文档库 最新最全的文档下载
当前位置:文档库 › 定理叙述并证明

定理叙述并证明

定理叙述并证明
定理叙述并证明

数学分析定理叙述及证明

定理 函数f 在点0x 可微的充要条件是函数f 在点0x 可导,而且式子

)(x o x A y ???+=中的A 等于)(0x f '.

证明 必要性 若f 在点0x 可微,由式子)(x o x A y ???+=有 )1(o A x

y

+=??. 取极限后有

A o A x y

x f x x =+=='→→))1((lim lim

)(0

00????.

这就证明了f 在点0x 可导且导数等于A .

充分性 若f 在点0x 可导,则f 在点0x 的有限增量公式 )()(0x o x x f y ???+'=

表明函数增量y ?可表示为x ?的线性部分))((0x x f ?'与较x ?高阶的无穷小量之和,所以f 在点0x 可微,且有 x x f dy x x ?)(|00'==.

定理 (归结原则)设f 在);(0δ'x U 上有定义.)(lim 0

x f x

x →存在的充要条件是:对任何含于);(0δ'x U 且以0x 为极限的数列{}n x ,极限)(lim n n x f ∞

→都存在且相等.

证明 必要性 设A x f x

x =→)(lim 0

,则对任给的0>ε,存在正数)(δδ'≤,使得当δ<-<00x x 时,有ε<-A x f )(.

另一方面,设数列{});(0δ'?x U x n 且0lim x x n n =∞

→,则对上述的0>δ, 存在0>N ,使得当N n >时有δ<-<00x x n ,从而有ε<-A x f n )(.这

就证明了A x f n n

=∞

→)(lim .

充分性 设对任何数列{});(0δ'?x U x n 且0lim x x n n =∞

→,有A x f n n =∞

→)(lim ,则可用反证法推出A x f x x =→)(lim 0

.事实上,倘若当0x x →

时f 不以A 为极限,则存在某00>ε,对任何0>δ(不论多么小),总存在一点x ,尽管δ<-<00x x ,但有0)(ε≥-A x f .现依次取

,,,

,3,2,

n

δδδδδ'

'

''=则存在相应的点,,,,,,321 n x x x x 使得

,

00n

x x n δ

<

-<而 ,2,1,)(0=≥-n A x f n ε

显然数列{});(0δ'?x U x n 且0lim x x n n

=∞

→,但当∞→n 时)(n x f 不趋于A .这与假设相矛盾,所以必有A x f x

x =→)(lim 0

.

定理(费马定理) 设函数f 在点0x 的某邻域上有定义,且在点0x 可导.若点0x 为f 的极值点,则必有 0)(0='x f 证明 设函数f 在点0x 处取极大值.则 0)

()(lim )(0

000

≤--='+

→+x x x f x f x f x x ,

0)

()(lim )(0

000

≥--='-

→-x x x f x f x f x x ,

则点0x 为f 的极大值点时0)(0='x f 得证.

同理,0x 为f 的极小值点时0)(0='x f 也成立. 综上,点0x 为f 的极值点必有0)(0='x f .

定理(罗尔中值定理) 若函数f 满足如下条件: (ⅰ)f 在闭区间[]b a ,上连续; (ⅱ)f 在开区间()b a ,上可导; (ⅲ))()(b f a f =,

则在()b a ,上至少存在一点ξ,使得 0)(='ξf .

证明 因为f 在[]b a ,上连续,所以有最大值与最小值,分别用M 与m 表示,先分两种情况来讨论:

(1) 若M m =,则f 在[]b a ,上必为常数,从而结论显然成立; (2) 若M m <,则因)()(b f a f =,使得最大值M 与最小值m 至少有一

个在()b a ,上的某点ξ处取得,从而ξ是f 的极值点.由条件(ⅱ),

f 在点ξ处可导,故由费马定理推知

0)(='ξf .

定理(拉格朗日中值定理)若函数f 满足如下条件: (ⅰ)f 在闭区间[]b a ,上连续; (ⅱ)f 在开区间()b a ,上可导, 则在()b a ,上至少存在一点ξ,使得 a

b a f b f f --=')

()()(ξ.

证明 作辅助函数

)()

()()()()(a x a

b a f b f a f x f x F ----

-=.

显然,)0)(()(==b F a F ,且F 在[]b a ,上满足罗尔定理的另两个条件:在

闭区间[]b a ,上连续;在开区间()b a ,上可导.故存在),(b a ∈ξ,使

0)

()()()(=---

'='a

b a f b f f F ξξ,

移项后即得到式子a

b a f b f f --=')

()()(ξ,得证.

定理(柯西中值定理) 设函数f 和g 满足 (ⅰ)在[]b a ,上都连续; (ⅱ)在()b a ,上都可导; (ⅲ))(x f '和)(x g '不同时为零; (ⅳ))()(b g a g ≠, 则存在),(b a ∈ξ,使得

)

()()

()()()(a g b g a f b f g f --=

''ξξ. 证明 作辅助函数

))()(()

()()

()()()()(a g x g a g b g a f b f a f x f x F ----

-=.

易见F 在[]b a ,上满足罗尔定理条件,故存在),(b a ∈ξ,使得 0)()

()()

()()()(='---

'='ξξξg a g b g a f b f f F .

因为0)(≠'ξg (否则由上式)(ξf '也为零),所以变换上式得

)

()()

()()()(a g b g a f b f g f --=''ξξ,得证.

