文档库 最新最全的文档下载
当前位置:文档库 › 水泥浆泌水率试验

水泥浆泌水率试验

水泥浆泌水率试验
水泥浆泌水率试验

水泥浆液主要性能试验方法

水泥净浆稠度的试验方法

高效减水剂,减水率12%。水泥净浆稠度采用水泥浆稠度试验漏斗(上口φ178,下口φ13,体积1725ml)测试。测定时,先将漏斗调整放平,关上底口活门,将搅拌均匀的水泥净浆倾入漏斗内,直至浆液表面触及点测规下端(表明漏斗内已经装满1725ml浆液)。打开活门,让水泥浆液自由流出,水泥浆液全部流完时间(s),称为水泥浆的稠度。

水泥净浆泌水率的试验方法

往高约120mm的有机玻璃容体中填灌水泥浆约100mm深,测填灌面高度并记录下来,然后用密封盖盖严,置放3h和24h后量测其离析水水面和水泥浆膨胀面。离析水的高度除以原填灌浆液高度即

为泌水率,计算公式如下:

泌水率=(静置3h后离析水面高度-静置24h后水泥浆膨胀面高度)/ 最初填灌水泥浆面高度*100%

水泥净浆膨胀率的试验方法

水泥净浆的膨胀率分两部分测试:一为测试水泥浆体凝结前膨胀率;另一为测试水泥浆体中后期膨胀率。测试凝结前膨胀率是结合泌水率的测试进行的,即将测试好泌水率的水泥浆继续静置21h(实际距离制浆时间为24h)后测量水泥净浆膨胀后的浆面高度。膨胀的高度除以水泥浆原来填灌高度即为膨胀率。计算公式如下:膨胀率=(膨胀后水泥净浆面高度-最初填灌水泥浆面高度)/最初填灌水泥面高度*100%

测中后期膨胀率的方法为:用40*40*160水泥软练三联试模,在两端镶嵌铜测头,水泥浆入模后24h拆模并量测试件长度作为试件的初始长度。试件在20±1℃标准条件下进行养护,前14天为水中养护,14后转入湿空气中养护。分别测试试件3d、7d、14d、28d 的长度。膨胀的长度除以试件的基长即为膨胀率,计算公式如下:膨胀率=(膨胀后的长度-初始长度)/试件基长*100%

水泥净浆极限抗压强度的试验方法

用70.7mm*70.7mm*70.7立方体试件对每种配合比的水泥浆液都制作两组(12块)试块,标准养护28天,测其抗压强度。

不同水胶比水泥浆液的性能

根据规范对水泥浆液的技术条件要求:强度一般与被注浆体同强度,没有要求时应不小于30Mpa;在掺入适量减水剂的情况下,水灰比可减到0.35;水泥浆的泌水率最大不得超过3%,拌和后3h泌水率宜控制在2%,泌水应在24h内重新全部被浆吸回;水泥浆中可加入膨胀剂,但其自由膨胀率应小于10%;水泥浆液稠度宜控制在14~18s之间。所以暂时以减水剂掺量1%,膨胀剂掺量10%为基准配合比进行试验。

水泥净浆稠度测试结果,见(表1)

表1 水泥净浆稠度测试结果

⑴水胶比为0.34~0.35之间的水泥净浆的稠度符合规范要求。

⑵静置20min后,水泥浆的稠度损失较大,故要求浆液配置好以后应该尽快注完。

2.2.2 水泥净浆泌水率测试结果,见(表2)

表2 水泥净浆泌水率测试结果

⑴泌水率随着水胶比的增大而增大。

⑵0.33~0.37五种配合比浆液各自配置好后灌入量筒静置,均出现水泥浆体离析现象(上层为黑色水泥泡沫、中层泌水、下层为水泥浆体, 只有水胶比为0.33的水泥浆体几乎没有水层),且随水胶比的增大泌水率也增大。

⑶水胶比0.33~0.35的泌水率静置3h后均小于2%。

水泥净浆膨胀率测试结果,见(表3)

表3 水泥净浆膨胀率测试结果

⑴每一种水胶比的配合比水泥浆液膨胀率随时间的推移而增长,但28天的膨胀率相对14天有所回落。

⑵水胶比0.33~0.37,在相同时间膨胀率随着水胶比的增大而增大。这可能是由于膨胀剂水反应也需要大量水的缘故。

水泥净浆极限抗压强度测试结果,见(表4)

表4 水泥净浆极限抗压强度测试结果

28天抗压强度最高可达到56.4Mpa,每种水胶比的水泥浆液均满足施工要求。

(3)固定水胶比(W/A=0.34)自由膨胀率的研究通过不同的掺量(膨胀剂6%、8%、10%、12%)24h自由膨胀率。

表5 水泥净浆膨胀率测试结果

固定水胶比随着膨胀剂掺量的增加其膨胀率也随之增加,6%~10%掺量均符合要求,但10%掺量的膨胀剂其膨胀率最大。

注浆配合比确定及性能指标

通过对五种水胶比的研究对比,现确定水泥净浆的水胶比为0.34,减水剂掺量1%,膨胀剂掺量10%。假定水泥净浆的表观密度为1900kg/m3;经计算并

调整每方水泥净浆各用料及性能指标如下:

表6 混凝土配合比和性能指标

现场注浆系统的设置及工艺流程

采用塑料全包防水层的结构在防水层表面(初期支护衬砌与二次衬砌间)设置注浆系统。该系统包括注浆底座和注浆导管,注浆底座采用热熔焊接法固定在防水板的内表面,固定点一般3~4处,然后用塑料粘结带将注浆底座四周封闭,要求能够牢固固定在防水板的表面即可,避免灌注混凝土时浆液进入注浆底座内堵塞注浆导管。注浆系统每一环向注浆断面各注浆点间距不大于4m,注浆系统沿纵向设置间距4~5m;环向施工缝、变形缝两侧各1.5m范围内需增设一个注浆断面;暗挖段顶部注浆系统间距加密到1.5~2.0m对于注浆系统中的所有引出注浆导管均要求在施工现场做好标记,并做好设置位置的记录,便于后期进行注浆。

注浆压力0.2~0.5Mpa

注浆工艺流程:

搅拌机

注浆机

水泥

外加剂

注浆完毕封闭

6 点渗漏特殊处理

隧道中混凝土出现的点渗漏,应采用埋设止水针头的方式予以注浆堵漏;对

混凝土出现的断裂缝、施工缝、后浇带形成的渗漏可分别采用埋设注浆管或埋

设注浆止水针头两种形式进行注浆堵漏,但一般埋设注浆管的堵漏效果要优于埋设注浆止水针头的效果,对于沉降缝所出现的渗漏,只能采用埋设注浆管的形式。注浆材料均采用聚氨脂注浆材料。

