文档库 最新最全的文档下载
当前位置:文档库 › 椭圆专题复习讲义

椭圆专题复习讲义

椭圆专题复习讲义
椭圆专题复习讲义

椭圆专题复习

★知识梳理★

1. 椭圆定义:

(1)第一定义:平面内与两个定点21F F 、的距离之和为常数|)|2(222F F a a >的动点P 的轨迹叫椭圆,其中两个定点21F F 、叫椭圆的焦点.

当21212F F a PF PF >=+时, P 的轨迹为椭圆 ; ; 当21212F F a PF PF <=+时, P 的轨迹不存在;

当21212F F a PF PF ==+时, P 的轨迹为 以21F F 、为端点的线段

(2)椭圆的第二定义:平面内到定点F 与定直线l (定点F 不在定直线l 上)的距离之比是常数e (10<

(利用第二定义,可以实现椭圆上的动点到焦点的距离与到相应准线的距离相互转化).

2.椭圆的方程与几何性质:

标准方程 )0(122

22>>=+b a b

y a x )0(12

2

22>>=+b a b x a y 性 质

参数关系 222c b a +=

焦点 )0,(),0,(c c -

),0(),,0(c c -

焦距 c 2

范围 b y a x ≤≤||,|| b x a y ≤≤||,||

顶点 ),0(),,0(),0,(),0,(b b a a --

)0,(),0,(),,0(),,0(b b a a --

对称性 关于x 轴、y 轴和原点对称

离心率

)1,0(∈=

a

c

e 准线

c

a x 2

±

=

c

a y 2

±

=

考点1 椭圆定义及标准方程 题型1:椭圆定义的运用

[例1 ] (湖北部分重点中学2009届高三联考)椭圆有这样的光学性质:从椭圆的一个焦点出发的光线,经椭圆反射后,反射光线经过椭圆的另一个焦点,今有一个水平放置的椭圆形台球盘,点A 、B 是它的焦点,长轴长为2a ,焦距为2c ,静放在点A 的小球(小球的半径不

计),从点A 沿直线出发,经椭圆壁反弹后第一次回到点A 时,小球经过的路程是 A .4a

B .2(a -c)

C .2(a+c)

D .以上答案均有可能

[解析]按小球的运行路径分三种情况: (1)A C A --,此时小球经过的路程为2(a -c); (2)A B D B A ----, 此时小球经过的路程为2(a+c); (3)A Q B P A ----此时小球经过的路程为4a,故选D 【名师指引】考虑小球的运行路径要全面 【新题导练】

1.短轴长为5,离心率3

2

=

e 的椭圆两焦点为F 1,F 2,过F 1作直线交椭圆于A 、B 两点,则△ABF 2的周长为 ( )

A.3

B.6

C.12

D.24

[解析]C. 长半轴a=3,△ABF 2的周长为4a=12

2.已知P 为椭圆

22

12516x y +=上的一点,,M N 分别为圆22(3)1x y ++=和圆22(3)4x y -+=上的点,则PM PN +的最小值为( )

A . 5

B . 7

C .13

D . 15

[解析]B. 两圆心C 、D 恰为椭圆的焦点,10||||=+∴PD PC ,PM PN +的最小值为10-1-2=7

题型2 求椭圆的标准方程

[例2 ]设椭圆的中心在原点,坐标轴为对称轴,一个焦点与短轴两端点的连线互相垂直,且此焦点与长轴上较近的端点距离为24-4,求此椭圆方程. 【解题思路】将题中所给条件用关于参数c b a ,,的式子“描述”出来

[解析]设椭圆的方程为122

22=+b y a x 或)0(12222>>=+b a a

y b x ,

则??

?

??+=-=-=222)12(4c b a c a c b , 解之得:24=a ,b =c =4.则所求的椭圆的方程为

116322

2=+y x 或132

1622=+y x . 【名师指引】准确把握图形特征,正确转化出参数c b a ,,的数量关系.

[警示]易漏焦点在y 轴上的情况. 【新题导练】

3. 如果方程x 2+ky 2

=2表示焦点在y 轴的椭圆,那么实数k 的取值范围是____________.

O

x y

D P

A

B C

Q

[解析](0,1). 椭圆方程化为22x +k

y 22=1. 焦点在y 轴上,则k 2

>2,即k <1.

又k >0,∴0

4.已知方程),0(,1sin cos 2

2

πθθθ∈=+y x ,讨论方程表示的曲线的形状 [解析]当)4

,0(π

θ∈时,θθcos sin <,方程表示焦点在y 轴上的椭圆,

当4

π

θ=

时,θθcos sin =,方程表示圆心在原点的圆,

当)2

,4(

π

πθ∈时,θθcos sin >,方程表示焦点在x 轴上的椭圆 5. 椭圆对称轴在坐标轴上,短轴的一个端点与两个焦点构成一个正三角形,焦点到椭圆上

的点的最短距离是3,求这个椭圆方程.

[解析] ????==-c a c a 23?????==3

3

2c a ,3=∴b ,所求方程为122x +92y =1或92x +122y =1.

考点2 椭圆的几何性质

题型1:求椭圆的离心率(或范围)

[例3 ] 在ABC △中,

3,2||,300

===∠?ABC S AB A .若以A B ,为焦点的椭圆经过点C ,

则该椭圆的离心率e = .

【解题思路】由条件知三角形可解,然后用定义即可求出离心率 [解析] 3sin ||||2

1

=?=

?A AC AB S ABC , 32||=∴AC ,2cos ||||2||||||22=?-+=A AC AB AC AB BC

2

1

32322||||||-=+=+=

BC AC AB e

【名师指引】(1)离心率是刻画椭圆“圆扁”程度的量,决定了椭圆的形状;反之,形状确定,离心率也随之确定

(2)只要列出c b a 、、的齐次关系式,就能求出离心率(或范围) (3)“焦点三角形”应给予足够关注

【新题导练】

6.如果一个椭圆的长轴长是短轴长的两倍,那么这个椭圆的离心率为 A .45 B .23 C .22 D .2

1 [解析]选B

7.已知m,n,m+n 成等差数列,m ,n ,mn 成等比数列,则椭圆12

2=+n

y m x 的离心率为

[解析]由?

??

?

??≠=+=02222mn n m n n m n ?

??==42n m ,椭圆122=+n y m x 的离心率为22

题型2:椭圆的其他几何性质的运用(范围、对称性等)

[例4 ] 已知实数y x ,满足12

42

2=+y x ,求x y x -+22的最大值与最小值

【解题思路】 把x y x -+2

2

看作x 的函数

[解析] 由12422=+y x 得222

1

2x y -=, 2202

122

≤≤-∴≥-

∴x x ]2,2[,2

3

)1(212212222-∈+-=+-=-+∴x x x x x y x

当1=x 时,x y x -+22取得最小值2

3,当2-=x 时,x y x -+2

2取得最大值6

【新题导练】

9.已知点B A ,是椭圆22

221x y m n

+=(0m >,0n >)上两点,且BO AO λ=,则λ=

[解析] 由BO AO λ=知点B O A ,,共线,因椭圆关于原点对称,1-=∴λ

10.如图,把椭圆22

12516

x y +=的长轴AB 分成8等份,

过每个分点作x 轴的垂线交椭圆的上半部分于1234567,,,,,,P P P P P P P 七个点,F 是椭圆的一个焦点

则1

234567PF P F P F P F P F P F P F ++++++=________________ [解析]由椭圆的对称性知:352536271==+=+=+a F P F P F P F P F P F P . 考点3 椭圆的最值问题

[例5 ]椭圆

19

162

2=+y x 上的点到直线l:09=-+y x 的距离的最小值为___________. 【解题思路】把动点到直线的距离表示为某个变量的函数

[解析]在椭圆上任取一点P,设P(θθsin 3,cos 4). 那么点P 到直线l 的距离为:

|9)sin(5|2

2

11|

12sin 3cos 4|2

2-+=

+-+?θθθ.22≥ 【名师指引】也可以直接设点),(y x P ,用x 表示y 后,把动点到直线的距离表示为x 的函数,关键是要具有“函数思想” 【新题导练】

11.椭圆19

162

2=+y x 的内接矩形的面积的最大值为

[解析]设内接矩形的一个顶点为)sin 3,cos 4(θθ, 矩形的面积242sin 24cos sin 48≤==θθθS

12. P 是椭圆122

22=+b

y a x 上一点,1F 、2F 是椭圆的两个焦点,求||||21PF PF ?的最大值

与最小值

[解析] ],[|

|,)|(||)|2(||||||12

211121c a c a PF a a PF PF a PF PF PF +-∈+--=-=? 当a PF =||1时,||||21PF PF ?取得最大值2

a , 当c a PF ±=||1时,||||21PF PF ?取得最小值2b

13.已知点P 是椭圆14

22

=+y x 上的在第一象限内的点,又)0,2(A 、)1,0(B , O 是原点,则四边形OAPB 的面积的最大值是_________.

