文档库 最新最全的文档下载
当前位置:文档库 › 16RNA生物合成

16RNA生物合成

16RNA生物合成
16RNA生物合成

RNA的生物合成

一、填充题

1.基因转录的方向是从__5’__端到___3’__端。

2.大肠杆菌RNA聚合酶由__核心酶___和___σ____因子组成。

3.第一个被转录的核苷酸一般是__嘌呤核苷酸_____。

4.原核细胞启动子—10区的序列通常被称为_Pribonow box__,其一致序列是_TA TA T_。

5.真核细胞转录因子的功能是_将RNA聚合酶引向启动子__和_调节RNA聚合酶活性_。

6.逆转录酶具有_依赖于RNA的DNA聚合酶__、_依赖于DNA的DNA聚合酶__和_RNAase H __三种酶的活性。

7.真核细胞Pre-mRNA的后加工方式主要包括__带帽__、_加尾__、__内部甲基化__、_剪切_和_编辑___5种。

8.原核细胞基因转录的终止有两种机制,一种是需要ρ因子协助RNA聚合酶识别终止信号,阻止RNA聚合酶向前移动,另一种是形成发夹结构,终点前有寡聚U序列,提供信号使RNA聚合酶脱离模板。

9.核不均一RNA(hnRNA)实际上就是原初转录RNA分子。

10.真核细胞三种RNA聚合酶共有的转录因子是 TBP 。

11.DNA上某段碱基顺序为5′CTAGTCAGA3′,转录后的mRNA上相应的碱基顺序为

5′UCUGACUAG3′。

12.所有岗崎片段都是从 5′→3′方向合成的,在 3′端延长。

13.tRNA的分子3'端的碱基序列是 CCA 。

14. 原核细胞中各种RNA是同一RNA聚合酶催化生成的,而真核细胞核基因的转录分别由

3 种RNA聚合酶催化,其中rRNA基因由 RNA聚合酶Ⅰ转录,hnRNA基因由

RNA聚合酶Ⅱ转录,各类小分子量RAN则是 RNA聚合酶Ⅲ的产物。

15.一个转录单位一般应包括启动子序列、编码序列和终止子顺序。

16.真核细胞中编码蛋白质的基因多为隔裂基因。编码的序列还保留在成熟mRNA中的是外显子,编码的序列在前体分子转录后加工中被切除的是内含子。在基因中外显子被内含子分隔,而在成熟的mRNA序列被拼接起来。

17.染色质中的组蛋白和非组蛋白对转录均有调节作用,其中非组的调节作用具有组织特异性。

二、选择题

1.真核mRNA后加工的顺序是 ( D )

(A)带帽、运输出细胞核、加尾、剪接 (B)带帽、剪接、加尾、运输出细胞核

(C)剪接、带帽、加尾、运输出细胞核 (D)带帽、加尾、剪接、运输出细胞核

2.大肠杆菌RNA聚合酶全酶分子中负责识别启动子的亚基是 ( D )

(A)α亚基 (B)β亚基 (C)βˊ亚基 (D)σ因子

3.在RNA聚合酶催化下,某一DNA分子的一条链被完全转录成mRNA。假定DNA编码链的碱基组成是:G=24.1%,C=18.5%,A=24.6%,T=32.8%。那么,新合成的RNA分子的碱基组成应该是 ( A )

(A)G=24.1%,C=18.5%,A=24.6%,U=32.8%

(B)G=24.6%,C=24.1%,A=18.5%,U=32.8%

(C)G=18.5%,C=24.1%,A=32.8%,U=24.6%

(D)G=32.8%,C=24.6%,A=18.5%,U=24.1%

4.转录过程中遗传信息的传递方向是( A )

(A) DNA→ RNA (B)RNA→ DNA (C)RNA→ RNA (D)RNA→蛋白质

5.下列关于RNA聚合酶的陈述中,哪一种是正确的( C )

(A)合成多核苷酸链时,RNA聚合酶作用于核苷二磷酸 (B)RNA聚合酶作用时,需要引物

(C)RNA聚合酶在多核苷酸链的3′端加上核苷酸

(D)RNA聚合酶可以在DNA模板的两条链上同时分别合成RNA

6.原核生物基因转录终止子在终止点前均有( A )

(A) 回文结构 (B)多聚A序列 (C)TATA结构 (D)多聚T结构

7.依赖于DNA的RNA聚合酶,由5个亚基组成,其中与转录起始有关的亚基是( D )

(A) α (B) β (C) ρ (D)σ

8.参与转录的酶是( A )

(A)依赖DNA的RNA聚合酶(B)依赖DNA的DNA聚合酶

(C)依赖RNA的DNA聚合酶(D)依赖RNA的RNA聚合酶

9.DNA指导的RNA聚合酶由数个亚基组成,其核心酶的组成是( A )

(A) α2ββ' (B) α2ββ'ω (C) ααβ' (D) αββ'

10.下列叙述中,哪一种是错误的?( B )

(A)在真核细胞中,转录是在细胞核中进行的 (B)在原核细胞中,RNA聚合酶存在于细胞核中

(C)合成mRNA和tRNA的酶位于核质中 (D)线粒体和叶绿体内也可进行转录

11.mRNA的5’-ACG-3’密码子相应的反密码子是( C )

(A)5’-UGC-3’ (B)5’-TGC-3’ (C)5’-CGU-3’ (D)5’-CGT-3’12.DNA指导下的RNA聚合酶,由α2ββ’σ五个亚基组成,与转录起动有关的亚基是( D )(A)α(B)β(C)β’ (D)σ

三、是非题

1.原核生物中mRNA一般不需要转录后加工。√

2.RNA聚合酶对弱终止子的识别需要专一的终止因子(如 蛋白)。√

3.原核细胞启动子中RNA聚合酶牢固结合并打开DNA双链的部分称为Pribnow box,真核细胞启动子中相应的顺序称为Hogness box,因为富含A-T,又称TATA box。√

四、名词解释

1.内含子:真核生物的mRNA前体中,除了贮存遗传序列外的非编码序列。

2.终止子:在DNA分子上有终止转录的特殊碱基顺序。

3. 外显子:真核生物的mRNA前体中的编码序列。

1.转录:以DNA的一条链为模板在RNA聚合酶催化下,以四种核糖核苷磷酸为底物按照碱基配对原则,形成3′→5′磷酸二酯键,合成一条与DNA链的一定区段互补的RNA链的过程。2.终止因子:协助RNA聚合酶识别终止信号的辅助因子。