6.1 注浆的准备工作

6.1.1 寻找裂缝:对于潮湿基层应先清扫积水,待表面干时再仔细寻找裂缝。对于干燥基层,清理后可用气泵吹除表面灰尘,做好记号。

6.1.2 钻孔:按照混凝土结构厚度,距离裂缝150-350mm沿裂缝方向两侧交叉钻孔,孔距应按现场实际情况而定。

6.1.3 埋设止水针头:止水针头是浆液注入裂缝内的连接件,埋设时应用工具紧固,尽可能保证针头的橡胶部分及孔壁在未使用前干燥。

6.1.4 埋设注浆管:先将裂缝处开成V型槽,槽内用水清洗,埋置注浆管。注浆管上方用堵漏胶封槽。

6.2 注浆步骤及注意事项

6.2.1开始注浆时单液注浆泵压力要低,慢慢提高压力(一般0~0.8Mpa)直至到浆液流出。

6.2.2 当浆液到达相邻注浆孔中应停止注浆,移至相邻注浆嘴继续注浆。

6.2.3 注浆结束后,出去注浆嘴,混凝土上留下的孔用堵漏胶封堵。注浆所用工具均应在注浆结束后30min内用清洗剂清洗。

水泥浆性能试验

中国石油大学(钻井工程)实验报告 实验日期:2014.12.04 成绩: 班级学号:姓名:教师: 同组者: 油井水泥浆性能实验 一、实验目的 1.通过实验掌握油井水泥浆密度、流变性能的测定方法,掌握有关仪器的使用方法,对油井水泥浆基本性能的指标范围有一定的认识。 2.通过实验掌握水泥浆稠化时间的测量方法及常压稠化仪的操作方法,了解常用油井水泥的稠化性能与有关标准,充分认识水泥浆稠化时间对固井作业的重要性。 二、实验原理 1.YM 型钻井液密度计是不等臂杠杠测试仪器。杠杠左端为盛液杯,右端连接平衡筒。当盛液杯盛满被测试液体时,移动砝码使杠杠主尺保持水平的平衡位置,此时砝码左侧边所对应的刻度线就是所测试液体的密度。 2.六转速粘度计是以电动机为动力的旋转型仪器。被测试液体处于两个同心圆筒间的环形空间内。通过变速传动外转筒以恒速旋转,外转筒通过被测试液体作用于内筒产生一个转矩,使同扭簧连接的内筒旋转了一个相应角度。依据牛顿定律,该转角的大小与液体的粘度成正比,于是液体粘度的测量转变为内筒转角的测量。反应在刻度盘的表针读数,通过计算即为液体粘度、切应力。 3.水泥浆常压稠化仪中有一带固定浆叶的可旋转的水泥容器。浆杯由电机带动以150 转/分的转速逆时针转动,浆杯中的水泥浆给予浆叶一定的阻力。这个阻力与水泥浆的稠度变化成比例关系。该阻力矩与指示计的弹簧的扭矩相平衡,通过指针在刻度盘上指示出稠度值。 三、实验仪器、设备 1.电子天平 2.恒速搅拌器 3.钻井液密度计

4.六速旋转粘度计 5.油井水泥常压稠化仪 四、实验步骤 1.标定常压稠化仪指示计 实验前,应当在标定装置上对指示计进行标定,将铜套圈装在指示计上方;缺口对准指示计销轴,尼龙线一端系在指示的销轴上,另一端沿铜套圈沟槽绕一周,然后再沿滑轮的沟槽引下与吊钩连接。标定时,在吊钩上装上砝码,读出指示计数值。然后将吊钩、砝码用手托起,使指示计指针回到零。接着松手让吊钩、砝码慢慢落下,读数。如此反复几次,取平均值。 2.配制水泥浆 配制水泥浆之前必须确定水灰比。合理的水灰比是保证水泥环具有足够的抗压强度和水泥浆良好的可泵性的前提。当水灰比过大时,水泥浆难以搅拌和泵送,在环空流动将产生很高的摩擦阻力。如遇渗透性好的低压井段,则产生压差滤失,使水渗入地层,造成憋泵事故。水灰比过小,水泥环将达不到要求的抗压强度。API 标准推荐的水灰比见表1。 表1 API 的水灰比(W/C)标准 ①按实验时要求的水灰比计算水泥和水的重量(如水灰比0.5)。 ②在天平上称取 600 克水泥,用量筒取相应的水量300 克。 ③加入促凝剂氯化钙24克,放入水中搅拌。 ④将量出的水倒入搅拌器的杯内,启动搅拌机,调节转数为 4000 转/分。将称 出的干水泥在15 秒内加入水中。然后调节搅拌器转数为12000 转/分,继续搅拌35秒。 3.测定水泥浆的稠化时间 ①将浆杯轻轻放入杯套内,使浆杯、杯套的缺口对齐。 ②打开总电源开关。按照实验中升温方案的初始值,设置温度拨码式调节器的下一排数字。然后接通加热器电源。在温度完全稳定后,再进行下列步骤。

水泥浆泌水率试验

水泥浆液主要性能试验方法 水泥净浆稠度的试验方法 高效减水剂,减水率12%。水泥净浆稠度采用水泥浆稠度试验漏斗(上口φ178,下口φ13,体积1725ml)测试。测定时,先将漏斗调整放平,关上底口活门,将搅拌均匀的水泥净浆倾入漏斗内,直至浆液表面触及点测规下端(表明漏斗内已经装满1725ml浆液)。打开活门,让水泥浆液自由流出,水泥浆液全部流完时间(s),称为水泥浆的稠度。 水泥净浆泌水率的试验方法 往高约120mm的有机玻璃容体中填灌水泥浆约100mm深,测填灌面高度并记录下来,然后用密封盖盖严,置放3h和24h后量测其离析水水面和水泥浆膨胀面。离析水的高度除以原填灌浆液高度即 为泌水率,计算公式如下: 泌水率=(静置3h后离析水面高度-静置24h后水泥浆膨胀面高度)/ 最初填灌水泥浆面高度*100% 水泥净浆膨胀率的试验方法 水泥净浆的膨胀率分两部分测试:一为测试水泥浆体凝结前膨胀率;另一为测试水泥浆体中后期膨胀率。测试凝结前膨胀率是结合泌水率的测试进行的,即将测试好泌水率的水泥浆继续静置21h(实际距离制浆时间为24h)后测量水泥净浆膨胀后的浆面高度。膨胀的高度除以水泥浆原来填灌高度即为膨胀率。计算公式如下:

膨胀率=(膨胀后水泥净浆面高度-最初填灌水泥浆面高度)/最初填灌水泥面高度*100% 测中后期膨胀率的方法为:用40*40*160水泥软练三联试模,在两端镶嵌铜测头,水泥浆入模后24h拆模并量测试件长度作为试件的初始长度。试件在20±1℃标准条件下进行养护,前14天为水中养护,14后转入湿空气中养护。分别测试试件3d、7d、14d、28d 的长度。膨胀的长度除以试件的基长即为膨胀率,计算公式如下:膨胀率=(膨胀后的长度-初始长度)/试件基长*100% 水泥净浆极限抗压强度的试验方法 用70.7mm*70.7mm*70.7立方体试件对每种配合比的水泥浆液都制作两组(12块)试块,标准养护28天,测其抗压强度。 不同水胶比水泥浆液的性能 根据规范对水泥浆液的技术条件要求:强度一般与被注浆体同强度,没有要求时应不小于30Mpa;在掺入适量减水剂的情况下,水灰比可减到0.35;水泥浆的泌水率最大不得超过3%,拌和后3h泌水率宜控制在2%,泌水应在24h内重新全部被浆吸回;水泥浆中可加入膨胀剂,但其自由膨胀率应小于10%;水泥浆液稠度宜控制在14~18s之间。所以暂时以减水剂掺量1%,膨胀剂掺量10%为基准配合比进行试验。 水泥净浆稠度测试结果,见(表1) 表1 水泥净浆稠度测试结果

