinkage displacement curves for Si 3N 4and SWNT–Si 3N 4nanocomposites during SPS show rapid densi?cation.SPS shrinkage curves for material sintered at temperature for 3min (a)for the monolith material at temperatures of 1600,1700,and 1800?C,and (b)for the nanocomposites at 1600?C for 0,2,and 6-vol%SWNT concentrations.

during SPS for the monoliths at 1600,1700,and 1800?C (3-min hold)are shown in Fig.1(a).As expected,the degree of shrink-age displacement increases with increasing temperature up to 1800?C.The 1800?C shrinkage displacement curve undergoes a high temperature conversion from ?to ?Si 3N 4which is indi-cated by the steep shrinkage curve that is absent during lower temperature sintering runs.

The nanocomposites (1-,2-,and 6-vol%SWNT)density val-ues averaged to be approximately 91%theoretical density (T.D.)when sintered at 1600,1700or 1800?C (0-or 3-min hold time).The highest density nanocomposite values (~98%T.D.)were obtained using 2-vol%SWNT and sintered at 1680?C (0-min hold).However,increasing SWNT content from 1-or 2-vol%SWNT to 6-vol%SWNT decreases the average nanocompos-ite density values from,93%to 88%T.D.,respectively.As expected as the sintering temperature increases the overall den-sity for the nanocomposites increases except for the 6-vol%SWNT nanocomposite system which decreases in density with increasing temperature.

Shrinkage displacement pro?les measured during SPS for the monolith,2-vol%SWNT,and 6-vol%SWNT nanocomposites (1600?C for 3-min hold time)are shown in Fig.1(b).Clearly,the shrinkage displacement pro?les show that the time for den-si?cation or shrinkage to take place increases as the SWNT concentration increases in the nanocomposite.However,the 2-

vol%SWNT nanocomposite undergoes a steady increase in displacement over time at temperature and the 6-vol%nanocom-posite does not increase shrinkage displacement upon reaching the ?nal sintering temperature.This is likely due to the fact that the 6-vol%SWNT nanocomposites powders were not well dispersed due to the dif?culty in using colloidal processing to disperse a high concentration of nanosize ?bers thus,limit-ing densi?cation.As expected,a high concentration of SWNTs inhibits densi?cation of the ceramic because they act as physical barriers to sintering.

3.2.Microstructure and crystal structure of sintered nanocomposites

Scanning electron micrographs for the 2-vol%SWNT–Si 3N 4nanocomposites sintered at 1300and 1600?C are shown in Fig.2(a)and (b),respectively.The micrographs show that SWNTs are homogeneously dispersed throughout the sintered matrices.The 1300?C sintered nanocomposite has a matrix composed of ?-Si 3N 4which has an equiaxed grain structure (Fig.2(a)).The 1600?C nanocomposites has a mixture of ?-and ?-Si 3N 4,which is mixture of equiaxed and rod-like grain structures (Fig.2(b)).

XRD was used to con?rm and fully characterize the ?–?phase transformation for the monolith (Fig.3(a))and a

6-vol%

Fig.2.Representative scanning electron micrographs for 2-vol%SWNT–Si 3N 4nanocomposites densi?ed using SPS.The nanocomposites were sintered for (a)3min at 1300?C and (b)0-min at 1600?C.

E.L.Corral et al./Journal of the European Ceramic Society31(2011)391–400

395

Fig.3.XRD spectra show phase transformation from a-to-b Si3N4for both Si3N4and SWNT–Si3N4nanocomposites using SPS.XRD spectra for(a)Si3N4and(b) SWNT–Si3N4nanocomposites sintered at1300,1600and1800?C from zero to3min at temperature.

SWNT–Si3N4nanocomposite(Fig.3(b)).The onset of the?-to?-Si3N4phase transformation takes place at the same tem-perature(1600?C)for both the nanocomposite and monolithic materials and a mixed?-and?-Si3N4grain structure is produced upon holding the temperature at1600?C for3min.Therefore; SWNTs do no impede Si3N4phase transformation at tempera-ture and phase transformation results are very reproducible and accurately controlled using SPS.XRD analysis also showed that after SPS at1300?C(0-min hold)and1800?C(3-min hold)both systems were100%?-Si3N4and100%?-Si3N4,respectively. The XRD spectra for the6-vol%SWNT nanocomposites does not show any SiC peaks suggesting that the sintering procedure did not result in any considerable reactions between SWNTs and Si3N4at temperature(up to1800?C).

3.3.Raman spectroscopy of SWNT–Si3N4nanocomposites after SPS

Our previously work shows that evidence of SWNTs was found in the ceramic after SPS as high as1800?C.14In this study we take a closer look at the affect of SPS temperature and time on the structure of SWNTs within a sintered Si3N4 nanocomposite as shown in Fig.4.The SWNT Raman spectrum has four characteristic bands three of which are described here: a radial breathing mode(100–300cm?1)34,35a tangential mode (G-band,1500–1600cm?1),34,35and a D mode,34,35as seen in Fig.4(a).The defect-induced D mode originates from double-resonant Raman scattering35that is likely a result of impurities or defects in the crystalline structure.However,the peak shape is indicative of metallic or semiconducting nature of the tubes and the SWNTs used in this study indicate they are primarily conductive SWNTs with some structural defects due to pro-cessing,as indicated by the small defect peak at1300cm?1.Raman spectroscopy was used to characterize the as-received SWNT material(Fig.4(a)),the affect of SWNT concentration for a given sintering temperature(1600?C)and time(3-min) (Fig.4(b)),and the affect of SPS temperature for a given SWNT concentration(Fig.4(c)).As expected,Fig.4(b)shows that the intensity of the SWNT peaks increase with increasing SWNT concentration from1-to2-to6-vol%SWNT nanocomposites. Fig.4(c)shows that as sintering temperature increases,from 1300?C to1600?C(2-vol%SWNT–Si3N4nanocomposites)the SWNT peak intensities decrease.It also shows that the SWNT peak intensity decreases as you increase time at temperature from a0-min to a3-min hold,at1600?C.Therefore,the effect of SPS time and temperature indicate that in order to retain the as-processed concentration of SWNTs without sintering induced structurally damaged that the lowest temperature and shortest times at temperature will ensure the least amount of sintering damage onto the SWNTs.

In order to quantify the amount of structural damage intro-duced to the SWNTs after high-temperature sintering,we calculated the D:G ratios taken from measured Raman inten-sities for both as-received SWNTs and for SWNTs in the?nal sintered microstructures(Fig.4).The calculated ratio indicates the degree of structural damage in the SWNTs,either as a result of their production synthesis or,in this case,from SWNT synthesis and subsequent high-pressure and high-temperature sintering within a nanocomposite.The type of structural dam-age can either be atomic defects in the structure or imperfections in crystal order.11The higher the D:G ratio the greater degree of structural damage to the SWNTs.As-received SWNTs have a D:G ratio of0.108,which indicates that the synthesized and puri?ed material contained some random disorder in the SWNT structure from the production process.36Therefore,the baseline D:G ratio used to compare against the SWNTs in the sintered

396 E.L.Corral et al./Journal of the European Ceramic Society31(2011)

391–400

Fig.4.Raman spectroscopy shows SWNTs survive high temperature sintering using SPS for(a)as-received SWNTs before processing into nanocomposites (b)1,2,and6-vol%SWNTs sintered at1600?C for0min and for(c)2-vol% SWNT nanocomposites sintered from1300to1600?C. nanocomposites will be0.108.The D:G ratios calculated for the nanocomposites sintered at1600?C(3-min hold)with increas-ing SWNT concentration(from1-,2-and6-vol%SWNT)were calculated to be,0.296,0.615,and0.230,respectively.The nanocomposite with the highest calculated degree of structural damage was the2-vol%SWNT nanocomposite(D:G=0.615). However,the D:G ratios for the other two composites,1-and6-vol%SWNT nanocomposites,sintered at the same temperature and time have considerably lower D:G ratios between0.296and

0.230,respectively.These calculated D:G ratios do not follow

a trend that results in an increased amount of structural dam-age with increasing SWNT concentration.Rather,these results suggest that there is variability between the nanocomposite pow-ders processed prior to sintering that may in?uence localized heating mechanisms during SPS if the powder mixtures con-taining SWNTs are not well dispersed.Now,if we look at the effect of SPS temperature and SPS time at temperature on the D:G ratio for the2-vol%SWNT nanocomposite we see a clear trend that quanti?es structural damage with sintering conditions (Fig.4(c)).For example,the D:G ratios increase in intensity from,0.208to0.23,with increasing temperature from,1300to 1600?C(0-min hold).In addition,the D:G ratios increase in intensity from,0.231to0.615,with increasing time at tempera-ture(1600?C)from0-to3-min hold,respectively.These results suggest that SPS can be used to obtain high-density nanocom-posites with little structural damage.However,there seems to be variability between SPS runs that are most likely due to powder mixture dispersion levels and variability of SWNTs that result in signi?cant structural damage to the SWNTs after sintering. Monitoring D:G ratios may be useful for verifying the quality of the SPS processing run and may be helpful in assessing overall nanocomposite processing integrity.

