文档库 最新最全的文档下载
当前位置:文档库 › 变压器接法谐波影响的理论分析-陈斌发doc

变压器接法谐波影响的理论分析-陈斌发doc

变压器接法谐波影响的理论分析-陈斌发doc
变压器接法谐波影响的理论分析-陈斌发doc

电路分析基础谐波分析法

电路分析基础谐波分析法 本章实训谐波分析法的验证 实训任务引入和介绍 在电路分析的应用过程中~遇到非正弦周期电流电路的情况并不少见。有时候~电流波形非常简单,如矩形波、三角波等,~可以通过简单的计算得出其有效值、平均值及平均功率,但有时候非正弦周期电流的波形非常复杂~那么通过谐波分析法来进行电路分析就显得尤为重要。本次实训我们就以一个简单的电路为基础~通过简单的理论计算和实际测量的结合来验证谐波分析法。 实训目的 1.掌握非正弦周期电流电路的测量方法, 2.理解谐波分析法的基本原理, 3.学会用谐波分析法进行简单的电路分析。 实训条件 100V直流电源、150V/50Hz交流电源、100V/100Hz交流电源、功率计、 R=10Ω、L=1H、 3C=1.11*10uF、电压表、电流表。 操作步骤 (1)连接电路。 如图5-12所示,将在直流、交流电源串联,根据叠加定理,可以知道电路中的电流为非正弦周期电流,且该信号可以分解为100V直流、150V/50Hz交流、100V/100Hz电源给出的信号。

图5-12 实训电路 (2)理论计算。 已知: U,100,150sin,t,100sin(2,t,90:)V s R,10, 1X,,90,, c,C X,,L,10, L ? 直流分量作用于电路时,电感相当于短路,电容相当于开路。故有: I,0,U,0,P,0000 ? 一次谐波作用于电路时,有: 150 U,,0:Vs12 150,0:U2s1 I,,,1.32,82.9:A1R,j(X,X)10,j(10,90)L1C1 U,1.31,82.9:(10,j10),18.5,127.9:V1 ? 二次谐波作用于电路时,有: 100,,90:U2s2 I,,,2.63,,21.8:A2R,j(X,X)10,j(20,45)L2C2 U,2.63,,21.8:(10,j20),58.8,41.6:V2

解析变压器谐波损耗与影响因素

解析变压器谐波损耗与影响因素 发表时间:2016-04-19T14:11:56.110Z 来源:《电力设备》2015年第9期供稿作者:梁正波[导读] 贵州电网有限责任公司毕节供电局551700 变压器的正常运行对于电力系统的稳定有着重要的作用,降低变压器的谐波损耗对于电网的良好发展有着极大的意义。(贵州电网有限责任公司毕节供电局551700) 摘要:技术人员通过变压器谐波损耗模型,对变压器谐波损耗的影响因素进行分析,凭借电路理论的相关知识,从而计算出变压器谐波损 耗的各项参数。技术人员通过变压器谐波损耗在线监测方法,结合实验操作,对变压器谐波损耗受谐波次数和变压器负载的影响情况进行了分析,由于变压器一次侧谐波电流不会对变压器谐波损耗造成影响,所以基于变压器谐波损耗模型,技术人员不需要对其进行检测;通过对谐波次数所造成的变压器损耗进行分析,变压器谐波损耗的所有参数中,配电网3次与5次谐波所造成的谐波损耗比重最大,所以为了确保变压器的正常运行,技术人员可对3次和5次谐波采取有效的降耗措施。关键词:变压器;谐波损耗;影响 变压器的正常运行对于电力系统的稳定有着重要的作用,降低变压器的谐波损耗对于电网的良好发展有着极大的意义,也是保障正常供电的有效途径,这样才能更好为社会和人们服务。随着电网的不断发展,其结构也更为复杂,变压器谐波损耗受谐波次数和变压器负载的影响也更大,对变压器的正常运行造成了严重的影响,从而造成电网在供电过程中出现很大的问题,也危害到电网自身的安全。本文基于变压器谐波损耗模型对变压器谐波损耗的具体情况与影响因素进行了合理分析,提出了一些有效的建议。 变压器谐波损耗模型 图1(变压器T型等效电路)如图1,显示的是变压器T型等效电路图。图中的Rm指的是激磁电阻,Xm指的是激磁电抗,R1和R2分别为原端电阻和副端电阻,X1和X2指的是原端电抗和副端电抗。技术人员对变压器等效电路参数进行了合理计算,通过变压器短路试验和开路试验的方法,结合叠加原理和集肤效应,建立出变压器谐波等效模型。技术人员通过变压器开路试验,计算出了激磁电阻和激磁电抗的参数,通过短路试验计算出了原端电抗和副端电抗的参数。 图2(变压器开路试验) 如图2,显示的是变压器开路试验的原理图。当技术人员进行变压器开路试验时,需在低压侧加压、高压侧开路,确保变压器开路试验的安全性。技术人员将二次侧开路后,试验的结果是二次侧的值,必须将其值归算到高压侧,归算公式如下: 图3(变压器短路试验) 如图3,显示的是变压器短路试验的原理图。当技术人员进行变压器短路试验时,需将二次侧绕组进行短路处理,在一次侧加电压,之后将功率和电流导入。在变压器短路试验中,技术人员可以不对激磁电流和铁耗进行考虑,因为正常试验时,电压较小,所以导致磁通较小。技术人员可以通过专门的公式计算出变压器的短路阻抗,从而得出一次电阻和二次电阻消耗的短路输入功率最高。在实际工作中,为了将一次侧电阻和二次侧电阻良好分离,通常采用两者相等的计算方法进行计算。受集肤效应的作用,当变压器中的谐波对其造成影响时,会导致其各项参数发生改变。技术人员可以将各次谐波分量看作很多个独立电流源,通过叠加原理将其在变压器上进行叠加,从而建立变压器的谐波等效模型。

