文档库 最新最全的文档下载
当前位置:文档库 › 矿体圈定与资源储量估算

矿体圈定与资源储量估算

矿体圈定与资源储量估算
矿体圈定与资源储量估算

矿体圈定与资源储量估算

赵亚辉

湖南省矿产资源储量评审中心

1 矿体圈定

1.1 矿床工业指标

矿床工业指标是矿体圈定的基础。

1.1.1 矿床工业指标的确定方法

矿床工业指标是圈定矿体、估算资源储量的重要技术经济指标。确定工业指标既要考虑能圈出具有一定规模的工业矿体,又涉及到政府对矿产资源的监督管理,一定要符合矿床的实际情况和政府主管部门的有关规定。其确定方法通常为以下四种。

①继承法:如果矿床已有有关部门批准或下达的工业指标,可直接引用。但应说明其来源的文件名称、文号、批准时间和批准单位。

②类比法:如果矿床邻近有同类型可类比的矿床(山),可在充分类比论证下,采用与该矿床(山)相同的工业指标估算资源储量。类比时要考虑矿床内部特征(矿体特征、矿石加工技术性能、开采技术条件等)和外部建设条件的一致性或相似性。

③一般法:一般情况下,可从政府主管部门发布的或相应矿种勘查规范建议的矿床一般工业指标中选取。取值范围不能超出一般工业指标的浮动范围,具体指标根据矿床的实际情况确定。矿床内、外部条件好时取下限值,反之取上限值。这样确定的工业指标不需要详细论证,也不需要报批,程序简便。该方法一般适应于普查和预查阶段。

④论证法:在详查、勘探阶段,一般应结合矿床预可行性研究和可行性研究,论证制定该矿床合理的工业指标并上报政府主管部门批准后,作为圈定矿体、估算资源储量的依据。工业指标论证应由具有可行性研究资质的单位完成。

1.1.2 矿床工业指标确定程序

在地质勘查工作阶段较低时(如预查、普查):参照各矿种“地质勘查规范”中所制定的一般工业指标及湖南省修订的部分矿种矿床一般工业指标(2013年1月1日起试行),由地勘单位直接采用(一般应报业主认可)。

详查及勘探阶段:由地勘单位建议→设计单位推荐(或矿业权人论证及认可)→省矿产资源储量评审中心评审→报省厅正式批复。

资源储量核实报告、矿山年报及闭坑地质报告的矿床工业指标,一般沿用以往经审批的矿床工业指标,应说明其来源的文件名称、文号、批准时间和批准单位。

1.1.3 工业指标的主要内容

1.1.3.1 矿石质量要求

(1)边界品位:指在圈定矿体时,对单个样品中有用组分含量的最低要求,作为划分矿与非矿(围岩或夹石)的一个最低品位界限。常见表述如0.5%、1g/t等。

(2)最低工业品位:是指单个勘查工程揭露的矿体主要有益组分平均含量的最低要求。凡等于或大于该品位的矿石,才能视为工业上能利用的矿石,其资源储量作为能利用资源储量(以往称表内储量),介于该品位与边界品位之间的矿石属工业上暂不能利用的矿石,其资源储量作为暂不能利用的资源储量(即低品位矿石,以往称表外储量)。对品位变化不均匀和极不均匀的矿产,如贵金属矿床,最低工业品位可用于块段平均品位,在块段中允许有个别工程控制的矿体平均品位低于最低工业品位,但不得有连续相邻两个工程都低于最低工业品位,否则应按工业矿石与低品位矿石来分别圈定单独估算。常见表述如1.5%、2.5g/t等。

(3)矿床平均品位:为全矿床工业矿石的总平均品位,用于衡量全矿床矿石的贫富程度。常见表述如4.5 g/t,目前我省除个别报告还保留此指标外,已基本取消该指标要求。

(4)伴生有用组分:是指在矿石中对主要有益组分进行采、选、冶加

工过程中,可以顺便或单独提取具有单独的产品和产值的组分。它可用组合分析或精矿分析结果,按各矿种伴生有益组分评价指标来估算其资源储量。一般规范中均有伴生有用组分综合评价的要求。

伴生有益组分:是指那些在矿石中有利于主要有用组分进行选、冶加工的组分,以及在主要有用组分进行加工时能提高产品质量的组分。如某些铁矿石含有达不到综合回收标准的稀土、硼等元素,但在冶炼时可进入钢铁,从而提高钢铁产品的质量。

(5)有害杂质允许含量:是指对矿石采、选、冶加工过程中起不良影响,甚至影响产品质量的组分所规定的允许平均最大限量。

(6)矿石或矿物的物理技术性能方面的要求:评价某些矿床时,除对矿石或矿物的品位提出要求外,还要对其物理技术性能进行测定,作为矿产质量评价的一项重要指标。如耐火粘土的耐火度,云母的片度、剥分性和电绝缘性能,石棉纤维的长度、劈分性、抗拉强度、耐热、耐酸、耐碱性能,装饰用大理岩的块度、色泽花纹和机械性能等等。

1.1.3.2 开采技术条件方面的要求

(1)最低可采厚度:指在一定的技术经济条件下,对单个矿体(层)最小的开采厚度(真厚度)要求。一般情况下,小于这一厚度的,不得视为工业矿体。一般表述如0.8m。

(2)夹石剔除厚度或最大夹石允许厚度(真厚度)

是指圈定矿体时,在单工程中允许夹在矿体中非矿石部分(围岩或矿化夹层)的最小厚度。厚度大于或等于此指标的,作为围岩(夹石),不圈入矿体。反之,作为矿体的一部分,一并圈入矿体计算工程平均品位,估算资源储量。但注意必须确保矿石工程平均品位不得低于最低工业品位,以防矿石品位的人为贫化。一般表述如2m。

(3)最低米百分率(米·克/吨值):对某些矿产,特别是工业利用价值较高的矿产提出的一项综合指标。它包括矿石品位和矿体厚度两方面的要求,只用于厚度小于可采厚度而品位大于最低工业品位的矿体。在这前提下,如果工程矿体厚度与矿石品位的乘积(即米百分率或米·克/吨值)等于

或大于工业品位与可采厚度的乘积(即最低米百分率或最低米·克/吨值)的,仍可视为工业矿体,参加资源储量估算。

(4)含矿系数(含矿率):是指工业矿化地段(即工业矿体)的长度、面积或体积与整个矿化地段(含工业矿体在内)的长度、面积或体积的比值。它是表示矿化地段内工业矿体的连续程度的一项指标。矿化连续的矿体其含矿系数为1或近于1,含矿系数愈小,矿化愈不连续。

(5)可采宽度:一般是指用机械采掘砂矿(如用采金船开采砂金)矿体的最小开采宽度。它是根据矿床的可采厚度、矿石品位、采掘方法等因素确定的,小于这一宽度要求的,则不宜于机械化开采。

(6)无矿段剔除长度及高度:一般是对脉状矿床或品位变化大的复杂类型矿床所作的特殊规定,即对矿脉(体)沿走向和倾向无矿地段应剔除的长度或高度。如脉型矿床根据上下坑道(沿脉)对应或不对应时,其无矿地段剔除长度分别为10-15m或20-30m,无矿段剔除高度为半个中段或一个中段。

(7)剥离比(或剥离系数或剥采比或剥离率):指露天开采矿床或矿体,开采时需剥离的废石量(包括矿体间夹石、开拓安全角范围内的剥离物)与埋藏的矿石量相比的数值,即剥离量与矿量的比值。等于或小于这个比值的那部分可以露天开采。它是确定矿床露天开采的一项重要技术经济指标。

1.2 矿体圈定与连接

为了确定矿体的分布范围和面积,分别估算资源储量,应根据实际的勘查资料来确定各种边界线。一般边界线有矿体自然边界线、矿体内边界线、矿体外边界线、矿体零点边界线、矿体可采边界线、矿石自然类型和工业品级边界线、资源储量类型边界线等。

1.2.1 矿体边界线的圈定

矿体边界线的圈定是指在控矿工程中,按工业指标要求,把矿体的边界确定下来。即从等于或大于边界品位样品圈起,但必须首先保证最低工业品位以上矿体的完整性及边界的圈定,然后再考虑小于最低工业品位、

大于边界品位的作为低品位矿体圈定。矿体中厚度大于夹石剔除厚度的非矿部分,应予以剔除或作为夹石圈出。

1.2.1.1 单工程工业矿体:当平均品位和真厚度达到工业要求时即为矿体;当矿体的真厚度小于最小可采厚度、但品位较高,达到米百分率或米克/吨值要求时,也可作为矿体。单工程中若遇连续有多个大于边界品位而小于最低工业品位的低品位样品,当其厚度小于夹石剔除厚度且分布零星时,可不单独圈出,或带入工业矿体,参与矿体厚度和平均品位估算,但必须保证工程平均品位大于最低工业品位,具体操作时应视情况合理处理。

关于“穿鞋戴帽”的问题。所谓“穿鞋戴帽”是指在圈定矿体时,矿体中部品位较高,其边部即上(戴帽)下(穿鞋)部的低品位矿带入圈为最低工业品位以上矿体的现象。在圈定最低工业品位以上矿体时,在矿体边部连续出现多个大于边界品位而低于最低工业品位的样品时,一般允许将相当于夹石剔除厚度以内的样品,圈入最低工业品位以上矿体,其余可作为低品位矿体单独圈出,不得将连续厚度超过夹石剔除厚度的低品位矿圈入,以避免人为降低最低工业品位以上矿体品位或使最低工业品位以上矿体人为的变成低品位矿体。当单工程平均品位小于最低工业品位,而剔除顶或底部的个别样品,使之能达到或大于最低工业品位时,应剔除顶或底部的个别低品位矿样品。例如:某钒矿,ZK2401的平均品位小于最低工业品位,但厚度达13m,在剔除底部的11(小于边界品位)和12号样(低品位)之后,则ZK2401的平均品位大于最低工业品位。

1.2.1.2 单工程低品位矿体:单工程中若遇连续有多个大于边界品位而小于最低工业品位的低品位样品,当其厚度大于夹石剔除厚度时,尤其是对于厚大且又能与周边工程的低品位矿连接成片时,不应带入工业矿体,而应作为低品位矿单独圈出。当达到最低工业品位要求的样品厚度小于最小可采厚度,采用米百分率或米·克/吨值指标仍不能圈定为工业矿体时,可视情况与周边低品位样品工程合并圈为低品位矿体。