命题、定理与证明

13.1命题、定理与证明 学习目标:了解什么是命题,能正确区分命题的题设和结论,能把命题改写成“如果…那么…”的形式。了解公理和定理的概念及公理与定理的区别。能认识真命题和假命题。 一、自主学习 1.试判断下列句子是否正确. (1)如果两个角是对顶角,那么这两个角相等;() (2)两直线平行,同位角相等;() (3)同旁内角相等,两直线平行;() (4)平行四边形的对角线相等;() (5)直角都相等.() 2.判断一件事情是_______或________的句子叫做命题,其中正确的命题叫做___________,错误的命题叫做_____________. 3.练习:下列句子哪些是命题?是命题的,指出是真命题还是假命题? (1)、猪有四只脚; (2)、三角形两边之和大于第三边; (3)、画一条线段; (4)、四边形都是菱形; (5)、你的作业做完了吗? (6)、多边形的外角和等于180度; (7)、过点P做线段MN的垂线。 (8)、一个锐角与一个钝角的和等于一个平角。 4.命题由___________和_________两部分组成. 这样的命题常可写成__________________的形式. 二、合作探究 例如:如果两个角是对顶角,那么这两个角相等; “如果两个角是对顶角”是已知事项,就是命题的题设部分;“那么这两个角相等”是由已知事项推出的事项,就是命题的结论部分; 例1:把命题“三个角都相等的三角形是等边三角形”改写成“如果……,那么……”的形式,并分别指出命题的题设与结论。

练习:把下列命题改写成“如果……,那么……”的形式,并分别指出命题的题设与结论。 (1)全等三角形的对应边相等; (2)平行四边形的对边相等; (3)等腰三角形的两个底角相等 定理与公理的判别:___________需要证明,证明之后就可以直接加以运用,而__________则不需要证明,可以直接加以运用,也可以用来证明_____________. 例如下列的真命题作为公理: 1).一条直线截两条平行直线所得的同位角相等; 2)两条直线被第三条直线所截,如果同位角相等,那么这两条直线平行; 3)两点之间,线段最短.(阅读教材55-56页) 数学中有些命题可以从公理或其他真命题出发用逻辑推理的方法证明它们是正确的,并且可以进一步作为判断其他命题真假的依据,这样的真命题叫做定理。 例2:证明:直角三角形的两个锐角互余。 已知:如图19.1.1,在Rt△ABC中,∠C=90°求证:∠A+∠B=90°. 公理、定理、命题的关系: 真命题 公理(真确性由实践总结) 命题定理(真确性通过推理证实) 三、展示提升 1.下列语句中不是命题的是() A 延长线段A B B 自然数也是整数 C 两个锐角的和一定是直角 D 同角的余角相等 2 下列四个命题中是真命题的有() (1)同位角相等;(2)相等的角是对顶角; (3)直角三角形的两个锐角互余;(4)三个内角相等的三角形是等边三角形 图19.1.1

高中数学课本中的定理公式结论的证明

数学课本中的定理、公式、结论的证明 数学必修一 第一章 集合(无) 第二章 函数(无) 第三章 指数函数和对数函数 1.对数的运算性质: 如果 a > 0 , a 1, M > 0 ,N > 0, 那么 (1)log ()log log a a a MN M N =+; (2)log log -log a a a M M N N =; (3)log log ()n a a M n M n R =∈. 根据指数幂的运算性质证明对数的运算性质 证明:(性质1)设log a M p =,log a N q =,由对数的定义可得 p M a =,q N a =, ∴p q p q MN a a a +=?=, ∴log ()a MN =p q +, 即证得log log log a a a MN M N =+. 证明:(性质2)设log a M p =,log a N q =, 由对数的定义可得 p M a =,q N a =, ∴ q p q p a a a N M -==, ∴q p N M a -=log , 即证得log log -log a a a M M N N =. 证明(性质3)设log a M p =,由对数的定义可得 p M a =, ∴n np M a =, ∴log n a M np =, 即证得log log n a a M n M =.

第四章函数应用(无) 数学必修二 第一章立体几何初步 直线与平面、平面与平面平行、垂直的判定定理与性质定理的证明. 1、直线与平面平行的判定定理 若平面外一条直线与此平面内一条直线平行,则该直线与此平面平行. 2、平面与平面平行的判定定理 如果一个平面内有两条相交直线都平行于另一个平面,那么这两个平面平行.

Simson定理

几何表示 过三角形外接圆上异于三角形顶点的任意一点作三边的垂线, 则三垂足共线. □ 一阶描述 基本定义: 选定 A,B,C 三点 □ 取外接圆上任意一点 P □ 得到三个垂足 D,E,F □ 基本描述: : A,B,C 三点不共线 西姆松定理 它们的坐标分别为 这三点构成的三角形的外接圆心及半径分别为 P 点的坐标为 . 全部 (x 1,y 1),(x 2,y 2),(x 3,y 3).l 1=AB,l 2=BC,l 3=CA.(u,v),r.(a,b)D(a 1,b 1),E(a 2,b 2),F(a 3,b 3). 91

□ ● : P 在三角形 ABC 的外接圆上 □ ● : P 不同于 A,B,C □ ● : D 是 P 到 BC 的垂足 □ ● : E 是 P 到 CA 的垂足 □ l 1l 2l 3(l 21=(x 1-x 2)2+(y 1-y 2 )2 [l 22=(x 2-x 3)2+(y 2-y 3)2 [l 23=(x 3-x 1)2+(y 3-y 1 )2[l 1+l 2>l 3[l 2+l 3>l 1[l 3+l 1> l 2)92^uvr ((x 1-u)2 +(y 1-v)2=r 2 [ (x 2-u)2+(y 2-v)2=r 2[(x 3-u)2 +(y 3-v)2 =r 2 [(u-a)2+(v-b)2=r 2) 93\(a=x 1[b=y 1)[\(a=x 2[b=y 2)[\(a=x 3[b=y 3) 94(a 1-x 2)(b 1-y 3)-(a 1-x 3)(b 1-y 2)=0[(a 1-a)(x 2-x 3)+(b 2-b)(y 2-y 3)=0 95^