谐波分析产生原因,危害,解决方法

谐波分析 一、谐波的相关概述 谐波是指电流中所含有的频率为基波的整数倍的电量,一般来说是指对周期性的非正弦电量进行傅里叶级数分解,其余大于基波频率的电流产生的电量,其实谐波是一个正弦波分量。 谐波产生的根本原因是非线性负载造成电网中的谐波污染、三相电压的不对称性。由于非线性负荷的存在,使得电力系统中的供电电压即便是正弦波形,其电流波形也将偏离正弦波形而发生畸变。当非正弦波形的电流在供电系统中传输时,将迫使沿途电压下降,其电压波形也将受其影响而产生不同程度的畸变,这种电能质量的下降会给电力系统和用电设备带来严重的危害。 电力系统中的谐波源主要有以下几类:(1)电源自身产生的谐波。因为发电机制造的问题,使得电枢表面的磁感应强度分布偏离正弦波,所产生的电流偏离正弦电流。(2)非线性负载,如各种变流器、整流设备、PWM变频器、交直流换流设备等电力电子设备。(3)非线性设备的谐波源,如交流电弧炉、日光灯、铁磁谐振设备和变压器等。 二、谐波的危害 谐波对电力系统的危害主要表现在:(1)谐波使公用电网中的元件产生附加的谐波损耗,降低发电、输电及用电设备的效率。(2)谐波影响各种电气设备的正常工作。(3)谐波会引起公用电网中局部的并联谐振和串联谐振,从而使谐波放大,引发严重事故。(4)谐波会导致继电保护和自动装置误动作,并使电气测量仪表计量不准确。(5)谐波对临近的通信系统产生干扰,轻则产生噪声,降低通信质量;重则导致信息丢失,使通信系统无法正常工作。 三、谐波的分析 由于谐波导致的各种各样的事故和故障的几率一直在升高,谐波已成为电力系统的一大公害。我国对于谐波相关工作的研究大致起源于20世纪80年代。我国国家技术监督局于93年颁布了国家标准《电能质量——公用电网谐波》(GB/T 14549-1993)。该标准对公用电网中各个等级的电压的限用值、电流的允许值等都做了相应的规定,并以附录的形式给出了测量谐波的方法和数据处理及测量仪器都作了相应的规定。这个规定给我国相关人员进行谐波检测分析、谐波污染的抑制提供了理论依据和大致思路。

谐波分析方法对比

谐波分析方法对比 随着用电设备的多样化和复杂化,线路中谐波的成分也变得越来越丰富,谐波污染的治理问题也变得越来越棘手,许多仪器也相应推出了谐波测量功能,我们该如何区分这些谐波的测量方法并正确地使用他们进行谐波测量呢?本文将进行“深究”。 在很多人认识里,只有使用同步采样才能进行精确的谐波分析,其实采用非同步采样同样能进行谐波分析,而且在许多情况下甚至比同步采样法更优秀。PA功率分析仪提供了常规谐波、谐波和IEC谐波三种谐波测量模式,支持同步和非同步的谐波分析,将两种分析方式互补使用可提高谐波的分析能力。下面通过其计算方法的简单,结合实例讨论三种谐波模式的使用。 谐波测量基本原理 目前最常用的谐波分析方法是使用傅里叶变换,将时域的离散信号进行傅里叶级数展开,得到离散的频谱,从离散的频谱中挑选出各次谐波对应的谱线,计算得出谐波各项参数。 在实际实现时,由于离散傅里叶变换存在“栅栏效应”,采样频率不为基波的整数倍时,部分谐波可能不在离散傅里叶变换后的离散频率点上,需要使用特殊的手段将栅栏空隙对准我们关心的谐波频率点。其中同步采样法和频率重心法使用最为广泛。 同步采样法 顾名思义,就是使采样频率与基波频率同步改变。该方法从源头上保证数据的采样频率为基波频率的整数倍,如IEC 61000-4-7标准就规定50Hz使用10倍基波采样率,采样数据经离散傅里叶变换即可得到各次谐波分量。同步采样常用硬件PLL实现,需要实时调整采样频率,频率的锁定需要时间,受限于滤波器及相关器件,很难做到很宽的频域,也很难保证频谱特别丰富时的准确性。 频率重心法 使用足够高的采样频率(一般大于4倍基波频率)即可满足直接对信号进行采样,将信号的频谱间隔拉开,并且使用更多周期的数据点做离散傅里叶变换,降低频谱泄露的影响。最后根据窗函数的功率谱分布特性,通过频谱的谱峰和次谱峰,找到真正的谱峰频点——即离散频谱的谱峰和次谱峰的重心。通过频率重心法消除了栅栏效应的影响,对各次谐波使用重心法,还得到一个偏离系数,使用该系数配合窗函数功率谱,可求解得到对应频点的相位和幅值等信息。至此,非同步采样法同样得到了各次谐波。受限于窗函数的频谱特性,该法