[解析] 设)2

,

0(),sin ,cos 2(π

θθθ∈P ,则

θθcos 22

1

sin 21?+?=+=??OB OA S S S OPB OPA OAPB 2cos sin ≤+=θθ

考点4 椭圆的综合应用

题型:椭圆与向量、解三角形的交汇问题

[例6 ] 已知椭圆C 的中心为坐标原点O ,一个长轴端点为()0,1,短轴端点和焦点所组成的四边形为正方形,直线l 与y 轴交于点P (0,m ),与椭圆C 交于相异两点A 、B ,且PB AP 3=. (1)求椭圆方程; (2)求m 的取值范围.

【解题思路】通过PB AP 3=,沟通A 、B 两点的坐标关系,再利用判别式和根与系数关系

得到一个关于m 的不等式

[解析](1)由题意可知椭圆C 为焦点在y 轴上的椭圆,可设22

22:1(0)y x C a b a b

+=>>

由条件知1a =且b c =,又有2

2

2

a b c =+,解得 2

1,2

a b c ===

故椭圆C 的离心率为22

c e a ==,其标准方程为:12

122

=+x y

(2)设l 与椭圆C 交点为A (x 1,y 1),B (x 2,y 2)

?

????

y =kx +m

2x 2+y 2

=1 得(k 2+2)x 2+2kmx +(m 2-1)=0 Δ=(2km )2-4(k 2+2)(m 2-1)=4(k 2-2m 2+2)>0 (*) x 1+x 2=-2km k 2+2, x 1x 2=m 2-1k 2+2

∵AP =3PB ∴-x 1=3x 2 ∴?

????

x 1+x 2=-2x 2

x 1x 2=-3x 2

2 消去x 2,得3(x 1+x 2)2

+4x 1x 2=0,∴3(-2km k 2+2)2+4m 2-1

k 2+2

=0

整理得4k 2m 2+2m 2-k 2-2=0

m 2

=14时,上式不成立;m 2≠14时,k 2=2-2m 2

4m 2-1, 因λ=3 ∴k ≠0 ∴k 2

=2-2m 24m 2-1

>0,∴-1

2

容易验证k 2>2m 2-2成立,所以(*)成立 即所求m 的取值范围为(-1,-12)∪(1

2,1)

【名师指引】椭圆与向量、解三角形的交汇问题是高考热点之一,应充分重视向量的功能 【新题导练】

14.设过点()y x P ,的直线分别与x 轴的正半轴和y 轴的正半轴交于A 、B 两点,点Q 与点P 关于y 轴对称,O 为坐标原点,若PA BP 2=,且1=?AB OQ ,则P 点的轨迹方程是

( ) A.

()0,0132322>>=+y x y x B. ()0,0132

3

22>>=-y x y x C. ()0,0123322>>=-y x y x D. ()0,012

3322

>>=+y x y x

[解析]

),(),3,23(y x OQ y x AB -=-=132

322=+∴y x ,选A.

15. 如图,在Rt △ABC 中,∠CAB=90°,AB=2,AC=

2

2

。一曲线E 过点C ,动点P 在曲线E 上运动,且保持|PA |+|PB |的值不变,直线l 经过A 与曲线E 交于M 、N 两点。 (1)建立适当的坐标系,求曲线E 的方程;

(2)设直线l 的斜率为k ,若∠MBN 为钝角,求k 的取值范围。 解:(1)以AB 所在直线为x 轴,AB 的中点O 为原点建立直角坐标系,则A (-1,0),B

(1,0) 由题设可得

222

2322)22(222||||||||22=+=++=

+=+CB CA PB PA ∴动点P 的轨迹方程为)0(122

22>>=+b a b

y a x ,

则1.1,222=-===

c a b c a

∴曲线E 方程为12

22

=+y x (2)直线MN 的方程为),(),,,(),,(),1(221111y x N y x M y x M x k y 设设+=

由0)1(24)21(0

22)1(2

2222

2

=-+++???=-++=k x k x k y x x k y 得 0882>+=?k

∴方程有两个不等的实数根

2221222121)

1(2,224x k k x x k k x +-=?+-=+∴

),1(),,1(2211y x BN y x BM -=-=∴

)1)(1()1)(1()1)(1(112212121+++--=+--=?x x k x x y y x x BN BM

22122121))(1()1(k x x k x x k +++-++=

2

22

222222

21171)214)(1(21)1(2)1(k

k k k k k k k k +-=+++--++-+= ∵∠MBN 是钝角

0

即021172

2<+-k k 解得:7

777<<-

k 又M 、B 、N 三点不共线

0≠∴k

综上所述,k 的取值范围是)7

7,0()0,77(?- 基础巩固训练

1. 如图所示,椭圆中心在原点,F 是左焦点,直线1AB 与BF 交于D,且

901=∠BDB ,则椭圆的离心率为( )

A

21

3- B 21

5- C 215- D 2

3

[解析] B .

=?=-?-=-?e ac c a c b

a b 221)(2

1

5- 2. 设F 1、F 2为椭圆4

2x +y 2

=1的两焦点,P 在椭圆上,当△F 1PF 2面积为1时,21PF PF ?的

值为

A 、0

B 、1

C 、2

D 、3 [解析] A . 1||321==

?P PF F y S , ∴P 的纵坐标为3

3

±

,从而P 的坐标为)3

3

,362(±±

,=?21PF PF 0, 3.椭圆

22

1369

x y +=的一条弦被(4,2)A 平分,那么这条弦所在的直线方程是 A .20x y -= B .2100x y +-= C .220x y --= D .280x y +-=

[解析] D.

1936212

1=+y x ,19362

22

2=+y x ,两式相减得:0)(42

12

12121=--+++x x y y y y x x ,4,82121=+=+y y x x ,2

1

2121

-=--∴x x y y 4.在ABC △中,90A ∠=

,3tan 4

B =.若以A B ,为焦点的椭圆经过点

C ,则该椭圆的

离心率e = .

[解析]=+====BC AC AB

e k BC k AC k AB ,5,3,412

5. 已知21,F F 为椭圆的两个焦点,P 为椭圆上一点,若3:2:1::211221=∠∠∠PF F F PF F PF ,

则此椭圆的离心率为 _________.

[解析]

13- [三角形三边的比是2:3:1]

6.在平面直角坐标系中,椭圆22

22x y a b

+=1( a b >>0)的焦距为2,以O 为圆心,a 为半径

的圆,过点2,0a c ??

???

作圆的两切线互相垂直,则离心率e = . [解析]=

?=e a c a 22

22

综合提高训练

7、已知椭圆)0(122

22>>=+b a b y a x 与过点A (2,0),B (0,1)的直线l 有且只有一个公共点

T ,且椭圆的离心率2

3

=

e .求椭圆方程 [解析]直线l 的方程为:12

1

+-

=x y 由已知

222242

3

b a a b a =?=- ①

由???