(word完整版)初一数学命题、定理与证明练习

智立方教育初一数学“命题、定理与证明”练习 1、判断下列语句是不是命题 (1)延长线段AB ( 不是) (2)两条直线相交,只有一交点(是 ) (3)画线段AB 的中点( 不是 ) (4)若|x|=2,则x=2(是 ) (5)角平分线是一条射线( 是 ) 2、选择题 (1)下列语句不是命题的是( C ) A 、两点之间,线段最短 B 、不平行的两条直线有一个交点 C 、x 与y 的和等于0吗? D 、对顶角不相等。 (2)下列命题中真命题是( C ) A 、两个锐角之和为钝角 B 、两个锐角之和为锐角 C 、钝角大于它的补角 D 、锐角小于它的余角 (3)命题:①对顶角相等;②垂直于同一条直线的两直线平行;③相等的角是对顶角;④同位角相等。其中假命题有( B ) A 、1个 B 、2个 C 、3个 D 、4个 3、分别指出下列各命题的题设和结论。 (1)如果a ∥b ,b ∥c ,那么a ∥c (2)同旁内角互补,两直线平行。 (1)题设:a ∥b ,b ∥c 结论:a ∥c (2)题设:两条直线被第三条直线所截的同旁内角互补。 结论:这两条直线平行。 4、分别把下列命题写成“如果……,那么……”的形式。 (1)两点确定一条直线; (2)等角的补角相等; (3)内错角相等。 (1)如果有两个定点,那么过这两点有且只有一条直线 (2)如果两个角分别是两个等角的补角,那么这两个角相等。 (3)如果两个角是内错角,那么这两个角相等。 5、已知:如图AB ⊥BC ,BC ⊥CD 且∠1=∠2,求证:BE ∥CF 证明:∵AB ⊥BC ,BC ⊥CD (已知) ∴ ∠ABC = ∠BCD =90°(垂直定义) ∵∠1=∠2(已知) C A B D E F 1 2

(经典)高中数学正弦定理的五种全证明方法

(经典)高中数学正弦定理的五种全证明方法

————————————————————————————————作者:————————————————————————————————日期:

高中数学正弦定理的五种证明方法 ——王彦文 青铜峡一中 1.利用三角形的高证明正弦定理 (1)当?ABC 是锐角三角形时,设边AB 上的高是CD ,根据锐角三角函数的定义,有=sin CD a B ,sin CD b A =。 由此,得 sin sin a b A B = ,同理可得 sin sin c b C B = , 故有 sin sin a b A B = sin c C = .从而这个结论在锐角三角形中成立. (2)当?ABC 是钝角三角形时,过点C 作AB 边上的高,交AB 的延长线于点D ,根据锐角三角函数的定义,有=∠=∠sin sin CD a CBD a ABC ,sin CD b A = 。由此,得 = ∠sin sin a b A ABC ,同理可得 = ∠sin sin c b C ABC 故有 = ∠sin sin a b A ABC sin c C = . 由(1)(2)可知,在?ABC 中, sin sin a b A B = sin c C = 成立. 从而得到:在一个三角形中,各边和它所对角的正弦的比值相等,即 sin sin a b A B = sin c C = . 2.利用三角形面积证明正弦定理 已知△ABC,设BC =a, CA =b,AB =c,作AD⊥BC,垂足为D 则Rt△ADB 中,AB AD B =sin ∴S △ABC =B ac AD a sin 2121=?同理,可证 S △ABC =A bc C ab sin 21 sin 21= ∴ S △ABC =B ac A bc C ab sin 2 1 sin 21sin 21== 在等式两端同除以ABC,可得b B a A c C sin sin sin ==即C c B b A a sin sin sin ==. 3.向量法证明正弦定理 (1)△ABC 为锐角三角形,过点A 作单位向量j 垂直于AC ,则j 与AB 的夹角为90°-A ,j 与 CB 的夹角为90°-C 由向量的加法原则可得 AB CB AC =+ a b D A B C A B C D b a D C B A

5.3.2 命题、定理、证明(教案)

5.3.2 命题、定理、证明 【知识与技能】 1.知道什么叫做命题,什么叫真命题,什么叫做假命题,什么叫定理. 2.理解命题由题设和结论两部分组成,能将命题写成“如果……那么……”的形式或“若……则……”的形式. 【过程与方法】 通过对若干个命题的分析,了解什么叫命题以及命题的组成,知道什么叫做真命题,什么做假命题,什么叫做定理. 【情感态度】 通过本节的学习使同学们明白命题在数学上的重要作用,不仅如此,命题在其它许多学科都有重要作用. 【教学重点】 命题的定义,命题的组成. 【教学难点】 命题的判断,真假命题的判断,命题的题设和结论的区分. 一、情境导入,初步认识 问题1 分析下列判断事情的语句,指出它们的题设和结论. (1)如果两条直线都与第三条直线平行,那么这两条直线也互相平行. (2)两条平行线被第三条直线所截,同旁内角互补. (3)对顶角相等. (4)等式两边加同一个数,结果仍是等式. 问题2 判断下列语句,是不是命题,如果是命题,是真命题,还是假命题. (1)画线段AB=5cm. (2)两条直线相交,有几个交点? (3)如果直线a∥b,b∥c,那么a∥c. (4)直角都相等. (5)相等的角是对顶角.

【教学说明】全班同学合作交流,即先分组完成上面的两个问题,然后交流成果,最后得出正确的答案. 二、思考探究,获取新知 思考 1.真命题与定理有什么样的关系. 2.对题设和结论不明显的命题,怎样找出它们的题设和结论. 【归纳结论】1.命题:判断一件事情的语句,叫做命题. 2.命题由题设和结论两部分组成 3.真命题与假命题:正确的命题叫真命题,错误的命题叫假命题. 4.定理是经过推理证实的真命题,是在今后推理中经常作为依据的一种真命题.但不是所有经过推理证实的真命题都把它当作定理. 对于题设和结论不明显的命题,应先将它改写成“如果……那么……”的形式或“若……则……”的形式.一般来说,如果前面的部分是题设,那么后面的部分是结论.将这种命题改写成“如果……那么……”的形式时,那么后面的部分一定要简单明了. 三、运用新知,深化理解 判断下列命题是真命题还是假命题,如果是假命题.举出一个反例. (1)若a>b,则a2>b2. (2)两个锐角的和是钝角. (3)同位角相等. (4)两点之间,线段最短. 【教学说明】本环节让同学们分组讨论,在合作交流中深刻理解命题的组成和真假命题的判断. 【答案】略. 四、师生互动,课堂小结 请几名学生口答,然后由教师归纳,可用电脑课件放映到屏幕上. 1.布置作业:从教材“习题5.3”中选取. 2.完成练习册中本课时的练习.