HVDC谐波分析

基于新型换流变压器HVDC谐波分析与仿真计算 李季,罗隆福,许加柱,李勇,刘福生 (湖南大学电气与信息工程学院,湖南长沙410082) 摘要:在构成高压直流输电系统一系列关键技术中,滤波装置占据十分重要的地位。本文提出了一种具有内部三角形绕组新颖的自耦补偿与谐波屏蔽换流变压器,将传统交流滤波装置移至绕组内部即在换流变压器副方公共绕组串接5、7、11、13次滤波支路的接线方案,让谐波源无法流窜到高压网络中,有效的抑制了直流输电系统中的谐波成分。最后以新型换流变压器及相关的直流系统技术参数为依据,结合滤波装置为新型换流变压器的自补滤波提供谐波通道及满足换流器无功需求的特点,对基于新型换流变压器的直流输电系统中绕组及滤波支路谐波电流进行了详细的分析和仿真计算,仿真结果表明,本文提出的新兴换流变压器原理正确,参数选择合理,滤波效果好,总谐波含量低,具有良好的应用前景。 关键词:高压直流输电;换流变压器;滤波装置;谐波屏蔽;自耦补偿 1引言 在高压直流输电系统(HVDC)中,由于换流器的非线性特征,在交流系统和直流系统中不可避免的产生大量的谐波电压和谐波电流,对系统本身和用户都会造成影响和危害。对于交流系统的滤波来说,传统的滤波方式一般是在换流变压器网侧的母线上并联滤波器装置,兼作无功补偿设备。该种方式虽能较好的解决交流系统的谐波抑制和无功补偿问题,但并未克服通过换流变压器的无功和谐波对变压器本身所带来的影响;并且在现有的直流输电工程运行中仍然大量出现交直流侧谐波超标的现象,因此有必要采取更加有效的滤波设计[1-2]。 自耦补偿与谐波屏蔽换流变压器通过特有的绕组连接方式,辅之以必要的滤波装置,不仅能满足交流系统的滤波及无功需求,而且能解决上述传统换流变压器以及直流输电系统中存在的问题,较之传统换流变压器及无源滤波装置有诸多优点。本文以新型换流变压器原理机及相关换流直流系统的技术参数为依据,对基新型换流变压器的HVDC 交流侧的滤波装置进行分析设计,各次谐波泄露量均能达到谐波国家标准,从而达到理想的综合补偿效果。2新型换流变压器工作机理 2.1接线方案 与传统换流变压器相比,新型换流变压器副边绕组有抽头引出接辅助滤波装置,这势必改变绕组间的电磁关系。图1所示为用于12脉动HVDC的新型换流变压器绕组接线与辅助滤波兼无功补偿设备布置图。由图可知,新型换流变压器副方采用延边三角形连接,中间引出抽头接辅助滤波装置,这在接线方式上相当于将传统变压器原方网侧的无源滤波装置移到副方绕组的中部,以利发挥自补滤波的作用,改善与消除传统滤波与无功补偿的不足]3[。 新型换流变压器要满足12脉波换相要求时,I 桥和II桥相电压分别左移15 ,右移15 。设变压器网侧,阀侧线电压比为1。原边匝数为1p.u;参考电压相量图2所示,根据正弦定理,可计算求得 8966 .0 1 2= = W W k c (1) 5176 .0 1 3= = W W k e (2) 其中, 1 W、 2 W和 3 W分别为变压器网侧绕组,延 边绕组和公共绕组的匝数; c k和 e k分别为延边绕组与网侧绕组、公共绕组与网侧绕组之间的匝比。 f f 图1新型换流变压器接线方案

YD变压器电流谐波分析

Y/Δ接线变压器一次电流波形分析 Y/Δ接线的变压器有Y/Δ1和Y/Δ11两种接法,接线图如图6-2所示。工程应用中一般采用Y/Δ11接法。 (a )Y/Δ1接线 (b )Y/Δ11接线 图6-2 Y/Δ1和Y/Δ11的换流变压器接线图(描图注意:图中的空心小圆点不画出来) Y/Δ变压器的接线特点: Y/Δ1:a 尾接b 头(绕组a 的尾与绕组b 的头相接), b 尾接c 头,c 尾接a 头; Y/Δ11:a 尾接c 头, c 尾接b 头,b 尾接a 头; 由图6-2可以写出Y/Δ1接线和Y/Δ11接线变压器二次侧线电流与三角形绕组电流之间的关系式。 设绕组电流为:a b c i i i ???,,,参考方向流向同名端;变压器引出端的线电流为 a b c i i i ,,,参考方向为流出,Y/Δ1接线变压器的电流关系如图6-3所示。 图6-3 Y/Δ1接线变压器的电流关系(描图注意:图中的空心小圆点不画出来) 由图6-3可见,Y/Δ1接线变压器的电流有如下关系: Y/Δ1: a a c b b a c c b a a a i =i -i a i =i -i b i =i -i c i i i =0 d ?????????++ () () ()() (6-12)

(a )-(b ):a b a c b a a a a i-i=i -i -i i i -i =3i ?? ????? ++ (b )-(c ):b c b a c b b b b i-i=i -i -i i i -i =3i ????? ?? ++ (c )-(a ):c a c b a c c c c i-i=i -i -i i i -i =3i ??????? ++ 因此得:a a b b b c c c a 1 i =i -i e 31 i =i -i f 31 i =i -i g 3 ???() () () ()() () (6-13) Y/Δ11接线变压器的二次电流关系如图6-4所示。 图6-4 Y/Δ11接线变压器的二次电流关系(描图注意:图中的空心小圆点不画出来) 由图6-4可见,Y/Δ11接线变压器的二次电流有如下关系: Y/Δ11: a a b b b c c c a a a a i =i -i a i =i -i b i =i -i c i i i =0 d ?????????++ () () () () (6-14) (a )-(c ):a c a b c a a a a i-i=i -i -i i i -i =3i ??????? ++ (b )-(a ):b a b c a b b b b i-i=i -i -i i i -i =3i ??????? ++ (c )-(b ):c b c a b c c c c i-i=i -i -i i i -i =3i ?? ????? ++