????+-==+1

21122

22x y b y a x 得:0)41(2222222=-+-+b a a x a x a b

∴0))(4(222224=-+-=?b a a a b a ,即2244b a -= ② 由①②得:2

1

222=

=b a , 故椭圆E 方程为12

12

22

=+y x

8.

已知A 、B 分别是椭圆122

22=+b

y a x 的左右两个焦点,O 为坐标原点,点P 22,1(-)在椭圆

上,线段PB 与y 轴的交点M 为线段PB 的中点。 (1)求椭圆的标准方程;

(2)点C 是椭圆上异于长轴端点的任意一点,对于△ABC ,求sin sin sin A B

C

+的值。

[解析](1)∵点M 是线段PB 的中点

∴OM 是△PAB 的中位线

又AB OM ⊥∴AB PA ⊥

∴222222221111

2,1,12c a b c a b a b c

=???

+====???=+?解得

∴椭圆的标准方程为222

y x +=1

(2)∵点C 在椭圆上,A 、B 是椭圆的两个焦点 ∴AC +BC =2a =22,AB =2c =2

在△ABC 中,由正弦定理,

sin sin sin BC AC AB

A B C

==

sin sin sin A B C

+=

22

22BC AC AB +== 9. 已知长方形ABCD, AB=22,BC=1.以AB 的中点O 为原点建立如图8所示的平面直角坐标

系xoy . (Ⅰ)求以A 、B 为焦点,且过C 、D 两点的椭圆的标准方程;

(Ⅱ)过点P(0,2)的直线l 交(Ⅰ)中椭圆于M,N 两点,是否存在直线l ,使得以弦MN 为直径的圆恰好过原点?若存在,求出直线l 的方程;若不存在,说明理由.

[解析] (Ⅰ)由题意可得点A,B,C 的坐标分别为()(

)(

)

1,2,

0,2,

0,2-.

设椭圆的标准方程是()0122

22>>=+b a b

y a x .

()(

)()

(

)

()2240122012

222

2

2

2

>=-+-+

-+--=

+=BC

AC a 则

2=∴a

224222=-=-=∴c a b .

∴椭圆的标准方程是.12

42

2=+

y x (Ⅱ)由题意直线的斜率存在,可设直线l 的方程为()02≠+=k kx y . 设M,N 两点的坐标分别为()().,,,2211y x y x

O

x

y

A B

C

D

图8

B

A

C

联立方程:??

?=++=4

222

2

y x kx y

消去y 整理得,(

)048212

2

=+++kx x

k

有2

21221214

,218k

x x k k x x +=+-=+ 若以MN 为直径的圆恰好过原点,则ON OM ⊥,所以02121=+y y x x ,

所以,()()0222121=+++kx kx x x , 即(

)()0421212

12

=++++x x k x

x k

所以,()

0421********

22=++-++k k k k

,0214822

=+-k k 得.2,22

±==k k

所以直线l 的方程为22+=

x y ,或22+-=x y .

所以存在过P(0,2)的直线l :22+±=x y 使得以弦MN 为直径的圆恰好过原点.

参考例题:

1、从椭圆22

221(0)x y a b a b

+=>>上一点P 向x 轴引垂线,垂足恰为椭圆的左焦点1F ,A 为

椭圆的右顶点,B 是椭圆的上顶点,且(0)AB OP λλ=>

.

⑴、求该椭圆的离心率.

⑵、若该椭圆的准线方程是25x =±,求椭圆方程.

[解析] ⑴、 AB OP λ=

,AB ∴∥OP ,∴△1PF O ∽△BOA ,

111PF FO c bc

PF BO

OA

a a

=

=

?=, 又22

11222(,)1PF c b P c y PF a b a

-?+=?=,b c ∴=,

而2

2

2

a b c =+2

2

2

22

a c e ∴=?=

. ⑵、25x =± 为准线方程,2

22525a a c c

∴=?=,

由22

2

222

2510

5a c a b c b a b c ?=?=??=???=???=+?

. ∴所求椭圆方程为221105x y +=. 2、设21,F F 是椭圆的两个焦点,P 是椭圆上一点,若3

21π

=∠PF F ,证明:21PF F ?的面积

只与椭圆的短轴长有关

[解析]由??

?

??=-+=+3cos ||||2||||||2|||212

21222121πPF PF F F PF PF a PF PF 得?????=-+=+|

|||4||||4|)||(212

22212

221PF PF c PF PF a PF PF ,2

22214)(4||||3b c a PF PF =-=∴,22213

334||||21b S b PF PF PF F =?=∴?,命题得证

高中椭圆讲义

椭圆 1.椭圆的概念 平面内与两个定点F1,F2的距离的和等于常数(大于|F1F2|)的点的轨迹叫做椭圆.这两个定点叫做椭圆的焦点,两焦点间的距离叫做椭圆的焦距. 集合P={M||MF1|+|MF2|=2a},|F1F2|=2c<2a,其中a>0,c>0,且a,c为常数. 2.椭圆的标准方程和几何性质 -a≤x≤a-b≤x≤b 概念方法微思考 1.在椭圆的定义中,若2a=|F1F2|或2a<|F1F2|,动点P的轨迹如何? 提示当2a=|F1F2|时动点P的轨迹是线段F1F2;当2a<|F1F2|时动点P的轨迹是不存在的.2.椭圆的离心率的大小与椭圆的扁平程度有怎样的关系?

提示 由e =c a = 1-????b a 2知,当a 不变时,e 越大,b 越小,椭圆越扁;e 越小,b 越大, 椭圆越圆. 题组一 思考辨析 1.判断下列结论是否正确(请在括号中打“√”或“×”) (1)椭圆是轴对称图形,也是中心对称图形.( ) (2)椭圆上一点P 与两焦点F 1,F 2构成△PF 1F 2的周长为2a +2c (其中a 为椭圆的长半轴长,c 为椭圆的半焦距).( ) (3)方程mx 2+ny 2=1(m >0,n >0,m ≠n )表示的曲线是椭圆.( ) (4)x 2a 2+y 2b 2=1(a >b >0)与y 2a 2+x 2 b 2=1(a >b >0)的焦距相等.( ) 题组二 教材改编 2.椭圆x 210-m +y 2m -2=1的焦距为4,则m 等于( ) A .4 B .8 C .4或8 D .12 3.过点A (3,-2)且与椭圆x 29+y 2 4=1有相同焦点的椭圆的方程为( ) A.x 215+y 2 10=1 B.x 225+y 2 20=1 C.x 210+y 2 15=1 D.x 220+y 2 15 =1 4.已知点P 是椭圆x 25+y 2 4=1上y 轴右侧的一点,且以点P 及焦点F 1,F 2为顶点的三角形 的面积等于1,则点P 的坐标为__________________. 题组三 易错自纠 5.若方程x 25-m +y 2 m +3=1表示椭圆,则m 的取值范围是( ) A .(-3,5) B .(-5,3) C .(-3,1)∪(1,5) D .(-5,1)∪(1,3) 6.已知椭圆x 25+y 2m =1(m >0)的离心率e =10 5 ,则m 的值为________.