中考数学知识点总结:命题、定理与证明

中考数学知识点总结:命题、定理与证明 1、命题与定理 定义1:判断一件事情的语句,叫做命题。 命题由题设和结论两部分组成,题设是已知事项,结论是由已知事项推出的事项。数学中的命题常可以写成“如果……,那么……”的形式。“如果”后接的部分是题设,“那么”后接的部分是结论。 定义2:如果题设成立,那么结论一定成立,这样的命题叫做真命题。 定义3:题设成立时,不能保证结论一定成立,这样的命题叫做假命题。 定义4:如果一个命题的正确性是经过推理证实的,这样得到的真命题叫做定理。 定义5:两个命题的题设和结论正好相反,我们把这样的两个命题叫做互为逆命题。其中一个叫做原命题,另外一个叫做逆命题。 如果定理的逆命题是正确的,那么它也是一个定理,我们把这个定理叫做原定理的逆定理。 2、证明 一个命题的正确性需要经过推理才能作出判断,这个推理过程叫做证明。 1、通过具体实例,了解定义、命题、定理、推论的意义。 2、结合具体实例,会区分命题的条件和结论,了解原命题及其逆命题的概念。会识别两个互逆的命题,知道原命题成立其逆命题不一定成立。 3、知道证明的意义和证明的必要性,知道证明要合乎逻辑,知道证明的过程可以有不同的表达形式,会综合法证明的格式。 4、了解反例的作用,知道利用反例可以判断一个命题是错误的。 1、命题及命题真伪的判断。 2、命题的条件和结论的区分。 3、写出命题的逆命题。 1、下列语句中,属于命题的是( ) A、直线AB和CD垂直吗 B、过线段AB的中点C画AB的垂线 C、同旁内角不互补,两直线不平行 D、连结A、B两点 2、下列语句不是命题的是( )

A、两点之间线段最短 B、不平行的两条直线有一个交点 C、x与y的和等于0吗? D、对顶角不相等 3、命题“垂直于同一条直线的两条直线互相平行”的题设是( ) A、垂直 B、两条直线 C、同一条直线 D、两条直线垂直于同一条直线 4、命题“直角都相等”的题设是,结论是。 5、把命题“有三个角是直角的四边形是矩形”改写成“如果……那么……”的形式: 6、命题:①对顶角相等;②等式两边都加同一个数,结果仍是等式;③相等的角是对顶角; ④同位角相等。其中假命题有( ) A、1个 B、2个 C、3个 D、4个 7、下列命题中,假命题是( ) A、对顶角相等 B、三角形两边的和小于第三边 C、菱形的四条边都相等 D、多边形的外角和等于360° 8、写出下列命题的逆命题: ①同旁内角互补,两直线平行。。 ②如果两个角是直角,那么它们相等。。 ③如果两个实数相等,那么它们的平方相等。。 ④两直线平行,同位角相等。。 ⑤线段垂直平分线上的点到线段两端点的距离相等。

高中数学相关定理及证明

高中数学相关定理、公式及结论证明 汉阴中学正弦定理证明 内容:在ABC ?中,c b a ,,分别为角C B A ,,的对边,则.sin sin sin C c B b A a == 证明: 1.利用三角形的高证明正弦定理 (1)当?ABC 是锐角三角形时,设边AB 上的高是CD , 根据锐角三角函数的定义,有sin CD b A ==sin CD a B 。 由此,得 sin sin a b A B = , 同理可得 sin sin c b C B = , 故有 sin sin a b A B = sin c C = . 从而这个结论在锐角三角形中成立. (2)当?ABC 是钝角三角形时,过点C 作AB 边上的高, 交AB 的延长线于点D ,根据锐角三角函数的定义, 有=∠=∠sin sin CD a CBD a ABC ,sin CD b A = 。 由此,得 =∠sin sin a b A ABC ,同理可得 =∠sin sin c b C ABC 故有 = ∠sin sin a b A ABC sin c C = . (3)在ABC Rt ?中,,sin ,sin c b B c a A == ∴ c B b A a ==sin sin , .1sin ,90=?=C C Θ.sin sin sin C c B b A a ==∴ 由(1)(2)(3)可知,在?ABC 中, sin sin a b A B = sin c C = 成立. 2.外接圆证明正弦定理 在△ABC 中,已知BC=a,AC=b,AB=c,作△ABC 的外接圆,O 为圆心, 连结BO 并延长交圆于B ′,设BB ′=2R.则根据直径所对的圆周 角是直角以及同弧所对的圆周角相等可以得到 ∠BAB ′=90°,∠C =∠B ′, ∴sin C =sin B ′=R c B C 2sin sin ='=. ∴R C c 2sin =. 同理,可得R B b R A a 2sin ,2sin ==.∴R C c B b A a 2sin sin sin ===. 3.向量法证明正弦定理 a b D A B C A B C D b a