隔离变压器谐波耐受能力和滤波效果分析

隔离变压器滤波能力和谐波耐受力的分析 1、隔离变压器分类 1.1、按输入输出接线方式分类: 通常隔离变压器根据输出输入接线方式不同可以分类为:Dyn,Dd,Ynyn,YNd,Dzn,ZNd,Ynzn,Znyn八大类,D或d表示三角接线,Y或y代表星形接线,Z或z代表曲折接线(英文表示:Zig/Zag 联接),大写表示输入,小写表示输出,N或n表示中性点,通常隔离变压器,尤其是UPS系统和数据机房变压器接线方式主要是:Dyn11,Dzn0两种。 1.2、按输出数量分类:单输出,双输出,多输出等等,通常隔离变压器,尤其是UPS系统和数据机房变压器是单输出变压器,对于十二脉整流变压器或滤波变压器是双输出变压器,其接线方式是Dyn11d0,也就是说,输出有独立隔离的两组输出,一组接线方式是Dyn11,另一组是Dd0,两组输出相位差为30度,对于双输出或多输出变压器,实际应用中必须尽可能保证各组负载尽量相等,否则其滤波效用大大降低,但实际运行中要保证各组输出负载相等又很困难,基于这个原因,多组输出隔离变压器很少在实际中应用。 2、K系数的涵义: 2.1、K系数是谐波热损耗的一个折算系数,通常从1到50,常选用:1、4、7、9、11、13、20、30,最经常选用的是:1、4、13、20。 2.2、对于供电和用电网络的涵义: K系数代表供电和用电网络中谐波的恶劣程度,K系数越高,代表供电和用电网络中谐波越恶劣,K=1代表供电和用电网络中不含有任何谐波,全部为基波分量,UPS系统和数据机房的供电和用电网络为:13和20,K系数不随负载率变化而变化,只和网络谐波频谱有关。 2.3、对于用电、供电和送电设备的涵义:K系数代表设备耐受谐波的能力,K系数越高,设备耐受谐波能力越强,K=1代表设备没有设计耐受任何谐波的附加热损耗的能力,只能在基波工况中才能安全运行,设备耐受谐波的能力随负载率提高而降低,因此,在供电网络容量不受限制时,可以选用较大容量的设备,通过降低负载率有限度地提高K系数耐受谐波能力,但这只是一方面,许多生产厂家和用户误以为只要增大容量就可以,这是一种对K系数耐受谐波能力的片面理解。 3、K系数引用到变压器中的目的: 通常对K系数在任何供电、用电、送电网络和设备均可加于引用,因而对于各不同类型变压器,各不同温度等级变压器,各不同绝缘等级变压器中均可以加于引用,目的是为了提高变压器的可靠性,当然,各不同类型变压器,各不同温度等级变压器,各不同绝缘等级变压器在同样谐波工况中的耐受谐波能力是不同的,最终确定该变压器是否具有合适的抗谐波能力取决于该变压器在设计谐波工况下运行的平均温升和变压器内部最高温度点,如果要在同样的谐波工况下达到同样的耐受谐波能力,设计和制造成本差别也是非常大,对于干式变压器,有些温度、绝缘等级(如130度等级以下和B级绝缘等级以下)的变压器和有些材料(低密度绝缘丝包线)制造的变压器是K系数耐受能力无法达到7以上,因而,UPS系统和数据机房变压器是不能选择以上的变压器。 4、提高变压器K系数耐受能力的主要办法: 4.1、变压器特殊设计,降低或消除变压器自身对谐波敏感的因数; 4.2、选择高温等级的高密度绝缘漆包铜线(H级180度以上); 4.3、降低变压器自身损耗,提高变压器效率; 4.4、选择具有滤波能力的变压器,如Dzn0变压器,和双输出变压器Dyn11d0;

电力系统谐波分析

海南大学 课程论文 题目:电力系统谐波分析 学号: B0736039 姓名:陈肖前 年级: 07电气1班 学院:机电与工程学院 系别:电气系 专业:电气工程及其自动化 指导教师:王海英 完成日期: 2010 年 06月 15 日

摘要 谐波对电力系统和用电设备产生了严重的危害及影响,而小波变换为电力系统谐波信号分析提供了有力的分析工具。与Fourier变换相比,小波变换是时间频率的局部化分析,它通过伸缩平移运算对信号逐步进行多尺度细化,最终达到高频处时间细分,低频处频率细分,能自动适应时频信号分析的要求,从而可聚焦到信号的任意细节,解决了Fourier变换的困难问题,成为继Fourier变换以来在科学方法上的重大突破。有人把小波变换称为“数学显微镜”。 本设计探讨了小波变换的基本原理之后,就如何应用小波工具箱对系统的谐波信号进行了分析。主要内容如下: 首先,采用小波变换进行谐波检测的方法进行了系统仿真,通过仿真验证了小波分析具有时域和频域的双重分辨率,能够较好的解决傅立叶分析所不能解决的问题。 其次,在谐波分析中,采用小波分析算法,不仅能正确的得到各次谐波,而且对用傅立叶分析没法解决的有关信号的暂态分量的提取,暂态分量时间的定位,电压、电流波形的间断、突起、凹陷和瞬态分量的检测都具有较好的效果。 最后MATLAB仿真的结果验证了本文的分析方法的正确性和有效性。基本达到了实验目的。 关键词:谐波分析小波理论MATLAB