椭圆 专题

椭圆 专题 例1.如图:直线L :与椭圆C :交于A 、B 两点,以OA 、OB 为邻边作平行四边形 OAPB 。 求证:椭圆C :与直线L :总有 两个交点。 当时,求点P 的轨迹方程。 (3)是否存在直线L ,使OAPB 为矩形?若存在,求出此时直线L 的方程;若不存在,说明理由。 解:(1)由 得 椭圆C :与直线L :总有两个 交点。 (2)设,,,与交于点,则有 即 ,又由(1)得 , (2) 得 (3) 1y mx =+2 22(0) ax y a +=>222(0) ax y a +=>1y mx =+2a =22 1 2 y mx ax y =+??+=?22()210 a m x mx ++-=22044()0a m a m >∴=++>∴ 2 22(0) ax y a +=>1y mx =+(,)P x y 1 1 (,)A x y 2 2 (,)B x y AB OP M 1212,2222 x x y y x y ++==1212 ,x x x y y y =+=+122 22m x x m +=- +122 1x x a m ?=- +12122 22 224 (1) (1)(1)()2()2222m m x y mx mx m x x m m m m ∴=- =+++=++=- +=+++(1)(2) ÷22x m x m y y =-?=-

将(3)代入(2)得 点P 的轨迹方程为 当时,这样的直线不存在;当时,存在 这样的直线,此时直线为 例 2. 设椭圆 的两个焦点是与 ,且椭圆上存在一点,使得直线与垂直. (1)求实数的取值范围; (2)设是相应于焦点的准线,直线与相 交于点 ,若 ,求直线的方程. 解:(Ⅰ)由题设有 设点P 的坐标为 由PF1⊥PF2,得 化简得 ① 将①与联立,解得 222 2 4 22042y x y y x y = ?+-=+(0,0)x y ≠≠∴ 2 2220x y y +-=(0,0) x y ≠≠121212122121200(1)(1)0(1)()10 OA OB x x y y x x mx mx m x x m x x ?=?+=?+++=?++++=222 222212(1)()()1012021 m m m a m a m m m a m m a -∴+- ++=++?---++=?=-∴ 01a <<1a >l 1y =+11 22 =++y m x )0,(1 c F -) 0(),0,(2>c c F P 1 PF 2 PF m L 2 F 2 PF L Q 322 2 -=PF QF 2 PF . ,0m c m = >), ,(00y x ,10000-=+?-c x y c x y . 2020m y x =+11 2 02 0=++y m x . 1 ,12022 m y m m x =-=

高中数学椭圆经典例题(学生+老 师)

(教师版)椭圆标准方程典型例题 例1已知椭圆的一个焦点为(0,2)求的值. 分析:把椭圆的方程化为标准方程,由,根据关系可求出的值. 解:方程变形为.因为焦点在轴上,所以,解得. 又,所以,适合.故. 例2已知椭圆的中心在原点,且经过点,,求椭圆的标准方程.分析:因椭圆的中心在原点,故其标准方程有两种情况.根据题设 条件,运用待定系数法, 求出参数和(或和)的值,即可求得椭圆的标准方程.解:当焦点在轴上时,设其方程为. 由椭圆过点,知.又,代入得,,故椭圆的方程为. 当焦点在轴上时,设其方程为. 由椭圆过点,知.又,联立解得,,故椭圆的方程为. 例3 的底边,和两边上中线长之和为30,求此三角形重心的轨迹和顶点的轨迹. 分析:(1)由已知可得,再利用椭圆定义求解. (2)由的轨迹方程、坐标的关系,利用代入法求的轨迹方程. 解:(1)以所在的直线为轴,中点为原点建立直角坐标系.设点坐标为,由,知点的轨迹是以、为焦点的椭圆,且除去轴上两点.因,, 有, 故其方程为. (2)设,,则.① 由题意有代入①,得的轨迹方程为,其轨迹是椭圆(除去轴上两点). 例4已知点在以坐标轴为对称轴的椭圆上,点到两焦点的距离分别为和,过点作焦点所在轴的垂线,它恰好过椭圆的一个焦点,求椭圆方 程. 解:设两焦点为、,且,.从椭圆定义知.即. 从知垂直焦点所在的对称轴,所以在中,, 可求出,,从而. ∴所求椭圆方程为或.

例5已知椭圆方程,长轴端点为,,焦点为,,是椭圆上一点,,.求:的面积(用、、表示). 分析:求面积要结合余弦定理及定义求角的两邻边,从而利用求面积.解:如图,设,由椭圆的对称性,不妨设在第一象限. 由余弦定理知:·.① 由椭圆定义知:②,则得. 故. 例6 已知动圆过定点,且在定圆的内部与其相内切,求动圆圆心的轨迹方程. 分析:关键是根据题意,列出点P满足的关系式. 解:如图所示,设动圆和定圆内切于点.动点到两定点, 即定点和定圆圆心距离之和恰好等于定圆半径, 即.∴点的轨迹是以,为两焦点, 半长轴为4,半短轴长为的椭圆的方程:. 说明:本题是先根据椭圆的定义,判定轨迹是椭圆,然后根据椭圆的标

椭圆 专项训练

圆锥曲线 椭圆 专项训练 【例题精选】: 例1 求下列椭圆的标准方程: (1)与椭圆x y 22416+=有相同焦点,过点P (,)56; (3)两焦点与短轴一个端点为正三角形的顶点,焦点到椭圆的最短距离为3。 例5 过椭圆14 16 2 2 =+ y x 内一点M (2,1)引一条弦,使弦被M 平分,求此弦所在直线 方程。 小结:有关中点弦问题多采用“点差法”即设点做差的方法,也叫“设而不求”。 例6 C y x B A 的两个顶点,是椭圆 、125 16 )5,0()0,4(2 2 =+ 是 椭圆在第一象限内部分上的一点,求?ABC 面积的最大值。 小结:已知椭圆的方程求最值或求范围,要用不等式的均值 定理,或判别式来求解。(圆中用直径性质或弦心距)。要有耐心,处理好复杂运算。 【专项训练】: 一、 选择题: 1.椭圆6322 2 =+y x 的焦距是 ( ) A .2 B .)23(2- C .52 D .)23(2+ 2.F 1、F 2是定点,|F 1F 2|=6,动点M 满足|MF 1|+|MF 2|=6,则点M 的轨迹是 ( ) A .椭圆 B .直线 C .线段 D .圆 3.若椭圆的两焦点为(-2,0)和(2,0),且椭圆过点) 23,25( -,则椭圆方程是( ) A . 14 8 2 2 =+ x y B . 16 10 2 2 =+ x y C . 18 4 2 2 =+ x y D .16 10 2 2 =+ y x 4.方程22 2 =+ky x 表示焦点在y 轴上的椭圆,则k 的取值范围是 ( ) A .),0(+∞ B .(0,2) C .(1,+∞) D .(0,1) 5. 过椭圆1242 2 =+y x 的一个焦点1F 的直线与椭圆交于A 、B 两点,则A 、B 与椭圆的

高中数学椭圆讲义及例题

7.椭圆 1、椭圆的第一定义:平面内一个动点P 到两个定点1F 、2F 的距离之和等于常数)2(2121F F a PF PF >=+ ,这个动点P 的轨迹叫椭圆.这两个定点叫椭圆的焦点,两焦点的距离叫作椭圆的焦距。. 注意:若)(2121F F PF PF =+,则动点P 的轨迹为线段21F F ;若)(2121F F PF PF <+,则动点P 的轨迹无图形. 2、椭圆的标准方程 1).当焦点在x 轴上时,椭圆的标准方程:12222=+b y a x )0(>>b a ,其中222b a c -=; 2).当焦点在y 轴上时,椭圆的标准方程:122 22=+b x a y )0(>>b a ,其中222b a c -=; 注意:①在两种标准方程中,总有a >b >0,并且椭圆的焦点总在长轴上; ②两种标准方程可用一般形式表示:22 1x y m n += 或者 mx 2+ny 2=1 。 3、椭圆:122 22=+b y a x )0(>>b a 的简单几何性质 (1)对称性:对于椭圆标准方程122 22=+b y a x )0(>>b a :是 以x 轴、y 轴为对称轴的轴对称图形,并且是以原点为对 称中心的中心对称图形,这个对称中心称为椭圆的中心。 (2)范围:椭圆上所有的点都位于直线a x ±=和b y ±=所围成的矩形内,所以椭圆上点的坐标满足a x ≤,b y ≤。 (3)顶点:①椭圆的对称轴与椭圆的交点称为椭圆的顶点。②椭圆1 22 22=+b y a x )0(>>b a 与坐标轴的四个交点即为椭圆的四个顶点, 坐标分别为)0,(1a A -,)0,(2a A ,),0(1b B -,),0(2b B 。 ③线段21A A ,21B B 分别叫做椭圆的长轴和短轴,a A A 221=, b B B 221=。a 和b 分别叫做椭圆的长半轴长和短半轴长。 (4)离心率:①椭圆的焦距与长轴长度的比叫做椭圆的离心率,用e 表示,记作a c a c e == 22。②因为)0(>>c a ,所以e 的取值范围是)10(<