高中数学证明公式

高中数学证明公式数学公式 抛物线:y = ax *+ bx + c 就是y等于ax 的平方加上 bx再加上 c a > 0时开口向上 a < 0时开口向下 c = 0时抛物线经过原点 b = 0时抛物线对称轴为y轴 还有顶点式y = a(x+h)* + k 就是y等于a乘以(x+h)的平方+k -h是顶点坐标的x k是顶点坐标的y 一般用于求最大值与最小值 抛物线标准方程:y^2=2px 它表示抛物线的焦点在x的正半轴上,焦点坐标为(p/2,0) 准线方程为x=-p/2 由于抛物线的焦点可在任意半轴,故共有标准方程y^2=2px y^2=-2px x^2=2py x^2=-2py 圆:体积=4/3(pi)(r^3) 面积=(pi)(r^2) 周长=2(pi)r 圆的标准方程 (x-a)2+(y-b)2=r2 注:(a,b)是圆心坐标 圆的一般方程 x2+y2+Dx+Ey+F=0 注:D2+E2-4F>0 (一)椭圆周长计算公式 椭圆周长公式:L=2πb+4(a-b) 椭圆周长定理:椭圆的周长等于该椭圆短半轴长为半径的圆周长(2πb)加上四倍的该椭圆长半轴长(a)与短半轴长(b)的差。 (二)椭圆面积计算公式 椭圆面积公式:S=πab 椭圆面积定理:椭圆的面积等于圆周率(π)乘该椭圆长半轴长(a)与短半轴长(b)的乘积。 以上椭圆周长、面积公式中虽然没有出现椭圆周率T,但这两个公式都是通过椭圆周率T推导演变而来。常数为体,公式为用。 椭圆形物体体积计算公式椭圆的长半径*短半径*PAI*高 三角函数: 两角和公式 sin(A+B)=sinAcosB+cosAsinB sin(A-B)=sinAcosB-sinBcosA cos(A+B)=cosAcosB-sinAsinB cos(A-B)=cosAcosB+sinAsinB tan(A+B)=(tanA+tanB)/(1-tanAtanB) tan(A-B)=(tanA-tanB)/(1+tanAtanB) cot(A+B)=(cotAcotB-1)/(cotB+cotA) cot(A-B)=(cotAcotB+1)/(cotB-cotA) 倍角公式 tan2A=2tanA/(1-tan2A) cot2A=(cot2A-1)/2cota cos2a=cos2a-sin2a=2cos2a-1=1-2sin2a sinα+sin(α+2π/n)+sin(α+2π*2/n)+sin(α+2π*3/n)+……+sin[α+2π*(n-1)/n]=0 cosα+cos(α+2π/n)+cos(α+2π*2/n)+cos(α+2π*3/n)+……+cos[α+2π*(n-1)/n]=0 以及 sin^2(α)+sin^2(α-2π/3)+sin^2(α+2π/3)=3/2 tanAtanBtan(A+B)+tanA+tanB-tan(A+B)=0 ·万能公式: sinα=2tan(α/2)/[1+tan^2(α/2)] cosα=[1-tan^2(α/2)]/[1+tan^2(α/2)] tanα=2tan(α/2)/[1-tan^2(α/2)] 半角公式

《命题+定理与证明》教案

《命题、定理与证明》教案 教学目标 知识与技能: 1、了解命题、定义的含义;对命题的概念有正确的理解;会区分命题的条件和结论;知道判断一个命题是假命题的方法; 2、了解命题、公理、定理的含义;理解证明的必要性. 过程与方法: 1、结合实例让学生意识到证明的必要性,培养学生说理有据,有条理地表达自己想法的良好意识; 2、结合实例让学生意识到证明的必要性,培养学生说理有据,有条理地表达自己想法的良好意识. 情感、态度与价值观: 初步感受公理化方法对数学发展和人类文明的价值. 重点 找出命题的条件(题设)和结论; 知道什么是公理,什么是定理. 难点 命题概念的理解; 理解证明的必要性. 教学过程 【一】 一、复习引入 教师:我们已经学过一些图形的特性,如“三角形的内角和等于180度”,“等腰三角形两底角相等”等.根据我 们已学过的图形特性,试判断下列句子是否正确. 1、如果两个角是对顶角,那么这两个角相等; 2、两直线平行,同位角相等; 3、同旁内角相等,两直线平行; 4、平行四边形的对角线相等; 5、直角都相等. 二、探究新知 (一)命题、真命题与假命题 学生回答后,教师给出答案:根据已有的知识可以判断出句子1、2、5是正确的,句子3、4是错误的.像这样可以判断出它是正确的还是错误的句子叫做命题,正确的命题称为真命题,错误的命题称为假命题. 教师:在数学中,许多命题是由题设(或已知条件)、结论两部分组成的.题设是已知事项;结论是由已知事项推出的事项,这样的命题常可写成“如果.......,那么.......”的形式.用“如果”开始的部分就是题设,而用“那么”开始的部分就是结论.例如,在命题1中,“两个角是对顶角”是题设,“这两个角相等”就是结论. 有的命题的题设与结论不十分明显,可以将它写成“如果.........,那么...........”的形式,就可以分清它的题设和结论了.例如,命题5可写成“如果两个角是直角,那么这两个角相等.” (二)实例讲解 D C B A

命题定理与证明教案完整版

命题定理与证明教案集团标准化办公室:[VV986T-J682P28-JP266L8-68PNN]

《命题、定理与证明》教案 教学目标 知识与技能: 1、了解命题、定义的含义;对命题的概念有正确的理解;会区分命题的条件和结论;知道判断一个命题是假命题的方法; 2、了解命题、公理、定理的含义;理解证明的必要性. 过程与方法: 1、结合实例让学生意识到证明的必要性,培养学生说理有据,有条理地表达自己想法的良好意识; 2、结合实例让学生意识到证明的必要性,培养学生说理有据,有条理地表达自己想法的良好意识. 情感、态度与价值观: 初步感受公理化方法对数学发展和人类文明的价值. 重点 找出命题的条件(题设)和结论; 知道什么是公理,什么是定理. 难点 命题概念的理解; 理解证明的必要性. 教学过程 【一】 一、复习引入 教师:我们已经学过一些图形的特性,如“三角形的内角和等于180 度”,“等腰三角形两底角相等”等.根据我们已学过的图形特性,试判断下列句子是否正确. D C B A

1、如果两个角是对顶角,那么这两个角相等; 2、两直线平行,同位角相等; 3、同旁内角相等,两直线平行; 4、平行四边形的对角线相等; 5、直角都相等. 二、探究新知 (一)命题、真命题与假命题 学生回答后,教师给出答案:根据已有的知识可以判断出句子1、2、5是正确的,句子3、4是错误的.像这样可以判断出它是正确的还是错误的句子叫做命题,正确的命题称为真命题,错误的命题称为假命题. 教师:在数学中,许多命题是由题设(或已知条件)、结论两部分组成的.题设是已知事项;结论是由已知事项推出的事项,这样的命题常可写成“如果.......,那么.......”的形式.用“如果”开始的部分就是题设,而用“那么”开始的部分就是结论.例如,在命题1中,“两个角是对顶角”是题设,“这两个角相等”就是结论. 有的命题的题设与结论不十分明显,可以将它写成“如果.........,那么...........”的形式,就可以分清它的题设和结论了.例如,命题5可写成“如果两个角是直角,那么这两个角相等.” (二)实例讲解 1、教师提出问题1(例1):把命题“三个角都相等的三角形是等边三角形”改写成“如果.......,那么.......”的形式,并分别指出命题的题设和结论. 学生回答后,教师总结:这个命题可以写成“如果一个三角形的三个角都相等,那么这个三角形是等边三角形”.这个命题的题设是“一个三角形的三个角都相等”,结论是“这个三角形是等边三角形”. 2、教师提出问题2:把下列命题写成“如果.....,那么......”的形式,并说出它们的条件和结论,再判断它是真命题,还是假命题. (1)对顶角相等; (2)如果a>b,b>c,那么a=c;