Abstract Harmonics have a serious danger and affect in the power system and electrical equipment, but wavelet transform can provides a powerful analytical tool for harmonics signal analysis. Compared with the Fourier transform, wavelet transform is the localized analysis of time frequency, which refines the signal multi-scale by scalabling and shifting operation step-by-step. Finally it meets the requirement of high-frequency time and low-frequency frequency subdivided, and of automatically adapting to time-frequency signal analysis. It can focus on arbitrary particulars of signal , solving the difficult problems of the Fourier transform. It is a major breakthrough in science method since the Fourier transform. Someone praised wavelet transform as the “mathematical microscope”. After discussing the basic principles of wavelet transform, this Design discussed how to use the wavelet toolbox to analy the harmonic signals. They are as follows: Firstly, the Harmonic Detection method was simulated by Wavelet Transform, and the simulation shows that the Wavelet Transform has double resolutions in both time and frequency domains, which can solve the problem that the Fourier Transform can't do well. Secondly, we could not only correctly get various orders of harmonics, but also effectively solve how to draw the transient component of the signal ,and how to locate the time of transient component of the signal ,and solve the problem of intermittent and Processes and depression of the voltage and current wave, and solve how to detect transient component,and the Fourie are not available. Finally,MATLAB simulation results verify the correctness and effectiveness of the analytical methods. It achieves the basic purpose of the experiment. Key words: Harmonic measurement Wavelet theory MATLAB

谐波对电力变压器会造成哪些影响精编版

谐波对电力变压器的哪些影响? 1、谐波电流使变压器的铜耗增加,引起局部过热、振动、噪声增大、绕组附加发热等。 2、谐波电压引起的附加损耗使变压器的磁滞及涡流损耗增加,当系统运行电压偏高或三相不对称时,励磁电流中的谐波分量增加,绝缘材料承受的电气应力增大,影响绝缘的局部放电的介质增大。对三角形连接的绕组,零序性谐波在绕组内形成环流,使绕组温度升高。 3、变压器励磁电流中含谐波电流,引起合闸涌流中谐波电流过大,这种谐波电流在发生谐振时的条件下对变压器的安全运行将造成威胁。 谐波对电力避雷器有哪些影响? 变电站大容量,高电压的变压器由于合闸涌流的过程时间比较长,能够延续数秒或更长的时间,有时还会引起谐振过电压,并使相关避雷器的放电时间过长而受到损坏。这一问题对选择保护高压滤波器中电感或电容用的避雷器参数带来较大的困难。 谐波对输电线路有哪些影响? 1、谐波污染增加了输电线路的损耗。输电线路中的谐波电流加上集肤效应的影响将产生附加损耗,使得输电线路损耗增加。特别是在电力系统三相不对称运行时,对中性点直接接地的供电系统线损的增加尤为显著。 2、谐波污染增大了中性线电流,引起中性点漂移。在低压配电网络中,零序电流的零序的谐波电流(3次、6次、9次……)不仅会引起中性线电流大大增加,造成过负荷发热,使损耗增加,而且产生压降,引起零电位漂移降低了供电的电能质量。 谐波对电力电容器有哪些影响? 当配电系统非线性用电负荷比重较大,并联电容器组投入时,一方面由于电容器组的谐波阻抗小,注入电容器组的谐波电流大,使电容器负荷而严重影响其使用寿命,另一方面当电容器组的谐波容抗与系统等效谐波感抗相等而发生谐振时,引起电容器谐波电流严重放大使电容器过热而损坏。因此,电压谐波和电流谐波超标都会使电容器的工作电流增大日出现异常,例如:对于常用自愈试并联电容器,其允许过电流倍数是1.3倍频定电流,当电容器的电流超过这一限值时,将会造成损坏事故。同时,谐波使工频正弦波形发生畸变,产生锯齿状尖顶波,易在绝缘介质中引发局部放电,长时间的局部放电也会加速绝缘介质的老化,自愈性能下降,而容易导致电容器损坏。 谐波对电力电缆有哪些影响? 谐波污染将会使电缆的介质损耗,输电损耗增大,泄漏电流上升,温升增大及干式电缆的局部放电增加,引起单相接地故障的可能性增加。 由于电力电缆的分布电容对谐波电流有放大作用,在系统负荷低谷时,系统电压上升,谐波电压也相应升高。电缆的额定电压等级越高,谐波引起电缆介质不稳定的危险性越大,更容易发生故障。 谐波对电力系统其他运行设备有哪些影响? 1、对同步发电机的影响:用户的负序电流和谐波电流注入系统内的同步发动机,