高中数学解析几何专题之椭圆汇总解析版

圆锥曲线第1讲 椭圆 【知识要点】 一、椭圆的定义 1. 椭圆的第一定义: 平面内到两个定点1F 、2F 的距离之和等于定长a 2( 2 12F F a >)的点的轨迹叫椭圆,这两 个定点叫做椭圆的焦点,两个焦点之间的距离叫做焦距。 注1:在椭圆的定义中,必须强调:到两个定点的距离之和(记作a 2)大于这两个定点之间的距离 2 1F F (记作c 2),否则点的轨迹就不是一个椭圆。具体情形如下: (ⅰ)当c a 22>时,点的轨迹是椭圆; (ⅱ)当c a 22=时,点的轨迹是线段21F F ; (ⅲ)当c a 22<时,点的轨迹不存在。 注2:若用M 表示动点,则椭圆轨迹的几何描述法为 a MF MF 221=+(c a 22>, c F F 221=),即 2 121F F MF MF >+. 注3:凡是有关椭圆上的点与焦点的距离问题,通常可利用椭圆的第一定义求解,即隐含条件: a MF MF 221=+千万不可忘记。 2. 椭圆的第二定义: 平面内到某一定点的距离与它到定直线的距离之比等于常数e (10<>b a ); (2)焦点在y 轴、中心在坐标原点的椭圆的标准方程是122 22=+b x a y (0>>b a ).

注1:若题目已给出椭圆的标准方程,那其焦点究竟是在x 轴还是在y 轴,主要看长半轴跟谁走。长半轴跟x 走,椭圆的焦点在x 轴;长半轴跟y 走,椭圆的焦点在y 轴。 (1)注2:求椭圆的方程通常采用待定系数法。若题目已指明椭圆的焦点的位置,则可设 其方程为12222=+b y a x (0>>b a )或122 22=+b x a y (0>>b a );若题目未指明椭圆的焦 点究竟是在x 轴上还是y 轴上,则中心在坐标原点的椭圆的方程可设为 12 2=+ny mx (0>m ,0>n ,且n m ≠). 三、椭圆的性质 以标准方程122 22=+b y a x (0>>b a )为例,其他形式的方程可用同样的方法得到相关结论。 (1)范围:a x a ≤≤-,b y b ≤≤-; (2)对称性:关于x 轴、y 轴轴对称,关于坐标原点中心对称; (3)顶点:左右顶点分别为)0,(1a A -,)0,(2a A ;上下顶点分别为),0(1b B ,),0(2b B -; (4)长轴长为a 2,短轴长为b 2,焦距为c 2; (5)长半轴a 、短半轴b 、半焦距c 之间的关系为2 2 2 c b a +=; (6)准线方程:c a x 2 ± =; (7)焦准距:c b 2 ; (8)离心率: a c e = 且10<

椭圆经典例题讲解

椭圆 1.椭圆的两种定义 (1) 平面内与两定点F 1,F 2的距离的和等于常数(大于21F F )的点的轨迹叫椭圆,这两个定点叫做椭圆的 , 之间的距离叫做焦距.注:①当2a =|F 1F 2|时,P 点的轨迹是 .②当2a <|F 1F 2|时,P 点的轨迹不存在. (2) 椭圆的第二定义:到 的距离与到 的距离之比是常数e ,且∈e 的点的轨迹叫椭圆.定点F 是椭圆的 ,定直线l 是 ,常数e 是 . 2.椭圆的标准方程 (1) 焦点在x 轴上,中心在原点的椭圆标准方程是: 12 22 2=+ b y a x ,其中( > >0,且 =2a ) (2) 焦点在y 轴上,中心在原点的椭圆标准方程是12 22 2=+ b x a y , 其中a ,b 满足: .(3)焦点在哪个轴上如何判断 3.椭圆的几何性质(对 12 22 2=+b y a x ,a > b >0进行讨论) (1) 范围: ≤ x ≤ , ≤ y ≤ (2) 对称性:对称轴方程为 ;对称中心为 . (3) 顶点坐标: ,焦点坐标: ,长半轴长: ,短半轴长: ;准线方程: . (4) 离心率:=e ( 与 的比),∈e ,e 越接近1,椭圆越 ; e 越接近 0,椭圆越接近于 . (5) 焦半径公式:设21,F F 分别为椭圆的左、右焦点,),(00y x P 是椭圆上一点,则 =1PF ,122PF a PF -== 。 4.焦点三角形应注意以下关系(老师补充画出图形):(1) 定义:r 1+r 2=2a (2) 余弦定理:21r +22r -2r 1r 2cos θ=(2c ) 2 (3) 面积:21F PF S ?=2 1 r 1r 2 sin θ=2 1·2c | y 0 |(其中P(00,y x )为椭圆上一点,|PF 1|=r 1,|PF 2|=r 2,∠F 1PF 2=θ)基础过关

椭圆讲义(学生版)

椭圆讲义 1、平面内与两个定点1F ,2F 的距离之和等于常数(大于12F F )的点的轨迹称为椭圆.这两个定点称为椭圆的焦点,两焦点的距离称为椭圆的焦距. 2、椭圆的几何性质: 焦点的位置 焦点在x 轴上 焦点在y 轴上 图形 标准方程 ()22 2210x y a b a b +=>> ()22 2210y x a b a b +=>> 范围 a x a -≤≤且 b y b -≤≤ b x b -≤≤且a y a -≤≤ 顶点 ()1,0a A -、()2,0a A ()10,b B -、()20,b B ()10,a A -、()20,a A ()1,0b B -、()2,0b B 轴长 短轴的长2b = 长轴的长2a = 焦点 ()1,0F c -、()2,0F c ()10,F c -、()20,F c 焦距 ()222122F F c c a b ==- 对称性 关于x 轴、y 轴、原点对称 离心率 )2 2101c b e e a a ==-<< 准线方程 2 a x c =± 2 a y c =± 3、设M 是椭圆上任一点,点M 到1F 对应准线的距离为1d ,点M 到2F 对应准线的距离为2d ,则 12 12F F e d d M M ==. 四、常考类型 类型一:椭圆的基本量 1.指出椭圆36492 2 =+y x 的焦点坐标、准线方程和离心率. ? 举一反三:【变式1】椭圆 116 252 2=+y x 上一点P 到椭圆一个焦点的距离为3,则P到另一个焦点的距离=