3.启动子:RNA聚合酶识别、结合和开始转录的一段DNA序列。

4.转录因子:RNA聚合酶起始转录需要的辅助因子。

5.密码子:存在于信使RNA中的三个相邻的核苷酸顺序,是蛋白质合成中某一特定氨基酸的密码单位。

10.有意义链:在体内被转录的那股DNA链。

五、问答题

1.简述真核生物mRNA转录后的加工过程。

真核细胞mRNA的加工包括:(1)hnRNA被剪接,除去由内含子转录来的序列,将外显子的转录序列连接起来。(2)在3′末端连接上一段约有20~200个腺苷酸的多聚腺苷酸(poly A)的“尾巴”结构。不同mRNA的长度有很大差异。(3)在5′末端连接上一个“帽子”结构m7GpppmNP。(4)

在内部少数腺苷酸的腺嘌呤6位氨基发生甲基化(m6A)

2.假定下面的DNA双链分子是从右向左进行转录,写出RNA转录产物的序列

5'----ATTCGCTTAAGCAA----3'

3'----TAAGCGAATTCGTT----5'

产物:5'---UUGCUUAAGCGAAU-----3'

3.比较原核细胞中DNA复制与RNA生物合成的不同。

4.简述RNA转录的过程。

RNA转录过程为起始位点的识别、起始、延伸、终止。

(1)起始位点的识别:RNA聚合酶先与DNA模板上的特殊启动子部位结合,σ因子起着识别DNA 分子上的起始信号作用。

(2)起始:移动到起始位点的全酶结合第一个核苷三磷酸。形成启动子、全酶和核苷三磷酸的三元起始复合物,这时σ亚基被释放脱离核心酶。

(3)延伸:核心酶与DNA的结合松弛,核心酶可沿模板移动,并按模板序列选择下一个核苷酸,将核苷三磷酸加到生长的RNA链的3′-OH端,催化形成磷酸二酯键。转录延伸方向是沿DNA模板链的3′→5′方向按碱基酸对原则生成5′→3′的RNA产物。

(4)终止:终止子使RNA聚合酶停止合成RNA和释放RNA链。

合成生物学及其在生物技术中的应用进展

合成生物学及其在生物技术中的应用进展* 吕 静1)孙洪磊2)何皓2)傅鹏程1)** (1)中国石油大学(北京)化工学院重质油国家重点实验室,新能源研究中心,北京102249; 2) 中国石油天然气股份有限公司石油化工研究院,北京100195) 摘要合成生物学是一门21世纪生物学的新兴学科,它着眼生物科学与工程科学的结合,把生物系统当作工程系统“从下 往上”进行处理,由“单元”(unit)到“部件”(device)再到“系统”(system)来设计,修改和组装细胞构件及生物系统.合成生物学是分子和细胞生物学、进化系统学、生物化学、信息学、数学、计算机和工程等多学科交叉的产物.目前研究应用包括两个主要方面:一是通过对现有的、天然存在的生物系统进行重新设计和改造,修改已存在的生物系统,使该系统增添新的功能.二是通过设计和构建新的生物零件、组件和系统,创造自然界中尚不存在的人工生命系统.合成生物学作为一门建立在基因组方法之上的学科,主要强调对创造人工生命形态的计算生物学与实验生物学的协同整合.必须强调的是,用来构建生命系统新结构、产生新功能所使用的组件单元既可以是基因、核酸等生物组件,也可以是化学的、机械的和物理的元件.本文跟踪合成生物学研究及应用,对其在DNA 水平编程、分子修饰、代谢途径、调控网络和工业生物技术等方面的进展进行综述.关键词 合成生物学,系统生物学,蓝藻,底盘,生物燃料 学科分类号 Q6 DOI :10.3724/SP.J.1206.2011.00583 生物化学与生物物理进展 Progress in Biochemistry and Biophysics 2012,39(2):105~118 https://www.wendangku.net/doc/699756104.html, *国家重点基础研究发展计划(973)(2011CB200902)资助项目,中国石油天然气股份有限公司科技研究外协项目《制取生物柴油的工程微藻的筛选与培育》、《浮萍和微藻能源化的资源潜力与过程的中试开发》和《中国航空生物燃料炼制加工技术研究》资助项目.**通讯联系人. Tel:010-********,E-mail:pengcheng@https://www.wendangku.net/doc/699756104.html, 收稿日期:2011-07-27,接受日期:2012-02-13 1合成生物学概述 1.1新一代生物学 合成生物学20世纪生物学研究一直以“还原论”为指导,即对生物系统不断分解,直至细胞中的单个或有限个基因或蛋白质,然后孤立研究这些基因和/或蛋白质的结构和功能,以此了解生物现象.随着基因组测序和高通量筛选测量为标志的当代分子生物学的迅猛发展,以系统化设计和工程化构建为理念的合成生物学成为新一代生物学的发展方向. 2000年1月《自然》(Nature )同时发表了两篇文章.其一是Colins 团队研制出由两个抑制基因、两个抑制启动子以及一个作为报告基因的绿色荧光蛋白(GFP)组成的一种双稳态“基因套环开关”,可对选择的细胞功能进行开关[1].其二是Elowitz 和Liebler 用转录启动子和抑制基因构建了由连续诱导启动子调控的3基因抑制网络,称为“压缩振荡子”,同样加上一个GFP 报告基因.它将交替打开或者关闭GFP 报告基因,使细胞能在发光状态和非发光状态之间转换[2].随后,许多合成生物学的基本元件,例如启动子、核糖体结合位点和转录阻 遏物等,均用来构建具有特定功能的模块,将这些模块插入细胞使生物系统具有了新的功能.目前,合成生物学模块包括了诸如套环开关、串级开关、脉冲发生器、时间延迟电路、振荡器、逻辑门电路等.这些模块和其他模块一起工作时,可以用来调控基因表达、蛋白质功能、代谢及细胞间的通讯[3].以基因工程技术和电子工程的电路设计原则为基础的工作还包括利用启动子和阻遏子等基因元件构建最简单的组件创建可通用组装的,满足不同的组合要求的最简单的模块库[4].应用例子包括逻辑门、闩锁(套环开关)[1,5]和逆变器[6]. 可以看出,合成生物学以信号传导、基因调控以及细胞代谢的元件组装具有我们所希望的细胞功