1.2.2 矿体的连接

矿体的连接是指在平面上和剖面上或走向上和倾向上把矿体的空间位

臵圈定出来。

(1)在连接矿体时,坚持先连接地质界线或地质现象,再根据主要控矿地质特征连接矿体的原则。矿体的连接一般采用直线相连,在充分掌握矿体形态特征时,可用自然曲线连接,必须强调的是:工程间的矿体厚度不得大于相邻两工程的实际最大厚度(宽度)。

(2)相邻两剖面或相邻两工程同属最低工业品位以上矿体或低品位矿体时,将其顶、底板直接连接成最低工业品位以上矿体或低品位矿体。

(3)剖面上或平面上相邻两工程间,一工程为最低工业品位以上矿体,另一工程为低品位矿体,采用对角线连接矿体,或各取一半,或用品位内插法求出品位达到最低工业品位的内插点后再连接最低工业品位以上的矿体。见下图。

(4)相邻两工程间,甲工程为最

低工业品位以上矿体,乙工程为最低工

业品位以上矿体+低品位矿体,则将两

工程对应的最低工业品位以上的矿体

相连接,不对应的乙工程低品位矿体与

甲工程最低工业品位以上矿体的顶板

或底板边界点直接相连,见右图。

(5)相邻两工程,一工程为最低

工业品位以上矿体,另一工程达最低工业米百分率(米·克/吨值)要求时,

二者直接连接最低工业品位以上矿体,一般不再外推估算资源量,见下图。

(6)分岔矿体的连接

相邻两工程间,甲工程不含夹石,乙工程含有夹石,一般情况下,当甲工程矿体厚度大于乙工程中矿体与夹石总厚度时,按同一矿体分岔连接,反之则按两个矿体分别连接。或工程中矿体夹石厚度小于或等于其两侧矿体的厚度时,按分岔矿体连接,若其中一侧矿体厚度小于夹石厚度时,则按两个矿体连接。见下图。

(7)两种特殊情况矿体连接的处理(仅作参考)

一种是相邻两工程,一工程为最低工业品位以上矿体,另一工程厚度小于最小可采厚度,品位大于或等于最低工业品位,但米百分率小于最低工业米百分率,有两种处理办法:一是该工程作零点尖灭连接矿体;另一种是内插到最小可采厚度再连接矿体。

另一种是相邻两工程,一工程为最低工业品位以上矿体,另一工程为低品位矿,且厚度小于最小可采厚度,亦有两种处理办法:一种是工程矿

体厚度×品位积达到低品位矿米百分率时,该工程可作为尖灭点连接矿体;另一种是工程矿体厚度×品位积小于低品位矿米百分率时,作有限外推连接矿体。

(8)关于用内插法计算内插点矿体的真厚度及品位问题

相邻两工程,一工程矿体真厚度及品位达工业要求,而另一工程品位大于最低工业品位,真厚度小于最小可采厚度,即先用内插法求出最小可采厚度的内插点,然后再据有关数据计算出内插点的矿体品位;反之,另一工程矿体真厚度达到最小可采厚度,而品位低于最低工业品位,则先用内插法求出最低工业品位的内插点,然后再据有关数据计算出内插点的矿体真厚度。这种方法又称双内插,就是先据相邻两工程矿体真厚度或平均品位资料求出达最低工业品位以上矿体工程至内插点的距离(即内插点的位臵),然后再据有关数据计算出内插点的矿体真厚度或品位。

①计算内插点至最低工业品位以上矿体工程的距离,用下列公式:

式中:L为A、B两工程距离;M1、C1为最低工业品位以上矿体工程(A)中真厚度和平均品位;M2、C2为未达最小可采厚度(最低工业品位)工程(B)中矿体真厚度和平均品位;M0、C0为工业指标中最小可采厚度或最低工业品位;I为内插点到最低工业品位以上矿体工程(A)的距离。

②求内插点矿体品位或真厚度,用下列公式计算:

式中:C X、M X为内插中矿体品位及真厚度。

(9)以上矿体连接提到点尖灭连接矿体和内插连接矿体,一般情况下,预查、普查阶段,工作程度低,所估算的资源量可靠程度亦低,所以为减少估算过程和方便起见,常采用点尖灭连接矿体。而详查、勘探阶段,工作程度高,所估算的资源储量可靠程度亦高,因此可采用内插法内插到矿体最小可采厚度或最低工业品位来连接矿体。

(10)矿体内部结构包括矿石类型(主要指工业类型)、矿石品级(工业品级、工业矿石、低品位矿石等)、夹石。在圈定矿体边界线以后,要对矿体内部结构,即矿石工业类型、矿石品级、夹石按要求分别进行圈定,圈定原则与上述原则一致。

1.2.3 矿体的外推

连接见矿工程以外的矿体边界的方法叫外推法。它是地质工作中常用的一种方法,即根据已知部分的地质规律来预测或推断未知部分的情况。如根据勘查工程资料,结合地质构造及矿体变化规律,推断见矿工程以外未知部分矿体可能分布的界线。运用外推法推断矿体边界时,根据勘查工程分布及控制情况,分为有限外推和无限外推两种。

矿体的外推,要充分考虑矿体空间产出的地质规律来进行。当矿体的厚度与长度呈正消长关系时,在有充分依据(依据一定数量的工程资料统计数据)的情况下,可以科学地确定外推长度,即厚度大的可外推长些,厚度小的可外推短些。如某铅锌矿:单工程矿体厚度≥10米时,外推距离为相应工程间距的1/2,厚度在5-10米时,外推距离为相应网度的1/3,厚度<5米时,外推距离为相应网度的1/4。(上述相应网度一般指上一级类型的工程间距)。

当矿体厚度与矿体长度无规律可循时,一般按相应网度(工程间距)的1/2尖推或1/4平推。对有色及贵金属矿产,由于矿化特征复杂,当边部相邻(矿体边界以外)工程存在大于边界品位1/2矿化时,可作工程间距的2/3尖推或1/3平推。当矿体平推时,剖面图上一般先按1/2或2/3尖推连接矿体,然后在1/4或1/3平推处绘垂直矿体连线的线段,以示资源量估算边界(表示矿体边界与资源量估算边界不一致)。

当采用米百分率(米·克/吨值)圈定矿体的边界时,需结合矿床特征考虑,一般不外推。对薄脉型矿体,多数采用米百分率(米·克/吨值)来衡量矿体者,可进行外推圈定。对厚度变化大的矿体,当矿体中部出现个别米百分率(米·克/吨值)达到要求的工程时,可以圈入矿体。

关于最低一层坑道向下外推的问题:沿脉坑道向下,当有控制的工程

间距(322网度)的见矿钻孔时,可圈算控制的资源储量(332);当有推断的工程间距(333网度)见矿时,可平推控制的工程间距(332)的1/4估算控制的资源量(332)或圈算推断的资源量(333),当工程不见矿时,不能推算控制的资源量(332),但可按推断的工程间距(333)1/2尖推或1/4平推估算推断的资源量(333)。穿脉坑道在走向上,当有控制的工程间距见矿钻孔时,可圈算控制的资源量(332),否则不得外推控制的资源储量。对于盲矿体的头部,最高一层坑道向上外推,也可采用上述办法。

1.2.3.1 矿体的有限外推

即在见矿工程与相邻未见矿工程之间圈定矿体边界。无论在走向上或倾向上,相邻两工程的距离小于相应工程间距时,以实际控制的距离按上述原则外推圈定矿体边界。若两工程距离大于相应工程间距时,以相应工程间距按上述原则外推圈定矿体边界。具体为:

若一工程见矿,相邻工程见1/2边界品位的矿化,且两工程间距大于相应的工程间距,则沿矿体走向、倾向平推上一类型勘查工程间距的1/3,作为资源储量估算的边界线;若一工程见矿,相邻工程见低品位矿,且两工程间距大于相应的工程间距,就沿矿体走向、倾向平推上一类型勘查工程间距的1/2,作为工业矿体的边界线,相邻工程则以相同方式、相同工程间距圈低品位矿;若一工程见矿,相邻工程见1/2边界品位的矿化,且两工程间距小于相应的工程间距,按实际工程间距的1/3平推,作为资源储量估算的边界线;若一工程见矿,相邻工程见低品位矿,则按实际工程间距的1/2平推,作为工业矿体的边界线,其余1/2圈为低品位矿。

1.2.3.2 矿体的无限外推

即在见矿工程以外(无勘查工程)相邻地段推断矿体边界。以上一资源量类型工程间距按上述原则外推圈定矿体边界。单工程及见矿工程外无工程、或一工程见矿,相邻工程未见矿且两者间距大于相应的勘查工程间距,均作无限外推。

具体方法是:沿矿体走向、倾向向外平推上一级工程间距的1/4距离或向外尖推上一级工程间距的1/2距离,作为资源储量估算的边界线;若一工

程见矿,相邻工程未见矿且两者间距小于相应的勘查工程间距,沿矿体走向、倾向向外平推两工程间距的1/4距离或向外尖推两工程间距的1/2距离,作为资源储量估算的边界线。

位于矿体边部的低品位工程一般不外推。

1.2.3.3 矿体内夹石的外推

工程中矿体内夹石的外推原则与矿体的外推原则一致。

1.2.3.4 矿体内“无矿天窗”的外推

在矿体边界线内,有时遇到个别工程未见矿,它所影响的范围即称“无矿天窗”。它的外推及圈定与矿体的外推、圈定原则一致。

1.3 非煤矿体圈定应注意

①探明的和控制的资源储量只能用工程实际连线圈定,一般不外推;

②控制的资源储量可以外推推断的资源量,探矿工程圈定的推断的资源量可以外推预测的资源量;

③不能连续外推,如控制的资源储量外推推断的资源量,不能再外推预测的资源量。

④普查阶段,单孔单线控制的一般不估算(333)资源量,详查及勘探阶段,在基本查明或详细查明矿体特征之后,单孔单线控制的可以考虑估算(333)资源量;