3.4.Electrical properties of SWNT–Si3N4nanocomposites

Table1shows the measured and calculated room tem-perature electrical conductivity values for the monolith and 1-,2-and6-vol%SWNT nanocomposites.It is well known that sintered silicon nitride is an excellent electrical insulator (s~10?12S m?1).Our monolithic materials have an average electrical conductivity value of4.6×1011S m?1,which is con-sidered to be an insulator.This value increases towards electrical conductivity with increasing SWNT concentration from,1-,2-and6-vol%SWNT,with average electrical conductivity val-ues of,1.33×10?5,1.71×10?5,and57.0S m?1,respectively. Therefore,using up to6-vol%SWNTs results in the transfor-mation of the ceramic insulator into a metallic conductor.The highest room temperature electrical conductivity value mea-sured was92S m?1for the6.0-vol%SWNT nanocomposite. This value lies near the low end for room temperature metallic conductive materials37where copper is at the high end with an electrical conductivity value of59.6×106S m?1.A plot of the average room temperature electrical conductivity as a function of SWNT concentration(Fig.5(a))shows that we were able to change the insulator into a semi-electrically conducting mate-rial using2-vol%SWNTs.This plot also suggests that there exists an electrical conduction percolation threshold between 2-and6-vol%SWNTs that will impart electrical conductive properties within the ceramic.Fig.5(b)shows the range of room temperature electrical conductivity values for each SWNT nanocomposite as a function of SPS sintering temperature.This plot shows that the6-vol%SWNT nanocomposite has the high-

E.L.Corral et al./Journal of the European Ceramic Society31(2011)391–400

397

Fig.5.Room temperature electrical conductivity values measured for Si3N4and SWNT–Si3N4nanocomposites as function of(a)SPS temperature and(b)SWNT vol%.

est overall measured electrical conductivity values than the1-or2-vol%SWNT nanocomposites as a function of sintering temperature from1300,1600and1800?C.As the temperature increases from1600to1800?C the electrical conductivity drops signi?cantly.The same observation is made for the1-and2-vol%SWNT nanocomposites.These values also suggest that the electrical conductivity values are more sensitive to SWNT concentration than SPS sintering temperature.

3.5.Thermal properties of SWNT–Si3N4nanocomposites

Table1shows the measured room temperature thermal dif-fusivity values and calculated thermal conductivity values for the monolith and1-,2-and6-vol%SWNT nanocomposites. The average thermal conductivity value for the monoliths is 21.4W m?1K?1.This average value decreases independent of SWNT concentration(1-,2-and6-vol%SWNT)to average ther-mal conductivity values of,12.4,13.5,and10.4W m?1K?1, respectively.Therefore,on average the room temperature ther-mal conductivity value of the monolith decreases by,57.9%, 63.1%and48.6%,for the1-,2-,and6-vol%SWNT nanocom-posites,respectively.However,the average room temperature and subsequent high temperature thermal conductivity values reported here were measured on less than100%dense nanocom-posites.Therefore,we must contribute a fraction of the lower thermal conductivity properties to be from porosity but when compared to the monolithic materials that also contain residual porosity the effect of pores on the thermal properties is neg-ligible.Our measured room temperature thermal conductivity properties suggest that by adding less than1-vol%SWNTs to a ceramic you can signi?cantly lower the thermal conductivity of the ceramic,nearly50%reduction.

We also investigated high temperature thermal diffusivity from room temperature up to1000?C for the highest den-sity ceramics and nanocomposites,as seen in Fig.6(b).As expected,the thermal diffusivity values for the monolith and the nanocomposites follow the same general trend that shows a steady decrease in thermal diffusivity with increasing tempera-ture.However,the nanocomposites have a considerably lower starting thermal diffusivity value than the monolith and main-tain the same level of lower thermal diffusivity values than the monolith with increasing temperature up to800?C.At tempera-tures equal or greater than800?C the thermal diffusivity values of the monolith and the nanocomposites converge to very similar values.These results suggest that the SWNTs can tailor thermal diffusivity and thermal conductivity properties in ceramics

up Fig.6.(a)Room temperature thermal conductivity values decrease with small additions of SWNTs to the ceramic.(b)Thermal diffusivity values measured from room temperature to1000?C for high-density monolithic ceramic,and for the1,2,and6-vol%SWNT nanocomposites.

398 E.L.Corral et al./Journal of the European Ceramic Society31(2011)391–400

to high temperatures.However,in order to fully understand the effect of SWNTs on thermal and electrical properties in ceramics requires further investigation at high temperatures.

4.Discussion

The ability to manage electrical and thermal conductivity properties in ceramics has widespread use for application at high temperature as smart skins,stress sensors,and thermal manage-ment materials.However,in order to realize these materials in application we need to further investigate the effects of process-ing SWNTs in ceramics and how they affect the electrical and thermal properties of the ceramic.For this study we focused on investigating both electrical and thermal properties of a high temperature ceramic that contain a homogeneous random dis-persion of SWNTs.Our results shows that SWNTs can be used to effectively tailor both electrical and thermal properties of silicon nitride.However,as the nanocomposite room temperature elec-trical conductivity increases with increasing SWNT addition, the opposite trend is observed for thermal conductivity proper-ties.Some factors effecting the modest enhancement of electrical conductivity can be related to nanocomposite powder process-ing and sintering methods.Our previously published work14 and work published by other groups17shows that colloidal pro-cessing methods are very effective in creating homogenously dispersed SWNT–ceramic nanoparticle suspensions and that the SWNT dispersion level is retained within the?nal sintered microstructure.However,the effect of high temperature pres-sure assisted sintering on the stability of the SWNT structure is not well understood because researchers have used different sintering methods and maximum temperatures.The SWNTs in this study were dispersed using colloidal processing methods and the dispersion state was retained after sintering which is also veri?ed by our measured electrical resistivity results that show enhancements to electrical conductivity of the ceramic likely due to a homogeneous dispersion of SWNTs.In addi-tion,the argument can be made that the better the dispersion level the less likely that there are large agglomerated bundles of SWNTs throughout the ceramic or that the SWNT bundles are restricted to locations around the grain boundaries.The lat-ter case would result in higher electrical conductivity results. Our electrical conductivity results are lower than other reported nanocomposites processed using conventional powder mixing techniques because the SWNT dispersion is not restricted to only the grain boundaries but are also found within the grains of silicon nitride.When SWNTs are present in a material above the percolation limit,they also provide a continuous electrical conduction path that are not dependent on SWNT alignment or orientation within the matrix therefore,this homogeneous and random distribution of SWNTs in the ceramic leads a systematic increase in electrical conductivity.23

The interesting phenomenon observed in these novel nanocomposites is that we see opposite effects on electrical and thermal properties with small additions of SWNTs.The high thermal conductivity values for SWNTS in the axial direc-tion should increase the overall thermal conductivity when used in a composite but instead the thermal conductivity is reduced by at least50%over the monolithic ceramic,while the electrical conductivity seems to increase with increasing SWNT concentration.Although conventional wisdom would indicate that for almost all materials,electrical and ther-mal conductivities move in the same direction it is believed that the introduction of SWNTs into ceramics increases the number of phonon scattering points,thereby lowering the ther-mal conductivity of the ceramic.15Thermal conductivity can be expressed as the sum of lattice thermal conductivity(by phonons)and electronic thermal conductivity(by electrons or holes):K(total)=K(lattice)+K(electronic).We observed adding SWNTs into Si3N4increased electronic component of the ther-mal conductivity and in the meantime lower the lattice thermal conductivity.The net effect of much lower thermal conduc-tivity indicates that lattice thermal phonon scattering at the interfaces reduced conductivity signi?cantly.We also have take into consideration that the SWNTs are randomly and homo-geneously dispersed throughout the matrix material therefore, the transverse thermal conductivity properties which are signif-icantly lower than their axial thermal conductivity properties also contribute to the lower than expected thermal conductivity properties.In order to take advantage of the high thermal con-ductivity properties in a ceramic the SNWTs have to be aligned through the matrix and not randomly homogeneously dispersed as in our present study.This increase in electrical conductiv-ity should also increase thermal conductivity but instead they decrease due to differences in anisotropic thermal properties between individual tubes and bundles of tubes.6In addition, numerous highly resistive thermal junctions between the tubes can contribute to additional extrinsic phonon scattering mecha-nisms such as tube–tube interactions that are barriers to thermal transport in ropes of nanotubes.38It can also be assumed that the inter-tube coupling in ropes is strong,based on mechanical properties and enhanced electrical properties reported for SWNT reinforced-alumina composites processed using SPS.14,22,23In addition,microstructural observations indicate that SWNT ropes are intertwined with Si3N4grains,suggesting that a signi?cant degree of curvature or bending occur in the bundles that may decrease thermal?ux properties in the SWNTs.21The poten-tial to enhance the thermal conductivity of the ceramic may be possible if methods can be developed to align SWNT bundles within the bulk nanocomposite.It should be noted that there has only been one published report41that shows an increase in thermal conductivity for carbon nanotube reinforced Si3N4 ceramic nanocomposites using MWNTs as reinforcements. The nanocomposite system was processed using a different method that was not colloidal processing and results in different microstructures than those observed in this study.However,for the MWNT–Si3N4system there was a measured4%increase in thermal conductivity at200?C.