合成生物学与生物燃料

济南大学研究生课程考查试卷 课程编号:QZ283001课程名称:信息与文献检索学时16 学分 1 学号:20172120470 姓名牛浩学科、领域生物工程 学生类别:全日制专业学位成绩:任课教师(签名) 1、考核形式(采用大作业、论文、调研报告、实验报告等): 课程论文 2、考查(内容、目的等)具体要求: 写一篇与所从事专业相关的综述性论文 字数在3000字左右 书写格式规范,论述清晰,层次分明 3、成绩评定说明(含平时成绩、考核成绩): 平时成绩主要包括考勤和平时作业,考勤共计10分,平时作业共计20分,占总成绩的30%。 期末课程论文共计70分,占总成绩的70%。 总成绩为平时成绩与课程论文成绩的加和,即100分。

合成生物学在生物燃料领域的研究 摘要:本文简要介绍了合成生物学的概念,生物燃料的研究现状、研究前景以及未来可能会遇到的一些挑战。探讨了合成生物学在生物燃料研究中的应用进展包括提高生物质原料的转化特性、开发绿色高效生物催化剂、构建微生物细胞工厂以及设计合成多种生物燃料产品。最后对合成生物学在生物燃料领域的研究做出了展望。 关键词:合成生物学;生物燃料;研究现状;前景;挑战;应用进展 1 合成生物学概述 合成生物学(synthetic biology) 是综合了科学与工程的一个崭新的生物学研究领域。它既是由分子生物学、基因组学、信息技术和工程学交叉融合而产生的一系列新的工具和方法,又通过按照人为需求( 科研和应用目标),人工合成有生命功能的生物分子( 元件、模块或器件)、系统乃至细胞,并自系统生物学采用的“自上而下”全面整合分析的研究策略之后,为生物学研究提供了一种采用“自下而上”合成策略的正向工程学方法[1]。它不同于对天然基因克隆改造的基因工程和对代谢途径模拟加工的代谢工程,而是在以基因组解析和生物分子化学合成为核心的现代生物技术基础上,以系统生物学思想和知识为指导,综合生物化学、生物物理和生物信息技术与知识,建立基于基因和基因组、蛋白质和蛋白质组的基本要素( 模块) 及其组合的工程化的资源库和技术平台,旨在设计、改造、重建或制造生物分子、生物部件、生物系统、代谢途径与发育分化过程,以及具有生命活动能力的生物部件、体系以及人造细胞和生物个体。 2 生物燃料研究现状与挑战 2.1 生物燃料的研究现状 生物燃料主要包括纤维素生物燃料(乙醇、丁醇等)、微藻生物燃料(生物柴油、航空生物燃料等),以及最近两年研究较热的新型优质生物液体燃料(高级醇、脂肪醇、脂肪烃等)和利用新技术路线合成的生物乙醇与生物柴油(蓝藻乙醇、微生物直接利用纤维素水解糖体内合成生物柴油等)等。“可持续性”是生物燃料的核

合成生物学相关文献(免费共享)

合成生物学相关文献(免费共享) 摘要:通过将组成生物系统的各类单元模块化、标准化,合成生物学希望达成一种新的生物技术发展模式:即从主要开发里欧那个天然生物系统既有功能,变为用人工设计合成的生物系统来完成天然系统不能完成或者完成效率低的功能。合成生物学通过开展生物元件或者器件、生物途径等多个层次的工程化研究来实现上述目标。 ◆综述: 1.Boyle PM,Silver PA.2009. Harnessing nature’s toolbox: regulatory elements for synthetic biology. J R Soc Interface, doi;10.1098.rsif.f8.0521.focus 2.McArthur IV GH,Fong SS.2010. Toward engineering synthetic microbial metabolism. J Biomed Biotechnol,doi:10.1155/2010/459760。 综述了元器件工程(components engineering)、和途径工程(pathway engineering)的进展。 3.Andrianantoandro E,Basu S,Karig D,et al.2006.Synthetic biology:new engineering rules for an emerging discipline. Mol Syst Biol,2:14-27。 ◆合成生物学元器件工程: 利用不同调控机制的人工调控器件: 4.Boyle PM,Silver PA.2009. Harnessing nature’s toolbox: regulatory elements for synthetic biology. J R Soc Interface, doi;10.1098.rsif.f8.0521.focus。 系统的综述了国际上相关工作研究:细胞中的转录调控、RNA调控、蛋白质信号转导等生物调控机制都已经被成功的用于构建合成生物调控元件。 转录调控