1.4 煤层圈定应注意

资源储量外推:在相应的勘查阶段,控制间距的勘查工程见煤点连线以内和连线以外按控制的基本线距(或钻孔间距)的1/4(较稳定及不稳定煤层)~1/2(稳定煤层)的距离所划定的范围,都可划为(122b)基础储量。但不再连续外推(333)资源量。

划定探明的和控制的块段一般不得跨越断层,煤层确属非常稳定的,也应在断层两侧各划出30-50m的范围作为推断的块段;断层密集、小构造和陷落柱发育的地段,不允许跨越断层划定探明的和控制的块段。

探明的或控制的块段不得直接与推定的老窑采空区边界,风化带边界或用插入法划定的煤层可采边界相接触。

2 资源储量估算

2.1 资源储量估算的一般原则

(1)参与资源储量估算的各项探矿工程的质量,应符合有关规范、规程和规定的要求。

(2)资源储量估算必须在综合研究矿床地质特征、控矿因素的基础上,严格按工业指标正确圈定矿体的前提下进行。

(3)资源储量估算应按矿体、资源储量类型和块段分别估算矿石量、金属量和平均品位。当选(冶)试验证实矿石性质差异大,有可能进行分采、分选时,应考虑分矿石类型进行估算。

(4)矿床中氧化带、混合带、原生带发育时,应分别估算其资源储量。混合带不发育时,可视实际情况将其划入氧化带或原生带进行估算。

(5)达到工业要求的共伴生组分,应分别圈定矿体估算资源储量。

(6)资源储量的单位按各矿种规范的要求确定。通常情况下,一般矿产矿石量单位为万吨,金属量为吨;金等稀有贵金属矿石量单位为吨,金属量为千克。一般矿产的矿石品位以质量分数(%)计,金、银等稀有贵金属矿石品位以质量分数(10-6)计。

(7)估算资源储量时,应扣除截至勘查工作结束时采空区的资源储量。永久性建筑物等压覆的资源储量应予说明。

(8)应用地质统计学方法估算资源储量时,所用的软件应是国家矿产资源储量主管部门评审认可,或是工业部门长期实际应用中证实是可行的软件。资源储量估算应在品位数据结构分析、区域化变量的变异函数研究、正确确定资源储量估值参数及选择估值方法的条件下进行。

2.2 资源储量估算范围

根据需要(如编制勘查报告、核实报告、年报、压覆报告等),划定本次资源储量估算范围。

应说明资源储量估算的平面范围如起止剖面线或拐点坐标,垂向范围如准采标高或埋藏深度;参加资源储量估算的矿体数和矿体号。矿体分布范围超出矿权范围的,只估算矿权证内资源储量,证外资源储量一般不估

算,特殊情况需估算的,须分别统计。

2.3 资源储量估算方法

2.3.1 资源储量估算方法

根据矿床的地质特征、矿体的赋存状态、勘查工程的分布情况等因素进行选择。对估算方法及其结果的正确性一般应进行检验,可选择一部分有代表性的块段或矿体,采用其他方法进行检验估算。

常用的资源储量估算方法有传统方法和地质统计学方法两大类。根据矿体形态、产状的不同以及地形条件、工程布臵的差异,传统方法又分为平行垂直剖面法、水平断面法、垂直纵投影地质块段法、水平投影地质块段法四种常用估算方法;还有一种不平行垂直剖面法(勘探线布臵彼此不平行时采用)。不平行垂直剖面法因为极少采用,这里不作介绍。其中平行垂直剖面法、水平断面法合称断面法。

2.3.2 资源储量估算方法的选择及其依据

从矿体的形态、产状、规模和勘查工程的布臵方式等方面论述所选择的资源储量估算方法的合理性及其依据。在估算方法的选择上,能用简单方法的就不要用复杂方法。各种估算方法的选择依据:

a、平行垂直剖面法:勘探线相互平行,探矿工程(槽、坑、钻等)一般布臵在勘探线上,且各见矿工程见矿中心点偏离勘探线的距离小于勘探线间距的1/4;矿体在勘探线剖面上的形态为透镜状或不规则状,厚度变化较大时常采用此种方法。所附图件:勘探线资源量估算剖面图、矿体分布水平投影图(当矿体倾角<45°时)或矿体分布垂直纵投影图(当矿体倾角≥45°时)。

b、水平断面法:当地形较陡、矿体产状较陡、岩石破碎(钻孔取芯困难)、采用不同中段的穿脉或沿脉坑道控制矿体(地表用槽探工程),不同中段的穿脉坑道沿勘探线布臵,探矿工程见矿中心点偏离勘探线的距离小于勘探线间距的1/4;矿体在各水平中段上的形态为透镜状或不规则状,厚度变化较大时可采用此种方法。所附图件:勘探线剖面图、中段地质平面图、矿体分布垂直纵投影图。

c、垂直纵投影地质块段法:勘探线相互平行,探矿工程(槽、坑、钻等)一般布臵在勘探线上,由于钻孔偏斜、见矿中心点偏离勘探线距离较大,或地形条件限制、迫使探矿工程(槽、钻探)布臵时偏离勘探线较大距离;矿体产状较陡(倾角≥45°或煤层倾角≥60°)。矿体在勘探线剖面上的形态较简单,为脉状、或层状、似层状,厚度变化不大时常采用此种方法。所附图件:勘探线剖面图、矿体垂直纵投影图。矿体面积测定、体积计算、块段划分等均在矿体垂直纵投影图上进行;勘探线剖面图只用于反映矿体的剖面形态、产状和内部结构,以及工程控制程度等。见图4所示。

d、水平投影地质块段法:此方法原则等同于垂直纵投影地质块段法。二者区别主要在于采用水平投影地质块段法估算资源储量时,矿体倾角较缓(倾角<45°或煤层倾角<60°)

e、地质统计学方法是以区域化变量理论作为基础,以变异函数作为主要工具,对既具有随机性、又具有结构性的变量进行统计学研究,估算时能充分考虑品位的空间变异性和矿化强度在空间的分布特征,使估算结果更加符合地质规律,可信度较高,但需有较多的样本个体为基础。

2.3.3 断面法的估算过程和方法

①划分资源储量估算块段:根据编制好的勘查线剖面图、平行断面图、垂直纵投影图或水平投影图等资料,按资源储量类型、最低工业品位以上矿石、低品位矿石、矿石类型、矿石品级划分块段。还要考虑矿界、准采标高、压覆界线等。

②在剖面图或水平断面图上测定矿体断面面积,计算块段矿体平均品位和矿石体重。

③计算矿体块段体积:根据块段矿体不同形态,分别采用以下公式计算块段矿体体积。

a、当相邻两剖面上块段矿体断面形态相似,位臵对应,且两面积相对差小于40%时,采用梯形(梯台)体积公式计算体积:

(梯形公式)

b、当相邻两剖面上矿体断面形态相似,空间位臵相对应,两面积相对差大于40%时,采用截锥体(棱台)公式计算体积。

(截锥体公式)

(截锥体图形)

相邻两剖面相对差计算公式:

c、组成块段的相邻两剖面,一剖面有矿体断面面积,另一剖面无矿体面积时,矿体呈线或点尖灭。这种情况视矿体的尖灭特征,分别用下列公式计算矿体体积。

(a)另一剖面矿体呈点尖灭,采用锥体公式计算体积

(锥体公式)

(b)一剖面矿体呈线形尖灭,且尖灭的线形宽度(或斜长)与另一剖面断面面积宽度(或斜长)相等时,采用正楔形公式计算体积。

(正楔形公式)

(c)一剖面矿体呈线形尖灭,尖灭的线形宽度(或斜长)与另一剖面断面面积宽度(或斜长)不等或一剖面用米百分率(米·克/吨值)圈定矿体时,只有矿体厚度而无面积时,采用斜楔形公式计算体积。

(斜楔形公式)

上各式中:V为块段矿体体积

L为块段长度即二相邻勘查线间距或矿体外推长度

S1、S2为相邻二勘查线剖面上矿体断面面积

m1为斜楔形底面积上矿体平均厚度(底面积÷矿体倾斜长度)

m2为斜楔形中以米百分率(米克吨值)圈矿工程矿体厚度

a1为斜楔形底面积上矿体宽度(或斜长)

a2为斜楔形线尖灭处矿体宽度(或斜长)

④计算块段矿体矿石量D=V·d或金属量Q=D·C 。

式中:D为矿石量;Q 为金属量;V为体积;C 为平均品位。

2.3.4 线资源储量估算方法

是垂直平行断面法的一种。根据块段划分的不同有二种不同的估算方法。

①利用勘探线剖面影响距离来划分块段,即每一勘探线剖面至两侧相邻勘探线剖面之间二分之一距离的地段,就是该剖面所影响(控制)的块段。

先分别计算每个剖面两侧共1m宽度内的矿体体积和资源储量,然后按每个块段实际影响距离(即块段长度)计算出各块段的资源储量。各块段资源储量之和即为矿体之资源储量。线资源储量法主要用于砂矿床的资源

储量估算中。

线资源储量估算过程如下:

a、测量各剖面上矿体面积(S),而后向勘探线剖面左右各推剖面间距的1/2,计算出该矿块体积(V=S·1);然后乘上矿石体重(d),计算出矿块矿石量(D1=V·d);再乘上勘查线剖面矿石平均品位(C ),得矿块金属量(Q1=D·C )。

b、块段资源储量计算:

块段矿石量(D)=线矿石量(D1)×块段长度(L);

块段金属量(Q)=线金属量(Q1)×块段长度(L)。

c、矿体资源储量计算:将组成矿体各块段资源/储量相加即为矿体资源储量。

②将相邻两勘探线剖面间作为一个块段进行资源储量估算。估算过程如下:

a、计算各勘探线剖面上的线资源储量,计算方法与①点中a相同。

b、计算块段资源储量:若两相邻勘查线剖面面积之差<40%,两剖面上矿体的形态、位臵相似,采用梯形公式计算;若相邻两勘探线剖面面积之差>40%时,采用截锥体(棱台)公式计算。