The composites processed using SPS experienced a hot-pressing stress during consolidation that produce a mechanical stress on the SWNTs in the axial(hot-pressing)direction.Others have reported that this leads to lower thermal conductivity val-ues in the transverse direction for SWNT–alumina composites at concentrations greater than10-vol%SWNTs.21Our thermal dif-fusivity measurements conducted in the transverse direction,at

E.L.Corral et al./Journal of the European Ceramic Society31(2011)391–400399

room temperature,for the SWNT–Si3N4nanocomposites were the same in the axial direction.Therefore,a homogenous and random dispersion of SWNTs within the ceramic is believed to be the reason for the consistent thermal measurements for the transverse and axial directions.Thermal diffusivity values mea-sured for the6-vol%SWNT composite show a small increase in the transverse direction over the axial direction,indicating that there is a critical concentration of SWNTs that can be effectively dispersed homogeneously and otherwise leads to anisotropic behavior in ceramic materials.In addition,SWNTs possess a very high surface area and when they are well dispersed with Si3N4particles the increase in the available interfacial area between SWNTs and between SWNTs and Si3N4par-ticles is substantial.The interface effect,also known as the Kakpitza effect39has a tendency to reduce the thermal?ux and reduce thermal conductivity for composites.The thermal diffusivity values decrease with the incorporation of SWNTs over the temperature pro?le tested and all specimens show a decrease in thermal diffusivity with increasing test temperature. These results are consistent with results observed for pure carbon materials.40The observed reduction in thermal diffusivity with increasing temperature can be attributed to the dominant effect of Umklapp scattering(phonon–phonon scattering)reducing the phonon mean free path length.15,40

Considering the high-temperature and high-pressure sinter-ing conditions that are necessary to densify the monolith it is a very surprising that SWNTs are retained in the?nal sintered microstructure.However,we found direct evidence using Raman spectroscopy measurements that some or most of SWNTs sur-vived the SPS sintering process.However,comparing the D to G peak ratios we also found that there are some structural defects in the as-received SWNTs and an increase in the ratio was mea-sured after SPS suggesting that there is high a risk to using high temperature that results in an increase in SWNT defects.There is no clear trend that shows increasing D:G ratio with increas-ing sintering temperature or time.However,this method for characterizing the SWNTs after SPS shows to be useful for help-ing understand the relationship between nanocomposite powder processing and sintering conditions.

5.Summary

Multifunctional SWNT–Si3N4nanocomposites were pro-cessed using1-,2-,and6-vol%SWNTs and densi?ed using SPS. Our previous work has shown these composite have mechani-cally properties equal to fully sintered Si3N4and under certain processing conditions have the potential to increase the frac-ture toughness of an already structurally tough ceramic material by30%over the monolith.The insulating ceramic was trans-formed into a metallic electrical conductor with a value of 92S m?1at room temperature.However,our nanocomposites can also be used as thermal management material with up to a 60%reduction in thermal conductivity using small additions of SWNTs.The Raman spectroscopy study showed that SWNTs are retained in the?nal sintered microstructure.However,we also detected structural damage to the SWNTs as a function of sintering temperature up to1800?C.We also report that SPS can be used to successfully process SWNTs in a high-temperature ceramic without a noticeable reaction between SWNTs and the ceramic.SPS also allows for processing high-density nanocom-posite with precise control over the phase transformation of the matrix material.Further studies are needed in order to understand the effects of high-temperature and pressure on the structures of SWNTs in a high-temperature ceramic but the initial?ndings reported here suggest that there is signi?cant potential for these novel nanocomposites in high temperature applications.

Acknowledgements

This work has been?nancially supported by The Robert Welch Foundation of Texas grant number C1494,the NSF-AGEP at Rice University grant number HRD-9817555,Carbon Nanotechnologies Inc.,NASA-URETI grant number NC-01-0203and NASA Ames Research Center grant number NNA04CK63A.Research at The High Temperature Materials Laboratory(HTML)was sponsored by the Assistant Secretary for Energy Ef?ciency and Renewable Energy,Of?ce of Vehicle Technologies,as part of the HTML User Program,Oak Ridge National Laboratory,managed by UT-Battelle,LLC,for the U.S.Department of Energy under contract number DE-AC05-00OR22725.

References

1.Thostenson E,Li C,Chou T.Nanocomposites in https://www.wendangku.net/doc/2515397804.html,posites

Science and Technology2005;65(3–4):491–516.

2.Thostenson E,Ren Z,Chou T.Advances in the science and technology of

carbon nanotubes and their composites:a https://www.wendangku.net/doc/2515397804.html,posites Science and Technology2001;61(13):1899–912.

3.Ajayan P,Tour J.Nanotube composites.Nature2007;447(7148):1066–8.

4.Curtin W A,Sheldon https://www.wendangku.net/doc/2515397804.html,T-reinforced ceramics and metals.Materials

Today2004;7(11):44–9.

5.Meyyappan M.Carbon nanotubes:science and applications.Boca Raton:

CRC Press LLC;2005.

6.Hone J,Piskoti C,Zettl A.Thermal conductivity of single-walled carbon

nanotubes.Physics Review B1999;59(4):R2514–6.

7.Berber S,Kwon Y-K,Tomanek D.Unusually high thermal conductivity of

carbon nanotubes.Physical Review Letters2000;84(20):4613–6.

8.Hone J,Llaguno MC,Nemes NM,Johnson AT,Fischer JE,Walters DA,

et al.Electrical and thermal properties of magnetically aligned single wall carbon nanotube?lms.Applied Physics Letters2000;77(5):666–8.

9.Thess A,Lee R,Nikolaev P,Dai H,Petit P,Robert J,et al.Crystalline ropes

of metallic carbon nanotubes.Science1996;273:483–7.

10.Barrera EV,Shofner ML,Corral EL.Applications:carbon nanotube com-

posites.In:Meyyappan M,editor.Carbon nanotubes in science and application.New York:CRC Press;2004.

11.Charlier J-C.Defects on carbon nanotubes.Accounts of Chemical Research

2002;35(12):1063–9.

12.Kataura H,Kumazawa Y,Maniwa Y,Ohtsuka Y,Sen R,Suzuki S,

et al.Diameter control of single-walled carbon nanotubes.Carbon 2000;38(11–12):1691–7.

13.Meyyappan M.Carbon nanotubes:science and application.New York:

CRC Press;2005.pp.289.

14.Corral EL,Cesarano J,Shyam A,Lara-Curzio E,Bell N,Stuecker J,et al.

Engineered nanostructures for multifuntional single-walled carbon nan-otube reinforced silicon nitride nanocomposites.Journal of the American Ceramic Society2008;91(10):3129–37.

400 E.L.Corral et al./Journal of the European Ceramic Society31(2011)391–400

15.Yowell LL.Thermal management in ceramics:synthesis and character-

ization of zirconia–carbon nanotube composite.Houston:Department of Mechanical Engineering and Materials Science,Rice University;2001.pp.

1–161.

16.Tatami J,Katashima T,Komeya K,Meguro T,Wakihara T.Electrically

conductive Cnt-dispersed silicon nitride ceramics.Journal of the American Ceramic Society2005;88(10):2889–93.

17.Poyato R,Vasiliev AL,Padture NP,Tanaka H,Nishimura T.Aqueous col-

loidal processing of single-wall carbon nanotubes and their composites with ceramics.Nanotechnology2006;17:1770–7.

18.Sun J,Gao L,Wei Li.Colloidal processing of carbon nanotube/alumina

composites.Chemistry of Materials2002;14:5169–72.

19.Zhang S,Fahrenholtz W,Hilmas G.Pressureless sintering of carbon

nanotube-Al2O3composites.Journal of the European2010;30:1373–80.

20.Israelachvili JN.Intermolecular and surface forces.London:Academic;

1992.

21.Zhan G-D,Kuntz JD,Wang H,Wang C-M,Mukherjee AK.Anisotropic

thermal properties of single-wall-carbon-nanotube-reinforced nanoceram-ics.Philosophical Magazine Letters2004;84(7):419–23.

22.Zhan G-D,Kuntz JD,Wan J,Mukherjee AK.Single-wall carbon nanotubes

as attractive toughening agents in alumina based nanocomposites.Nature Materials2003;2:38–42.

23.Zhan G-D,Kuntz JD,Garay JE,Mukherjee AK.Electrical properties of

nanoceramics reinforced with ropes of single-walled carbon nanotubes.

Applied Physics Letters2003;83(6):1228–30.

24.Du H,Li Y,Zhou F,Su D,Hou F.One-step fabrication of ceramic and

carbon nanotube(Cnt)composites by in situ growth of Cnts.Journal of the American Ceramic Society2010;9999(9999).