水泥浆泌水率试验图文稿

水泥浆泌水率试验 集团文件版本号:(M928-T898-M248-WU2669-I2896-DQ586-M1988)

水泥浆液主要性能试验方法 水泥净浆稠度的试验方法 高效减水剂,减水率12%。水泥净浆稠度采用水泥浆稠度试验漏斗(上口φ178,下口φ13,体积1725ml)测试。测定时,先将漏斗调整放平,关上底口活门,将搅拌均匀的水泥净浆倾入漏斗内,直至浆液表面触及点测规下端(表明漏斗内已经装满1725ml浆液)。打开活门,让水泥浆液自由流出,水泥浆液全部流完时间(s),称为水泥浆的稠度。 水泥净浆泌水率的试验方法 往高约120mm的有机玻璃容体中填灌水泥浆约100mm深,测填灌面高度并记录下来,然后用密封盖盖严,置放3h和24h后量测其离析水水面和水泥浆膨胀面。离析水的高度除以原填灌浆液高度即为泌水率,计 算公式如下: 泌水率=(静置3h后离析水面高度-静置24h后水泥浆膨胀面高度)/最初填灌水泥浆面高度*100% 水泥净浆膨胀率的试验方法 水泥净浆的膨胀率分两部分测试:一为测试水泥浆体凝结前膨胀率;另一为测试水泥浆体中后期膨胀率。测试凝结前膨胀率是结合泌水率的测试进行的,即将测试好泌水率的水泥浆继续静置21h(实际距离制浆时间为24h)后测量水泥净浆膨胀后的浆面高度。膨胀的 高度除以水泥浆原来填灌高度即为膨胀率。计算公式如下: 膨胀率=(膨胀后水泥净浆面高度-最初填灌水泥浆面高度)/最初填灌水泥面高度*100% 测中后期膨胀率的方法为:用40*40*160水泥软练三联试模,在两端镶嵌铜测头,水泥浆入模后24h拆模并量测试件长度作为试件的初始

长度。试件在20±1℃标准条件下进行养护,前14天为水中养护,14后转入湿空气中养护。分别测试试件3d、7d、14d、28d 的长度。膨胀的长度除以试件的基长即为膨胀率,计算公式如下:膨胀率=(膨胀后的长度-初始长度)/试件基长*100% 水泥净浆极限抗压强度的试验方法 用70.7mm*70.7mm*70.7立方体试件对每种配合比的水泥浆液 都制作两组(12块)试块,标准养护28天,测其抗压强度。 不同水胶比水泥浆液的性能 根据规范对水泥浆液的技术条件要求:强度一般与被注浆体同强度,没有要求时应不小于30Mpa;在掺入适量减水剂的情况下,水灰比可减到0.35;水泥浆的泌水率最大不得超过3%,拌和后3h泌水率宜控制在2%,泌水应在24h内重新全部被浆吸回;水泥浆中可加入膨胀剂,但其自由膨胀率应小于10%;水泥浆液稠度宜控制在 14~18s之间。所以暂时以减水剂掺量1%,膨胀剂掺量10%为基准配合比进行试验。 水泥净浆稠度测试结果,见(表1) 表1 水泥净浆稠度测试结果 ⑴水胶比为0.34~0.35之间的水泥净浆的稠度符合规范要求。 ⑵静置20min后,水泥浆的稠度损失较大,故要求浆液配置好以后 应该尽快注完。 2.2.2 水泥净浆泌水率测试结果,见(表2)

水泥性能试验作业指导书

水泥性能试验作业指导书 (NTJCZ-TG09) 1.适用范围 本作业指导书适用于普通硅酸盐水泥、硅酸盐水泥、复合硅酸盐水泥、矿渣硅酸盐水泥、粉煤灰硅酸盐水泥、火山灰质硅酸盐水泥性能试验。 2.执行标准 《硅酸盐水泥、普通硅酸盐水泥》GB175—1999 《复合硅酸盐水泥》GB12958—1999 《矿渣硅酸盐水泥、火山灰质硅酸盐水泥及粉煤灰硅酸盐水泥》GB1344—1999 《水泥胶砂强度检验方法(ISO法)》GB/T17671—1999 《水泥细度检验方法(80um筛筛析法)》GB1345—1991 《水泥标准稠度用水量、凝结时间、安定性检验方法》GB/T1346—2001 3.细度 3.1方法原理 是采用80um筛对水泥试样进行筛析试验,用筛网上所得筛余物的质量占试样原始质量的百分数来表示水泥样品的细度。 3.2取样 水泥试样应充分拌匀,通过0.9mm方孔筛,记录筛余物情况; 3.3试验步骤 1)把负压筛放在筛座上,盖上筛盖,接通电源。调节负压至4000—6000Pa范围内; 2)称取试样25g置于洁净的负压筛上,盖上筛盖,放在筛座上,开动筛析仪,连续筛2min,在此期间如有试样粘附在筛盖上,可轻轻敲打,使试样落下,筛毕,用天平称量筛余物; 3)当工作负压小于4000Pa时,应清理吸尘器内水泥,使负压恢复正常。 结果计算:F=Rs/W×100%(精确至0.1%) 3.4试验筛修正法: 用一种已知80um标准筛筛余百分数的粉状式样,作为标准样,测试方法同筛析法。 计算修正系数C=Fn/Ft(精确至0.01);修正后:Fo=C×F;修正系数C超出0.08~1.20的试验筛不能用作水泥细度检验。 4.水泥标准稠度用水量、凝结时间、安定性测定 4.1原理 1)水泥标准稠度净浆对标准试杆(或试锥)的沉入具有一定阻力。通

油井水泥浆性能实验

中国石油大学 钻井工程 实验报告 实验日期: 2015.5.27 成绩: 班级: 石工(实验)1202 学号: 姓名: 教师: 同组者: 油井水泥浆性能实验 一、实验目的 1.通过实验掌握油井水泥浆的基本配置方法,掌握水泥浆密度,流变性能的测定方法,掌握有关仪器的使用方法,对油井水泥浆基本性能的指标范围有一定的认识 ; 2.通过实验掌握油井水泥浆稠化时间的测量方法及常压稠化仪的操作方法,了解常用油井水泥的稠化性能与有关标准,充分认识水泥浆稠化时间对固井作业的重要性。 二、实验原理 1、水泥浆密度 水泥浆密度是由配制水泥浆的水泥、配浆水、外加剂和外掺料等材料的密度和掺量决定的。 实验中使用YM 型钻井液密度计测量水泥浆的密度,该仪器是不等臂杠杠测试仪器,杠杠左端为盛液杯,右端连接平衡筒。当盛液杯盛满被测试液体时,移动砝码使杠杠主尺保持水平的平衡位置,此时砝码左侧边所对应的刻度线就是所测试液体的密度。 2、水泥浆流变性能. 大多数水泥浆表现出复杂的非牛顿流体特征。一般来说,水泥浆属于剪切稀释型流体,描述水泥浆流变性质最常用的流变模式为宾汉塑性模式和幂律模式。 (1)宾汉塑性模式 (2)幂律模式 实验中使用六转速粘度计测量水泥浆的流变性能,该仪器是以电动机为动力的旋转型仪器。被测试液体处于两个同心圆筒间的环形空间内。通过变速传动外转筒以恒速旋转,外转筒通过被测试液体作用于内筒产生一个转矩,使同扭簧连接的内筒旋转了一个相应角度。依据牛顿定律,该转角的大小与液体的粘度成正比,于是液体粘度的测量转变为内筒转角的测量。记录表盘参数,通过以下方法计算水泥浆的流变参数。 n -幂律系数, 无量纲量; k-稠度系数,n Pa S ?。 n k τγ=? y p ττμγ=+?