________ 【变式2】椭圆 125162 2=+y x 的两个焦点分别为21F F 、,过2F 的直线交椭圆于A 、B 两点,则1ABF ?的周长1ABF C ?=___________. ? 【变式3】已知椭圆的方程为 1162 2 2=+m y x ,焦点在x 轴上,则m的取值范围是( )。? A .-4≤m ≤4且m ≠0 B .-4<m<4且m ≠0 C.m >4或m <-4 D .0<m <4 【变式4】已知椭圆mx 2 +3y2 -6m=0的一个焦点为(0,2),求m 的值。 类型二:椭圆的标准方程 2. 求适合下列条件的椭圆的标准方程: (1)两个焦点的坐标分别是(-4,0)、(4,0),椭圆上一点P到两焦点距离的和是10; (2)两个焦点的坐标是(0,-2)、(0,2),并且椭圆经过点?? ? ??2523-,。? 举一反三:【变式1】两焦点的坐标分别为()()4-04,0,,,且椭圆经过点)(0,5。 【变式2】已知一椭圆的对称轴为坐标轴且与椭圆14 92 2=+y x 有相同的焦点,并且经过点(3,-2),求此椭圆的方程。 3.求经过点P (-3,0)、Q(0,2)的椭圆的标准方程。? 举一反三:【变式】已知椭圆经过点P (2,0)和点)2 3 3,1(Q ,求椭圆的标准方程。 4.求与椭圆4x 2 +9y 2 =36有相同的焦距,且离心率为 5 5 的椭圆的标准方程。? 【变式1】在椭圆的标准方程中,,则椭圆的标准方程是( ) A. 1353622=+y x B .135 362 2=+x y C.13622=+y x D .以上都不对 【变式2】椭圆过(3,0)点,离心率3 6 = e ,求椭圆的标准方程。? 【变式3】长轴长等于20,离心率等于5 3 ,求椭圆的标准方程。

椭圆典型题型归纳(供参考)

椭圆典型题型归纳 题型一. 定义及其应用 例1.已知一个动圆与圆22:(4)100C x y ++=相内切,且过点(4,0)A ,求这个动圆圆心M 的轨迹方程; 练习: 1.6=对应的图形是( ) A.直线 B. 线段 C. 椭圆 D. 圆 2.10=对应的图形是( ) A.直线 B. 线段 C. 椭圆 D. 圆 4.1m =+表示椭圆,则m 的取值范围是 5.过椭圆22941x y +=的一个焦点1F 的直线与椭圆相交于,A B 两点,则,A B 两点与椭圆的 另一个焦点2F 构成的2ABF ?的周长等于 ; 6.设圆22 (1)25x y ++=的圆心为C ,(1,0)A 是圆内一定点,Q 为圆周上任意一点,线段AQ 的垂直平分线与CQ 的连线交于点M ,则点M 的轨迹方程为 ; 题型二. 椭圆的方程 (一)由方程研究曲线 例1.方程22 11625 x y +=的曲线是到定点 和 的距离之和等于 的点的轨迹; (二)分情况求椭圆的方程 例2.已知椭圆以坐标轴为对称轴,且长轴是短轴的3倍,并且过点(3,0)P ,求椭圆的方程; (三)用待定系数法求方程 例3.已知椭圆的中心在原点,以坐标轴为对称轴,且经过两点1P 、2(P ,求椭圆的方程; 例4.求经过点(2,3)-且与椭圆22 9436x y +=有共同焦点的椭圆方程; 注:一般地,与椭圆22221x y a b +=共焦点的椭圆可设其方程为22 2221()x y k b a k b k +=>-++; (四)定义法求轨迹方程; 例5.在ABC ?中,,,A B C 所对的三边分别为,,a b c ,且(1,0),(1,0)B C -,求满足b a c >>

高中数学 椭圆 板块一 椭圆的方程完整讲义(学生版)

学而思高中完整讲义:椭圆.板块一.椭圆的方程.学生版 【例1】 已知椭圆的焦点在x 轴上,焦距为8,焦点到相应的长轴顶点的距离为1,则椭圆 的标准方程为( ) A .221259x y += B .221259y x += C .22179y x += D .22 179 x y += 【例2】 已知椭圆22 15x y m +=的离心率10e 5= ,则m 的值为( ) A .3 B .5153或15 C .5 D .25 3 或3 【例3】 设定点12(03)(03)F F -,,,,动点P 满足条件)0(921>+=+a a a PF PF ,则点P 的 轨迹是( ) A .椭圆 B .线段 C .不存在 D .椭圆或线段 【例4】 已知椭圆的中心在原点,离心率1 2 e = ,且它的一个焦点与抛物线24y x =-的焦点重合, 则此椭圆方程为( ) A .22143x y += B .22186x y += C .2 212 x y += D .2 214 x y += 【例5】 设椭圆22221(0)x y a b a b +=>>的离心率为1 e 2 =,右焦点为(0)F c ,,方程 20ax bx c +-=的两个实根分别为1x 和2x ,则点12()P x x , ( ) A .必在圆222x y +=内 B .必在圆222x y +=上 C .必在圆222x y +=外 D .以上三种情形都有可能 【例6】 已知22 212x y m m +=+表示焦点在x 轴上的椭圆,则m 的取值范围是( ) A .2m >或1m <- B .2m >- C .12m -<< D .2m >或21m -<<- 【例7】 经过点(30)P -,,(02)Q -,的椭圆的标准方程是 ; 典例分析

椭圆经典练习题两套(带答案)

椭圆练习题1 A组基础过关 一、选择题(每小题5分,共25分) 1.(2012·厦门模拟)已知椭圆的长轴长是短轴长的2倍,则椭圆的离心率等于 ( ). A.1 2 B. 2 2 C. 2 D. 3 2 解析由题意得2a=22b?a=2b,又a2=b2+c2 ?b=c?a=2c?e= 2 2 . 答案B 2.(2012·长沙调研)中心在原点,焦点在x轴上,若长轴长为18,且两个焦点恰好将长轴三等分,则此椭圆的方程是( ). A.x2 81 + y2 72 =1 B. x2 81 + y2 9 =1 C. x2 81 + y2 45 =1 D.x2 81+ y2 36 =1

解析 依题意知:2a =18,∴a =9,2c =1 3×2a ,∴c =3, ∴b 2 =a 2 -c 2 =81-9=72,∴椭圆方程为x 2 81 + y 2 72 =1. 答案 A 3.(2012·长春模拟)椭圆x 2+4y 2=1的离心率为( ). A. 32 B.34 C.22 D.23 解析 先将 x 2+4y 2=1 化为标准方程x 21+y 214 =1,则a =1,b =12,c =a 2-b 2=3 2 . 离心率e =c a =3 2. 答案 A 4.(2012·佛山月考)设F 1、F 2分别是椭圆x 24+y 2 =1的左、右焦点,P 是第一象 限内该椭圆上的一点,且PF 1⊥PF 2,则点P 的横坐标为( ). A .1 B.83 C .2 2 D.26 3 解析 由题意知,点P 即为圆x 2+y 2=3与椭圆x 24 +y 2=1在第一象限的交点, 解方程组???? ? x 2+y 2=3,x 24+y 2 =1,得点P 的横坐标为 26 3 . 答案 D 5.(2011·惠州模拟)已知椭圆G 的中心在坐标原点,长轴在x 轴上,离心率为 3 2 ,且椭圆G 上一点到其两个焦点的距离之和为12,则椭圆G 的方程为( ).

(完整word版)高中椭圆基础知识专题练习题(有答案)

一、选择题: 1.下列方程表示椭圆的是() A. 22199 x y += B.22 28x y --=- C.221259x y -= D.22(2)1x y -+= 2.动点P 到两个定点1F (- 4,0).2F (4,0)的距离之和为8,则P 点的轨迹为() A.椭圆 B.线段12F F C.直线12F F D .不能确定 3.已知椭圆的标准方程2 2 110 y x +=,则椭圆的焦点坐标为() A.( B.(0, C.(0,3)± D.(3,0)± 4.椭圆2222 222222 222 11()x y x y a b k a b a k b k +=+=>>--和的关系是 A .有相同的长.短轴B .有相同的离心率 C .有相同的准线 D .有相同的焦点 5.已知椭圆22 159 x y +=上一点P 到椭圆的一焦点的距离为3,则P 到另一焦点的距离是() A.3 B.2 C.3 D.6 6.如果22 212 x y a a + =+表示焦点在x 轴上的椭圆,则实数a 的取值范围为() A.(2,)-+∞ B.()()2,12,--?+∞ C.(,1)(2,)-∞-?+∞ D.任意实数R 7.“m>n>0”是“方程2 2 1mx ny +=表示焦点在y 轴上的椭圆的”() A.充分而不必要条件 B.必要而不充分条件 C.充要条件 D.既不充分也不必要条件 8.椭圆的短轴长是4,长轴长是短轴长的 3 2 倍,则椭圆的焦距是() B.4 C.6 D.9.关于曲线的对称性的论述正确的是() A.方程2 2 0x xy y ++=的曲线关于X 轴对称 B.方程3 3 0x y +=的曲线关于Y 轴对称 C.方程2 2 10x xy y -+=的曲线关于原点对称 D.方程33 8x y -=的曲线关于原点对称