(经典)高中数学正弦定理的五种最全证明方法

(经典)高中数学正弦定理的五种最全证明方法

高中数学正弦定理的五种证明方法 ——王彦文 青铜峡一中 1.利用三角形的高证明正弦定理 (1)当?ABC 是锐角三角形时,设边AB 上的高是CD ,根据锐角三角函数的定义,有=sin CD a B ,sin CD b A =。 由此,得 sin sin a b A B = ,同理可得 sin sin c b C B = , 故有 sin sin a b A B = sin c C = .从而这个结论在锐角三角形中成立. (2)当?ABC 是钝角三角形时,过点C 作AB 边上的高,交AB 的延长线于点D ,根据锐角三角函数的定义,有=∠=∠sin sin CD a CBD a ABC ,sin CD b A = 。由此,得 = ∠sin sin a b A ABC ,同理可得 = ∠sin sin c b C ABC 故有 = ∠sin sin a b A ABC sin c C = . 由(1)(2)可知,在?ABC 中, sin sin a b A B = sin c C = 成立. 从而得到:在一个三角形中,各边和它所对角的正弦的比值相等,即 sin sin a b A B = sin c C = . 2.利用三角形面积证明正弦定理 已知△ABC,设BC =a, CA =b,AB =c,作AD⊥BC,垂足为 D.则Rt△ADB 中,AB AD B =sin ,∴AD=AB·sinB=csinB. ∴S △ABC =B ac AD a sin 2121=?.同理,可证 S △ABC =A bc C ab sin 21 sin 21=. ∴ S △ABC =B ac A bc C ab sin 2 1 sin 21sin 21==.∴absinc=bcsinA=acsinB, 在等式两端同除以ABC,可得b B a A c C sin sin sin ==.即C c B b A a sin sin sin ==. 3.向量法证明正弦定理 (1)△ABC 为锐角三角形,过点A 作单位向量j 垂直于AC ,则j 与AB 的夹角为90°-A ,j 与 CB 的夹角为90°-C .由向量的加法原则可得 AB CB AC =+, a b D A B C B C D b a D C B A

高中数学基本定理证明

1三角函数的定义证明. 已知锐角△ABC中,AB=c,AC=b,BC=a,利用三角函数的定义证明:c=acosB+bcosA解:作CD⊥AB于点D 在Rt△BCD中,由cosB=BD/BC,得BD=acosB,在Rt△ACD中,由cosA=AD/AC,得AD=bcosA,所以c=AB=BD+AD=acosB+bcosA 逐步提示: 1、根据待证明的条件中存在三角函数,而题目本身图形为锐角三角形,所以要在原图形中通过添加辅助线来构造直角三角形。 2、根据求【c的表达式,既是求AB的三角函数表达式】,因此添加辅助线时考虑【将AB 线段变为直角三角形的边】,可以作【CD⊥AB 于点D,】接下来考虑如何在在直角三角形中利用直角三角形三角函数来求解边角关系。 3、接下来分别在Rt△ACD和Rt△BCD中利用三角函数来表示AD的长度向待证靠近 2点P为△ABC内任意一点,求证点P到△ABC距离和为定值点P为△ABC外时,上述结论是否成立,若成立,请证明。若不成立h1,h2,h3与上述定值间有何关系【设点p 到AB,BC,CA三边距离为h1,h2,h3】 证明:连接PA、PB、PC,过C作AB上的高AD,交AB于G。 过P作AB、BC、CA的重线交AB、BC、CA于D、E、F 三角形ABC面积=AB*CG/2 三角形ABC面积=三角形ABP+BCP+CAP面积 =AB*PD/2+BC*PE/2+CA*PF/2 =AB(PD+PE+PF)/2 故:AB*CG/2=AB*(PD+PE+PF)/2 CG=PD+PE+PF 即:点P到△ABC距离和为三角形的高,是定值。 (2) 若P在三角形外,不妨设h1>h3,h2>h3,则有: h1+h2-h3=三角形边上的高 3棱长为的正四面体内任意一点到各面距离之和为定值,则这个定值等于多少? 简证如下: 设M为正四面体P-ABC内任一点, M到面ABC,面PAB,面PAC,面PBC的距离分别为h1,h2,h3,h4. 由于四个面面积相等, 则VP-ABC=VM-ABC+VM-PAB+VM-PAC+VM-PBC

帕斯卡原理及其应用

帕斯卡原理及其应用 ?帕斯卡原理: 加在密闭液体上的压强,能够大小不变地被液体向各个方向传递,这个规律被称为帕斯卡原理。帕斯卡原理揭示了液体压强的传递规律,是许多液压系统和液压机工作的基础。如用于维修汽车的液压千斤顶(如图),汽车的液压刹车系统,铲车等部用了液压技术。 液压机的工作原理如图所示,两个活塞,与同一容器的液体相接触。施加于小活塞的压强被液体传递给大活塞,大活塞便可以产生一个与其表面面积成正比的力。 ?帕斯卡: 帕斯卡发现了液体传递压强的基本规律,这就是著名的帕斯卡定律.所有的液压机械都是根据帕斯卡定律设计的,所以帕斯卡被称为“液压机之父”. 通过观察,帕斯卡设计了“帕斯卡球”实验,帕斯卡球是一个壁上有许多小孔的空心球,球上连接一个圆筒,筒里有可以移动的活塞.把水灌进球和筒里,向里压活塞,水便从各个小孔里喷射出来了,成了一支“多孔水枪”帕斯卡球的实验证明,液体能够把它所受到的压强向各个方向.通过观察发现每个孔喷出去水的距离差不多,这说明,每个孔所受到的压强都相同。 在初中阶段,液体压强原理可表述为:“液体内部向各个方向都有压强,压强随液体深度的增加而增大,同种液体在同一深度的各处,各个方向的压强大小相等; 不同的液体,在同一深度产生的压强大小与液体的密度有关,密度越大,液体的压强越大。” 特点:加在封闭液体上的压强能够大小不变地被液体向各个方向传递。同种液体在同一深度液体向各个方向的压强都相等。 裂桶实验: 帕斯卡在1648年表演了用一个著名的实验:他用一个密闭的装满水的桶,在桶盖上插入一根细长的管子,从楼房的阳台上向细管子里灌水。结果只到了几杯水,