水泥浆配比

关于孔道压浆用水泥浆配比设计的几点说明,我在刚开始搞搞水泥浆配比的时候有好多疑惑,后来查阅资料,搜索中,发现网上的一些经验,转过来供大家参考 《公路桥涵施工技术规范》JTJ041-2000(P93)11.3.2“普通混凝土的配合比,可参照现行《普通混凝土配合比设计规程》(JGJ/T55-2000)通过试配确定;砌体砂浆配合比也就相应的采用了现行《砌筑砂浆配合比设计规程》JGJ98-2000,那么后张孔道压浆配合比怎么确定?用于质量评定的资料怎样出? 我在各省各项目中发现很不统一,很多建设单位、管理单位、承建单位试验室均采用了砂浆配合比设计规程,28天抗压强度试件采用每组6块,一个工作班两组整理资料,这样做对吗?可以肯定的告诉大家,这样是不正确的,没有任何依据的,应当予以纠正。下面我就现行规范、规程中有关孔道压浆的相关资料整理出来,供大家学习参考。 A、《公路桥涵施工技术规范》JTJ041-2000(P135)12.11.2条款“孔道压浆宜采用水泥浆,所用材料应符合下列要求:1、水泥:宜采用硅酸盐水泥或普通水泥。采用矿渣水泥时,应加强检验,防止材性不稳定。水泥的强度等级不宜低于42.5。水泥不得含有任何团块。2、水:应不含有对预应力筋或水泥有害的成分,每升水不得含500mg以上的氯化物离子或任何一种其他有机物。可采用清洁的饮用水。3、外加剂:宜采用具有低含水量,流动性好,最小渗出及膨胀性等特性的外加剂,他们应不得含有对预应力筋或水泥有害的化学物质。外加剂的用量通过试验确定。12.11.3条款水泥浆的强度应符合设计规定,设计无具体规定时,应不低于30Mpa,水泥浆的技术条件应符合下列规定:①水灰比宜为0.40-0.45,掺入适量减水剂时,水灰比可减小到0.35;②水泥浆的泌水率最大不得超过3%,拌合后3h泌水率宜控制在2%泌水应在24h内重新全部被浆吸回③通过试验后,水泥浆中可掺入适量膨胀剂,但其**膨胀率应小于10%④水泥浆稠度宜控制在14-18s之间。12.11.11条款:压浆时,每一工作班应留取不少于3组的70.7mm×70.7mm×70.7mm立方体试件,标准养护28d,检查其抗压强度,作为评定水泥浆质量的依据。 B、《公路工程国内招标文件范本》(2003年版)P243对孔道压浆的规定摘录如下:(10)压浆时,每一工作班应留取不少于3组试件(每组70.7mm×70.7mm×70.7mm立方体试件3个)标准养生28d,检查其抗压强度作为水泥浆质量的评定依据。 综上所述,可以肯定孔道压浆质量评定的依据是每工作班留取3组70.7mm×70.7mm×70.7mm 立方体试件,每组3个,就不要再搞什么每组6块、每工作班两组了。那么孔道压浆配合比怎么确定?设计单位一般要求压浆强度同梁体强度,就在建高速公路而言,预应力梁板多设计强度为C 50,那么就以C50压浆配合比示例,以供参考吧! 在示例之前,我们在看看《公路桥涵施工技术规范》实施手册(P210-211)后张孔道压浆的目的;主要有①防止预应力筋的腐蚀;②为预应力筋与结构混凝土之间提供有效的粘结;因此,要求压入孔道内的水泥浆在结硬后应用可靠的密实性,能起到对预应力筋的防护作用,同时也要具备一定的粘结强度和剪切强度,以便将预应力有效地传递给周围的混凝土。孔道内水泥浆的密实性是最重要的,水泥浆应充满整个管道,以保证对力筋防腐的要求,至于水泥浆的强度,原规范未作明确规定,仅提出不应低于设计规定,而以往的设计对此也没有统一的标准,但设计人员往往对水泥浆强度提出比较高的指标要求,如有的要求达到梁体混凝土强度的80%,甚至有的要求与梁体混凝土强度相同。在具体的施工中,要使纯水泥浆满足高强度的指标要求是比较困难的,同时对于后张预应力混凝土结构力筋与混凝土的粘结靠压浆来提供,因而所压注的水泥浆应有一定的强度以满足粘结力的要求。但实际上,挠曲粘结应力无论是在梁体混凝土开裂之前或开裂之后都是很低的,设计时并不需要加以验算,现行的设计规范也未要求对其进行验算,而且一些发达国家的规范在涉及预应力混凝土梁内的粘结时,都是用力筋的锚固而不是粘结应力来保证的,所以对压浆强度要求过高并不适用。《混凝土结构工程施工及验收规范》(GB50204-92)要求压浆强度不低于20Mpa,国际预应力协

聚合物水泥防水砂浆试验

聚合物水泥防水砂浆试验作业指导书 SDZH/QMD1-58 1 适用范围 本作业指导书适用于聚合物水泥防水砂浆凝结时间、抗渗压力、抗压强度、抗折强度、粘结强度、耐热性、抗冻性试验。 2 依据 《聚合物水泥防水砂浆》JC/T 984-2011 《水泥标准稠度用水量、凝结时间、安定性检验方法》GB/T 1346-2001 《水泥胶砂强度检验方法》GB/T 17671(其最新版本适用于本文件) 《无机防水堵漏材料》GB 23440-2009 《混凝土界面处理剂》JC/T 907-2002 《普通混凝土长期性能与耐久性能试验方法》GB/T 50082-2009 《通用硅酸盐水泥》GB 175-2007 《聚合物改性水泥砂浆试验规程》DL/T 5126-2001 《行星式水泥胶砂搅拌机》JC/T 681-1997 3 主要仪器设备 1)水泥稠度及凝结时间测定仪 2)电动抗折试验机 3)压力试验机(300kN) 4)砂浆抗渗仪 5)电子拉力试验机(2000N) 6)电子天平(0.1g) 7)冻融箱:温度控制范围不应小于(-15~20)℃ 8)沸煮箱 4 标准试验条件 4.1试验室试验及干养护条件:温度(23±2)℃,相对湿度(50±10)%。 4.2养护室(箱)养护条件:温度(20±3)℃,相对湿度≥90%。 4.3养护水池:温度(20±2)℃。