合成生物学的关键技术及应用进展

DOI:10.3969/cmba.j.issn.1673-713X.2012.05.007 · 综述· 合成生物学的关键技术及应用进展 邢玉华,谭俊杰,李玉霞,凌焱,刘刚,陈惠鹏 20 世纪的生物学研究一直着眼于对生物系统的不断分解,解剖至细胞中单个蛋白或基因,研究其结构和功能来解释生命现象。但随着当代分子生物学技术的迅猛发展,以系统化设计和工程化构建为理念的合成生物学成为新一代生物学的发展方向。合成生物学旨在对多种天然的或人工设计的生物学元件进行合理而系统的组合以获得重构的或非天然的“生物系统”,其涵盖的研究内容可以大体分为 3 个层次:一是利用已知功能的天然生物模体(motif)或模块(module)构建成新型调控网络并表现出新功能;二是采用从头合成(de novo synthesis)的方法,人工合成基因组 DNA 并重构生命体;第三个层次则是在前两个研究领域得到充分发展之后,创建完整的全新生物系统乃至人工生命体(artificial life)。合成生物学强调利用工程化的设计理念,实现从元件到模块再到系统的“自下而上”设计。利用生物系统最底层的 DNA、RNA、蛋白质等作为设计的元件,利用转录调控、代谢调控等生物功能将这些底层元件关联起来形成生物模块,再将这些模块连接成系统,实现所需的功能。这是一门涉及微生物学、分子生物学、系统生物学、遗传工程、材料科学以及计算科学等多个领域的综合性交叉学科。它有别于传统的基因工程,其目的在于组装各种生命元件来建立人工生物体系,让它们能像电路一样在生物体内运行,使生物体能按预想的方式完成各种生物学功能。合成生物学的最高境界是灵活设计和改造生命,重塑生命体。 本文就目前合成生物学采用的关键技术和研究应用进展两方面进行综述。 1 基因组的人工合成技术 2010 年 5 月 20 日,Science报道了 Venter 研究组采用化学方法合成了一个 1.08 Mb 的蕈状支原体基因组,并将其移植入一个山羊支原体受体细胞,从而创造了一个仅由合成基因组控制的新的蕈状支原体细胞[1]。这项成果在合成生物学的发展史中具有里程碑的意义。在此之前,也有许多基因组合成的成功报道。2002 年,纽约州立大学 Wimmer 实验室合成了脊髓灰质炎病毒,这是人类历史上第一个人工合成的病毒。多年来,Venter 等一直致力于合成基因组的研究。2003 年,合成了长达 5386 bp 的ΦX174 噬菌体基因组,实现了用寡核苷酸合成的方法精确合成了 5 ~ 6 kb 的 DNA 序列;2008 年,Venter 实验室又合成了生殖支原体基因组,该基因组全长 582970 bp,是已知的生物体中独立生存的最小基因组[2];2010 年 10 月他们又发明了迄今最简单有效的基因合成技术,并以此合成了实验小鼠的线粒体基因组[3]。Dymond 等[4]的研究更进了一步,他们于 2011 年报道成功设计合成了酿酒酵母的部分染色体,这是酿酒酵母基因组人工合成计划(SC2.0 Project)取得的第一个成果,该项目的最终目标是人工合成构建酿酒酵母基因组。酵母基因组人工合成将是合成生物学发展史上又一重要的里程碑。 DNA 合成是支撑合成生物学发展的核心技术,它不依赖于 DNA 模板,可根据已知的 DNA 序列直接合成,在基因及生物元件的合成、基因回路和生物合成途径的重新设计组装,以及全基因组的人工合成中发挥重大作用。由于化学合成的 DNA 片段长度有限,要合成长的 DNA 片段需要先合成短的寡核苷酸,然后再将寡核苷酸进行拼接。因此,基因组合成的基本思路为:①按照原始基因组序列设计合成寡核苷酸;②利用各种方法将寡核苷酸拼接成较长的 DNA 序列;③以较长的序列为基础,进一步拼接得到更长的DNA 序列,拼接成完整的基因组;④将合成的基因组移植到细胞中,并验证其功能。 1.1 寡核苷酸的合成 目前寡核苷酸一般采用固相亚磷酰胺三酯法合成。寡核苷酸的长度是一个重要的参数,随着长度的延长,产率下降,纯度也降低,积累的合成错误大大增加。较短的寡核苷酸会有较少的错误,但是需要增加组装所需的重叠序列,使合成成本增加。使用 60-mer 的寡核苷酸,可以最大程度地降低错配率和生产成本[5]。 1.2 由寡核苷酸拼接成较长的 DNA 片段 寡核苷酸可以通过各种方法拼接成几百 bp 到几千 bp 的 DNA 片段。常用的体外拼接方法有以下两种:连接酶链式反应(ligase chain reaction,LCR)和快速聚合酶链式组装法(polymerase chain assembly,PCA)。 LCR 法利用 Taq 连接酶将首尾相连、重叠杂交的寡核苷酸片段连接起来,连接反应在较高温度下进行,因而可以排除 DNA 二级结构的干扰;但是基因合成的成本大大增加。 PCA 法是两条具有部分重叠的寡核苷酸互为引物互为模板进行聚合酶的延伸,延伸得到的序列再通过与其他寡核苷酸退火、延伸,进行多次循环后,最终合成目的序列。PCA 法合成成本较连接酶法大大降低。这种方法逐渐得到广泛使 基金项目:国家高技术研究发展计划(863 计划)子课题(2012AA 022001-03D) 作者单位:100071 北京,军事医学科学院生物工程研究所(邢玉华、谭俊杰、李玉霞、凌焱、刘刚、陈惠鹏);130012 长春,吉林大学生命科学学院(邢玉华) 通讯作者:刘刚,Email:jueliu@https://www.wendangku.net/doc/699756104.html, 收稿日期:2012-07-16

合成生物学的前景展望

合成生物学的前景展望 目录: 前言 科学定义 学科特征 发展现状 前景展望 结语 前言 当今方兴未艾的合成生物学,是一门建立在生物信息学、DNA化学合成技术、遗传学和系统生物学之上的交叉学科。近十年来,该学科在病毒全基因组合成、标准化遗传回路和最小基因组研究中取得了巨大的突破,也展现了其在生物科学应用中扮演的重要角色。本文将通过介绍与分析合成生物学的相关信息展望合成生物学的发展前景。 科学定义 目前合成生物学研究涵盖范围广泛,对其定义的表述不尽相同:合成生物学领域知名的网站(http://syntheticbiology. org)这样描述该领域的主要研究内容:“设计和构建新型生物学部件或系统以及对自然界的已有生物系统进行重新设计,并加以应用。”2010年12月,美国13位知名专家共同完成了一份名为《新的方向》的研究报告,专门探讨合成生物学问题,文中将合成生物学的研究目标定位为:“将标准化的工程技术应用于生物学,以此创造出新型或具有特定功能的生命体或生物系统,以满足无尽的需求。”合成生物学组织(Synthetic Biology Community)网站上公布的合成生物学的定义则强调合成生物学的两条技术路线:(1)新的生物零件、组件和系统的设计与建造;(2)对现有的、天然的生物系统的重新设计。 综合起来,合成生物学可被理解为基于系统生物学的遗传工程从基因片段、人工碱基DNA子、基因调控网络与信号传导路径到细胞的人工设计与合成,类似于现代集成型建筑工程,将工程学原理与方法应用于遗传工程与细胞工程等生物技术领域,合成生物学、计算生物学与化学生物学一同构成系统生物技术的方法基础。 学科特征 1.多学科交叉性: 作为一个以多学科为基础的综合性交叉研究领域,对于生物学家,合成生物学打开了一扇探索生命奥秘的大门;工程学家更关注的是该如何将实验流程和各类生物学元件进行模块化、标准化,以及如何有效地控制多个元件的相互协调;而如何将标准化的生物学模块进行数字化、定量化评价,更好地为人造“软件”进行模拟计算从而指导生物系统的构建,则是计算科学在生命科学中应用的突出体现;化学家和药物学家则更愿意将合成生物学看作多种用途的新型工具,用于高效地生产新型燃料和药物。 2.超越传统技术的革新: 合成生物学改变了过去的单基因转移技术,开创综合集成的基因链乃至整个基因蓝图设计,并实现人工生物系统的设计与制造。从分子结构图式、信号传导网络、细胞形态类型到器官组织结构的多基因系统调控研究的系统遗传学,以及纳米生物技术、生物计算、