25.Balani K,Zhang T,Karakoti A,Li W,Seal S,Agarwal A.In situ carbon nan-

otube reinforcements in a plasma-sprayed aluminum oxide nanocomposite coating.Acta Materialia2008;56:571–9.

26.Balani K,Bakshi S,Chen Y,Laha T,Agarwal A.Role of powder

treatment and carbon nanotube dispersion in the fracture toughening of plasma sprayed aluminum oxide-carbon nanotube composite.Journal of Nanoscience and Nanotechnology2007;7:1–10.

27.Inam F,Yan H,Reece MJ,Peijs T.Dimethylformamide:an effective dis-

persant for making ceramic-carbon nanotube composites.Nanotechnology 2008;19:1–5.28.Bakshi S,Balani K,Agarwal A.Thermal conductivity of plasma-sprayed

aluminum oxide—multiwalled carbon nanotube composites.Journal of the American Ceramic Society2008;91(3):942–7.

29.Sivakumar R,Guo S,Nishimura T,Kagawa Y.Thermal conductivity in

multi-wall carbon nanotube/silica-based nanocomposites.Scripta Materi-alia2007;56:265–8.

30.Balazsi C,Shen Z,Konya Z,Kasztovszky Z,Weber F,Vertesy Z,et al.Pro-

cessing of carbon nanotube reinforced silicon nitride composites by spark plasma https://www.wendangku.net/doc/2515397804.html,posites Science and Technology2005;65:727–33.

31.Belmonte M,González-Julián J,Miranzo P,Osendi MI.Spark plasma

sintering:a powerful tool to develop new silicon nitride-based materials.

Journal of the European Ceramic Society2010;30(14):2937–46.

32.Belmonte M,Gonzalez-Julian J,Miranzo P,Osendi MI.Continuous

in situ functionally graded silicon nitride materials.Acta Materialia 2009;57:2607–12.

33.Gazzara CP,Messier DR.Determination of phase content of Si3N4

by X-ray diffraction analysis.American Ceramic Society Bulletin 1977;56(9):777–80.

34.Rao AM,Richter E,Bandow S,Chase B,Eklund PC,Williams KW,et al.

Diameter-selective raman scattering from vibrational modes in carbon nan-otubes.Science1998;275:187–91.

35.Dresselhaus MS,Dresselhaus G,Jorio A,Filho Souza AG,Pimenta MA,

Saito R.Single nanotube Raman spectroscopy.Accounts of Chemical Research2002;35(12):1070–8.

36.Ydaska M,Kataura H,Ichihashi T,Qin L-C,Kar S,Ijima S.Diameter

enlargement of Hipco single-wall carbon nanotubes by heat treatment.

Nano Letters2001;9:487–9.

37.Hummel RE.Electronic properties of materials.New York:Springer-

Verlag;2000.

38.Zhan G-D,Kuntz JD,Wang H,Min Wang C,Mukherjee AK.Anisotropic

thermal properties of single-wall-carbon-nanotube reinforced nanoceram-ics.Philosophical Magazine Letters2004;84(7):419–23.

39.Torquato S,Rintoul MD.Effect of the interface on the properties of com-

posite media.Physics Review Letters1995;75(22):4067–70.

40.Issi JP.Graphite and precursors.New York:Gordon and Breech;2001.

41.Koszor O,Lindemann A,Davin F,Balazsi C.Observation of thermophysi-

cal and tribological properties of CNT reinforced Si3N4.Key Engineering Materials2009;409:354–7.

2017山香教育理论基础整理笔记(教育学、心理学、教育心理学)

第一章教育与教育学 1、《学记》——“教也者,长善而救其失者也” 2、战国时荀子——“以善人者谓之教” 3、许慎在《说文解字》中认为“教,上所施,下所效也。”“育,养子使作善也。” 4、最早将“教育”一词连用的则是战国时期的孟子:“得天下英才而教育之,三乐也。” 5、分析教育哲学的代表人物谢弗勒在《教育的语言》中把教育定义区分为三种: 规定性定义:作者自己认为的定义,即不管他人使用的“教育”的定义是什么,我认为“教育”就是这个意思。运用规定性定义虽然有一定的自由度,但是,要求作业在后面的论述和讨论中,前后一贯地遵守自己的规定。 描述性定义:回答“教育实际上是什么”的定义。尽量不夹杂自己的主观看法,适当地对术语或者使用该术语的方法进行界定。 纲领性定义:回答“教育应该是什么”的定义。即通过明确或隐含的方式告诉人们教育应该是什么或者教育应该怎么样。 6、教育是一种活动。“教育”是以一种“事”的状态存在,而不是以一种“物”的状态出现。因而。我们就把“活动”作为界定教育的起点。 7、教育活动是人类社会独有的活动。 8、“生物起源论”代表人物: 利托尔诺在《各人种的教育演变》中指出教育是超出人类社会以外的,在动物界中就存在的。 沛西·能在《教育原理》中也认为教育是一个生物学过程,扎根于本能的不可避免的行为。 9、“终身教育”概念的提出,指明人在生理成熟后仍继续接受教育。 10、社会性是人的教育活动与动物所谓“教育”活动的本质区别。 11、教育的本质:教育活动是培养人的社会实践活动。 12、教育是人类通过有意识地影响人的身心发展从而影响自身发展的社会实践活动。 13、学校教育是一种专门的培养人的社会实践活动。 14、学校教育自出现以来就一直处于教育活动的核心。 15、学校教育是由专业人员承担的,在专门机构——学校中进行的目的明确、组织严密、系统完善、计划性强的以影响学生身心发展为直接目标的社会实践活动。 16、学校教育的特征:①可控性②专门性③稳定性 17、教育概念的扩展——大教育观的形成 18、1965年,法国教育家保罗·朗格朗在《终身教育引论》中指出,教科文组织应赞同“终身教育”的原则。 19、1972年,埃德加·富尔在《学会生存》中对“终身教育”加以确定,并提出未来社会是“学习化社会”。 20、“终身教育”概念以“生活、终身、教育”三个基本术语为基础。 从时间上看,终身教育要求保证每个人“从摇篮到坟墓”的一生连续性的教育过程; 从空间上看,终身教育要求利用学校、家庭、社会机构等一切可用于教育和学习的场所; 从方式上看,终身教育要求灵活运用集体教育、个别教育、面授或远距离教育; 从教育性质上看,终身教育即要求有正规的教育与训练,也要求有非正规的学习和提高,既要求人人当先生,也要求人人当学生。 21、教育的形态,是指教育的存在特征或组织形式。 22、在教育发展史上,教育的形态经历了从非形式化到形式化,再到制度化教育的演变。

教育学教育心理学理论及代表人物

教育学有关理论、代表人物 1、神话起源说—— 2、生物起源说——利托尔诺(法国) 3、心理起源说——孟禄(美国) 4、劳动起源说——马克思(前苏联) 5、中国史上第一部教育文献——《学记》——乐正克 6、西方较早讨论教育问题的着作——《论演说家的培养》(《雄辩术原理》)——昆体良(古罗马) 7、非制度化教育思潮——库姆斯、伊里奇 8、雄辩与问答法——苏格拉底(古希腊) 9、《理想国》——柏拉图(古希腊) 10、《政治学》——亚里士多德(古希腊) 11、教育学作为一门独立学科的萌芽——《大教学论》——夸美纽斯(捷克) 班级授课制,泛智教育。 12、首次提出把教育学作为一门独立的学科——培根(英国) 13、自然主义教育——《爱弥儿》——卢梭(法国) 14、教育学进入大学讲坛——康德(德国)、《林哈德与葛笃德》——裴斯泰洛齐(瑞士)

15、科学教育思潮的兴起,课程体系——《教育论》——斯宾塞(英国) 16、实验教育学——梅伊曼、拉伊(德国) 17、发展性教学理论——《教育与发展》——赞科夫(前苏联) 高难度进行教学的原则、高速度进行教学的原则、理论知识主导作用原则(重理性原则)、理解学习过程原则、对差等生要下功夫的原则 18、范例教学——瓦.根舍因(德国) 19、和谐教育思想——苏霍姆林斯基(前苏联) 20、《教育漫话》——洛克(英国) “白板说”、绅士教育、国民教育思想与民主教育思想。 22、规范教育学的建立——《普通教育学》——赫尔巴特(德国) 传统教育学代表、教师中心,教材中心,课堂中心、四段教学法、统觉观念。 23、实用主义教育学——《民本主义与教育》——杜威(美国) 现代教育学代表、教育即生长,教育即生活,教育即经验的改造或重组、在做中学、儿童中心主义。 24、第一部马克思主义的教育学着作——《教育学》——凯洛夫(前苏联) 25、我国第一部马克思主义的教育学着作——《新教育大纲》——杨贤江 26、设计教学法——克伯屈(美国)