4.4试验前样品及所有器具应在4.1条件下放置至少24h。 5 取样 5.1 组批 对同一类别产品,每50t为一批,不足50t也按一批计。 5.2 取样 在每批产品或生产线中不少于六个(组)取样点随机抽取。样品总质量不少于20kg。样品分为两份,一份试验,一份备用。试验前应将所取样品充分混合均匀,先进行外观检验,外观检验合格(液料经搅拌后均匀无沉淀;粉料为均匀、无结块的粉末。)后再按物理力学性能试验。 6 试验步骤 6.1配料 按生产厂推荐的配合比进行试验。 采用行星式水泥胶砂搅拌机低速搅拌或采用人工搅拌。 S类(单组分)试样:先将水倒入搅拌机内,然后将粉料徐徐加入到水中进行搅拌; D类(双组分)试样:先将粉料混合均匀,再加入已倒入液料的搅拌机中搅拌均匀。如需要加水的,应先将乳液与水搅拌均匀。搅拌时间和熟化时间按生产厂规定进行。若生产厂未提供上述规定,则搅拌3min、静止(1~3)min。 制备的砂浆分二次装入试模用插捣棒从边上向中间插倒25次,最后保持砂浆高出试模5mm,将高出的砂浆压实,刮平。试件成型后立即放入养护室养护,24h(从加水开始计算时间)脱模。如经24h养护,会因脱模对强度造成损害的,可以延迟24h脱模。 7d龄期砂浆试件的养护:脱模后试件立即在温度为(20±2)℃的不流动水中养护继续养护至3d龄期,再放入试验室干养护至7d龄期。 28d龄期砂浆试件的养护:脱模后试件立即在温度为(20±2)℃的不流动水中养护继续养护至7d龄期,再放入试验室干养护至28d龄期。 6.2 凝结时间 按6.1配料,按GB/T 1346-2001进行,采用受检的聚合物水泥防水砂浆材料取代该标准中试验用的水泥。 测定前准备工作:调整凝结时间测定仪的试针接触玻璃板时,指针对准零点。 初凝时间的测定:试件在标准养护箱内养护至起始时间之后30min时进行第一次测定。测定时,从标准养护箱中取出试模放到试针下,降低试针与水泥净浆表面接触。拧紧螺丝

混凝土泌水率

混凝土在运输、振捣、泵送的过程中出现粗骨料下沉,水分上浮的现象称为混凝土泌水。泌水是新拌混凝土工作性一个重要方面。通常,描述混凝土泌水特性的指标有泌水量(即混凝土拌和物单位面积的平均泌水量)和泌水率(即泌水量对混凝土拌和物之比含水量之比)。 泌水会引起某些不良的后果,如会引起麻面、塑性开裂、表层混凝土强度降低等问题。泌水以后会使混凝土不均匀,并且泌水本身在混凝土中是不均匀的,肯定对混凝土是不利的。泌水部位的混凝土中会产生缺陷,泌水部位水灰比下降的同时,在该部位留下缺陷,导致该部位强度降。泌水还会降低混凝土的抗渗透能力、抗服饰能力和抗冻融能力。 要避免混凝土表面出现“沁水”现象,首先混凝土本身要具有较好的保水性,防止严重的泌水导致混凝土表层水灰比过大。从配合比及组成材料的选择出发,要注意控制水灰比不宜过大、外加剂不要过掺,以及凝结时间要适宜。砂、石集料要符合国家质量要求,尤其要注意砂中0.315mm以下的颗粒含量。水泥的凝结时间不易过长,比表面积不宜过小,颗粒级配不宜过分集中;其次,施工过程要防止振捣过度造成混凝土严重的离析与泌水;再次,施工后要注意及时养护,既要防止混凝土表面硬化之前被雨水冲刷造成混凝土表面水灰比过大,又要防止混凝土中的水分在表层建立起强度之前散失,尤其是掺有粉煤灰或矿渣的混凝土,由于其早期强度较低,表层没有足够多的水化产物来封堵表层大的毛细孔,若不注意早期充分的湿养护,混凝土表层水分散失较快较多,表层水泥得不到充分的水化,亦会导致表层混凝土强度偏低,结构松散。通常,在混凝土接近终凝时,要对混凝土进行二次抹面(或压面),使混凝土表层结构更加致密。

大体积混凝土泌水处理 因泵送混凝土游离水偏多,在混凝土浇筑过程中,大量游离水会流向基坑最低处,故在浇筑大承台混凝土时,大量的积水应立即用污水泵抽出。不允许混凝土向水中浇捣,避免因水浸产生蜂窝或不密实。 1、混凝土浇筑完成一个平面后为防止泵送混凝土表面因水泥浆太多水份流失太快,产生表面收水裂缝,所以混凝土在初凝前进行二次振捣,振捣应注意时机,以振捣后振动棒抽出时无振动眼,混凝土自然闭合为宜,振动完后及时用滚筒碾压后用木槎板打磨,压实以闭合收水裂缝。 2、对大体积混凝土,必须采取表面保温潮湿养护,双层塑料布加双层草包全封闭养护既要使混凝土内水份保持一定的湿度又要使混凝土内外温差控制在25℃,采取电热板照射使其表面升温,因此大体积混凝土完毕后12-14小时后加覆盖表面体温养护,养护时间不少于14天。

【CN109991399A】一种压浆浆液自由泌水率及自由膨胀率的测定装置【专利】

(19)中华人民共和国国家知识产权局 (12)发明专利申请 (10)申请公布号 (43)申请公布日 (21)申请号 201910376242.3 (22)申请日 2019.05.07 (71)申请人 中庆建设有限责任公司 地址 130117 吉林省长春市净月开发区福 祉大路5888号 (72)发明人 辛晓慧 张洪军 王汉席 张宏权  薛兴伟 孙士远 李姚 阮海涛  刘伟 王坤 皮金龙  (74)专利代理机构 北京集佳知识产权代理有限 公司 11227 代理人 罗满 (51)Int.Cl. G01N 33/38(2006.01) (54)发明名称 一种压浆浆液自由泌水率及自由膨胀率的 测定装置 (57)摘要 本发明公开一种压浆浆液自由泌水率及自 由膨胀率的测定装置,包括试验容器、固定标尺、 移动标尺、密封盖和平衡板,试验容器可拆卸地 安装于平衡板表面,密封盖可拆卸地设置于试验 容器上端,固定标尺垂直于平衡板表面设置,且 移动标尺可滑动地设置于固定标尺的尺身。本发 明提供的压浆浆液自由泌水率及自由膨胀率的 测定装置,通过在试验容器外部设置与试验容器 平行设置的固定标尺以及在固定标尺上滑动的 移动标尺,可以使在试验过程中测量、读取的压 浆浆液上表面的变化更加精准,大大提高试验的 精度;同时本发明的测定装置结构简单,制备成 本低, 可操作性强。权利要求书1页 说明书4页 附图2页CN 109991399 A 2019.07.09 C N 109991399 A