分子与合成生物学知识点总结

1.(生命的起源)三界的分类:古细菌、细菌、真核生物 2.小分子:氨基酸、糖类、核苷酸 77% 3.大分子:核酸、蛋白质、脂质 23% 4.古细菌更类似于真核细胞,原核细菌是真正的细菌 5.合成生物学的定义:设计和构建自然界中没有发现的生物功能和生物系统。构造生物零件装置和能量,药物以及科技系统中应用工程原则和数学模型。 组装各领域专业知识的研究领域为了理解,构建,修饰生物系统。 合成生物学的目标:①操纵基因元件,将基础生物分子整合到基因线路上,来创造新性状,表达复杂的生物功能。②从稳定、标准、已经改良好的基因模块来构建生物体系。 合成生物学的目的:改造系统、系统化构建 .合成生物学与其他学科的不同:抽象性、模块性、标准化、设计和模型 6.根据进化树,古细菌和真核生物都来自细菌。 7.生物膜的作用:隔离、储存能量、物质传递、信号传导、阻断毒性 8.内共生学说:古细菌的真核细胞吞噬异样细菌,成为它的线粒体。 吞噬自养细菌,成为它的叶绿体。 9.基因的概念:基因是生物有机体遗传的分子单元 基因在染色体上 是有机体中可以编码多肽和RNA的DNA序列 10.DNA的结构和功能: 遗传信息在DNA链的核苷酸序列中 遗传信息指导合成蛋白质 基因两条链碱基配对以氢键链接 一条链模板、半保留复制5-3、3端游离羟基、糖在外,碱基在内 11.染色体结构与基因表达: 染色质的基本组成单位是核小体 核小体是组蛋白八聚体2H2A 2H2B 2H3 2H4 H1与核小体间DNA链接 染色质改造:连接DNA长度可变,结合DNA结构可变 12.三个重要的DNA序列:端粒、复制起始区、着丝点 13.核小体的N端修饰(共价修饰): DNA甲基化和组蛋白去乙酰化协同作用共同参与转录阻遏。 磷酸化使生物学过程发生 14.转录抑制与异染色质有关 15.第三章总结:间期染色质解旋很难看见 基因表达loop结构处 常染色质结构疏松表达活跃,能编码蛋白质。 异染色质粘稠不编码。如端粒、中心粒、着丝粒 有丝分裂染色体是压缩的,有序的,染色体在细胞核中的存放时空间有序的 16.分子机器:调节DNA的蛋白质 DNA:连接酶、解旋酶(95℃)、拓扑异构酶 钳蛋白、结合蛋白

合成生物学的研究进展

第!期中!国!科!学!基!金"# !! !学科进展与展望! 合成生物学研究的进展 !!"中国科学院院士$ 本文于!%%&年’!月!"日收到$张春霆" !天津大学生命科学与工程研究院"天津(%%%)!# "摘!要#!本文简要介绍了合成生物学发展的历史背景与定义"它的主要研究内容"包括基因线路$合成基因组$合成药物与生物基产品或材料等%探讨了合成生物学与基因工程的异同"介绍了合成生物学在中国的发展情况"讨论了伦理道德与安全问题"最后展望了合成生物学的发展前景% "关键词#!合成生物学!基因线路!合成基因组!合成药物!合成生物基产品或材料!合成*+,序列 !!合成生物学的历史背景与定义 ’--%年人类基因组计划启动!随后模式生物基因组计划也快速实施!产生了大量的基因组*+,序列信息"由于新技术的出现!又促进了转录组学#蛋白质组学和代谢组学等的产生和发展"这一切又催生了一系列新兴交叉学科!如生物信息学和系统生物学等"基础研究的成果最终要转化为生产力!而合成生物学在!’世纪初的出现则是上述学科发展的一个合乎逻辑的结果"那么什么是合成生物学呢$合成生物学网站是这样介绍的%合成生物学包括两重意义%&’’新的生物零件&./01’#组件&234563’和系统的设计与构建(&!’对现有的#天然存在的生物系统的重新设计!以造福人类社会&711.%))89:; 173156<5=>=?9$=0?)’"维基百科全书是这样描述的%合成生物学旨在设计和构建工程化的生物系统!使其能够处理信息#操作化合物#制造材料#生产能源#提供食物#保持和增强人类的健康和改善我们的环境&711.%))3:$@5A5.325/$=0?)@5A5)B9173156*<5=>=; ?9’" "!合成生物学的主要研究内容 "#!!基因线路$$%&%’())(*)+(’% 说起基因线路或基因回路!最早可追溯到C/6=<和D=:=2关于半乳糖操纵子模型的经典工作" !"#$%&杂志在!%%%年发表了基因振荡和基因双稳态两个基因线路!被认为是奠基性的工作"现在则 已发表了大量的有关基因线路的工作!本文不拟详加介绍"一个典型的基因线路是基因双稳态线路+’,!由两个蛋白质编码基因与两个相对应的启动子组成"线路是这样设计的%蛋白质’的表达抑制了蛋白质!的表达!系统只有蛋白质’存在(反之!蛋白质!的表达抑制了蛋白质’的表达!系统只有蛋白质!存在"可在双稳态线路中加入诱导物!促使系统在两个稳定状态之间任意翻转"基因线路有广泛的应用!因篇幅所限不能展开介绍!下面只介绍(个应用例子" &’’大肠杆菌照相术+!, 首先从集胞兰细菌基因组中克隆两个基因并转入大肠杆菌!使之能生成对光敏感的藻青素!简称E F G"接着利用大肠杆菌中双组份信号转导系统’()*+,-./!将与E F G共价结合的脱辅基蛋白与’()*的组氨酸激酶结构域融合构成一个嵌合体!成为一个光敏部件"同时!将0-.1基因与2"3*基因融合!通过在2"3*基因上游引入0-.1启动子使其表达依赖于,-./"通过这一基因线路!2"3*基因的表达就会受光调控"当有红光照射时&相当于被摄物体的光亮部分’!’()*的自磷酸化被抑制!从而,-./不能被磷酸化激活!2"3*基因关闭!由涂抹在琼脂基片上的菌苔形成的底片保持原色"当没有红光照射时&相当于被摄物体的黑暗部分’!过程正好相反!’()*的自磷酸化被激活!从而使2"3*基因被磷酸化的,-./激活而表达!其产物为半乳糖苷酶!催化菌苔中的B;?/>&一种化合物’反应生成