椭圆的讲义

海豚教育个性化简案 海豚教育个性化教案(真题演练)

海豚教育个性化教案

A . 45 B .23 C .22 D .2 1 例2:已知m,n,m+n 成等差数列,m ,n ,mn 成等比数列,则椭圆12 2=+n y m x 的离心率为 例3:在ABC △中,3,2||,300===∠?ABC S AB A .若以A B ,为焦点的椭圆经过点C ,则该椭圆的离心率 e = . 【变式训练】 1. 椭圆的两个焦点把两条准线间距离三等分,则椭圆离心率为( ) A. 63 B.33 C.2 3 D. 不确定 2. 椭圆的一个顶点与两焦点构成等边三角形,则此椭圆的离心率是( ) 3. 以椭圆两焦点为直径的圆交椭圆于四个不同点,顺次连结这四个点和两个焦点,恰好围成一个正六边形,则这个椭圆的离心率等于___________。 2:求离心率的取值范围 例1:已知椭圆12222=+b y a x (0>>b a ),F 1,F 2是两个焦点,若椭圆上存在一点P ,使3 221π =∠PF F ,求 其离心率e 的取值范围。 例2:已知椭圆122 22=+b y a x (0>>b a )与x 轴的正半轴交于A ,0是原点,若椭圆上存在一点M ,使MA ⊥MO , 求椭圆离心率的取值范围。 例3:已知椭圆12222=+b y a x (0>>b a ),以a ,b ,c 为系数的关于x 的方程02 =++c bx ax 无实根,求 其离心率e 的取值范围。 题型四:椭圆的其他几何性质的运用(范围、对称性等) 例1:已知实数y x ,满足12 42 2=+y x ,求x y x -+22的最大值与最小值

最新椭圆标准方程及其性质知识点大全

【专题七】椭圆标准方程及其性质知识点大 (一)椭圆的定义及椭圆的标准方程: ?椭圆定义:平面内一个动点P 到两个定点F 1、 F 2的距离之和等于常数 (二)椭圆的简单几何性: ?标准方程是指中心在原点,坐标轴为对称轴的标准位置的椭圆方程。 2 2 x 2 y 2 =1 (a b O) a b (PF 1 + PF 2 =2a ■ F1F 2),这个动点P 的轨迹叫椭圆?这两个定点叫椭圆的 焦 点,两焦点的距离叫作椭圆的 焦距. 注意:①若(PF 1 + |PF 2 |=F I F 2),则动点P 的轨迹为线段F 1F 2 ; ②若(PF 1 + PF ^<|F 1F 2 ),则动点P 的轨迹无图形 2 2 y 2 X 2 =1 (a ■ b ■ O) a b 图形 性质 焦占 八焦距 范围 F i (-c,O),F 2(C ,0) F I (O,-C ),F 2(0,C ) F 1F 2 =2C F 1 F 2 = 2c x^b, | y| 对称性 关于x 轴、y 轴和原点对称 标准方程 (_a,0) , (0,-b) (0,-a), (_b,0) 顶点

?椭圆标准方程为 =1 (a b - 0),椭圆焦点三角形: 设P 为椭圆上任意一点, F i ,F 2为焦点且/ F 1PF 2 ?,则△ F i PF 2为焦点三角形,其面积为 轴长 长轴长 AA 2, AAj =2a ,短轴长 BB 2, EB 2 =2b 离心率 ① e = C (0cec1),② e =』1—(b )2 ③ c 2 = a 2_b 2 a V a (离心率越大,椭圆越扁) 【说明】: 1?方程中的两个参数a 与b ,确定椭圆的形状和大小,是椭圆的定型条件,焦点 F i ,F 2的位置,是椭圆的定位条件,它决定椭圆标准方程的类型,常数 a ,b ,c 都大于零,其中 a 最大且 a 2 = b 2+ c 2. 2 2 2.方程Ax By 二C 表示椭圆的充要条件是:ABC 工0,且A ,B ,C 同号,A 2 2 S PF I F 2 = b 2 tan 。 2 (四)通径:如图:通径长 2 2 ?椭圆标准方程:笃? — =1 a 2 b 2 (五)点与椭圆的位置关系: C 1) 点 P(x o ,y o )在椭圆外= a b a b x =1;

椭圆讲义

椭圆讲义 1、平面内与两个定点1F ,2F 的距离之和等于常数(大于12F F )的点的轨迹称为椭圆.这两个定点称为椭圆的焦点,两焦点的距离称为椭圆的焦距. 2、椭圆的几何性质: 焦点的位置 焦点在x 轴上 焦点在y 轴上 图形 标准方程 ()22 2210x y a b a b +=>> ()22 2210y x a b a b +=>> 范围 a x a -≤≤且 b y b -≤≤ b x b -≤≤且a y a -≤≤ 顶点 ()1,0a A -、()2,0a A ()10,b B -、()20,b B ()10,a A -、()20,a A ()1,0b B -、()2,0b B 轴长 短轴的长2b = 长轴的长2a = 焦点 ()1,0F c -、()2,0F c ()10,F c -、()20,F c 焦距 ()222122F F c c a b ==- 对称性 关于x 轴、y 轴、原点对称 离心率 )2 2101c b e e a a ==-<< 准线方程 2 a x c =± 2 a y c =± 3、设M 是椭圆上任一点,点M 到1F 对应准线的距离为1d ,点M 到2F 对应准线的距离为2d ,则 12 12F F e d d M M ==. 四、常考类型 类型一:椭圆的基本量 1.指出椭圆36492 2 =+y x 的焦点坐标、准线方程和离心率.

举一反三:【变式1】椭圆 116 252 2=+y x 上一点P 到椭圆一个焦点的距离为3,则P 到另一个焦点的距离=________ 【变式2】椭圆 125 162 2=+y x 的两个焦点分别为21F F 、,过2F 的直线交椭圆于A 、B 两点,则1ABF ?的周长1ABF C ?=___________. 【变式3】已知椭圆的方程为11622 2=+m y x ,焦点在x 轴上,则m 的取值范围是( )。 A .-4≤m ≤4且m ≠0 B .-4<m <4且m ≠0 C .m >4或m <-4 D .0<m <4 【变式4】已知椭圆mx 2 +3y 2 -6m=0的一个焦点为(0,2),求m 的值。 类型二:椭圆的标准方程 2. 求适合下列条件的椭圆的标准方程: (1)两个焦点的坐标分别是(-4,0)、(4,0),椭圆上一点P 到两焦点距离的和是10; (2)两个焦点的坐标是(0,-2)、(0,2),并且椭圆经过点??? ? ?2523-,。 举一反三:【变式1】两焦点的坐标分别为()()4-04,0,,,且椭圆经过点)(0,5。 【变式2】已知一椭圆的对称轴为坐标轴且与椭圆14 92 2=+y x 有相同的焦点,并且经过点(3,-2),求此椭圆的方程。