教育心理学理论

教育心理学理论 一、学习分类理论 1、加涅 (1)学习八水平分类 按学习水平简繁程度分为:①信号学习;②刺激—反应学习;③连锁反应;④言语联想学习;⑤辨别学习;⑥概念学习;⑦规则学习;⑧解决问题学习 (2)学习六水平分类 ①连锁学习;②辨别学习;③具体概念学习;④定义概念学习;⑤规则学习;⑥解决问题学校 (3)学习结果分类 ①言语信息的学习;②智慧技能的学习;③认知策略的学习;④态度的学习;⑤运动技能的学习 2、奥苏贝尔学习性质分类(两个维度互不依赖、相互独立) (1)根据学习的方式:接受学习、发现学习 (2)根据学习材料与学习者原有知识结构的关系:有意义学习、机械学习 3、我国学习结果的分类 ①知识学习;②技能学习;③道德品质或行为习惯的学习 二、学习理论 1、联结理论 (1)经典条件反应论 ①巴甫洛夫:学习就是形成刺激与反应之间的联系 一级条件反射、二级条件反射 动力定型:大脑皮层对刺激的定型系统所形成的反应定型系统 外抑制、超限抑制、消退、泛化、分化 正诱导:一个部位发生抑制引起周围发生兴奋地过程。 负诱导:一个部位发生兴奋引起周围发生抑制的过程。 同时诱导、继时诱导 第一信号系统:能够引起条件反应的物理性的条件刺激。 第二信号系统:能够引起条件反应的以语言符号为中介的条件刺激。 ②华生:通过建立条件作用,形成刺激与反应间的联结的过程。遵循频因律、 近因律。(学习的实质在于形成习惯) (2)操作性条件说 ①桑代克(联结试误说):在一定的情景和一定的反应之间建立联结,这种联结 通过尝试错误的过程而自动形成。三条学习规律:效果率、练习律、准备率②斯金纳 正强化、负强化、消退 惩罚:惩罚Ⅰ呈现厌恶刺激;惩罚Ⅱ消除愉快刺激 普雷马克原理:用学生喜爱的活动去强化学生参与不喜爱的活动。 强化程式:连续强化程式(灯一开就亮); 间接强化程式:a 定时强化(按时发工资) b 定比强化(计件工作) c 变时强化(随堂测验)d 变比强化(买彩票) (3)社会学习理论(班杜拉) 学习分为参与性学习和替代性学习(通过观察别人而进行的学习。) 观察学习:注意——保持——复制——动机

教育心理学的各种理论

1.桑代克的尝试——错误说 刺激——反应联结 基本规律:效果律练习律准备律 2.巴普洛夫——经典性条件作用论俄国 没有食物,只有铃声产生的唾液是条件刺激 看到食物就产生唾液是无条件反应 基本规律:获得与消退刺激泛化(对事物相似性的反应)与分化(对事物差异性的反应) 3.斯金纳——操作性条件作用论 基本规律:强化(+-)逃避条件作用和回避条件作用(负强化)消退惩罚 4.加涅——信息加工学习理论 模式——信息流控制结构(期望执行控制) 5.1-4属于联结学习理论 6.7-10属于认知学习理论 7.苛勒——完形、顿悟说 德国基本内容:学习是通过顿悟过程实现的学习的实质是在主体内部构成完形 8.布鲁纳——认知、结构学习理论 美国学习的目的在于以发现学习的方式,使学科的基本结构转变为学生头脑中的认知结构。 学习观——实质是主动地形成认知结构过程包括获得转化评价教学观——目的在于理解学科的基本结构 教学原则——动机原则结构原则程序原则强化原则 9.奥苏泊尔——有意义的接受学习美国 学习方式分类:接受学习发现学习 学习材料与原有知识结构分类:机械学习意义学习 先行组织者:是先于学习任务本身呈现的一种引导性材料,他的抽象,概括和综合水平高于学习任务,并且与认知结构中原有的观念和新的学习任务相关联。 10.建构主义学习理论

学习动机 1.学习动机的两个基本成分:学习需要学习期待 2.奥苏泊尔学校情境中的成就动机: 认知内驱力(要求理解掌握事物内部动机) 自我提高内驱力(个人学业的成就“三好学生”) 附属内驱力(获得教师、家长的赞扬) 在儿童早期,附属内驱力最为突出 在青年期,认知内驱力和自我提高内驱力成为学习的主要动机 学习期待就其作用来说就是学习诱因 3.学习动机的种类: 社会意义:低级动机(个人、利己主义) 高尚动机(利他主义) 与学习活动的关系:近景的直接性动机(兴趣、爱好、求知欲) 远景的间接性动机(个人前途,父母期望)动力来源:内部动机(个体需要引起) 外部动机(由外部诱因引起) 4.学习动机理论 强化理论:外部强化自我强化 需要层次理论:美国马斯洛五需要(从低级到高级排列) 生理的需要安全的需要归属和爱的需要 尊重的需要自我实现的需要自我实现的需要包括:认知审美创造的需要(最高级的需要)成就动机理论:代表人:阿特金森 力求成功的动机避免失败的动机 成败归因理论:美国维纳三维度六因素 6因素:能力高低努力程度任务难度运气好坏身心状态外界环境3维度:稳定性可控性内在性 自我效能感理论:美国班杜拉 人的行为受行为的结构因素与先行因素的影响。 行为的结果因素就是通常所说的强化: A.直接强化:外部因素(惩罚奖励) B.替代性强化:通过一定的榜样 C.自我强化:自我评价自我监督 5.学习动机的激发:

3中学教育心理学考试测试题第三章 学习的基本理论

中学教育心理学考试测试题第三章学习的基本理论 一、单项选择题(下列各题所给选项中只有一个符合题意的正确答案,答错、不答或多答均不得分) 1.根据学习的定义,下列属于学习的现象是( D )。 A.吃了酸的食物流唾液 B.望梅止渴 C.蜘蛛织网 D.儿童模仿电影中人物的行为 2.对黑猩猩做“顿悟实验”的是( A )。 A.苛勒 B.托尔曼 C.桑代克 D.巴甫洛夫 3.加涅提出了( A )模式。 A.积累学习 B.发现学习 C.观察学习 D.接受学习 4.操作性条件反射学说的代表人物是( A )。 A.斯金纳 B.巴甫洛夫 C.桑代克 D.班杜拉 5.美国心理学家布鲁纳认为学习的实质在于( B )。 A.构造一种完形 B.主动地形成认知结构 C.形成刺激与反应间的联结 D.对环境条件的认知 6.( B )强调学习的主动性和认知结构的重要性,主张教学的最终目标是促进学生对学科结构的一般理解。A.斯金纳 B.布鲁纳 C.苛勒 D.加涅 D A D 10.下列不属于意义学习的条件的一项是( D ) A.材料本身必须具有逻辑意义 B.学习者认知结构必须具有能够同化新知识的适当的认知结构 C.学习者必须具有积极主动地将新知识与认知结构中的适当知识加以联系的倾向性,并使两者相互作用D.学习材料要高于学习者的能力范围 11.( A )学习理论认为学习是学生建构自己的知识的过程,学生是信息意义的主动建构者。 A.建构主义 B.认知一结构 C.信息加工 D.尝试一错误 12.“一朝被蛇咬,十年怕井绳”,这种现象指( C )。 A.消退 B.刺激比较 C.刺激泛化 D.刺激分化 13.根据经典条件反射作用理论,食物可以诱发狗的唾液分泌反应,则唾液是( C )。 A.中性刺激 B.无条件刺激 C.条件反应 D.无条件反应 14.看见路上的垃圾后绕道走开,这种行为是( C )。 A.强化 B.惩罚 C.逃避条件作用 D.消退 15.先行组织者教学技术的提出者是美国著名心理学家( C )。 A.斯金纳 B.布鲁纳 C.奥苏伯尔 D.桑代克 二、多项选择题(下列各题所给选项中有两个或两个以上符合题意的正确答案,不答、少答或多答均不得分) 1.学习的定义说明( ABD )。 A.学习是行为或行为潜能的变化 B.学习引起的变化是持久的 C.学习引起的变化是短暂的 D.学习是由反复经验引起的