合成生物学中那些不得不说的技术

生物技术132 孟庆猛1309011066 合成生物学中那些不得不说的技术 20 世纪的生物学研究一直着眼于对生物系统的不断分解,解剖至细胞中单个蛋白或基因,研究其结构和功能来解释生命现象。但随着当代分子生物学技术的迅猛发展,以系统化设计和工程化构建为理念的合成生物学成为新一代生物学的发展方向。合成生物学旨在对多种天然的或人工设计的生物学元件进行合理而系统的组合以获得重构的或非天然的“生物系统”,其涵盖的研究内容可以大体分为 3 个层次:一是利用已知功能的天然生物模体(motif)或模块(module)构建成新型调控网络并表现出新功能;二是采用从头合成(de novo synthesis)的方法,人工合成基因组DNA 并重构生命体;第三个层次则是在前两个研究领域得到充分发展之后,创建完整的全新生物系统乃至人工生命体(artificial life)。合成生物学强调利用工程化的设计理念,实现从元件到模块再到系统的“自下而上”设计。利用生物系统最底层的DNA、RNA、蛋白质等作为设计的元件,利用转录调控、代谢调控等生物功能将这些底层元件关联起来形成生物模块,再将这些模块连接成系统,实现所需的功能。这是一门涉及微生物学、分子生物学、系统生物学、遗传工程、材料科学以及计算科学等多个领域的综合性交叉学科。它有别于传统的基因工程,其目的在于组装各种生命元件来建立人工生物体系,让它们能像电路一样在生物体内运行,使生物体能按预想的方式完成各种生物学功能。合成生物学的最高境界是灵活设计和改造生命,重塑生命体。本文就目前合成生物学采用的关键技术和研究应用进展两方面进行综述。 基因组的人工合成技术2010 年5 月20 日,Science 报道了Venter 研究组采用化学方法合成了一个 1.08 Mb 的蕈状支原体基因组,并将其移植入一个山羊支原体受体细胞,从而创造了一个仅由合成基因组控制的新的蕈状支原体细胞。这项成果在合成生物学的发展史中具有里程碑的意义。在此之前,也有许多基因组合成的成功报道。2002 年,纽约州立大学Wimmer 实验室合成了脊髓灰质炎病毒,这是人类历史上第一个人工合成的病毒。多年来,Venter 等一直致力于合成基因组的研究。2003 年,合成了长达5386 bp 的ΦX174 噬菌体基因组,实现了用寡核苷酸合成的方法精确合成了 5 ~ 6 kb 的DNA 序列;2008 年,Venter 实验室又合成了生殖支原体基因组,该基因组全长582970 bp,是已知的生物体中独立生存的最小基因组;2010 年10 月他们又发明了迄今最简单有效的基因合成技术,并以此合成了实验小鼠的线粒体基因组。Dymond 等的研究更进了一步,他们于2011 年报道成功设计合成了酿酒酵母的部分染色体,这是酿酒酵母基因组人工合成计划(SC2.0 Project)取得的第一个成果,该项目的最终目标是人工合成构建酿酒酵母基因组。酵母基因组人工合成将是合成生物学发展史上又一重要的里程碑。DNA 合成是支撑合成生物学发展的核心技术,它不依赖于DNA 模板,可根据已知的DNA 序列直接合成,在基因及生物元件的合成、基因回路和生物合成途径的重新设计组装,以及全基因组的人工合成中发挥重大作用。由于化学合成的DNA 片段长度有限,要合成长的DNA 片段需要先合成短的寡核苷酸,然后再将寡核苷酸进行拼接。因此,基因组合成的基本思路为:①按照原始基因组序列设计合成寡核苷酸;②利用各种方法将寡核苷酸拼接成较长的DNA 序列;③以较长的序列为基础,进一步拼接得到更长的DNA 序列,拼接成完整的基因组;④将合成的基因组移植到细胞中,并验证其功能。