权 利 要 求 书1/1页CN 109991399 A 1.一种压浆浆液自由泌水率及自由膨胀率的测定装置,其特征在于,包括试验容器(1)、固定标尺(2)、移动标尺(3)、密封盖(4)和平衡板(5),所述试验容器(1)可拆卸地安装于所述平衡板(5)表面,所述密封盖(4)可拆卸地设置于所述试验容器(1)上端,所述固定标尺(2)垂直于所述平衡板(5)表面设置,且所述移动标尺(3)可滑动地设置于所述固定标尺(2)的尺身。 2.根据权利要求1所述的测定装置,其特征在于,所述固定标尺(2)的起始刻度值与所述试验容器(1)的内部底面齐平。 3.根据权利要求2所述的测定装置,其特征在于,所述移动标尺(3)的刻度值与所述固定标尺(2)的刻度值正对设置。 4.根据权利要求1至3任意一项所述的测定装置,其特征在于,还包括设置于所述平衡板(5)上表面的调平气泡(6)。 5.根据权利要求4所述的测定装置,其特征在于,所述平衡板(5)下表面设置有三角支架(7)。 6.根据权利要求5所述的测定装置,其特征在于,所述平衡板(5)中心处设置有与所述三角支架(7)连接的固定内置件(8)。 7.根据权利要求4所述的测定装置,其特征在于,还包括与所述平衡板(5)下表面相抵接的调平立杆(9)。 8.根据权利要求7所述的测定装置,其特征在于,所述调平立杆(9)上套装有调平旋钮(10)。 9.根据权利要求8所述的测定装置,其特征在于,所述调平立杆(9)包括下部调平立杆(91)、上部调平立杆(92)和顶进螺杆(93),所述顶进螺杆(93)固定设置于所述下部调平立杆(91)上,所述调平旋钮(10)套装在所述顶进螺杆(93)上,且所述顶进螺杆(93)与所述上部调平立杆(92)螺纹连接。 2

水泥混凝土拌合物泌水试验方法

T 0528-2005 水泥混凝土拌合物泌水试验方法 1.目的、适用范围和引用标准 本方法规定了测定水泥混凝土拌合物泌水性的方法和步骤。 本方法适用于集料公称最大粒径不大于31.5mm的水泥混凝土拌合物泌水的测定。 引用标准: GB/T50080-2002 《普通混凝土拌合物性能试验方法标准》 JG 3021-1994 《水泥混凝土坍落度仪》 T 0521-2005 《水泥混凝土拌合物的拌和与现场取样方法》 2.仪器设备 (1)试样筒:试样筒为刚性金属圆筒,两侧装有把手,筒壁坚固且不漏水。对于集料公称最大粒径不大于31.5mm的拌和物采用5L的试样筒,其内径与内高均为186mm±2 mm,壁厚为3mm,并配有盖子。对天集料公路最大粒径天于31.5mm的拌合物采用的试样筒,其内径与内高均应天于集料公称最大粒径的4倍。 (2)台秤:量程为50kg,感量为50g. (3)量筒:容量为10ml﹑50m l﹑100ml的量筒及吸管,量筒分度值不1ml. (4)捣棒:符合TG3021-1994的规定。 (5)秒表:分度值为1s. 3.试验步骤 3.1.试验中室温应保持在20℃±2℃. 3.2应用温布湿润试样筒内壁后立称量,记录试样筒的质量。再将混凝土试样装入试样筒,混凝土的装料及捣实方法如下: 3.2.1坍落度天于70mm,用振动台振实,将试样一次装入试样筒内,开启振动台,振动应持续到表面出浆为止,且应避免过振;并使混凝土拌合物低于试样筒表面30mm±3mm,并用抹刀抹平,抹平后立即称量并记录试样筒与试样的总质量,并开始计时。 3.2.2 坍落度天于70mm,用捣棒捣实。混凝土拌合物应分两层装入。每层的插捣次数为25次;捣棒由边缘向中心均匀地插捣,插捣底层时捣顶多应贯穿整个深度,插捣第二层时,捣棒应插透本层至下一层表面;每层捣完后用橡皮锤轻轻敲地容壁5~10次,直到拌合物表面插捣孔消失并不见大气兆为止;并便混凝土拌合物表面低于试样筒表面30mm±3mm,并用抹平后立即称量并记录试样筒与试样的总质量,开始计时。 3.3保持试样筒水平且不振动,试验过程中除了吸水操作外,应始终盖好盖子。 3.4拌合物加水拌和开始计时,从计时开始后的60min时,每10min吸取一次试样表面渗出的水。60min ,每30min吸取一次试样表面渗出的水,直到认为不再泌水为止。为便于吸水,每次吸水前2min,将一片35厚的垫块垫入筒底一侧使其倾;吸水后,恢复水平.吸出的水放入量筒中,记录每次吸水的水量并吸水累计总量,精确到1mL.当吸水累计总量用质量表述时,用Ww表示。 Ba=V除以A Ba-----泌水量(ml/mm2) V-------吸水累计总量(mL) A-------试件外露表面面积(mm2) 计算精确至0.01.泌水量取三个试样的平均值。如果其中一个与中间值之差超过中值的15%,则以中间值为试验结果。如果最大值和最小值与中间值之差均起过中间值的15%,则试验无效。 4.2泌水率按下式计算: B=W除以(W/m)(m1-m0)×100

水泥浆性能实验

中国石油大学钻井工程实验报告 实验日期: 成绩: 班级: 学号: 姓名: 教师: 同组者: 油井水泥浆性能实验 一、实验目的 1.掌握油井水泥浆的制备方法 ; 2.掌握测定水泥浆密度、流变性能和稠化时间的原理、实验流程及步骤。 二、实验原理 1、水泥浆密度 水泥浆密度是由配制水泥浆的水泥、配浆水、外加剂和外掺料等材料的密度和掺量决定的。 实验中使用YM 型钻井液密度计测量水泥浆的密度,该仪器是不等臂杠杠测试仪器,杠杠左端为盛液杯,右端连接平衡筒。当盛液杯盛满被测试液体时,移动砝码使杠杠主尺保持水平的平衡位置,此时砝码左侧边所对应的刻度线就是所测试液体的密度。 2、水泥浆流变性能 大多数水泥浆表现出复杂的非牛顿流体特征。一般来说,水泥浆属于剪切稀释型流体,描述水泥浆流变性质最常用的流变模式为宾汉塑性模式和幂律模式。 (1)宾汉塑性模式 y p ττ μ γ =+? (2)幂律模式 n k τγ =? n -幂律系数, 无量纲量; k-稠度系数,n Pa S ?。 实验中使用六转速粘度计测量水泥浆的流变性能,该仪器是以电动机为动力的旋转型仪器。被测试液体处于两个同心圆筒间的环形空间内。通过变速传动外转筒以恒速旋转,外转筒通过被测试液体作用于内筒产生一个转矩,使同扭簧连接的内筒旋转了一个相应角度。依据牛顿定律,该转角的大小与液体的粘度成正比,于是液体粘度的测量转变为内筒转角的测量。记录表盘参数,通过以下方法计算水泥浆的流变参数。

3、水泥浆稠化时间 稠化时间是指从水泥浆配浆开始到水泥浆注入稠化仪中,在实际井温和压力条件下,水泥浆稠度达到100 Bc 所经历的时间。 实验中使用常压稠化仪测量水泥浆的稠化时间。配制好水泥浆后,随着水泥水化,水泥浆不断变稠,稠化仪浆叶旋转剪切水泥浆的阻力增大,使安装在电位计上的弹簧扭矩及其指针旋转角度也相应增大,电位计的阻值及电压也随之增大。因此,电位计所反映出来的电压值,不仅表示了弹簧扭矩的大小,也反映了测量水泥浆稠度值的大小 三、实验设备 1、YM 液体密度计; 2、六转速粘度计; 3、稠化仪; 4、其它仪器; 四、实验步骤 1、确定水灰比步骤 配制水泥浆之前必须确定水灰比。合理的水灰比是保证水泥环具有足够的抗压强度和水泥浆良好的可泵性的前提。 表1 API 的水灰比(W/C )标准 200100300100()/() F θθθθ=--幂律模式流变参数 ??? ??? ? =??? ? ??=n K n 511511.0lg 092.2300100300θθθ宾汉塑性模式流变参数 ?????-=-=p o p ηθτθθη511511.0) (0015.03001003000.50.03 =±式中:F —流变模式判别系数,无量纲;300θ—转速300r/min 读数; 200θ—转速200r/min 读数;100θ—转速100r/min 读数。 首先,判别流变模式 : 0.50.03 ≠± 宾汉塑性模式 幂律模式 然后,计算流变参数:

水泥浆泌水率试验

水泥净浆配合比试验室测试研究 水泥浆液主要性能试验方法 水泥净浆稠度的试验方法 高效减水剂,减水率12%。水泥净浆稠度采用水泥浆稠度试验漏斗(上口φ178,下口φ13,体积1725ml)测试。测定时,先将漏斗调整放平,关上底口活门,将搅拌均匀的水泥净浆倾入漏斗内,直至浆液表面触及点测规下端(表明漏斗内已经装满1725ml浆液)。打开活门,让水泥浆液自由流出,水泥浆液全部流完时间(s),称为水泥浆的稠度。 水泥净浆泌水率的试验方法 往高约120mm的有机玻璃容体中填灌水泥浆约100mm深,测填灌面高度并记录下来,然后用密封盖盖严,置放3h和24h后量测其离析水水面和水泥浆膨胀面。离析水的高度除以原填灌浆液高度即 为泌水率,计算公式如下: 泌水率=(静置3h后离析水面高度-静置24h后水泥浆膨胀面高度)/ 最初填灌水泥浆面高度*100% 水泥净浆膨胀率的试验方法 水泥净浆的膨胀率分两部分测试:一为测试水泥浆体凝结前膨胀率;另一为测试水泥浆体中后期膨胀率。测试凝结前膨胀率是结合泌水率的测试进行的,即将测试好泌水率的水泥浆继续静置21h(实际距离制浆时间为24h)后测量水泥净浆膨胀后的浆面高度。膨胀的高度除以水泥浆原来填灌高度即为膨胀率。计算公式如下:

膨胀率=(膨胀后水泥净浆面高度-最初填灌水泥浆面高度)/最初填灌水泥面高度*100% 测中后期膨胀率的方法为:用40*40*160水泥软练三联试模,在两端镶嵌铜测头,水泥浆入模后24h拆模并量测试件长度作为试件的初始长度。试件在20±1℃标准条件下进行养护,前14天为水中养护,14后转入湿空气中养护。分别测试试件3d、7d、14d、28d 的长度。膨胀的长度除以试件的基长即为膨胀率,计算公式如下:膨胀率=(膨胀后的长度-初始长度)/试件基长*100% 水泥净浆极限抗压强度的试验方法 用70.7mm*70.7mm*70.7立方体试件对每种配合比的水泥浆液都制作两组(12块)试块,标准养护28天,测其抗压强度。 不同水胶比水泥浆液的性能 根据规范对水泥浆液的技术条件要求:强度一般与被注浆体同强度,没有要求时应不小于30Mpa;在掺入适量减水剂的情况下,水灰比可减到0.35;水泥浆的泌水率最大不得超过3%,拌和后3h泌水率宜控制在2%,泌水应在24h内重新全部被浆吸回;水泥浆中可加入膨胀剂,但其自由膨胀率应小于10%;水泥浆液稠度宜控制在14~18s之间。所以暂时以减水剂掺量1%,膨胀剂掺量10%为基准配合比进行试验。 水泥净浆稠度测试结果,见(表1) 表1 水泥净浆稠度测试结果

水泥浆泌水率试验

水泥浆泌水率试验

水泥浆液主要性能试验方法 水泥净浆稠度的试验方法 高效减水剂,减水率12%。水泥净浆稠度采用水泥浆稠度试验漏斗(上口φ178,下口φ13,体积1725ml)测试。测定时,先将漏斗调整放平,关上底口活门,将搅拌均匀的水泥净浆倾入漏斗内,直至浆液表面触及点测规下端(表明漏斗内已经装满1725ml浆液)。打开活门,让水泥浆液自由流出,水泥浆液全部流完时间(s),称为水泥浆的稠度。 水泥净浆泌水率的试验方法 往高约120mm的有机玻璃容体中填灌水泥浆约100mm深,测填灌面高度并记录下来,然后用密封盖盖严,置放3h和24h后量测其离析水水面和水泥浆膨胀面。离析水的高度除以原填灌浆液高度即 为泌水率,计算公式如下: 泌水率=(静置3h后离析水面高度-静置24h后水泥浆膨胀面高度)/ 最初填灌水泥浆面高度*100% 水泥净浆膨胀率的试验方法 水泥净浆的膨胀率分两部分测试:一为测试水泥浆体凝结前膨胀率;另一为测试水泥浆体中后期膨胀率。测试凝结前膨胀率是结合泌水率的测试进行的,即将测试好泌水率的水泥浆继续静置21h(实际距离制浆时间为24h)后测量水泥净浆膨胀后的浆面高度。膨胀的高度除以水泥浆原来填灌高度即为膨胀率。计算公式如下:膨胀率=(膨胀后水泥净浆面高度-最初填灌水泥浆面高度)/最初填灌水泥面高度*100%

测中后期膨胀率的方法为:用40*40*160水泥软练三联试模,在两端镶嵌铜测头,水泥浆入模后24h拆模并量测试件长度作为试件的初始长度。试件在20±1℃标准条件下进行养护,前14天为水中养护,14后转入湿空气中养护。分别测试试件3d、7d、14d、28d 的长度。膨胀的长度除以试件的基长即为膨胀率,计算公式如下:膨胀率=(膨胀后的长度-初始长度)/试件基长*100% 水泥净浆极限抗压强度的试验方法 用70.7mm*70.7mm*70.7立方体试件对每种配合比的水泥浆液都制作两组(12块)试块,标准养护28天,测其抗压强度。 不同水胶比水泥浆液的性能 根据规范对水泥浆液的技术条件要求:强度一般与被注浆体同强度,没有要求时应不小于30Mpa;在掺入适量减水剂的情况下,水灰比可减到0.35;水泥浆的泌水率最大不得超过3%,拌和后3h泌水率宜控制在2%,泌水应在24h内重新全部被浆吸回;水泥浆中可加入膨胀剂,但其自由膨胀率应小于10%;水泥浆液稠度宜控制在14~18s之间。所以暂时以减水剂掺量1%,膨胀剂掺量10%为基准配合比进行试验。 水泥净浆稠度测试结果,见(表1) 表1 水泥净浆稠度测试结果 水胶比0.320.330.340.350.360.37 搅拌3min 35.7426.6916.1214.5312.3510.10 35.5226.4516.0214.2112.4710.25 静置20min ——63.2155.7649.1436.46——64.2554.5848.2336.20 ⑴水胶比为0.34~0.35之间的水泥净浆的稠度符合规范要求。

水泥浆配比公式

水泥浆配比公式 This manuscript was revised by the office on December 10, 2020.