2.3.5 地质块段法

这种估算方法是一种在算术平均法的基础上加以改进的资源储量估算方法。它按一定的条件或要求(如不同的地质条件、矿石质量、开采技术条件、研究程度等),把整个矿体划分若干块段,然后用算术平均法及加权平均法计算各资源储量估算参数、各块段矿体体积和资源储量,各块段资源储量之和即为矿体之资源储量。地质块段法适用于勘查工程不规则布臵,工程较多且分布比较均匀的情况下。

根据矿体的倾角陡缓及所采用块段矿体面积的不同,有三种估算方法。

1、采用倾斜真面积估算资源储量

它适用于任何倾角矿体的资源储量估算。其估算过程或步骤如下:

(1)在矿体垂直纵投影图或水平投影图上,根据要求划分资源储量估

算块段。

(2)测定块段矿体投影面积(垂直投影面积S’或水平投影面积S’’),计算块段矿体平均倾角(°)、平均真厚度(m)、平均品位(C)、平均体重(d)。

(3)计算块段矿体体积。V=S·m;S(倾斜真面积)=

(4)计算块段矿体矿石量、金属量。矿石量D=V·d ;金属量Q=D·C 。

(5)统计矿体、矿床资源储量组成矿体各块段资源储量之和为矿体资源储量,各矿体资源储量之和为矿床资源储量。

2、采用水平投影面积估算资源储量

它适用于倾角较平缓的矿体资源/储量估算。其估算过程或步骤与采用倾斜真面积估算资源储量相同,所不同之处为计算块段矿体体积所采用的参数不同而已。块段矿体体积为水平投影面积与平均铅直厚度之乘积。

矿石量D=V·d(平均体重)

金属量Q=D·C(平均品位)

3、采用垂直投影面积估算资源储量

它适用于倾角较陡的矿体资源储量估算。与上述第2点不同之处是,块段矿体体积为垂直投影面积与平均水平厚度之乘积。

矿石量D=V·d(平均体重)金属量Q=D·C(平均品位)

2.4 资源储量估算参数的确定

2.4.1 平均品位(C)的计算:

a、单工程平均品位:一般用厚度加权法求得,当样品厚度基本相等或样品品位均匀时,可用算术平均法计算。样品中有特高品位时,则应先处理特高品位,再计算单工程平均品位,计算式为:

b、块段平均品位:由资源储量估算块段内的单工程平均品位与单工程矿体厚度加权平均求得,计算公式为:

c、矿体、矿床平均品位:按矿体不同类型块段矿石量与块段平均品位加权平均分别求得;矿床平均品位按参加资源储量估算的各矿体不同类型矿石量与矿体平均品位加权平均分别求得。计算公式为:

d、特高品位处理举例:参考《岩金矿地质勘查规范》标准,某矿床品位变化属于较均匀范畴,将金品位大于矿体平均品位6倍的单样品位,作为特高品位处理(当矿体品位变化系数较大,品位变化属于不均匀范畴时,则将金品位大于矿体平均品位8倍的单样品位,作为特高品位处理),其具

体方法如下。

下限的确定:根据分析结果,估算出各矿体的矿石量和金属量,求得各矿体的平均品位,确定各矿体的下限。

处臵办法:用含特高品位样在内的单工程平均品位代替特高品位,重新计算得出单工程平均品位。

图件表示:在工程素描图中,仍按分析结果进行计算、表示其实际平均品位;在采样平面图、中段地质平面图、勘探线剖面图、资源储量估算垂直纵投影图中,工程平均品位、块段平均品位则按处理后的结果表示。

有必要说明的是:凡视为特高品位的样品,均需对其副样进行了第二次检查分析,当两次分析结果在允许误差范围内时,方确定为特高品位样品,并用第一次分析结果进行特高品位处理。

某矿勘查范围内需要处理的特高品位样品共三个,处理结果见表3。表3中TC35-7号探槽(控制Ⅲ-10号矿体)为一特高品位工程,用22.21×10-6替代特高品位后,该工程平均品位为18.69×10-6。为了消减其在资源储量估算中的影响,又对其进行了第二次处理,即与旁侧的TC35-6号探槽(平均品位2.59×10-6)进行了合并计算,合并后的平均品位为8.29×10-6。矿体块段资源储量估算中即用8.29×10-6进行估算。这样处理是合理的,不会夸大该矿体(块段)资源储量估算结果。

2.4.2 厚度(H)的计算

2.4.2.1 单工程矿体厚度(槽探工程):

H真=L(sinαcosβcosγ±sinβcosα)

固体矿产资源储量分类有关的指标解释

固体矿产资源储量分类有关的指标解释 内部编号:(YUUT-TBBY-MMUT-URRUY-UOOY-DBUYI-0128)

与《固体矿产资源/储量分类》有关的指标解释 1.储量 指基础储量中的经济可采部分。在预可行性研究或编制年度采掘计划当时,经过了对经济、开采、选冶、环境、法律、市场、社会和政府等诸因素的研究及相应的,修改,结果表明在当时是经济可采或已经开采的部分。用扣除了设计、采矿损失的可实际开采数量表述,依据地质可靠程度和可行性评价阶段不同,又可分为可采储量(111)和预可采储量(121和122)三种类型。 1)可采储量 (111) ——探明的经济基础储量的可采部分:是在已按勘探阶段要求加密工程的地段;在三维空间上详细圈定了矿体,肯定了矿体的连续性;详细查明了矿床地质特征、矿石质量和开采技术条件,并有相应的矿石加工选冶试验成果;已进行了可行性研究,包括对经济、开采、选冶、环境、法律、市场、社会和政府等诸因素的研究及相应的修改,证实其在计算的当时开采是经济的;所计算的可采储量及可行性评价结果的可信度高。 2)预可采储量(121)——指探明的经济基础储量的可采部分:是在已达到勘探阶段要求加密工程的地段;在三维空间上详细圈定了矿体,肯定了矿体的连续性;详细查明了矿床地质特征、矿石质量和开采技术条件,并有相应的矿石加工选冶试验成果;但只进行了预可行性研究,表明当时开采是经济的;所计算的可采储量可信度高而可行性评价结果的可信度一般。 3)预可采储量(122)——指控制的经济基础储量的可采部分:是在已达到详查阶段工作程度要求的地段;基本上圈定了矿体的三维形态,能够较有把握地确定矿体的连续性;基本查明了矿床地质特征、矿石质量和开采技术条件,提供了矿石加工选冶性能条件试验的成果(对于工艺流程成熟的易选矿石,也可以类比利用同类型矿山的试验成果);其预可行性研究结果表明开采是经济的;所计算的可采储量可信度较高而可行性评价结果的可信度一般。 2.基础储量 指查明矿产资源的一部分;它能满足现行采矿和生产所需的指标要求(包括品位、质量、厚度、开采技术条件等);是经详查、勘探所获控制的、探明的并通过可行性研究、预可行性研究认为属于经济的、边际经济的部分,用未扣除设计、采矿损失的数量表述。基础储量可分为以下6种类型。 1)探明的(可研)经济基础储量(111b)——它所达到的勘探阶段、地质可靠程度、可行性评价阶段及经济意义的分类同“可采储量(111)”所述,与其唯一的差别仅在于—本类型是用未扣除设计、采矿损失的数量来表述的。

矿产资源储量分类及类型条件

8 矿产资源/储量分类及类型条件 8.1 矿产资源/储量分类依据 8.1.1 地质可靠程度 8.1.1.1 预测的: 是指对具有矿化潜力较大地区经过预查得出的结果。在具有初步的数据并能与地质特征相似的已知矿床类比时,才能估算出预测的资源量。 8.1.1.2 推断的: 是指对普查区按照普查的精度大致查明矿产的地质特征以及矿体(点)的展布特征、品位、质量等,也包括那些由地质可靠程度较高的基础储量或资源量外推的部分。矿体的连续性是推断的。矿产资源数量的估算所依据的数据有限,可信度较低。 8.1.1.3 控制的: 是指对矿区的一定范围依照详查的精度基本查明了矿床的主要地质特征、矿体的形态、产状、规模、矿石质量、品位及开采技术条件,矿体的连续性基本确定,矿产资源数量的估算所依据的数据较多,可信度较高。 8.1.1.4 探明的: 是指在矿区的勘探范围依照勘探的精度详细查明了矿床的地质特征、矿体的形态、产状、规模、矿石质量、品位及开采技术条件,矿体的连续性已确定,矿产资源数量估算所依据的数据详尽,可信度高。 8.1.2 经济意义 8.1.2.1 经济的: 其数量和质量是依据符合市场价格确定的生产指标估算的。在可行性研究或预可行性研究当时的市场条件下开采,技术上可行、经济上合理、环境等其他条件也允许,即每年开采矿产品的平均价值能足以满足投资回报的要求,或在政府补贴和(或)其他扶持措施条件下,开发是可能的。 8.1.2.2 边际经济的: 在可行性研究或预可行性研究当时,其开采是不经济的,但接近盈亏边界,只有在将来由于技术、经济、环境等条件的改善或政府给予其他扶持的条件下才可变成经济的。 8.1.2.3 次边际经济的: 在可行性研究或预可行性研究时,开采是不经济的或技术上不可行,需大幅度提高矿产品价格或技术进步,使成本降低后方能变为经济的。 8.1.2.4 内蕴经济的: 仅通过概略研究做了相应的投资机会评价,未做预可行性或可行性研究。由于不确定因素多,无法区分其是经济的、边际经济的,还是次边际经济的。 8.2 矿产资源/储量类型(附录A) 8.2.1 储量 8.2.1.1 可采储量(111): 是探明的经济基础储量的可采部分,是指在已按勘探阶段要求加密工程的地段,在三维空间上详细圈定了矿体,肯定了矿体的连续性,详细查明了矿床地质特征、矿石质量和开采技术条件,并有相应的矿石加工选冶试验成果,已进行了可行性研究,包括对开采、选冶、经济、市场、法律、环境、社会和政府因素的研究及相应的修改,证实其在计算的当时开采是经济的。估算的可采储量和可行性评价结果的可信度高。