合成生物学的未来展望

合成生物学的未来展望 合成生物学是生物科学在二十一世纪刚刚出现的一个分支学科,近年来合成生物物质的研究进展很快。与传统生物学通过解剖生命体以研究其内在构造的办法不同,合成生物学的研究方向完全是相反的,它是从最基本的要素开始一步步建立零部件。与基因工程把一个物种的基因延续、改变并转移至另一物种的作法不同,合成生物学的目的在于建立人工生物系统(artificial biosystem),让它们像电路一样运行。 传统的生物学是通过解剖来了解生命体以及其内部构造的,而合成生物学恰恰相反,它是从最基本的要素开始一步步建立零部件。重塑生命是合成生物学的核心思想。该学科致力于从零开始建立微生物基因组,从而分解、改变并扩展自然界在35亿年前建立的基因密码。此外,还可以通过人工方式迫使某一细菌合成氨基酸。合成生物学是基因工程中一个刚刚出现的分支学科,它吸引了大批的生物学家和信息工程师致力于此项研究。 一些专家提出应该制造一个配备有生物芯片的细胞机器人,让它在我们的动脉中游荡,检测并消除导致血栓的动脉粥样硬化。还有一些研究人员认为,运用合成生物学还可以制成各种各样的细菌,用来消除水污染、清除垃圾、处理核废料等。恩迪还提出,可制造一种生物机器用来探测化学和生物武器,发出爆炸物警告,甚至可以从太阳中获取能量,用来制造清洁燃料。但是也有一些谨慎的研究人员认为,合成生物学存在某些潜在危险,它会颠覆纳米技术和传统基因工程学的概念。如果合成生物学提出的创建新生命体的设想得以实现,科学家们就必须有效防止这一技术的滥用,防止生物伦理冲突以及一些现在还无法预知的灾难。 合成生物学将催生下一次生物技术革命。目前,科学家们已经不局限于非常辛苦地进行基因剪接,而是开始构建遗传密码,以期利用合成的遗传因子构建新的生物体。合成生物学在未来几年有望取得迅速进展。据估计,合成生物学在很多领域将具有极好的应用前景,这些领域包括更有效的疫苗的生产、新药和改进的药物、以生物学为基础的制造、利用可再生能源生产可持续能源、环境污染的生物治理、可以检测有毒化学物质的生物传感器等。 合生生物学的商业化应用是必然趋势,但多数还要等到几年之后才能实现。即便如此,研究人员已经在利用合成生物体来研制下一代清洁的可再生生物燃料以及某些稀缺的药物。第一代合成微生物是合成生物学的简单应用,它们可能与目前利用DNA重组的微生物类似,其风险评估或许不成问题,因此,对立法者的挑战较少。但随着合成生物学技术不断走向成熟,又可能研制出复杂的有机体,其基因组可能由各种基因序列(包括实验室设计和研制的人工基因序列)重组而成。尽管其风险和风险评估问题与经过基因修饰的生物体引发的问题类似,但对于这类复杂的合成微生物来说,找到上述问题的答案要困难得多。 今后几年,合成生物学将在以下几个方面取得重要进展。 一是更多的合成生物学零件及模块会得到表征及标准化;更复杂、更精细的合成基因线路会在原核生物及真核生物中得以应用。 DNA合成技术是支撑合成生物学发展的重要技术之一,其在基因及调控元件的合成、基因线路和生物合成途径的重新设计组装,以及基因组的人工合成等方面都具有重要的应用。近几年来,DNA合成技术发展很快,成本越来越低。目前,DNA芯片发展有两大趋势:其一是以Affymetrix公司为代表的向高密度基因芯片发展,争取把人类所有基因探针都固定在一块芯片上,其发展将对生物学的基础研究起到革命性的推动,并有可能在将来引发新 的革命;另一种发展是以Nanogen公司为代表的过程集成化趋势,由于在实际临床诊断及军事、司法应用中,大多数情况下并不需要高密度的DNA芯片,而是要求便携式、灵活、速度快和成本低,因此,发展这种高集成、中低密度的DNA芯片可以在近几年进入市场并发挥社会效益。

第六章 生物合成技术

生物合成技术 生物技术,又称生物工程或生物工程技术,是生物科学与工程技术相结合而形成的新学科。生物技术主要包括基因工程、蛋白质工程、细胞工程、酶工程和发酵工程。基因工程又称为重组DNA技术,是通过人工操作,在分子水平上进行基因重组、改造和转移,以获得具有新的遗传特性的细胞,合成人们所需物质的技术过程。酶工程是酶的生产与应用的技术过程。即是通过人工操作,获得人们所需的酶,并通过各种方法使酶发挥其催化功能的技术过程。细胞工程是在细胞水平上改变细胞的遗传特性或通过大规模细胞培养以获得人们所需物质的技术过程。发酵工程又称为微生物工程,是在人工控制的条件下,通过微生物的生命活动而获得人们所需物质的技术过程。发酵方式主要分为固体发酵和液体发酵两大类。生物技术可以定向改造生物、加工生物材料,有目的地利用生命过程,广泛应用于医药、农林牧渔、生态、轻工食品、化工、能源、材料、海洋开发及环境保护等领域,涉及面广,促进传统产业的改造和新型产业的形成。 实验1 大肠杆菌感受态细胞的制备及转化 一、实验目的 1. 学习氯化钙法制备大肠杆菌感受态细胞的方法。 2. 学习将外源质粒DNA转入受体菌细胞并筛选转化体的方法。 二、实验原理 转化是将异源DNA分子引入另一细胞品系,使受体细胞获得新的遗传性状的一种手段,它是微生物遗传、分子遗传、基因工程等研究领域的基本实验技术之一。 转化过程所用的受体细胞一般是限制-修饰系统缺陷的变异株,即不含限制性内切酶和甲基化酶的突变株。受体细胞经过一些特殊方法处理后,细胞膜的通透性发生变化,成为能容许外源DNA分子通过感受态细胞。在一定条件下,将外源DNA分子与感受态细胞混合保温,使外源DNA分子进入受体细胞。进入细胞的DNA分子通过复制、表达实现遗传信息的转移,使受体细胞出现新的遗传性状。将经过转化后的细胞在选择性培养基中培养即可筛选出转化体。 本实验以E. coli DH 5α菌株为受体细胞,用氯化钙处理受体菌使其处于感受态,然后在一定条件下与pBR322质粒携带有抗氨苄青霉素和抗四环素的基因,因而使接受了该质粒的受体菌也具有抗氨苄青霉素和抗四环素的特性,常用Amp r,Tet r符号表示。将经过转化后的全部受体细胞经过适当稀释后,在含有氨苄青霉素抗四环素的平板培养基上培养,只有转化体才能存活,而未受转化的受体细胞则因无抵抗氨苄青霉素和四环素的能力都被杀死,所有带有抗药基因的质

浅谈合成生物学

浅谈合成生物学 The Basic Of Synthetic Biology 姓名: 刘志洋指导老师: 吴敏 蓝田学园工学1117班 刘志洋 3110101731