教育心理学家的基本理论

教育心理学家的基本理论 1、行为学派(刺激——反应联结学习理论) 2、认知学派(认知结构学习理论) 3、掌握学习和指导学习理论 4、人本主义的学习理论 5、精神分析学派 一、行为学派(刺激——反应联结学习理论 1、桑代克 A:学习理论(三条基本学习规律)(P136) ①准备律 ②练习律——应用律、失用律 ③效果律 B:迁移 ①迁移一词的提出(P209) ②共同要素论(P215) C:1903年著《教育心理学》是教育学心理学成为独立学科的开始 D:1913年,将《教育心理学》扩展《教学心理学大纲》,共分为人的本性、学习心理、个别差异及原因。(P8) 2、巴甫洛夫——经典条件反射学习理论 A:消退(P140) B:恢复 C:类化(P140)——一朝被蛇咬,十年怕井绳 D:分化(P140) E:高级条件反射——刺激强化(P141) 3、斯金纳——操作条件反射学习理论 A:有机体行为分类(P142) ①应答性行为——经典条件反射 ②操作性行为——操作条件反射 B:操作条件反射主要规律(P142) ①假如一个操作发生后,接着给予强化刺激,那么这一类反应今后发生的概率就会增加。 ②由于行为效果的强化是使行为频率增加的根本原因,所以通过对有机体的有选择的强化,就可以使行为朝着所需要的方向发展。 C:程序教学(P157) ①小步子逻辑序列 ②要求学生作出积极反应 ③及时反馈 ④学生自定步调 ⑤低的错误率 4、班杜拉——社会学习理论(P143) A:观察式学习(模仿)(P143) “上行下效”、“耳濡目染”(P144)B:替代性强化(P143、149) “杀鸡儆猴”(P149)C:自我强化(P149)D:符号强化(P144) 二、认知学派(认知结构学习理论) 1、布鲁纳——发现学习理论(P158)1)、主动认知——认为学习是一个主动认知的过程。 2)、语言学习——语言学习是儿童心理发展的关键。 3)、学习过程——重视学习的过程。4)、学习结构——强调形成学习结构。5)、直觉思维——强调直觉思维的重要性。6)、内部激励——强调内部动机的重要性。7)、早期教育——强调基础学科的早期学习。 8)、信息提取——强调信息提取(记忆问题不是贮存,而是提取) 9)、发现学习——提倡发现学习。 ——以早期教育为起点,以开发智力为核心,以学科知识结构为基础,以发现学习为手段,以直觉思维为必备要素,以内部激励为动力的旨在培养科学精英的教学思想。

教育心理学章节习题 学习的基本理论

一、选择题:在每小题给出的四个选项中,只有一项是符合题目要求的,把所选选项前的字母填在题后的括号内。 1.首先打出行为主义心理学旗帜的是()。 A.巴甫洛夫 B.斯金纳 C.桑代克 D.华生 2.以下心理学家不属于认知心理学派的是()。 A.苛勒 B.斯金纳 C.布鲁纳 D.奥苏伯尔 3.布鲁纳认为,学生掌握学科的基本结构的最好方法是()。 A.建构法 B.发现法 C.顿悟法 D.接受法 4.程序性教学实际上是()理论在实践中的运用。 A.学习的操作性条件作用 B.观察学习

C.认知学习 D.认知同化 5.加涅的信息加工系统中的第二级是()。 A.感受器 B.感受登记 C.短时记忆 D.长时记忆 6.苛勒在研究黑猩猩的学习时采用的实验是()。 A.迷箱实验 B.迷津实验 C.叠箱实验 D.“三座山”实验 7.建构主义的理论流派中,在皮亚杰的思想之上发展起来的是()。A.社会建构主义 B.激进建构主义 C.信息加工建构主义 D.社会主义建构主义 8.建构主义强调,知识的特点具有()。 A.主观性 B.客观性 C.普遍适应性

D.永恒性 9.将符号所代表的新知识与学习者认知结构中已有的适当观念建立起非人为的和实质性的联系属于()。 A.机械学习 B.意义学习 C.接受学习 D.发现学习 10.在发现教学中,教师的角色是学生学习的()。 A.促进者和引导者 B.领导者和参谋 C.管理者 D.示范者 11.孩子哭闹着要买玩具,母亲对其不予理睬,这是()。 A.正强化 B.负强化 C.惩罚 D.消退 12.以下心理学家及其理论匹配不正确的一项是()。 A.奥苏伯尔——认知发现说 B.苛勒——完形一顿悟说 C.托尔曼——认知目的说 D.加涅——信息加工理论

山香2016年教育心理学第三章 学习的基本理论

第三章学习的基本理论 第一节学习概述 一、学习的含义 (一)广义的学习 1、广义学习的含义:人和动物在生活过程中,凭借经验而产生的行为/行为潜能的相对持久的变化。 2、产生广义学习的三个特征: (1)学习必须使个体产生行为或行为潜能的变化。 (2)这种变化是相对持久的。有些主体的变化,如疲劳,创伤等引起的变化是暂时的,经过一段时间或一旦条件改变就会自行消失,这种变化不能称作学习。 (3)这种变化是由反复经验而引起的。 (二)狭义的学习 1、狭义学习的含义:指人类的学习,指个体在社会生活实践中,以语言为中介,自觉地、积极主动地掌握社会、个体的经验的过程。 2、人类学习与动物学习的本质区别: (1)人的学习是掌握人类社会历史经验、科学文化知识,获得个体行为经验的过程。 (2)人的学习是在社会生活实践中,与他人的交往时,以语言的中介进行的。 (3 3 (1)学生学习的含义:在教师的指导下,有目的、有计划、有组织、有系统地进行的,是在较短的时间内接受前人所积累和科学文化知识,并以此来充实自己的过程。 (2)学生学习内容:①知识、技能和学习策略的掌握,②问题解决能力、创造性的发展,③道德品质和健康心理的培养。 (3)学生学习的特点:①以系统地掌握人类的间接经验为主;②在教师的指导下进行,有较强的计划性、目的性、组织性;③具有一定程度的被动性;④要促进学生全面发展:学生不但要学习知识技能,还要发展智能,培养行为习惯、道德品质和健康的心理。 二、学习的分类 (一)从学习的主体来说,学习可以分为:动物学习、人类学习和机器学习。 (二)按学习的意识水平,[美]心理学家阿瑟.雷伯将学习分为:内隐学习和外显学习。 (三)加涅的学习结果分类:认为学习结果就是各种习得的才能、本领。获得以下五种才能:言语信息、智慧技能、认知策略、态度、动作技能。 1、言语信息的学习:帮助学生解决“是什么”的问题。掌握以言语信息传递的内容,学习结果是以言语信息表现出来的。 2、智慧技能的学习:解决“怎么做”的问题,用以对外界的符号、信息进行处理加工。辨别技能是最基本的智慧技能,按不同的学习水平及其所包含的心理运算的复杂程度,依次为:辨别、概念、规则、高级规则 3、认知策略的学习:学习者用以支配自己的注意、学习、记忆和思维的有内在组织的才能,这种才能使得学习过程的执行控制成为可能。智慧技能指向外部环境,而认知策略指向学习者内部。 4、态度的学习:态度是通过学习获得的内部状态,这种状态影响着个人对某种事物、人物及事件所采取的行动。加涅提出三类态度:(1)儿童对家庭和其他社会关系的认识;(2)对某种活动所伴随的积极的喜爱情感;(3)有关个人品德的某些方面,如热爱国家等。 5、运动技能的学习:运动技能又称为动作技能,也是能力的一个组成部分。

教育心理学专题练习第三章学习的基本理论

第三章学习的基本理论 一、单选题 1.被誉为现代教育心理学奠基人的是()。 A桑代克 B.巴甫洛夫 C.斯金纳 D.布鲁纳 2.下列不属于学习引起的变化的是()。 A. 幼儿会喊爸爸、妈妈 B.青春期嗓音变化 C.骑车 D.会使用电脑 3学习对某种信号作出一般性和弥散性的反应是()学习。 A.刺激——反应 B.连锁 C.辨别 D.信号 4.属于巴甫洛夫的经典性条件反射的学习类型是( )学习。 A.刺激——反应 B.信号 C.概念 D.连锁 5.属于操作性条件反射的学习类型是( )学习。 A.信号 B.规则 C.解决问题 D.刺激——反应 6联合两个或两个以上的刺激——反应动作,以形成一系列动作联结的学习类型是()学习。 A. 连锁 B.概念 C.辨别 D. 刺激——反应 7.各类动作技能的形成都离不开()学习。 A.信号 B.规则 C.连锁 D.刺激——反应 8.对一系列类似的刺激分别作出适当的反应的学习是()学习。 A.连锁 B.概念 C.辨别 D.规则 9.()学习是指认识一类事物的共同属性,并对其抽象特征作出反应。 A.解决问题 B.概念 C.辨别 D.规则 10.把鲸鱼、象、狗等概括为“哺乳动物”,这属于()学习。 A.解决问题 B.概念 C.辨别 D.规则 11.理解“功=力×距离”这一公式,这是()学习。 A.信号 B.概念 C.辨别 D.原理 12.掌握教育学基本原理后,用之于解决教育中的实际问题,这是()学习。 A.解决问题 B.规则 C.概念 D.刺激——反应 13.()是调节和控制自己的注意、学习、记忆、思维和问题解决过程的内部组织起来的能力。 A.智慧技能 B.认知策略 C.动作技能 D.态度 14.()是使用符合与环境相互作用的能力。 A.智慧技能 B.认知策略 C.言语信息 D.态度 15.()表现为学会陈述观点的能力。 A.智慧技能 B.认知策略 C.言语信息 D.态度 16.()是对外的平稳而精确的操作能力。 A.智慧技能 B.认知策略 C.言语信息 D.动作技能 17.()表现为个体对人、对物或某些事件的意向。 A.智慧技能 B.认知策略 C.言语信息 D.态度 18.在试误学习的过程中,学习者对环境刺激作出反应后能获得满意的结果时,其联结就会增强,这是()。 A.效果律 B.练习律 C.准备律 D.强化律 19.在试误学习的过程中,刺激与反应的联结,如果练习运用,联结的力量逐渐增大,如果不运用,则逐渐减小,这是( ).。