资源储量估算注意问题

固体矿产资源储量估算 常用方法及应注意的问题 一、概述 ?矿产勘查、资源储量核实的核心是查明工作区的的资源储量,资源储量估算是各类 勘查和核实报告最重要的环节,也是业主、评审机构和政府主管部门审查的重点。 只有做到资源储量估算的全过程正确无误,才能保证资源储量的可靠性。所以,必须对资源储量估算予以高度重视。 ?资源储量估算的方法选择正确与否,直接关系到资源储量估算的最终结果。因此, 要根据矿床自身的特点,并结合勘查工作实际,以有效、准确、简便、能满足要求为依据,选择合理的估算方法。 ?估算矿产资源/储量的方法主要有几何图形法、地质统计学法和SD储量计算法 (简称SD法)等。 ?几何图形法:是将矿体空间形态分割成较简单的几何形态,将矿石组分均一化,估 算矿体的体积、平均品位、矿石量、金属量等。这种方法目前运用最多,也是这次要讲的重点。 ?地质统计学法:是以区域化变量理论作为基础,以变异函数作为主要工具,对 既具有随机性、又具有结构性的变量进行统计学研究,估算时能充分考虑品位的空间变异性和矿化强度在空间的分布特征,使估算结果更加符合地质规律,置信度高,但需有较多的样本个体为基础。此方法还能制定或检验合理的勘探工程间距。 SD法:以最佳结构地质变量为基础,以断面构形替代空间构形为核心,以spline函数及分维几何学为工具的估算方法,立足于传统的断面法。适用于不同矿床类型、矿体规模、产状、不同矿产勘查阶段,还可对估算成果作精度预测。 目前,国家鼓励和提倡运用新技术、新方法进行资源储量估算。 二、资源储量估算的一般原则 ?1、参与资源储量估算的各项探矿工程的质量,应符合有关规范、规程和规定的要求。 ?2、资源储量估算必须在综合研究矿床地质条件、控矿因素的基础上,严格按工 业指标正确圈定矿体的前提下进行。 3)根据矿床资源储量的分类结果,按矿体、资源储量类型、矿石类型[当选(冶)试验证实矿石性质差异大,有可能进行分采、分选时,应考虑分矿石类型进行估算]和块段分别估算各矿体及矿床的矿石量、金属量(金属矿产)和平均品位。 4)金属矿床中,当氧化带、混合带、原生带发育时,应分别估算资源储量。混合带不发育时,可视实际情况将其划入氧化带或原生带进行估算。 ?5)达到工业要求的共生组分应分别圈定矿体估算资源储量。 ?6)资源储量的单位按各矿种规范的要求确定。 ?通常情况下,一般矿产矿石量单位为万吨,金属量为吨,伴生稀贵金属的金属 量为千克;独立或共生金及稀贵金属矿石量单位为吨,金属量为千克。一般矿产的矿石品位以质量分数(%)计,金、银及稀贵金属矿石品位以质量分数(10-6)计。 ?7)估算资源储量时,应扣除截至勘查工作结束时采空区的资源储量。永久性建筑物 等压覆的资源储量应予说明。

矿产资源储量估算方法

国体矿产资源储量各估算方法的适用条件及优缺点 1储量估算方法的定义: 估算方法:是指矿产资源埋藏量估算过程中,各种参数及其资源的计算方法和相关软件的统称。由于矿产资源赋存方式也不尽相同,因此,必须要研究适合的矿产资源储量计算方法。矿产资源划分为三大大类:第一类是固体矿产资源,包括金属矿产、非金属矿产和煤:第二类是石油天然气、天然气、煤层气资源;第三类是地下水资源。 2矿产资源储量估算放法的主要种类: (1)传统方法,据计算单元划分方式的不同,又可分为断面法和块段法两种。 断面法进一步分为:平行断面法、不平行断面法。垂直断面法,有分为勘探线剖面法和先储量计算法。 块段法:依据块段划分依据的不同,分为:地质块段法。开采块段法法、最近地区法、三角形法。等值线法、等高线法等。 地质断块法,是勘探阶段计算资源储量较为常用的一种方法。是将矿体投影到某个方向的平面上,按照矿石类型,品级,地质可靠程度的不同,并根据勘查工程分布特点,将其划分为若干各块段,分别计算资源储量并累加。这类方法,通常用于勘查工程分布比较均匀、勘查技术手段比较单一(以钻探为主)、勘查工程没有严格按照勘探线布置的矿区

的资源储量计算。 地质块段发按其投影方向的不同,还可分为垂直纵投影法、水平投影法和倾斜投影法。垂直纵投影法适用于陡倾斜的矿体:水平投影法适用于产状平缓的矿体;倾斜投影法通常选择矿体倾斜面为其投影方向,理论上讲,适用中等倾斜矿体,但因其计算过程较为繁琐,一般不常应用。 (2)克立格法 克立格法,是由南非地质学家克里格创立的,它以地质统计学理论为基础。目前西方国家在矿业筹资、股票上市、矿业权交易过程中,基本都是采用这种方法,评价矿产资源,估计矿产资源储量。地质统计学方法,是一套方法传统。目前在我国应用的主要有:二维及三维普通克里格法,二维对数正态泛克立格法、二维指示克立格法、二维及三维协同克立格法以及三维泛克立格法。 (3)SD法(最佳结构曲线断面积分储量计算法) SD法是在原国家科委和地矿部支持下,我国自行研制的一种矿产资源储量计算方法。该方法以断面结构为核心,以最佳结构地质变量为基础,利用Spline函数和动态分维几何为工具,进行矿产资源储量的计算。其最具特色的内容是根据SD精度法所确定的SD审定法基础,从定量角度定义矿产资源勘查工程控制程度和资源储量精度。

李训华:关于资源储量估算中常见问题的讨论

关于资源储量估算中常见问题的讨论 资源储量估算的问题,作为煤田地质勘查单位、每一个煤炭地质工作者经常会遇到的,也可以说是轻车熟路不成问题的问题。之所以在这里占用大家一点时间来讨论它,是由于我最近几年在看煤炭资源勘查报告和煤炭资源储量核实报告(评审报告)过程中见到一些关于煤炭资源储量估算方面的问题,需要引起大家重视和探讨。借这个机会和大家一起交流和讨论。既然是讨论,就说明我要说的问题仅仅是个人的看法和理解,难免存在错误,欢迎大家批评指正。 首先我想谈谈资源储量估算的“估算”。在“86规范”以及以前的煤田地质勘查规范中和相关教科书中,煤炭资源储量的估算都称为“储量计算”。为啥“02规范”以及相关的矿产资源勘查规范中里都改称为“资源储量估算”?我的理解是:计算、估算一字之差,恰恰反映了矿产资源储量,的“量”所特有的属性。与工业产品的产量,农业粮油产品的产量不同,由于矿产资源的赋存和勘查,受各种因素的制约,资源储量计算所需要的参数,客观上存在不确定因素,一般很难用常规的方法准确地度量、计算。人们在勘查、测量过程中所取得的数据与矿产资源的实际会存在一些差距,目前人们只能尽可能地接近实际,但是还不能全面地、准确无误地反映客观实际。比如一个勘查区或某个煤矿中煤层厚度,客观上是有变化的,即使在矿井下用很密集的测点测量,每一个测点的数据也是不完全相同的。在勘查报告中,我们采用钻孔测量的“一孔之见”代表“一块”煤产地的厚度,本身就与实际存在误差。由于资源储量估算采用的参数并不是准确无误的,估算的结果就必然与实际存在误差。不能做到像工业产品的统计数据那样准确。所以,对勘查资源量用估算而不是计算,更接近反

矿山资源量与储量计算方法

资源量与储量计算方法 储量(包括资源量,下同)计算方法的种类很多,有几何法(包括算术平均法、地质块段法、开采块段法、断面法、等高线法、线储量法、三角形法、最近地区法/多角形法),统计分析法(包括距离加权法、克里格法),以及SD 法等等。 (一)地质块段法 计算步骤: 1.首先,在矿体投影图上,把矿体划分为需要计算储量的各种地质块段,如 根据勘探控制程度划分的储量类别块段,根据地质特点和开采条件划分的矿石自然(工业)类型或工业品级块段或被构造线、河流、交通线等分割成的块段等; 2.然后,主要用算术平均法求得各块段储量计算基本参数,进而计算各块段 的体积和储量; 3.所有的块段储量累加求和即整个矿体(或矿床)的总储量。 地质块段法储量计算参数表格式如表下所列。 表地质块段法储量计算表 需要指出,块段面积是在投影图上测定。一般来讲,当用块段矿体平均真厚度计算体积时,块段矿体的真实面积S需用其投影面积S′及矿体平均倾斜面与投影面间的夹角α进行校正。

在下述情况下,可采用投影面积参加块段矿体的体积计算: ①急倾斜矿体,储量计算在矿体垂直纵投影图上进行,可用投影面积与块段矿体平均水平(假)厚度的乘积求得块段矿体体积。 图在矿体垂直投影图上划分开采块段 (a)、(b)—垂直平面纵投影图; (c)、(d)—立体图 1—矿体块段投影; 2—矿体断面及取样位置

②水平或缓倾斜矿体,在水平投影图上测定块段矿体的投影面积后,可用其与块段矿体的平均铅垂(假)厚度的乘积求得块段矿体体积。 优点:适用性强。地质块段法适用于任何产状、形态的矿体,它具有不需另作复杂图件、计算方法简单的优点,并能根据需要划分块段,所以广泛使用。当勘探工程分布不规则,或用断面法不能正确反映剖面间矿体的体积变化时,或厚度、品位变化不大的层状或脉状矿体,一般均可用地质块段法计算资源量和储量。 缺点:误差较大。当工程控制不足,数量少,即对矿体产状、形态、内部构造、矿石质量等控制严重不足时,其地质块段划分的根据较少,计算结果也类同其他方法误差较大。 (二)开采块段法 开采块段主要是按探、采坑道工程的分布来划分的。可以为坑道四面、三面或两面包围形成矩形、三角形块段;也可为坑道和钻孔联合构成规则或不甚规则块段。同时,划分开采块段时,应与采矿方法规定的矿块构成参数相一致,与储量类别相适应。 该法的储量计算过程和要求与地质块段法基本相同。 适用条件:适用于以坑道工程系统控制的地下开采矿体,尤其是开采脉状、薄层状矿体的生产矿山使用最广。由于其制图容易、计算简单,能按矿体的控制程度和采矿生产准备程度分别圈定矿体,符合矿山生产设计及储量管理的要求,所以生产矿山常采用。但因为开采块段法对工程(主要为坑道)控制要求严格,故常与地质块段法结合使用。一般在开拓水平以上采用开采块段法或断面法,以下(深部)用地质块段法计算储量。 (三)断面法 定义:矿体被一系列勘探断面分为若干个矿段或称块段,先计算各断面上矿体面积,再计算各个矿段的体积和储量,然后将各个块段储量相加即得矿体的总储量,这种储量计算方法称为断面法或剖面法。 根据断面间的空间位置关系分为水平断面法和垂直断面法,凡是用勘探(线)网法进行勘探的矿床,都可采用垂直断面法;对于按一定间距,以穿脉、沿脉坑道及坑内水平钻孔为主勘探的矿床,一般采用水平断面法计算矿床资源量和储量。根据断面间的关系分为平行断面法和不平行断面法。 1平行断面法 无论是垂直平行断面法还是水平平行断面法,均是把相邻两平行断面间的矿段,作为基本储量计算单元。首先在两断面图上分别测定矿体面积,然后计算块段的体积和储量。体积(V)的计算有下述几种情况:

固体矿产资源、储量分类与编码

固体矿产资源、储量分类及编码-----------------------作者:

-----------------------日期:

固体矿产资源/储量分类及编码 固体矿产资源/储量分分类 分类依据:矿产资源经过矿产勘查所获得的不同地质可靠程度和经相应的可行性评价所获不同的经济意义,是固体矿产资源/储量分类的主要依据。据此,固体矿产资源/储量可分为储量、基础储量、资源量三大类十六种类型,分别用二维形式 ( 图 l) 和矩阵形式 ( 表 1) 表示。 储量:是指基础储量中的经济可采部分。在预可行性研究、可行性研究或编制年度采掘计划当时,经过了对经济、开采、选冶、环境、法律、市场、社会和政府等诸因素的研究及相应修改,结果表明在当时是经济可采或已经开采的部分。用扣除了设计、采矿损失的可实际开采数量表述,依据地质可靠程度和可行性评价阶段不同,又可分为可采储量和预可采储量。 基础储量:是查明矿产资源的一部分。它能满足现行采矿和生产所需的指标要求 ( 包括品位、质量、厚度、开采技术条件等 ) ,是经详查、勘探所获控制的、探明的并通过可行性研究、预可行性研究认为属于经济的、边际经济的部分,用末扣除设计、采矿损失的数量表述。 资源量:是指查明矿产资源的一部分和潜在矿产资源。包括经可行性研究或预可行性研究证实为次边际经济的矿产资源以及经过勘查而末进行可行性研究或预可行性研究的内蕴经济的矿产资源;以及经过预查后预测的矿产资源。 固体矿产资源/储量分类编码 编码:采用 ( EFG) 三维编码, E、F 、G 分别代表经济轴、可行性轴、地质轴 ( 见图 l) 。 编码的第 1 位数表示经济意义: 1 代表经济的, 2M 代表边际经济的, 2S 代表次边际经济的, 3 代表内蕴经济的;第 2 位数表示可行性评价阶段: 1 代表可行性研究, 2 代表预可行性研究, 3 代表概略研究;第3 位数表示地质可靠程度: 1 代表探明的, 2 代表控制的 3 代表推断的, 4 代表预测的。变成可采储量的那部分基础储量,在其编码后加英文字母“ b ”以示区别于可采储量。 类型及编码:依据地质可靠程度和经济意义可进一步将储量、基础储量、资源量分为 16 种类型 ( 见表 l) 。

固体矿产资源储量计算基本公式

固体矿产资源/储量计算基本公式 一、矿体厚度计算 1、单工程矿体厚度 a 、真厚度m : m =L(sinα·sinβ·cosγ±cosα·cos β) 或 m =L(cosθsinβcos γ±sinθcosβ) 式中: m ——矿体真厚度; L ——在工程中测量的矿体假厚度; β——矿体倾角; α——切穿矿体时工程的天顶角(工程与铅垂线的夹角); θ——工程切穿矿体时的倾角或坡度(工程与水平线的夹角)。 γ——工程方位角与矿体倾斜方向的夹角。 注:上列两式中,凡工程倾斜方向与矿体倾斜方向相反时,此处用“+”号,反之用“-”号。 b 、水平厚度m s : m s =m/sinβ c 、铅垂厚度m v : m v = m/cosβ 2、平均厚度 a 、算术平均法 如果揭露矿体的勘探工程分布均匀、或者勘探工程分布不均匀,但其厚度变化无一定规律时,块段或矿体的平均厚度可用算术平均法计算: n m n m m m n ∑= ++= 21cp M 式中:M cp ——平均厚度; m 1、m 2……m n ——各工程控制的矿体厚度。 n ——控制工程数目。 b 、加权平均法 当厚度变化稳定并有规律的情况下,如果勘探工程不均匀时,平均厚度应用各工程控制的长度对厚度进行加权平均:

n m l l l l m l m l m n n n ∑= ++++= 212211cp M 式中L 1、L 2……L n ——各工程控制长度(相邻工程间距离各一半之和)。 二、平均品位的确定 1、单项工程平均品位计算 a 、算术平均法 在坑道、探槽或钻孔中连续取样的情况下,若样品长度相等,或不相等,但参予计算的样品较多,且样品分割长度与品位间无一定的依存关系时,应尽可能的使用算术平均法计算平均品位: n n ∑= +++= C C C C C n 21cp 式中:C cp ——平均品位; C 1、C 2……C n ——各样品的品位; n ——样品数目。 b 、长度对品位进行加权平均 在坑道、探槽或钻孔中连续采样的情况下,若样品分割长度不等,且样品数量不多或分割长度与品位之间呈一定的依存关系时,应以取样长度对品位进行加权平均: ∑∑= ++++++= L CL L L L L C L C L C C 212211cp n n n 式中:C 1、C 2、……C n ——各个样品的品位; L 1、L 2、……L n ——各个样品的分割长度。 c 、取样点矿体厚度对品位进行加权平均 在沿脉工程中,当样品的平均品位与矿体厚度有一定的依存关系,但取样间距相等时,应用取样点矿体厚度对品位进行加权平均: ∑∑= ++++++= m m m m m m m m n n n C C C C C 212211cp 式中:C 1、C 2、……C n ——各取样点的平均品位; m 1、m 2、……m n ——各取样点的矿体厚度。 d 、取样点的控制长度对品位进行加权平均 在沿脉工程中,当矿体厚度变化很小,如果取样间距不等且品位变化较大时, 应用取样点的控制长度对品位进行加权(参照公式9-12): 式中:C 1、C 2、……C n ——各取样点的平均品位; L 1、L 2、……L n ——各取样点的矿体控制长度(相邻工程取样点间距各一半之和)。

资源储量估算章节

5.4.4、资源储量估算 5.4.4.1、工业指标及勘探类型 1、工业指标 (1)边界品位 (2)块段最低工业品位 (3)最小可采厚度 (4)夹石剔除厚度 2、勘探类型 (1)勘探类型 (2)勘探间距 5.4.4.2、资源量估算方法的选择及依据 1、资源/储量估算的方法 (1)距离反比法,简述方法及原理。 距离反比加权插值法(Inverse Distance Weighting)首先是由气象学家和地质工作者提出的,后来由于D.Shepard 的工作被称为谢别德法(Shepard)方法。它的基本原理是设平面上分布一系列离散点,己知其位置坐标(xi,yi)和属性值zi(i= 1,2,…,n), p(x,y)为任一格网点,根据周围离散点的属性值,通过距离反比加权插值求P 点属性值。距离反比加权插值法综合了泰森多边形的邻近点法和多元回归法的渐变方法的长处,它假设P点的属性值是在局部邻域内中所有数据点的距离反比加权平均值,可以进行确切的或者圆滑的方式插值。周围点与P 点因分布位置的差异,对P(z)影响不同,我们把这种影响称为权函数W i(x, y),方次参数控制着权系数如何随着离开一个格网结点距离的增加而下降。对于一个较大的方次,较近的数据点被给定一个较高的权重份额;对于一个较小的方次,权重比较均匀地分配给各数据点。计算一个格网结点时,给予一个特定数据点的权值,与指定方次的结点到观测点的距离倒数成比例。当计算一个格网结点时,配给的权重是一个分数,所有权重的总和等于1.0。当

一个观测点与一个格网结点重合时,该观测点被给予一个实际为1.0的权重,所有其它观测点被给予一个几乎为0.0 的权重。换言之,该结点被赋给与观测点一致的值,这就是一个准确插值。权函数主要与距离有关,有时也与方向有关,若在P点周围四个方向上均匀取点,那么可不考虑方向因素,这时: 式中: 表示由离散点(xi,yi)至P(x,y)点的距离。P(z)为要求的待插点的值。权函数 储量估算u值取2时为(距离平方成反比)。 (2)封闭多面体估算法,简述方法及原理。 封闭多面体估算法计算的步骤是,首先根据圈定的矿体模型(三角形网)的体积,按以下过程进行储量估算,估算的结果较精确。 1)确定三角网的最小Z值(最低海拔标高),将该值作为所有参与体积计算的立体三角形的基准平面; 2)对于每个三角形,计算其与基准平面之间的体积; 3)确定三角形和基准平面之间的体积是位于模型之内还是模型之外,通常根据每个三角形的方向来进行判断; 4)如果在模型以内,就将其加到总体积中;如果在模型以外,就将其从总体积中减掉。 然后对模型内的所有样品使用简单平均或系数加权的方法得到总的品位和比重。如果样品在模型内间隔均匀,并且使用样长加权计算,而且选择了忽略缺失区间的话,那么三角网格模型的品位应该与块模型非常相似。如果样品间隔不是非常均匀,并且有很多探槽和坑道的话,那么由于线框内的样品聚集,线框品位和块模型品位之间可能会存在差异。 最后,用模型的体积乘以比重得到矿石量,再用矿石量乘以品位得到金属量。 (1)数据准备及数据处理