电力系统谐波影响及消除

电力系统谐波影响及消除(网络摘录)2011.12.20 返回日志列表 从补偿电容无法投入,谈谐波危害,分析谐波来源,提出治理谐波的初步建议随着个私经济特别是特钢和化学工业在我市的发展,我公司的供电量也不断的增长,为了使功率因素达到标准,必须投入补偿电容,但是这几个乡镇的变电所的补偿电容器却无法投上,强行投入后,电容器熔丝也会很快熔断。但根据其他变电所运行经验,在此功率因数下,无功电流不应大于熔丝熔断电流。这是为什么呢? 经过对该地区的供电现状分析,这是由于谐波引起的。所谓谐波,即理想的电力系统向用户提供的应该是一个恒定工频的正弦波形电压,但是由于各种原因,使这种理想状态在实际中无法存在。因此通过对周期性电压或电流的傅立叶分解,所得到的频率为基波整数倍分量的含有量,称为谐波。 谐波对于电网的危害非常大,主要表现在以下方面: 1.由于电网主要是按基波设计的。由于LC元件的存在,虽然在基波时不会发生谐振,但在某个特定谐波时却可能引起谐振,可能将谐波电流放大几倍甚至数十倍,电网谐振引起设备过电压,产生谐波过流,对设备造成危害。特别是对电容器和与之串联的电抗器。其中,特别要注意的是,由于电容器是容性负载,能与电网上感性设备(其它设备主要是感性设备)配合,构成共振条件,又由于其大小与谐波频率成反比,因此,电容更容易吸收谐波共振电流,引起电容过载,造成电容损坏,或者熔丝熔断。 2.使电网中的电气设备产生额外的损耗(谐波功率),降低了设备的效率,同时谐波会影响设备的正常工作,例如变压器局部严重过热,电容器、电缆等设备过热,电机产生机械振动等故障,绝缘部分老化、变质,严重时候甚至设备损坏。 3.导致继电保护和自动装置误动或拒动,造成不必要的损失,谐波会使电气测量仪表测量不准确,造成计量误差。 另外,谐波还会产生对设备附近的通信系统产生干扰等其他危害。 既然谐波危害如此之大,那么谐波是如何产生的?又如何能减小它的影响和危害呢? 谐波来源 1、中频炉、电弧炉等设备是该地区谐波的主要来源 对该地区负荷进行分析,发现主要的原因是该地区特钢工业发达,中频炉、电弧炉等作为一类高效的加热源已经非常普及。电弧炉是利用电极物料间产生的电弧熔炼金属,因此,它的电流波形很不规则,含有多种谐波(2次到7次)以及间谐波,这是谐波的一个重要来源。而中频炉是工频电流整流后再变为中频,再利用电磁感应来熔炼金属,因此产生大量的高次谐波,其中以5次、7次、11次等奇次谐波为主。这正是该地区谐波的主要来源。 2、用户变压器群是该地区谐波的重要来源 一般情况下,三相变压器由于铁芯为“日”形状,中相比边相要短一半,因此,三个磁路的不对称引起变压器励磁电流中含有谐波分量。所以当对空载三相变压器加电压激励时,即使受电侧没有零序电流通路(中性点不接地或三角形接线),励磁电流中也会有谐波分量。虽然在实际运行时,这个谐波分量很小,但由于变压器绕组接法以及各绕组和电网各相的连接统一规定时,则各台变压器励磁电流里的同次谐波彼此叠加,形成了电网中谐波的又一重要来源。例如,在绝大多数配变中,都是Y,yn接线,变压器的中间的铁柱对应的线圈即中相接的都是B相,这样的统一接法,就为3、5、7等次谐波提供了一个分别互相叠加的条件。在该地区,现有35kV用户变压器5台,总容量400kVA,10kV用户变压器约800台,总容量330kVA.如此庞大的用户变群又成为了谐波的又一个重要来源。

HANS时间序列谐波分析法

HANTS(the Harmonic analysis of time series)——时间序列谐波 分析法 时间序列谐波分析法(Harmonic Analysis of Time Series,HANTS)是平滑和滤波两种方法的综合,它能够充分利用遥感图像存在时间性和空间性的特点,将其空间上的分布规律和时间上的变化规律联系起来。时间序列谐波分解法进行影像重构时充分考虑了植被生长周期性和数据本身的双重特点,能够用代表不同生长周期的植被频率曲线重新构建时序NDVI影像,真实反映植被的周期性变化规律。时间序列谐波分析法是对快速傅立叶变换的改进,它不仅可以去除云污染点,而且对时序图像的要求不象快速傅立叶变换(FFT)那么严格,它可以是不等时间间隔的影像。因此同快速傅立叶变换相比,HANTS在频率和时间系列长度的选择上具有更大的灵活性。时间序列谐波分析法进行时序影像的重构也是基于云对NDVI的负值影响,但是它与最大值去除云污染的影响是两个完全不同的方法。它是首先通过傅立叶变换得到非零频率的振幅和相位,然后将所有的点进行最小二次方拟合。通过观测资料与拟合曲线的比较,对于那些明显低于拟合曲线的点被作为云污染点通过把它们的权重赋为零而拒绝参与曲线的拟合。建立在剩余点上进行新的曲线拟合,通过这种反复进行的迭代过程实现图像的重构。 HANTS的核心算法是最小二乘法和傅立叶变换,通过最小二乘法的迭代拟合去除时序NDVI值中受云污染影响较大的点,借助于傅立叶在时间域和频率域的正反变换实现曲线的分解和重构,从而达到时序遥感影像去云重构的目的。 采用时间序列谐波分析法(HANTS)可以对时间谱数据进行平滑。其核心算法是傅立

电力变压器中的谐波抑制

电力变压器中的谐波抑制 对电力变压器进行理论分析时, 常常把变压器的电压、电流、磁通、感应电势假定为正弦波来进行分析。可是二变压器在实阮运行时, ,由于铁芯的励磁电流与主磁通非线性的影响, 使得励磁电流、磁通及感应电势可能出现高次谐波及三次谐波, 给变压器造成很大的危害。所以有必要对变压器的高次谐波及三次谐波进行理论分析,并掌握其防治方法, 使变压器能够高效可靠地运行。 (1)电力电压器中谐波的产生 变压器运行过程中, 电流、电势及磁通均是非完全的正弦量。例如, 对变压器的铁心线圈来说, 当铁心中的磁通密度较低, 在800Gs以下时, 磁路是不饱合的, 这时的磁化曲线可用直线来表示, 激磁电流便和磁通成正比。假如磁通波有正弦波形, 则激磁电流波也有正弦波形。根据磁通波和磁化曲线, 可以求出激磁电流波, 如图1(a)(b)所示。由图可见,i(t)和(t)同相, 且二者均为正弦波形。但当磁通密度为800~1300Gs时, 磁化曲线转入弯曲部分;而当磁通密度超过电流便不再和磁通成线性关系。如磁通波依然保持着正弦波形, 则激磁电流波将出现畸变。如图2(a)(b)所示。如对激磁电流波进行谐波分析, 则可发现该波除基波以外还包含有显著钓三次谐波以及其它各奇次谐波, 而以三次谐波为最大。当最高磁通密度为1400Gs时, 三次谐波的幅值即已超过基波幅值的50%。由图2(b)可见激电流波i(t)的波形虽受到畸变, 但仍和磁通波(t)中的基波同相。 (a)磁化曲线(b)磁通波和激磁电流波 图1当磁路不饱合时的激磁电流波