桶就裂了,桶里的水就从裂缝中流了出来。原来由于细管子的容积较小,几杯水灌进去,其深度h很大。一个容器里的液体,对容器底部(或侧壁)产生的压力远大于液体自身所受的重力。

(完整版)命题与证明的知识点总结

命题与证明的知识点总结 一、知识结构梳理 二、知识点归类 知识点一定义的概念对于一个概念特征性质的描述叫做这个概念的定义。如:“两点之间线段的长度,叫做这两点之间的距离”是“两点之间的距离”的定义。 注意:定义必须严密的,一般避免使用含糊不清的语言,例如“一些”、“大概”、“差不多”等不能在定义中出现。 知识点二命题的概念 叙述一件事情的句子(陈述句),要么是真的,要么是假的,那么称这个陈述句是一个命 如“你是一个学生”、“我们所使用是教科书是湘教版的”等。 注意:(1)命题必须是一个完整的句子。 (2)这个句子必须对某事情作出肯定或者否定的判断,二者缺一不可。 知识点三命题的结构 每个命题都有条件和结论两部分组成。条件是已知的事项,结论是由已知事项推断出的事项。一般地,命题都可以写出“如果------,那么-------”的形式。有的命题表面上看不具有“如果------,那么-------”的形式,但可以写成这种形式。如:“对顶角相等”,改写成“如果两个角是对顶角,那么这两个角相等”。 例把下列命题改写成“如果------,那么-------”的形式,并指出条件与结论。 1、同角的余角相等 2、两点确定一条直线 知识点四真命题与假命题 如果一个命题叙述的事情是真的,那么称它是真命题;如果一个命题叙述的事情是假的,那么称它是假命题注意:真、假命题的区别就在于其是否是正确的,在判断命题的真假时,要注意把握这点。 知识点五证明及互逆命题的定义 1、从一个命题的条件出发,通过讲道理(推理),得出它的结论成立,这个过程叫作证明。 注意:证明一个命题是假命题的方法是举反例,即找出一个例子,它符合命题条件,但它不满足命题的结论,从而判断这个命题是假命题。 2、一个命题的条件和结论分别是另一个命题的结论和条件,这两个命题称为互逆的命题,其中的一个命题 叫作另一个命题的逆命题。 注意:一个命题为真不能保证它的逆命题为真,逆命题是否为真,需要具体问题具体分析。 例说出下列命题的逆命题,并指出它们的真假。 (1)直角三角形的两锐角互余;(2)全等三角形的对应角相等。

《命题 定理与证明》优秀教案

5.3.2《命题、定理、证明》第一课时教案教学目标 知识与技能: 1、了解命题、定理的含义;对命题的概念有正确的理解;会区分命题的条件和结论; 2、知道判断一个命题是假命题的方法;理解证明的必要性. 过程与方法: 结合实例让学生意识到证明的必要性,培养学生说理有据,有条理地表达自己想法的良好意识; 情感、态度与价值观: 初步感受公理化方法对数学发展和人类文明的价值. 教学重点 找出命题的条件(题设)和结论; 知道什么是公理,什么是定理. 教学难点

命题概念的理解; 理解证明的必要性. 教学过程 一、复习导入 教师:我们已经学过一些图形的特性,如“三角形的内角和等于180度”,“等腰三角形两底角相等”等.根据我们已学过的图形特性,试判断下列句子是否正确. 1、如果两个角是对顶角,那么这两个角相等; 2、两直线平行,同位角相等; 3、同旁内角相等,两直线平行; 4、平行四边形的对角线相等; 5、直角都相等. 二、探究新知 (一)命题、真命题与假命题 问题1 请同学读出下列语句 (1)如果两条直线都与第三条直线平行,那么这两 条直线也互相平行;

(2)两条平行线被第三条直线所截,同旁内角互补; (3)对顶角相等; (4)等式两边都加同一个数,结果仍是等式. 像这样判断一件事情的语句,叫做命题。 问题2 判断下列语句是不是命题? (1)两点之间,线段最短;() (2)请画出两条互相平行的直线;() (3)过直线外一点作已知直线的垂线;() (4)如果两个角的和是90o,那么这两个角互余.()问题3 你能举出一些命题的例子吗? 问题4 请同学们观察一组命题,并思考命题是由几部分组成的? (1)如果两条直线都与第三条直线平行,那么这两条直线也互相平行; (2)两条平行线被第三条直线所截,同旁内角互补; (3)如果两个角的和是90o,那么这两个角互余; (4)等式两边都加同一个数,结果仍是等式.