关于新的矿产资源储量勘查规范总则.doc

关于新的矿产资源储量勘查规范总则 及地质勘查报告编写要求介绍(摘要) 一、我国矿产资源储量分类与勘查规范历史 1954年翻印了原苏联的固体矿产储量分类规范,将储量分为平衡表内、表外两类和A1、A2、B、C1、C25个级别,按用途分为开采储量(A1)、设计储量(A2、B、C1)、远景储量(C2)及地质储量;勘探阶段划分为初步普查、详细普查、初步勘探、详细勘探,初步普查前为区域地质调查,详细勘探后为开发勘探; 1959年编制了《矿产储量分类暂行规范(总则)》,“金属、非金属矿产储量分类暂行规范(总则)”,仍将储量分为平衡表内、表外两类和A1、A2、B、C1、C25个级别,此外,还有地质储量。其中,A1级为开采储量、A2、B、C1级为设计储量、C2级为远景储量,A1、A2、B、C1又称工业储量。 1977年编制了“金属矿床地质勘探规范总则”,“非金属矿床地质勘探规范总则”,仍将储量分为平衡表内、表外两类将储量级别分为A、B、C、D四个级别,两总则的内容除了储量分类分级外,还规定了地质勘探阶段(初勘和详勘)勘探工作的原则和要求。指出各级储量比例应根据矿床地质条件、矿床规模、矿山建设规模和开采技术条件等综合考虑,并强调要实行地质勘探、矿山设计、生产建设单位的“三结合”,以便共同研究解决矿山和勘探区段的选择、高级储量的分布和比例、工业指标以及有关勘探工作和建设设计的要求等问题。1983年原地质部搞资源总量预测工作时,又划分出了E、F、G三个级别,据全国储委办公室1982-1986年组织的储量分类分级专题研究,经过条件的对比,认为其中的E级大致相当1972年两总则中D级的一部分;在此期间,煤炭部、冶金部、建材部、化工部、核工业部等也编制了本部门的规范,大体与地质部的规范相当,只有些个别差异,如,1980年煤炭部曾颁发“煤炭资源地质勘探规范(试行)”,将储量分为二类四级,即A、B、C、D级,实际上A级相当于前述的B级,其余各级别也均相应降低一个级别;1980年二机部的“铀矿地质勘探规范(征求意见稿)”,将储量分为二类五级,眼A、B、C1、C2、D级,其C2+D级相当于前述的D级; 1987年全国储委、国家经委、国家计委联合发出“矿产勘查工作分段划分的暂行规定”、“矿产勘查各阶段矿床技术经济评价的暂行规定”,将地质勘探阶段划分为普查、详查、勘探三个阶段(表 3),强调了在地质报告编写中必须增加技术经济评价章节。 1992年编制了“固体矿产地质勘探规范总则”,将金属、非金属和煤等所有固体矿产包括在一个统一的总则中。将储量分为能利用(表内)和尚难利用(表外)两大类,其中,将能利用储量又划分为a亚类和b亚类,前者为目前能利用的,后者为目前暂难利用的,将储量级别划分为A、B、C、D、E5个级别,A 级为备采储量、B级为首期开采依据储量、C级为中期开采依据储量、D级为后期开采依据储量、E级为远景储量。 二、对于我国以往储量分类及勘查规范的评价 (一)优点:①门类齐全。我国以前共编制了45个单矿种规范(涉及了84个矿种),从普查到勘探,从野外施工、原始资料编录到地质报告编写等各个方面都有严格规定,同时还有各专业、行业的规范和规定。 ②内容十分丰富。如,矿床类型、矿床规模、矿床勘探类型、勘探网度、地质研究程度等方面均有详细规定。③易于操作。 (二)缺点:静态性强、动态性差;国家计划性强、注重完成任务,市场经济性差;储量与资源概念模糊,不易与国际对比;行业分工过细,各行其是;注重储量规模,忽视经济意义,工程网度及各级储量比

SD矿产资源储量计算方法

SD矿产资源储量计算方法 SD矿产资源储量计算方法原地勘工作中一套储量计算方法,传统法,虽然简单方便灵活~但它缺乏应有的先进性~科学性~影响着当今矿产地勘工作的发展。上世纪末产生的SD法不同于传统法~亦有别于地质统计学~是一全新创造的矿产资源储量计算审定法。 SD法弥补了传统法和克里格法的不足。从我国矿产特点和我国勘查、开采实际以及储量审查的需要出发~一系列’ 成图’一体化的SD法体系的软计算——分类——审定—— 件产品~正由恩地公司向矿业市场提供全方位的服务~SD法系统也在实践中发挥更加重要的作用。SD法已在国内各个省,市、自治区,、百余个矿山,区,、千余个矿段作过试点和应用均取得了很好的效果。矿种包括: 铁、锰、铜、铅、锌、锡、锑、钴、钼、锗、金、铀、锶、铝土矿、大理石、水泥灰岩、制铝灰岩、萤石、金红石、煤、硫铁矿等四十余种,图3,。矿床类型包括:沉积型、沉积变质型、层控型、斑岩型、热液型、矽卡岩型、风化壳型、砂矿等十余个类型。矿床规模包括:特大、大、中、小矿床。 应用领域包括:计算动态矿产资源储量、确定合理工业指标、计算矿产资源储量精度及矿山保有储量、计算和预测工程控制程度,工程间距,、编制各勘查阶段矿资源储量报告、矿山闭坑报告、矿产资源储量动态监测管理。矿业应用单位包括:勘查部门、设计研究院、矿山开采、储量管理机构,评审、评估机构,。 评审通过的主要SD法报告一览表 序号报告名称

1《湖北大冶鸡冠嘴铜金矿床生产勘探核实报告》 2《黑龙江逊克县东安岩金矿床5号矿体勘探报告》 3《内蒙古赤峰道伦达坝铜多金属矿详查报告》 4《内蒙古自治区西乌珠穆沁旗道伦达坝二道沟铜多金属矿 区详查报告》 5《青海省都兰县果洛龙洼金矿?-1号矿体37-18线详查报告》 6《内蒙古自治区陈巴尔虎旗六一硫铁矿勘探报告》 7《云南省新平县大红山铜矿资源储量核实报告》 8《云南省大姚县大姚铜矿区六苴矿床资源储量核实报告》 9《云南省大姚县大姚铜矿区凹地苴矿床资源储量核实报告》10《安徽省当涂县杨庄铁矿普查报告》 11《云南省潞西市芒市金矿区SD资源储量核实报告》 SD法主要市场性报告一览表序号 报告名称 1《云南易门矿务局里士铜矿SD法资源储量估算》 2《云南易门矿务局狮山铜矿SD法资源储量估算》 3《云南易门矿务局凤山铜矿SD法资源储量估算》 4《云南个旧马拉格锡矿老阴山铅矿段SD法资源储量估算》 5《云南个旧老厂锡矿SD法资源储量估算》 6《云南个旧松树脚锡矿SD法资源储量估算》 7《云南易门矿务局老厂村钴矿SD法资源储量估算》 8《四川会理拉拉铜矿SD法资源储量估算》 9《四川会理锌矿SD法资源储量估算》10《云南建水锰矿SD法资源储量估算》 11《云南会泽铅锌矿SD法资源储量估算》 12《山东淄博铁矿SD法资源储量估算》 13《贵州GC制铝氧用石灰岩SD法资源储量估算》 14《江苏太湖水泥灰岩SD 法资源储量复核》 15《湖北大冶铜山口铜矿SD法工业指标论证》 16《内蒙古自治区乌兰图嘎锗煤矿SD法资源储量估算》 17《云南老王寨金矿SD法资源储量估

矿体圈定与资源储量估算资料

矿体圈定与资源储量估算 赵亚辉 湖南省矿产资源储量评审中心 1 矿体圈定 1.1 矿床工业指标 矿床工业指标是矿体圈定的基础。 1.1.1 矿床工业指标的确定方法 矿床工业指标是圈定矿体、估算资源储量的重要技术经济指标。确定工业指标既要考虑能圈出具有一定规模的工业矿体,又涉及到政府对矿产资源的监督管理,一定要符合矿床的实际情况和政府主管部门的有关规定。其确定方法通常为以下四种。 ①继承法:如果矿床已有有关部门批准或下达的工业指标,可直接引用。但应说明其来源的文件名称、文号、批准时间和批准单位。 ②类比法:如果矿床邻近有同类型可类比的矿床(山),可在充分类比论证下,采用与该矿床(山)相同的工业指标估算资源储量。类比时要考虑矿床内部特征(矿体特征、矿石加工技术性能、开采技术条件等)和外部建设条件的一致性或相似性。 ③一般法:一般情况下,可从政府主管部门发布的或相应矿种勘查规范建议的矿床一般工业指标中选取。取值范围不能超出一般工业指标的浮动范围,具体指标根据矿床的实际情况确定。矿床内、外部条件好时取下限值,反之取上限值。这样确定的工业指标不需要详细论证,也不需要报批,程序简便。该方法一般适应于普查和预查阶段。 ④论证法:在详查、勘探阶段,一般应结合矿床预可行性研究和可行性研究,论证制定该矿床合理的工业指标并上报政府主管部门批准后,作

为圈定矿体、估算资源储量的依据。工业指标论证应由具有可行性研究资 质的单位完成。 1.1.2 矿床工业指标确定程序 在地质勘查工作阶段较低时(如预查、普查):参照各矿种“地质勘 查规范”中所制定的一般工业指标及湖南省修订的部分矿种矿床一般工业 指标(2013年1月1日起试行),由地勘单位直接采用(一般应报业主认可)。 详查及勘探阶段:由地勘单位建议→设计单位推荐(或矿业权人论证及认可)→省矿产资源储量评审中心评审→报省厅正式批复。 资源储量核实报告、矿山年报及闭坑地质报告的矿床工业指标,一般 沿用以往经审批的矿床工业指标,应说明其来源的文件名称、文号、批准 时间和批准单位。 1.1.3 工业指标的主要内容 1.1.3.1 矿石质量要求 (1)边界品位:指在圈定矿体时,对单个样品中有用组分含量的最低 要求,作为划分矿与非矿(围岩或夹石)的一个最低品位界限。常见表述 如0.5%、1g/t等。 (2)最低工业品位:是指单个勘查工程揭露的矿体主要有益组分平均 含量的最低要求。凡等于或大于该品位的矿石,才能视为工业上能利用的 矿石,其资源储量作为能利用资源储量(以往称表内储量),介于该品位与边界品位之间的矿石属工业上暂不能利用的矿石,其资源储量作为暂不能 利用的资源储量(即低品位矿石,以往称表外储量)。对品位变化不均匀和极不均匀的矿产,如贵金属矿床,最低工业品位可用于块段平均品位,在 块段中允许有个别工程控制的矿体平均品位低于最低工业品位,但不得有 连续相邻两个工程都低于最低工业品位,否则应按工业矿石与低品位矿石 来分别圈定单独估算。常见表述如 1.5%、2.5g/t等。 (3)矿床平均品位:为全矿床工业矿石的总平均品位,用于衡量全矿 床矿石的贫富程度。常见表述如 4.5 g/t,目前我省除个别报告还保留此指标