教育心理学-第三章 学习的基本理论 - 副本

《教育心理学》学习的基本理论 一、不定项选择题 1.下列属于学习的现象是()。 A.吃了酸的食物流唾液B.了解低碳生活并付诸行动C.蜘蛛织网D.儿童模仿电影中人物的行为2.一名学生能够运用三角形的面积公式解决一个他从来没有见到过的三角形的面积,这表明他已经具备了()。 A.言语信息B.动作技能C.智慧技能D.认知策略E.态度 3.某位学生近一段及时完成作业,老师告诉他放学后不必再留在教室里完成作业了,此后该生继续按时完成作业,这时该生受到了()。 A.正强化B.负强化c.正惩罚D.负惩罚 4.奥苏贝尔提倡的一种学习类型是()。 A.有意义-发现学习B.有意义-接受学习C.机械-接收学习D.机械-发现学习 5.引导学生分辨勇敢和鲁莽、谦让和退缩属于刺激()。 A.获得B.消退C.分化D.泛化 6.“孟母三迁”终使孟子成才,能够有效解释该现象的理论是()。 A.认知学习理论B.社会学习理论C.人本主义理论D.建构主义理论 7.学生学习“功=力×距离”,这种学习属于()。 A.辨别学习B.符号学习C.概念学习D.规则或原理学习 8.()指教材被分成若干小步子,学生可自定学习步调,让学生对所学内容进行积极反应,并给予及时强化和反馈使错误率最低。 A.程序教学B.组织教学C.个别化教学D.指导教学 9.()强调学习的主动性和认知结构的重要性,主张教学的最终目标是促进学生对学科结构的一般理解。 A.布鲁纳B.班杜拉C.桑代克D.巴甫洛夫 10.布鲁纳认为任何知识结构都可以用适合形式呈现,以下不属于他提出的呈现方式的一项是()。A.动作表象B.图像表象C.符号表象D.情感表象 11.最初主张S-R联结存在意识中介的心理学家或心理学流派是()。 A.格式塔学派B.布鲁纳C.斯金纳D.托尔曼 12.人和动物一旦学会对某一特定的条件刺激作出条件反应以后,其他与该条件刺激相类似的刺激也能诱发其条件反应,称为()。 A.刺激分化B.消退C.刺激泛化D.获得 13.操作性条件作用论的提出者是()。 A.桑代克B.苛勒C.斯金纳D.巴甫洛夫 14.布鲁纳的学习论是()。 A.完形顿悟说B.有意义接受学习论C.认知结构学习论D.建构主义 15.观察者看到榜样受到强化而如同自己也受到强化一样,这称为()。 A.外部强化B.自我强化C.直接强化D.替代强化 16.“一朝被蛇咬,十年怕井绳”,这种现象是指()。

教育心理学考试重点第三章学习的基本理论+实战演练

教育心理学考试重点提示:第三章学习的基本理论 重点提示 统观近几年全国各省的教师资格认证教育心理学考试,本章的考查重点是: (1)学习的定义。 (2)学习的主要理论: 尝试一错误学习的基本规律。 经典性条件反射的基本规律。 布鲁纳的认识一结构学习论。 当今建构主义学习理论的基本观点。 考纲链接 1.学习的实质与特征: (1)学习的概念。广义的学习指人和动物在生活过程中,凭借经验而产生的行为或行为潜能的变化。狭义的学习指人类的学习,是在社会生活实践中,以语言为中介,自觉地、积极主动地掌握社会的和个体的经验的过程。 (2)人类学习与动物学习的区别。首先,人的学习除了要获得个体的行为经验外,还要掌握人类世世代代积累起来的社会历史经验和科学文化知识;其次,人的学习是在改造客观世界的生活实践中,在与其他人的交往过程中,通过语言的中介作用而进行的;此外,人的学习是一种有目的的、自觉的、积极主动的过程。 2.学生的学习:是在教师的指导下,有目的、有计划、有组织、有系统地进行,在较短时间内接受前人所积累的科学文化知识,并以此来充实自己的过程。 3.学习内容:一是知识、技能和学习策略的掌握;二是问题解决能力和创造性的发展;三是道德品质和健康心理的培养。 4.加涅关于学习层次和学习结果的分类: (1)加涅关于学习层次分类:信号学习、刺激-反应学习、连锁学习、语言联结学习、辨别学习、概念学习、规则或原理学习、解决问题学习。 8.认知学习理论: (1)完形-顿悟说:由苛勒提出,主要观点:学习是通过顿悟实现的;学习的实质在于构造完形。 (2)认知-结构学习论:由布鲁纳提出。他主张学习的目的在于以发现学习的方式,使学科的基本结构转变为学生头脑中的认知结构。 10.建构主义学习理论。基本观点: (1)知识观。知识并不是问题的最终答案;知识并不能精确地概括世界的法则;知识不可能以实体的形式存在于具

《教育心理学》分章强化题三:第三章学习的基本理论

《教育心理学》分章强化题三:第三章学习的基本理论 一、选择题 1.下列现象可以归入到学习中的现象有()。 A.事故后体会到交通法规的重要性 B.疲劳时记忆力下降 C.乳儿抓住碰到的东西 D.青春期少年的嗓音变化 2.新生渐渐知道铃声代表上课,这属于()。 A.信号学习 B.辨别学习 C.概念学习 D.言语联结学习 3.各种动作技能的学习,都离不开()。 A.连锁学习 B.言语联结学习 C.解决问题的学习 D.信号学习 4.使用符号与环境相互作用的能力属于()。 A.认知策略 B.言语信息 C.动作技能 D.智慧技能 5.在试误学习过程中,当刺激与反应之间的联结不准备实现时,实现则感到烦恼,这符合()。

A.练习律 B.准备律 C.效果律 D.联结律 6.家长对考试成绩好的孩子给予物质奖励是()。 A.正强化 B.负强化 C.消退 D.惩罚 7.一个学生上课讲话,老师要他写“我上课讲话,真丑”1000遍,这属于()。 A.正强化 B.负强化 C.惩罚 D.替代强化 8.认为学习是个体利用本身的智慧与理解力对情境及情境与自身关系的顿悟的学说为()。 A.认知-结构学习论 B.有意义接受学习论 C.完形-顿悟说 D.建构主义学习论 9.有意义接受学习论的提出者是()。 A.苛勒 B.布鲁纳 C.斯金纳 D.奥苏伯尔 10.将符号所代表的新知识与学习者认知结构中已有的适当观念建立起非人为和实质性的联系的学习是()。 A.接受学习 B.发现学习 C.机械学习 D.意义学习 11.认为知识并不是对现实的准确表征,它只是一种解释、一种假设的理论为(或认为学生的学习不仅是对新知识的理解,而且是对新知识的分析、检验和批判的力量是)()。

教育心理学第三章 学习的基本理论

第三章学习的基本理论 1)什么是学习?人类学习和动物学习有什么本质的区别? 广义的学习指人和动物在生活过程中,凭借经验而产生的行为或行为潜能的相对持久的变化。 定义说明:1、学习表现为行为或行为潜能的变化。2、学习所引起的行为或行为潜能的变化是相对持久的。3、学习是由反复经验而引起的。 狭义的学习指人类的学习,指个体在社会生活实践中,以语言为中介,自觉地、积极主动地掌握社会的和个体的经验的过程。 人类学习vs. 动物学习有本质的区别: 1. 人的学习除了要获得个体的行为经验外,还要掌握人类世世代代积累起来的社会历史经验和科学文化知识。 2. 人的学习是在改造客观世界的生活实践中,在与其他人的交往过程中,通过语言的中介作用而进行的。 3. 人类的学习是一种有目的、自觉的、积极主动的过程。 2)学生的学习的内容和特点什么?(人类学习和学生学习有什么区别) 含义:学生的学习是人类学习中的一种特殊形式,它是在老师的指导下,有目的、有计划、有组织、有系统的进行的,是在较短的时间内接受前人所积累的文化科学知识,并以此来充实自己的过程。 学习内容:一是知识、技能和学习策略的掌握;二是问题解决能力和创造性的发展;三是道德品质和健康心理的培养。 人类学习和学生学习之间是一般与特殊的关系,学生的学习既与人类的学习有共同之处,但又有其特点:①以间接经验的掌握为主线;②具有较强的计划性、目的性和组织性;③具有一定程度的被动性。 3)加涅按照学习结果的不同把学习分成那些类型? 1、言语信息, 2、智慧技能, 3、认知策略, 4、态度, 5、运动技能。 4)简述奥苏贝尔对学习的分类 根据两个维度对认知领域的学习分类:一个是学习进行的方式,分为接受学习和发现学习;另一个维度是学习材料与学习者原有知识的关系,可分为机械学习和有意义学习。这两个维度互不依赖,彼此独立。并且每一个维度都存在许多过渡形式。 5)我国心理学家对学习是怎样分类的? 分为知识的学习、技能的学习和行为规范的学习三类。 6)联结学习理论的基本观点有哪些?(行为主义) 联结学习理论认为:一切学习都是通过条件作用,在刺激(S)和反应(R)之间建立直接联结的过程。强化在刺激—反应之间的建立过程中起着重要作用。在刺激—反应联结之中,个体学到的是习惯,而习惯是反复练习和强化的结果。习惯一旦形成,只要原来的或类似的刺激情境出现,习得的习惯性反应就会自动出现。 7 桑代克是美国著名心理学家,他采用实证主义的取向,使教育心理学研究走向了科学化的道路,是科学教育心理学的开创者,是第一个系统论述教育心理学的心理学家,被称为“现代教育心理学之父”。是最早用动物实验来研究学习规律的心理学家。 (一)经典实验:猫开笼取食的实验。 (二)学习的联结说(又叫试误说):通过这类实验,桑代克提出学习不是建立观念之间的联结,而是建立刺激—反应(S—R)联结,即在一定的刺激情境与某种正确反应之间形成联结,其中不需要观念或思维的参与。这种刺激—反应联结主要是通过尝试错误、