高中数学竞赛平面几何定理证明大全

Gerrald 加油坚持住 Gerrald 加油坚持住 Gerrald 加油坚持住 莫利定理:将任意三角形的各角三等分,则每两个角的相邻三等分线的交点构成 一个正三角形。 設△ABC中的∠B,∠C的两条三等分角线分別交于P, D两个点(图1),按照莫利定理,D是莫莱三角形的一個頂点,当然D就是△BPC的內心,因為BD, CD正好是∠CBP, ∠BCP的角平分线。 莫利三角形的另两个頂点E, F应该分別落在CP和BP上,因此我们产生了一个念头,如果能夠在CP, BP上找到E, F这两个点,使△DEF是个正三角形,再证AE、AF正好是∠BAC的三等分线就行了 为此,先把DP连起來,在CP, BP上分別取两点E, F使∠EDP=∠FDP=30°,于是就得到一个三角形△DEF。为什么它是一个正三角形呢?因为D是△BPC的內心,所以DP是∠BPC的角平分线,即∠DPE=∠DPF,由作图知∠EDP=∠FDP =30°,在△DPE和△DPF中,DP是公共边,而夹此边的两角又是对应相等的,所以△DPE≌△DPF。于是DE=DF,即△DEF是个等腰三角形,它的腰是DE和DF,而它的頂角又是60°,所以它当然是个正三角形。 接下來,我们的目标就是希望能证明△DEF真的是莫利三角形,亦即AE, AF 的确会三等分∠BAC。

如图2所示,在AB, AC上各取一点G,H,使得BG=BD, CH=CD,把G、F、E、H各点依次连起來,根据△BFD≌△BFG,△CED≌△CEH,我们就得到GF =FD=FE=ED=EH。 下面,如果能夠证明G,F,E,H,A五点共圆,則定理的证明就完成了,因为∠GAF,∠FAE,∠EAH这三个圆周角所对的弦GF, FE, EH都等長,因而这三个圆周角也就都相等了。 为了证明G,H,E,F,A共圓,必须证明∠FGE=∠FHE=∠A/3。 看图2,首先我们注意到△GFE是个等腰三角形,∠GFE是它的顶角,如果这个角能求出來,其底角∠FGE也就能求出来了。 △PFE也是一个等腰三角形,这是因为△PDF≌△PDE,(PD是公用边,∠DPF=∠DPE,∠PDF=∠PDE=30°),所以PF=PE。等腰三角形△PFE的顶角大小为: ∠FPE=π-2/3(∠ABC+∠ACB)=π-2/3(π-∠BAC)=π/3+2/3∠BAC (1) ∠BFD=∠PDF+∠DPF=π/6+1/2∠FPE=π/6+π/6+1/3∠BAC=π/3+1/3∠BAC (2) ∠GFE=2π-∠EFD-2∠BFD=2π-π/3-2π/3-2∠BAC/3=π-2/3∠BAC (3) 最后得到:∠FGE=∠FEG=1/2(π-∠GFE)=1/3∠BAC...(4)同理可证:∠FHE=∠HFE=1/3∠BAC (5) 至此可知G,H,E,F,A五点共圓。 因GF=FE=EH,所以∠GAF=∠FAE=∠EAH=1/3∠BAC (6) 即AE和AF恰好是∠BAC的三等分线,所以△DEF是莫利三角形。 AB是圆的一条弦,中点记为S,圆心为O,过S作任意两条弦CD、EF,分别交圆于C、D、E、F,连接CF,ED分别交AB于点M、N,求证:MS=NS。

13.1 命题、定理与证明

13.1.1命题 学习目标: 了解命题、定义的含义;对命题的概念有正确的理解。会区分命题的条件和结论。知道判断一个命题是假命题的方法。 结合实例意识到证明的必要性,培养说理有据,有条理地表达自己想法的良好意识。 重点与难点 1、重点:找出命题的条件(题设)和结论。 2、难点:命题概念的理解。 导学过程 一、复习 我们已经学过一些图形的特性,如“三角形的内角和等于180度”,“等腰三角形两底角相等”等。根据我们已学过的图形特性,试判断下列句子是否正确。 1、如果两个角是对顶角,那么这两个角相等; 2、两直线平行,同位角相等; 3、同旁内角相等,两直线平行; 4、平行四边形的对角线相等; 5、直角都相等。 二、探究新知 (一)阅读课本内容,回答:什么是命题、真命题与假命题? (二)填空: 在数学中,许多命题是由两部分组成的。题设 是;结论

,这样的命题常可写成“”的形式。用“”开始的部分就是题设,而用“”开始的部分就是结论。例如,在命题1中,“”是题设,“”就是结论。 有的命题的题设与结论不十分明显,可以将它写成“如果.........,那么...........”的形式,就可以分清它的题设和结论了。例如,命题5可写成“。” (三)自主探究 把下列命题写成“如果.....,那么......”的形式,并说出它们的条件和结论,再判断它是真命题,还是假命题。 (1)对顶角相等; (2)如果a> b,b> c, 那么a=c; (3)菱形的四条边都相等; (4)全等三角形的面积相等。 (四)假命题的证明(拓广探索) 要判断一个命题是真命题,可以用逻辑推理的方法加以论证;而要判断一个命题是假命题,只要举出一个例子,说明该命题不成立,即只要举出一个符合该命题题设而不符合该命题结论的例子就可以了,在数学中,这种方法称为“举反例”。 例如,要证明命题“一个锐角与一个钝角的和等于一个平角”是假命题,只要举出一个反例:60度角是锐角,100度角是钝角,但它们的和不是180度即可。 三、随堂练习 课本P54练习第1、2题。

高中数学常用公式与证明专题

1 高中数学常用公式与证明专题 本专题由北京大学教材研究所审定 依据《普通高中课程标准》编写 1.不等式的基本性质: (1)对称性:b a >?a b < (2)传递性:b a >,c b >?c a > (3)可加性:b a >?c b c a +>+ (4)加法:b a >,d c >?d b c a +>+ (5)保号性:b a >,0>c ?bc ac >;0>b a ,0>>d c ?bd ac > (7)乘方:0>>b a ?n n b a >(n ∈N*) (8)开方:0>>b a ?n n b a >(n ∈N*) 2.均值不等式定理: (1)四种形式: 整式形式:ab b a 22 2 ≥+, ab b a 222-≥+(a ,b ∈R ,当且仅当b a =时取“=”号) 2 )2 (b a ab +≤(a ,b ∈R ,当且仅当b a =时取“=”号) 根式形式:2a b +≥a ,b ∈R +,当且仅当b a =时取“=”号) 分式形式:2≥+b a a b (0>ab ),2-≤+b a a b (0x ,则21 ≥+x x ;若0

相关文档
相关文档 最新文档