资源储量基本概念理解

固体矿产勘查资源储量估算 对于从事地质勘查的同事来说,储量估算是一项必须要面对的工作,虽然比较简单,可是对于像我这样工作经验比较少的人来说,也还是有很多地方需要注意。所以,最近在学习这块内容的同时,也将它分享给需要的朋友们。学习的主要内容包括以下几个方面: 1.资源储量基本概念理解 2.工业指标与勘查类型 3.资源储量估算方法的选择 4.矿体的圈定 5.块段划分 6.资源储量估算参数 7. 资源储量计算 8.资源储量估算图件的编制 9.资源储量估算表格的制定 1.资源储量基本概念理解 1.1 勘查阶段:是针对勘查区或矿床而言。 在某一勘查阶段内,不同地段存在不同的勘查程度,具有 不同的资源储量类型。如勘探阶段一般有探明的(331)、控制的(332) 、推断的(333)资源量类型;详查阶段一般有控制的 (332) 、推断的(333)资源量类型;普查阶段一般有推断的(333) 预测的(334)资源量类型;预查阶段一般有预测的(334)资源

量类型。 1.2 地质可靠程度:是针对勘查块段而言。 每一块段对应一种资源储量类型,应根据矿床具体特点、选 矿结果、开采技术条件等勘查和研究程度,参考勘查工程间距 综合确定。 1.3 经济意义:针对矿产开发投资项目而言。 对于同一个投资项目,可行性研究、技术经济分析在其论证分析范围内只产生一种经济蕙义,即同一项目不应同时出现经济的、边际经济的或者次边际经济的经济结论。论证分析范围外的部分,视为末开展可行性研究或技术经济分析。 1.4 预测资源量(334) 1.4.1 详查以上阶段不应有334。 勘查境界内应对矿床整体有总体控制,矿产资源赋存情况基本查明或查明,不应有334 。 1.4.2 普查阶段可视具体情况估算334。 对有极少量工程验证的物化探矿致异常区、矿床深部或边部,可视具体情况估算334。 1.4.3 334主要出现在预查阶段: 334是未查明的潜在矿产资源,主要出现在预查阶段。 1.4.4 (334)再写成3341、3342、334?、3341?等都是错误的。 1.5 推断的内蕴经济资源量(333)的工程间距问题。几乎所有单矿种勘查规范中涉及工程间距都是以控制的(332)勘查工程间距为准。

固体矿产资源储量分类及编码

固体矿产资源/储量分类及编码 固体矿产资源/储量分分类 分类依据:矿产资源经过矿产勘查所获得的不同地质可靠程度和经相应的可行性评价所获不同的经济意义,是固体矿产资源/储量分类的主要依据。据此,固体矿产资源/储量可分为储量、基础储量、资源量三大类十六种类型,分别用二维形式 ( 图 l) 和矩阵形式 ( 表 1) 表示。 储量:是指基础储量中的经济可采部分。在预可行性研究、可行性研究或编制年度采掘计划当时,经过了对经济、开采、选冶、环境、法律、市场、社会和政府等诸因素的研究及相应修改,结果表明在当时是经济可采或已经开采的部分。用扣除了设计、采矿损失的可实际开采数量表述,依据地质可靠程度和可行性评价阶段不同,又可分为可采储量和预可采储量。 基础储量:是查明矿产资源的一部分。它能满足现行采矿和生产所需的指标要求 ( 包括品位、质量、厚度、开采技术条件等 ) ,是经详查、勘探所获控制的、探明的并通过可行性研究、预可行性研究认为属于经济的、边际经济的部分,用末扣除设计、采矿损失的数量表述。 资源量:是指查明矿产资源的一部分和潜在矿产资源。包括经可行性研究或预可行性研究证实为次边际经济的矿产资源以及经过勘查而末进行可行性研究或预可行性研究的蕴经济的矿产资源;以及经过预查后预测的矿产资源。 固体矿产资源/储量分类编码 编码:采用 ( EFG) 三维编码, E、F 、G 分别代表经济轴、可行性轴、地质轴 ( 见图 l) 。 编码的第 1 位数表示经济意义: 1 代表经济的, 2M 代表边际经济的, 2S 代表次边际经济的, 3 代表蕴经济的;第 2 位数表示可行性评价阶段: 1 代表可行性研究, 2 代表预可行性研究, 3 代表概略研究;第 3 位数表示地质可靠程度: 1 代表探明的, 2 代表控制的 3 代表推断的, 4 代表预测的。变成可采储量的那部分基础储量,在其编码后加英文字母“ b ”以示区别于可采储量。 类型及编码:依据地质可靠程度和经济意义可进一步将储量、基础储量、资源量分为 16 种类型 ( 见表 l) 。

资源储量估算各种参数的确定

资源储量估算各种参数的确定 一、矿体平均品位(C )的确定 (一)勘探工程矿体平均品位的计算 采用样品代表长度加权平均的方法计算。其公式为: C =n 321n 332211l ......l ......++++++++l l l C l C l C l C n 式中:C —勘探工程矿体平均品位 C 1……C n —单个样品品位 l 1……l n —单个样品代表长度。 (二)剖面矿体平均品位的计算 剖面矿体平均品位的计算采用剖面上同一块段内各勘探工程的见矿代表厚度加权平均的方法计算。计算公式: C =n n n m m m m m C m C m C m C ++++++++............321332211 式中:C —剖面矿体平均品位 C 1……C n —勘探工程矿体平均品位 m 1……m n —勘探工程见矿代表厚度。 (三)相邻两剖面间块段矿石平均品位的计算 采用两剖面面积加权平均的方法计算。 C =2 12211S S S C S C ++ 式中:C —相邻两剖面间块段矿石平均品位 C 1,C 2—剖面矿体平均品位 S 1,S 2—剖面面积 (四)矿体平均品位的计算 采用矿体总锡金属量除以总矿石量计算。 C =∑∑Q P C ——矿体锡平均品位

∑P——矿体锡总金属量 ∑Q——矿体总矿石量 (五)特高品位的处理 当单样品位≥工程平均品位的8倍时,作为特高品位进行处理,以特高品位所在工程的矿体各样品品位平均值代替该样品的品位值,进行矿体平均品位的计算。矿区内需处理的仅一处,在ZK801孔中,该工程的52号样锡品位达20.86%,计算时以该工程的首次平均品位7.32%代替参与资源储量估算。 二、矿体面积(S)的计算 剖面矿体面积在剖面图上直接使用计算机求得。要求两次所求面积相对误差不超过3%。 三、块段矿体体积(V)的计算 根据相邻两剖面面积差与大剖面面积之比值,分以下三种情况分别选择公式进行计算: 1、当(S 1-S 2 )/S 1 ≤40%时,计算公式为:V=L*(S 1 +S 2 )/2; 2、当(S 1-S 2 )/S 1 >40%时,计算公式为:V=L*(S 1 +S 2 +S2 * S1)/3。 3、当S1(S2)为0时,计算公式为: V=L* S/3(锥形)。式中:V为相邻两剖面间块段矿体体积; L为相邻两剖面的距离; S 1 为两剖面相对较大面积值; S 2 为两剖面相对较小面积值。

资源储量估算方法复习总结案例.doc

资源储量估算方法总结 ——主要依据XX公司《XXXX勘探报告》 一、矿体的圈定和连接 (-)单工程中划分矿段及低品位矿段 根据《铜、铅、锌、银、操、釦矿产地质勘查规范》(DZ/T 0214-2002)中对矿体圈定的规定,在《钻探基本分析结果表》中划分岀矿体及低品位矿体样段。 1、规范表述 根据《铜、铅、锌、银、银、钳矿产地质勘查规范》(DZ/T 0214-2002)附录F中的表述,“F.1.2圈定矿体吋,应在单工程中从等于或大于边界品位的样品圈起,将矿体中大于夹石剔除厚度的无矿样品作为夹石圈出。连续出现大于边界品位、小于最低工业品位的地段应作为低品位矿圈出。矿体的厚度小于最小可采厚度,但品位较高,其厚度与品位的乘积达到米百分值指标时,可圈为矿体。从F.1.3在圈定矿体时,如果矿体边部一侧或两侧为厚大且成片分布的低品位矿时,应单独圈出。在此种情况下,在单工程中圈定矿体时,边界附近允许将相当于夹石厚度的低品位矿体圈入矿体。对夹在矿体中厚度不大,且分布零星难以分采的低品位矿,则无须单独圈出,而应圈入矿体中参与矿体厚度和平均品位估算。” 2、个人解读 (1)任一种主矿元素达到工业品位口厚度大于最小可采厚度的样段划分为矿体; (2)厚度小于最小可釆厚度,但其厚度与品位的乘积达到米百分值(厚度x 品位N 最低工业品位)的样段可划分为矿体; (3)“穿鞋戴帽S 1)矿体边界一侧或两侧有小于夹石剔除厚度的、品位在边界品位与最低工业品位之间的低品位矿体,则将其一同归入矿体中,且归入后矿体仍能达到最低工业品位。2)若矿体中间存在小于夹石剔除厚度的低品位样品或无矿样品,则将其一同归入矿体中,且归入后,矿体仍能达到最低工业品位。 注:“最低工业品位”、“边界品位”、“最小可采厚度”、“夹石剔除厚度”等参数见《铜、铅、锌、银、鎳、钮矿产地质勘查规范》(DZ/T 0214-2002)附录G表G?3、表G?9。 阿多得里呀山勘探区,为锌铅银硫化物矿床,取Pb边界品位0.3%,最低工业品位

相关文档
相关文档 最新文档