(a)磁化曲线(b)磁通波和激磁电流波由此可见, 为要保持磁通波有正弦波形, 激磁电流中的谐波分量尤其是三次谐波分量是十分必要的, 如果激磁电流中的三次谐波分量不能流通, 则从激磁电流波及磁化曲线可以反过来求得磁通波为一平顶波。这时磁通波中便将有谐波存在, 从而使绕组中的感应电势也含有谐波分量。也就是说, 为了保证变压器主磁通及感应电势为正弦波, 抑制其中三次谐波, 就必须创造条件使激磁电流中含谁水量有三次谐波。 (2) 谐波对电力变压器的危害 对变压器来说, 若原绕组有谐波电流, 则谐波电流仅对原绕组造成影响, 造成绕组过热。若原绕组激磁电流为正弦波, 则主磁通为平顶波, 含水量有三次谐波存在, 因此使感应电势也产生三次谐波, 则造成变压器副绕组供配电电压含有三次谐波影响所供负荷供电质量同时造成变压器铁芯过热, 降低变压器效率, 缩短使用寿命。由此可见, 二种谐波形式即激磁电流谐波和主磁通谐波中, 主磁通谐波对变压器影响最大。因此, 在实际应用中, 我们采取措施, 使原绕组中产生三次谐波电流, 从而使主磁通波为正弦波, 消除主磁通三次谐波对变压器造成的危害。 (3)抑制变压器主磁通三次谐波的措施 由以上分析可知, 变压器的谐波源主要为三次谐波电流和三次谐波磁通。三次谐波电流的流通情形和绕组联接组的组别有关, 而三次谐波磁通的流通情形和铁芯磁路的结构形式有关。因此, 抑制变压器主磁通的三次谐波主要从选择绕组联接组以利于三次谐波电流流通, 确定铁芯的结构型式, 抑制主磁通三次谐波这二方面入手。 1.正确选择变压器的联接组别 我国常用的标准变压器绕组的接线组别为Y,yn0 Y,d11 D,y11 YN,d11 YN,y0 Y,y0几种型式 1 Y,yn0接线不能应用于三相变压器组 三相变压器组即在三相线路上应用三台单相变压器。此各联接组由于原、副绕组均接成星瑚且没有中线联接, 三次谐波激磁电流不能流通,所以, 主磁通中将产生三次谐波分量, 且由于三个单相铁芯各自构成独立的磁通回路,三次谐波磁通能够顺利地流通, 从而存在三次谐波主磁通,则产生的感应电势中的也将含有三次谐波。实际应用中, 三次谐波电势的振幅可达基波电势振幅的50%~60%。这将在绕组上引起危险的过电压。因此,Y,y0接线不能

弧焊变压器工作原理分析

《弧焊电源》授课讲稿第5次课第2章弧焊变压器 弧焊变压器工作原理分析 1空载状态分析 (1)电路-磁路图 电路-磁路耦合关系 (2)基本方程式 ①1 =①0 +①L0 物理意义:总磁通①1等于主磁通①0加漏磁通①L0 E20 =U o 物理意义:空载电压U b等于空载时的2次绕组的感应电动势E20 E10的由来E 1b 1次绕组的空载感应电动势有效值 e1b 1次绕组的空载感应电动势瞬时值 物理关系:同一磁通量上不同绕组的感应电动势取决于圈数 < __________________ 丿 耦合系数Km物理意义:主磁通与总磁通之比 由于存在漏磁,耦合系数小于1

物理意义: 两个因素 使输出端的 空载电压 低于 输入电压 耦合系数低于 1:存在漏磁,导致主磁通量小于总磁通量 匝数比小于 1 :导致 输出端感应电动势易于输入端 空载状态下输入回路的电压平衡 物理意义: 回路中感应电动势 E 10 、输入电压 U 1 、绕组上的压降之和为零 2 负载状态分析 (1)电路- 磁路图 电路 - 磁路耦合关系 物理关系:主磁通由 1 次线圈中的输入电流和 2 次线圈中的输出电流共同产生 2)外特性方程式推导 输入回路的电压平衡 物理关系 输入回路中的电压降与电动势之和为零 注意 漏磁产生的感应电动势被等效电感代替 将输入回路的电压平衡式中的参数代换为输出回路的参数 上述公式的物理意义:反映了输入回路与输出回路的磁耦合关系 E 1 转换为输出回路的感应电动势 E 2 I 1 , 转换为输入回路的空载电流 I 0 和 I 2 得到如下方程式 物理意义:负载时,输出回路的感应电动势 E 2 与输出回路的电流之间的关系 经如下整理 即:将输入回路感应电动势 将输入回路的负载电流 输出回路的负载电流