高中数学-椭圆经典练习题-配答案

椭圆练习题 一.选择题: 1.已知椭圆 上的一点P ,到椭圆一个焦点的距离为3,则P 到另一焦点距离为( D ) A .2 B .3 C .5 D .7 2.中心在原点,焦点在横轴上,长轴长为4,短轴长为2,则椭圆方程是( C ) A. B. C. D. 3.与椭圆9x 2 +4y 2 =36有相同焦点,且短轴长为4的椭圆方程是( B ) A 4.椭圆的一个焦点是,那么等于( A ) A. B. C. D. 5.若椭圆短轴上的两顶点与一焦点的连线互相垂直,则离心率等于( B ) A. B. C. D. 6.椭圆两焦点为 , ,P 在椭圆上,若 △的面积的最大值为12,则椭圆方程为( B ) A. B . C . D . 7.椭圆的两个焦点是F 1(-1, 0), F 2(1, 0),P 为椭圆上一点,且|F 1F 2|是|PF 1|与|PF 2| 的等差中项,则该椭圆方程是( C )。 A +=1 B +=1 C +=1 D +=1 8.椭圆的两个焦点和中心,将两准线间的距离四等分,则它的焦点与短轴端点连线的夹角为( C ) (A)450 (B)600 (C)900 (D)120 9.椭圆 上的点M 到焦点F 1的距离是2,N 是MF 1的中点,则|ON |为( A ) A. 4 B . 2 C. 8 D . 116 252 2=+y x 22143x y +=22134x y +=2214x y +=22 14 y x +=5185 8014520125201 20 252222222 2=+=+=+=+y x D y x C y x B y x 2 2 55x ky -=(0,2)k 1-1512 21(4,0)F -2(4,0)F 12PF F 221169x y +=221259x y +=2212516x y +=22 1254 x y +=16x 29y 216x 212y 24x 23y 23x 24 y 222 1259 x y +=2 3

(完整版)椭圆练习题(含答案)

解析几何——椭圆精炼专题 一、 选择题:(本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中有只有一项是符合题目要求的.) 1.椭圆6322 2 =+y x 的焦距是( ) A .2 B .)23(2- C .52 D .)23(2+ 2.F 1、F 2是定点,|F 1F 2|=6,动点M 满足|MF 1|+|MF 2|=6,则点M 的轨迹是( ) A .椭圆 B .直线 C .线段 D .圆 3.若椭圆的两焦点为(-2,0)和(2,0),且椭圆过点)2 3,25(-,则椭圆方程是 ( ) A .14 8 2 2=+x y B .16102 2=+x y C .18 42 2=+x y D .16 102 2=+y x 4.方程22 2 =+ky x 表示焦点在y 轴上的椭圆,则k 的取值范围是( ) A .),0(+∞ B .(0,2) C .(1,+∞) D .(0,1) 5. 过椭圆1242 2 =+y x 的一个焦点1F 的直线与椭圆交于A 、B 两点,则A 、B 与椭圆的另一焦点2F 构成2ABF ?,那么2 ABF ?的周长是( ) A . 22 B . 2 C . 2 D . 1 6.已知椭圆的对称轴是坐标轴,离心率为 3 1 ,长轴长为12,则椭圆方程为( ) A . 112814422=+y x 或114412822=+y x B . 14 62 2=+y x C . 1323622=+y x 或1363222=+y x D . 16422=+y x 或1462 2=+y x 7. 已知k <4,则曲线 14 92 2=+y x 和14922=-+-k y k x 有( ) A . 相同的短轴 B . 相同的焦点 C . 相同的离心率 D . 相同的长轴 8.椭圆 19 252 2=+y x 的焦点1F 、2F ,P 为椭圆上的一点,已知21PF PF ⊥,则△21PF F 的面积为( ) A .9 B .12 C .10 D .8 9.椭圆13 122 2=+y x 的焦点为1F 和2F ,点P 在椭圆上,若线段1PF 的中点在y 轴上,那么1PF 是2PF 的( ) A .4倍 B .5倍 C .7倍 D .3倍 10.椭圆144942 2 =+y x 内有一点P (3,2)过点P 的弦恰好以P 为中点,那么这弦所在直线的方程为( ) A .01223=-+y x B .01232=-+y x C .014494=-+y x D . 014449=-+y x 11.椭圆14 162 2=+y x 上的点到直线022=-+y x 的最大距离是 ( ) A .3 B .11 C .22 D .10 12.过点M (-2,0)的直线M 与椭圆12 22 =+y x 交于P 1,P 2,线段P 1P 2的中点为P ,设直线M 的斜率为k 1(01≠k ) ,直线OP 的斜率为k 2,则k 1k 2的值为( ) A .2 B .-2 C . 21 D .-2 1 二、 填空题:(本大题共4小题,每小题4分,共16分,把答案填在题中横线上.) 13.椭圆 2214x y m +=的离心率为1 2 ,则m = . 14.设P 是椭圆2 214 x y +=上的一点,12,F F 是椭圆的两个焦点,则12PF PF 的最大值为 ;最小值为 . 15.直线y =x -2 1被椭圆x 2+4y 2=4截得的弦长为 . 16.已知圆Q A y x C ),0,1(25)1(:2 2及点=++为圆上一点,AQ 的垂直平分线交CQ 于M ,则点M 的轨迹方程 为 .

第十三讲椭圆精品讲义

第十三讲椭圆 [知识能否忆起] 1 ?椭圆的定义 平面内到两个定点 F i , F 2的距离之和等于常数(大于|F I F 2|)的点的轨迹叫做椭圆,这两 个定点叫做椭圆的焦点,两焦点 F i ,F 2间的距离叫做椭圆的焦 __________ [小题能否全取] x 2 y 2 1. (教材 习题改编)设P 是椭圆~4 + 9 = 1的点,右F i , F 2是椭圆的两个焦点,贝U |PF i | + |PF 2| 等于( ) A . 4 B . 8 C . 6 D . 18 解析:选C 依定义知|PF 11+ |PF 2|= 2a = 6. C . (— 3,1) U (1,5) D . (— 5,1)U (1,3) 5 — m > 0, 解析:选C 由方程表示椭圆知 m + 3>0, 5 — m ^ m + 3, X 2 2.(教材习题改编)方程53m + m + 3 =1表示椭圆, m 的范围是( A . (-3,5) B . (— 5,3)

解得一3 v m v 5 且 m ^ 1. 2 2 3. (2012淮南五校联考)椭圆X9 + 4^= 1的离心率为5,则k 的值为( 解析:选 C 若 a 2= 9, b 2 = 4+ k ,贝V c = 5 — k , 若 a 2= 4 + k , b 2= 9,则 c = 'k — 5, c 4 k — 5 4 由C =4,即 =4,解得k = 21. a 5 、4+k 5 4. (教材习题改编)已知椭圆的中心在原点,焦点在 8?则该椭圆的方程是 _________ 5. 已知F 1, F 2是椭圆C 的左,右焦点,点P 在椭圆上,且满足|PF 1|= 2|PF 2|,/ PF 1F 2 =30°则椭圆的离心率为 ___________ . 解析:在三角形PF 1F 2中,由正弦定理得 sin Z PF 2F 1= 1,即Z PF 2F 1=扌,设 |PF 2|= 1,贝U |PF 1|= 2, |F 2F 1| = V 3, 所以离心率e = ?c = 3 . 2a 3 1. 椭圆的定义中应注意常 数大于 |F 1F 2|.因为当平面内的动点与定点 F 1, F 2的距离之和等 于|F 1F 2|时,其动点轨迹就是线段 F 1F 2;当平面内的动点与定点 F 1,F 2的距离之和小于|F 1F 2| 时,其轨迹不存在. 2 ?已知椭圆离心率求待定系数时要注意椭圆焦点位置的判断,当焦点位置不明确时, 要分两种 情形讨论. [考点通关把握] 1典题导入 解 析: c 4 1 丄, ???2c = 8,「.c = 4,「.e = a = a = 2,故 a = ???椭圆的方程为64+4x8= 1. A . - 21 B . 21 19 C .-亦或21 D.25或 21 1 y 轴上,若其离心率为2,焦距为 又'/b 2= a 2— c 2= 48, 4 /曰. 19 5,得 k = — 25;

相关文档
相关文档 最新文档