1、水泥浆量的计算: 理论公式: V=π/4×D2Hk V-水泥浆体积 m3 D-套管内径 mm H-水泥塞长度 m k-附加系数 k值一般取。在此范围内,数值的大小由以下因素而定:深井取大些,浅井取值小些;井径小取值大些,井径大取值小些;灰塞短取值大,灰塞长取值小。一般在现场的计算公式如下: V=q×H×k 式中: V―――水泥用量,m3 q―――单位长度套管容积, L/m k―――附加系数。一般为、干水泥量计算: 理论公式: T=V×ρ干水泥(ρ水泥浆-ρ水)/(ρ干水泥-ρ水) 其中: ρ干水泥―――干水泥密度;(一般取) ρ水泥浆―――水泥浆密度; ρ水―――水的密度; V ―――水泥浆体积;m3 T ―――干水泥质量;t 3、清水量计算公式: Q=ρ水泥浆)×V =V-G/3.14 G干水泥重量 式中:Q ―――实际配水泥浆的清水量; Kg ρ水泥浆―――所用水泥浆相对密度; V――――所用水泥浆的体积;L 注:现场实用经验公式 配置1方比重为的水泥浆需干水泥25袋,清水方,由此推算出所用干水泥用量及清水用量。 4.顶替量的计算 V=π/4×D2H V:顶替量m3 D:注塞管柱内径m H:管柱下深与所注水泥浆在套管内的实际高度之差。 注水泥塞工艺 1.水泥浆性能、指标 1)淡水水泥浆的配制。 淡水水泥浆配制性能指标参数一览表

(按干水泥100kg,密度ρ=3.15g/㎝3计算) 水泥浆密度g/㎝3、干水泥用量kg、清水用量L、水泥浆配制量V L 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 2) 密度计算 淡水水泥浆密度按下面公式计算: 密度ρ=(100+e)÷(100÷+e)=(100+e)÷(+e) 清水用量e=100×(1-ρ/)÷(ρ-1) 水泥浆配制量V=÷(ρ-1) 举例:现有干水泥1000kg(20袋,50kg/袋),需配制密度为1.85g/㎝3的水泥浆,其清水用量和水泥浆配制量分别为多少升才能满足要求 清水用量e=1000(1-)÷-1)=(L) 水泥浆配制量V=(×1000)÷100÷(-1)=(L) 泥浆比重配合比一. 水泥浆:水泥浆比重γ=(W/C+1)/( W/C+1/ 水灰比 W/C=1:1 水泥浆比重水灰比W/C= 水泥浆比重水灰比W/C= 水泥浆比重水灰比W/C= 水泥浆比重每方水泥用量=1000*(1-空隙 率)/(1/水泥表观密度+水灰比) 水泥浆比重=每方水泥用量*(1+水灰比)/1000 如空隙率取2%,则: 水泥浆比重=*(1+水灰比)/(1/水泥表观密度+水灰比) 1. 因水的密度为1g/cm⒊,水泥密度为3.15g/cm⒊(查手册). 那么水灰比为时γ=+1)/+1/≈1.61g/cm⒊水灰比为:1时的水泥浆比重是多少 =(1+/(1/+= 吨/立方米注:不计水与水泥化合、结晶等引起的体积变化 2.水的比重为1,水泥的比重为3,用如下公式可算出每L浆液的含灰量,1/+1/3)=1.364kg/L,1立方水泥浆含水泥量就是1364kg,其他水灰比也可用这个公式,什么水灰比代在那就可以了,很方便. 3.混凝土配合比为1::,水灰比为。已知每立方米混凝土拌合物中水泥用量为295kg。

关于水泥泌水现象的原因和解决办法

关于水泥泌水现象的原因和解决办法 水泥泌水现象的原因 什么是混凝土的泌水呢? 通俗地讲,就是水泥中颗粒剂配不合理,大直径的颗粒比例比较大,使得水分不能够均匀稳定地分散到颗粒间的空隙里,而产生渗出。渗出的水覆盖在水泥制品的表面,就是泌水。 混凝土的水灰比越大,水泥凝结硬化的时间越长,自由水越多,水与水泥分离的时间越长,混凝土越容易泌水;混凝土中外加剂掺量过多,或者缓凝组分掺量过多,会造成新拌混凝土的大量泌水和沉析,大量的自由水泌出混凝土表面,影响水泥的凝结硬化,混凝土保水性能下降,导致严重泌水。 混凝土的组成材料砂石集料含泥较多时,会严重影响水泥的早期水化,粘土中的粘粒会包裹水泥颗粒,延缓及阻碍水泥的水化及混凝土的凝结,从而加剧了混凝土的泌水;砂的细度模数越大,砂越粗,越易造成混凝土泌水,尤其是0.315mm以下及2.5mm以上的颗粒含量对泌水影响较大:细颗粒越少、粗颗粒越多,混凝土越易泌水;矿物掺和料的颗粒分布同样也影响着混凝土的泌水性能,若矿物掺合料的细颗粒含量少、粗颗粒含量多,则易造成混凝土的泌水。用细磨矿渣作掺合料,因配合比中水泥用量减少,矿渣的水化速度较慢,且矿渣玻璃体保水性能较差,往往会加大混凝土的泌水量; 水泥作为混凝土中最重要的胶凝材料,与混凝土的泌水性能密切相关。水泥的凝结时间、细度、比表面积与颗粒分布都会影响混凝土的泌水性能。水泥的凝结时间越长,所配制的混凝土凝结时间越长,且凝结时间的延长幅度比水泥净浆成倍地增长,在混凝土静置、凝结硬化之前,水泥颗粒沉降的时间越长,混凝土越易泌水;水泥的细度越粗、比表面积越小、颗粒分布中细颗粒(<5μm)含量越少,早期水泥水化量越少,较少的水化产物不足以封堵混凝土中的毛细孔,致使内部水分容易自下而上运动,混凝土泌水越严重。此外,也有些大磨(尤其是带有高效选粉机的系统)磨制的水泥,虽然比表面积较大,细度较细,但由于选粉效率很高,水泥中细颗粒(小于3~5μm)含量少,也容易造成混凝土表面泌水和起粉现象。 施工与养护,施工过程的过振,不是将混凝土中密度较小的掺和料或混合材料振到了混凝土的表面,而是加剧了混凝土的泌水,使混凝土表面的水灰比增大,这也是造成混凝土泌水的主要原因。 混凝土离析 混凝土的离析是混凝土拌合物组成材料之间的粘聚力不足以抵抗粗集料下沉,混凝土拌合物成分相互分离,造成内部组成和结构不均匀的现象。通常表现为粗集料与砂浆相互分离,例如密度大的颗粒沉积大拌合物的底部,或者粗集料从拌合物中整体分离出来。 造成离析的原因可能是浇筑,振捣不当,集料最大粒径过大,粗集料比例过高,胶凝材料和细集料的含量偏低,与细集料比粗集料的密度过大,或者拌合物过干或者过湿等。使用矿物掺合料或引气剂可降低离析倾向。 水泥细度的变化。众所周知,水泥的细度越高,其活性越高,水泥的需水量也越大,同时水泥细度越大,其水泥颗粒对混凝土减水剂的吸附能力也越强,极大的减弱了减水剂的减水效果。因此,在实际生产中,当水泥的细度大幅度降低时,混凝土外加剂的减水效果将得

相关文档
相关文档 最新文档