教育学心理学主要理论及代表人物

昆体良古罗 马 1.《雄辩术原理》世上第一部研究系统的教学方法论著,被公认为是西方教育史上的伟大 教育家,是第一位教学理论家和教学法专家。 2. 最早提出分班教学的思想 杜威美国1.提出实用主义教育学,杜威出版《民主主义与教育》《经验与教育》,克伯屈出版《设计教学法》,提倡活动课。 思想:强调儿童的主体地位:①教育即生活,教育即生长②教育社会化③做中学④教育即经验的不断改造。以儿童为中心,反对教师中心论 2.现代教育代言人现代教育的主要特点是民主 3.教育无目的论“教育是一个社会过程。” 4.问题的解决杜威的五步模式①困惑②诊断③假设④推断⑤验证 5.问题解决步骤的五步模式⑴疑难⑵分析⑶假设⑷检验和评价⑸结论 桑代克 美 国 1.1903年出版西方第一本《教育心理学》,是教育心理学体系的创始,标志着教育心理学 称为一门独立的学科。 2.学习理论之联结派的学习理论——联结学习:尝试-错误说(小猫“迷箱”试验) 试误成功条件:练习律、准备律、效果律 3.教育心理学体系(现代教育心理学)和联结主义学习心理学创始人,被誉为教育心理学 之父 4. 学习迁移理论之联结主义的相同要素说(代表人物:桑代克、伍德沃斯) 桑代克:相同要素说,即学习上的迁移是相同联结的转移。 伍德沃斯:共同成分说,即两种学习活动含有共同成分,则发生迁移,学习也就更容易。 以刺激——反应联结理论为基础。只有当学习情景和迁移情景存在共同成分时,才能产生迁移。即材料相似性是决定迁移的条件 5.现代教育测验之父 6.智力水平越高,迁移越大。 7.问题解决理论之试误说,又称联结说——(猫“迷箱”实验) 问题的解决过程是刺激情境与适当反应之间的联结完成的,联结的建立是通过尝试错误完成的。 贾德美国1.学习迁移理论之机能心理学的经验泛化说—“水下击靶”实验 他认为一个人对他的经验进行了概括,就可以完成从一个情境到另一个情境的迁移。概括就等于迁移,原理、法则等概括化的理论知识对迁移作用很大。 沃尔夫德国 1.学习迁移理论之官能心理学的形式训练说 他把迁移的实质理解为新的官能经训练而发展,认为促进迁移的条件与学习内容无大关系而偏重于形式。 魏特海默 苛勒德国 1.学习理论之认知派学习理论——格式塔的顿悟学习理论(黑猩猩取香蕉实验):学习是 一个顿悟的过程,是突然察觉到解决问题的办法。主要代表人物:魏特海墨、科夫卡和克勒 2.学习迁移理论之格式塔学派的关系转换说(代表人物:苛勒)—“小鸡啄米实验” 强调“顿悟”是迁移的一个决定因素。强调个体的作用,愈能加以概括化,愈易产生迁移。 3.问题解决理论之顿悟说(苛勒)——黑猩猩取香蕉实验 4.格式塔心理学(完形心理学)创始人魏特海墨、科夫卡和克勒研究内容是意识体验, 论点“整体大于部分之和” 解决问题时从整体把握全部问题情境和认知结构的豁然改组,而不是一次次经验的积累。 反对元素分析认为每一个心理现象都是一个整体是一个格式塔是一个完形 学习的实质在于构造完型,刺激与反应之间的联系而需要意识作为中介 布鲁美国1.结构化教材和发现学习模式(明确结构,掌握课题,提供资料→建立假说,推测答案→验证→做出结论) 2.领导美国20C60y的结构主义课程改革,主张突出学科基本结构,让学生通过发现法学习,重视智力发展(动机原则、结构原则、程序原则、反馈原则) 3.学习理论之现代认知学习理论——认知发现理论 强调认知学习和认知发展,提倡发现学习。学习的核心内容是各门学科的基本知识结构。3教学方法:发现学习,新课标中也叫“探究学习”。即教师提出课题和一定的材料,引导学生自己进行分析、综合、抽象、概括等一系列活动,最后得到学习结果。 4.提出假设考验说,研究人工概念的形成(人需要利用已有的知识主动提出一些可能的假设,即猜想这个概念是什么)——人工概念是认为的、在程序上模拟的概念,这种方法最早是赫尔于1920年首创的。 5.强调非特殊成分的迁移,也叫普遍迁移。即学习了基本的普遍的概念或原理,可作为学

教育心理学主要理论知识

第一章做合格教师 第一部分主要理论知识 1.合格教师心理素质 教师心理素质是教师在专业发展过程中,在心理过程和个性心理特征两方面所表现出来的本质特征。 教师的心理素质包括如下方面,即教师的智力素质、教师的情感素质、教师意志素质、教师的教育教学素质、教师的人格素质、教师的信念。 2、教师的智力素质 教师的智力是从事教育工作应具备的基本心理素质,是教师从事教育教学工作的心理基础。教师的智力素质表现在以下方面: (1)敏锐的观察力(2)良好的记忆力(3)丰富的想象力⑷多方位的立体思维能力 ⑸注意分配的能力 3、教师的情感素质特点 教育过程是师生情感交流的过程,教育工作最大的特点就是以情感人。 (1)成熟而稳定的情感(2)爱的情感:对教育事业的热爱、对学生的热爱、对所教学科的热爱 4、教师的意志特点 (1)实现教育目的的自觉性(2)克服困难的坚韧性(3)选择教育决策的果断性(4)解决矛盾的沉着自制性 4.教师的教育能力素质 因材施教的教育能力、获取信息的能力、独创能力、教育科研能力、心理教育能力、教育机智 5.教师的教学素质:包括教师的知识结构与教学能力。 6.教师的知识结构 教师的知识水平是其从事教学工作的前提条件。根据有关专家的研究,教师的知识结构可由三方面组成,分别为本体性知识、实践性知识和条件性知识。 7.本体性知识。 教师职业的本体性知识是教师所具有的特定的学科知识,如语文知识、数学

知识等,也即人们所熟知的科目知识。 林崇德等人的研究表明,教师的本体性知识与学生成绩之间几乎不存在统计上的关系。 由于学科不同,本体性知识的具体内容是不同的。仅仅从一般意义上说,教师的本体性知识应包括四个方面:教师应对学科的基础知识有广泛而准确的理解,熟练掌握相关的技能、技巧;教师要基本了解与所教学科相关的知识点、相关性质以及逻辑关系;教师需要了解该学科的发展历史和趋势,对于社会、人类发展的价值以及在人类生活实践中的多种表现形态;教师需要掌握每一门学科所提供的独特的认识世界的视角、域界、层次及思维的工具与方法等。 8.实践性知识 教师的实践性知识是教师在开展有目的的教育教学活动过程中解决具体问题的知识,是教师教育教学经验的积累和提炼,它主要来源于课堂教育教学情景之中和课堂内外的师生互动行为,带有明显的情景性、个体性,体现出教师个人的教育智慧和教学风格。研究表明,教龄对教师的实践性知识存在着显著影响,教师的实践性知识水平随着教龄的增加而逐步上升。 9.条件性知识 教师的条件性知识是指教师所具有的教育学与心理学知识。条件性知识是:个教师成功教学的重要保障,而这种知识是目前广大的一般教师所普遍缺乏的。教师的条件性知识分为三个方面,即学生身心发展的知识、教与学的知识和学生成绩评价的知识。 正如杜威指出的那样,科学家的学科知识与教师的学科知识是不一样的,教师必须把学科知识“心理学化”,以便学生能理解。 10.教师的教学能力 教师的教学能力是教师从事教学活动,完成教学任务的能力,是教师专业能力的重要方面。 ⑴教学认知能力⑵教学设计的能力 ⑶教学操作能力:①表达能力②课堂组织管理能力③运用现代教育技术的能力

相关文档
相关文档 最新文档