频谱分析仪对射频和音频谐波以及THD的测量方法分析

频谱分析仪对射频和音频谐波以及THD的测量方法分析 无线电工程应用不仅要对射频信号的谐波进行测量,有时还要确定音频信号的总谐波失真(THD)。射频信号可能是已调信号或连续波信号。这些信号可以由有漂移的压控振荡器(VCO)或稳定的锁相振荡器或合成器产生。现代频谱分析仪能利用本文中所述方法来进行这些测量。本文还将讨论如何断定在分析设备或被测器件(DUT)中是否产生谐波、对不同类型信号的最佳测量方法以及对数平均、电压单位和均方根值(ms)计算的利用。我们这里所处理的所有信号均假定为周期信号,亦即它们的电压随时间的变化特性是重复的。傅里叶变换分析可以将任何重复信号表示为若干正弦波之和。按一定目的产生的频率最低的正弦波称为基频信号。其它正弦波则称为谐波信号。可以利用频谱分析仪来测量基频信号及其谐波信号的幅度。谐波常常是人们不希望存在的。在无线电发射机中,它们可能干扰射频频谱的其它用户。例如,在外差接收机的本振(LO)中,谐波可能产生寄生信号。因此,通常应对它们进行监控并将其减小到最低限度。利用频谱分析仪对信号进行测量时,分析仪的电路也会引入其自身的某种失真。为了进行精确测量,用户需要了解所测得的失真究竟是所考察的信号的一部分还是由于引人分析仪所引起的。分析仪所产生的失真起因于某些微弱非线性特性(因为它没有理想线性特性)。因此,可以用表明输出电压(O)与输入电压(I)之间的关系的泰勒(Taylor)级数来表示频谱分析仪的信号处理特性: V0=K1Vi+K2Vi2+K3V3i(1) 式中,V0=输出电压,Vi=输入电压,K1、K2和K3均为常数利用上面的关系式,可以直接证明:输入电压加倍将引起Vi2项增加4倍(6dB),因而引起对正弦波的二次谐波响应增加4倍。类似类推,三阶谐波失真随输入电平按三次方规律增加。有两种方法即依靠技术指标或实验能断定分析仪是否对测出的失真有影响。为了依据分析仪的谐波失真技术指标来判断其影响,利用对失真量级的了解,将相对于分析仪输入混频器上的特定信号以伽给出的那些技术指标变换成针对选择的输入电平给出的dBC。图1示出这个过程的图解实例。从图中可以看出,对频谱分析仪只规定了二阶失真和三阶失真。而更高阶次的失真通常可忽略不计。

变压器接线方式详解

变压器接线方式详解 Company Document number:WTUT-WT88Y-W8BBGB-BWYTT-19998

[分享]变压器接线方式详解(标题无法改,这是共享资源) 例1:一台双绕组变压器,高压星形联结绕组额定电压为10000V,低压为中性点引出的星形联结绕组,额定电压为400V。两个星形联结绕组的电压同相位(钟时序数0)。 其联结组标号为Y,yn0。 例2:一台三绕组变压器,高压为中性点引出的星形联结绕组,额定电压为121kV;中压为中性点引出的星形联结绕组,额定电压为,低压为三角形联结绕组,额定电压为。两个星形联结绕组的电压是同相位(钟时序数0),而三角形联结绕组上的电压超前于其他电压30°(钟时序数11)。 所以,联结组标号为YN,yn0,d11。 例3:一台带第三绕组的自耦变压器,自耦联结的一对绕组为中性点引出的星形联结,其额定电压分别为220kV,121kV;第三绕组为三角形联结,额定电压为11kV。自耦联结的一对绕组电压同相位(钟时序数0),而三角形联结绕组上的电压超前于星形联结绕组上的电压30°(钟时序数11)。 所以,联结组标号为YN,a0,d11。 例4:一台单相双绕组变压器,高压绕组额定电压为550kV,低压绕组额定电压为20kV。 则,连接组标号为I,I0。 例5:一台双绕组变压器,高压绕组为星三角变换,低压绕组为三角形联结,低压绕组电压超前于高压为星形联结时的电压30°(钟时序数11),与三角形联结时的电压同相位。 则,联结组标号为Y-D,d11-0

例6:一台带分裂绕组的变压器,高压绕组为星形联结有中性点引出,低压绕组为两个三角形联结的分裂绕组,低压绕组上的电压超前于星形联结绕组上的电压30°(钟时序数11)。 则,联结组标号为YN,d11-d11。 变压器采用三角形接法和星形接法各有什么意义 D-D;Y-Y;D-Y;Y-D这四种变压器用于什么场合有什么不同吗 另外比如一个Y-Y变压器下级再接一个D-Y变压器,那么Y-Y的n线能不能和下级的D-Y变压器的n线接到一起好像不对吧,该怎么处理这种情况 Y型因为有中性点可以接地所以多用于为高压侧提供接地,也就是说: Y-D 一般做降压变压器, D-Y 一般做升压变压器,但是事实上很多配电变压器(属于降压变压器)也采用D-Y接法,只是接地测变成了低压侧而已。 D-D的好处是在其中一组坏的情况下,可以将这组移去检修而保持另两足继续工作只是容量变为原来的58%, Y-Y一般不采用,因为它没有谐波通路,会使变压器输出产生很大的畸变。 对于两级变压器的问题,比方说你们办公楼会有一个10/的变压器供电,它的Y 测中性点是接地的,但是你需要将400V或者380V的电压变换成110V供给你的特殊设备,那么这个小变压器事实上的n线就是通过上一级的变压器n线而最终接地的 关于变压器星形三角形那种接法可以防止三次谐波的问题,原理是什么,求助高手给解释一下还有最好能给讲解一下,三次谐波产生的原因,不胜感激。

相关文档