浅谈合成生物学 The Basic Of Synthetic Biology 3110101731刘志洋 [摘要]:合成生物学是从人们长期以来对生命的了解和认识发展而来的,是科学研究经历积累、酝酿和萌发后水到渠成的结果,体现了对生命科学知识从学习了解到自由运用的转变;体现了对生物系统研究从拆解与还原到拼装与整合与转变;体现了对生命的认识从敬畏和膜拜到剖析和创造的转变。本文将从合成生物学研究进展、微生物基因组的合成重构、天然产物的生物合成及合成生物学在酶的定向进化中的应用等方面进行介绍,并展望合成生物学将为生物科学研究带来的巨大变化。 [关键词]:合成生物学,基因,细胞,遗传,分子。 [Abstract] Synthetic biology is from people to life long knowledge and understanding, It is science research experience accumulation, brewing and germination of success will come after the results. Reflecting life science knowledge by learning to understand the free use of transformation. Reflecting biological systems research and reduction to the assembled from disassembled and integration and change. Reflecting life from the understanding of the fear and worship to analyze and create change. In this paper, we will talk about the research progress of synthetic biology. And looking for the great changes synthetic biology will bring us. [Key words] Synthetic Biology genes cell DNA heredity. 目前合成生物学研究涵盖范围广泛,对其定义的表述不尽相同:合成生物学领域知名的网站(http:Hsyntheticbiology.org)这样描述该领域的主要研究内容:“设计和构建新型生物学部件或系统以及对自然界的已有

合成生物学的真实前景

合成生物学的真实前景 科学家快能制造生命了,但如此一来,结果怕是有好有坏 “我预见过的未来,都已成为现实。” 最近,当我在听克雷尔文特尔(合成基因组学和合成生物学的领军人物之一)演讲时,这句话再次浮现在我脑中。每次听到这方面的演讲,就像跨进了人工控制领域的新阶段,会觉得连“创造生命”都已成为uguoqu 看看问雷格文特尔(J.Craig V enter Institute)取得的进展吧:2003年,该研究所的科学家合成噬菌体phiX174;2007年,他们通过基因组移植,成功地把一种细菌变成另一种;最近,他们又开发出一套方法,可以合成生殖道支原体的圈套基因组。 在今天的计数面前,2001年完成的人类基因组计划就像史前文明。过去5年中,不仅基因测序的费用和速度比计算机芯片发展得更快,科学家利用生物、化学手段合成新型复杂生命体的能力也产生了翻天覆地的变化。包含在合成基因中的指令可以移植到外源细胞中,这些细胞则会根据指令,合成相应的蛋白质,而这些蛋白质又能构建出拥有上述基因指令的生命体的功能性拷贝。文特尔把这个循环称为“能为自己制造硬件设备的软体系统”。我期待很快就能听到这样的信息:科学家从零开始,成功制造出第一个完全由人工合成的生命形式——在科学家完成装配前,它是没有生命的。 半导体纳米技术已经“领跑”科学界十多年,但我相信,在能改变生命和社会的生物技术面前,纳米技术将相形见绌。想象一下,科学家借自然之力,设计出的生命系统会对人类产生多大的影响:从产油细菌,或能吞食CO2,制造出生物不可降解的塑料建材的微生物,到能在手术中大发神威,专门对付癌细胞的生命体,它们将完成天然生命体完全无法完成的任务。我希望在未来50年内,驱动世界经济向前发展得不再是计算机信息,而是生物技术制造的软件系统。 当然,正如蜘蛛侠所说:“能力越大,责任越大。”现在,黑客制造的各种计算机病毒,是不是会让庞大的计算机网络“瘫痪”一次。当我们有能力制造出有序排列的DNA序列时,也预示着躲在暗处的DNA黑客可能会威胁到全世界的安全——不管他们又心还是无意,都可能制造出爱波拉病毒,或让1918年的流感病毒再现人间。这两种致命微生物的基因序列,都比文特尔合成的生殖支原体短得多。我们不妨设想,如果出现了能抵抗现有所有疫苗的病毒,将会多么可怕! 有些人担心,新的生命形式会攻击地球上的所有生命,或者说,至少会攻击人类。这可能是杞人忧天。生命已在地球上存在了30多亿年,它们是如此“抢答”。在过去几十亿年里,在各种可能病原体的锤炼下建立起了抢答的防御体系,几乎没有一种突变能琴艺瓦解这个体系。相对而言,文特尔坚持的“自然产生的疾病比人工产生的新型病更危险”的观点,似乎更令人信服。 然而,直到最近,对基因信息的无限制复制都几乎没有任何监控措施。不过,随着合成复杂生命系统的能力不断提高,科学界开始实施一套自发形成的非官方闲置体系,比如不能将具有潜在致命性的生物体的基因片段用于商业目的。目前,建设合成生物学实验室所需知识和技术已经超出恐怖分子的能力范畴,他们还无法用合成生物学相关技术来危害社会。不得不

合成生物学的现在和未来

合成生物学的现在和未来 去年7月,科学家们创造出了首个“合成细胞”,一个由电脑编码并在实验室里拼接到一起的化学合成基因组控制的有机体。一年之后,在斯坦福大学(Stanford University)举办的第五届合成生物学年会上(Fifth Annual Synthetic Biology conference),生物学家仍在努力向此领域的下一阶段前进。阻碍他们前进的是生物学本身变幻莫测的特性,还有将创意变成工程有机体所需要的资金和时间。 虽然克雷格·文特研究所(J. Craig Venter Institute)创造出的合成细胞暗示着将来合成生物学可以重新设计活细胞,执行他们梦寐以求的任何任务,尽管这个目标仍然遥远。多数研究集中于诱导微生物执行那些与它们已有机制相似的任务,比如,利用它们在自然界中所采用的相似过程和材料将碳水化合物转变成燃料。 合成生物学竭力使分子生物学更像工程学——用可预测的方法将可预测的材料和部件组合到一起。正如合成细胞所展示给我们的那样,科学家们现在拥有各种工具在电脑上编码一个已有基因序列,利用DNA合成仪合成基因片段,然后将这些片段在实验室里拼接到一起。(这个流程只是合成生物学所采用的众多流程中的一种。)但是仍然很难预测当细胞被改变之后能做些什么。研究人员常常受限于细胞随性生存生长的自然天性,这种情况在很多时候必须要克服,使它们能有效地做一些对我们有用的事情。 一个最大的障碍就是制造和组装初始材料:编码某个特定功能的DNA分子片度并在实验室里合成。创造这样一种DNA片段耗时且昂贵。像任何商品一样,它必须要设计、制造并测试。即使做一个相对较小的改变也会很费力,很耗时,很烧钱。 “合成某些序列要花费两个月时间,”而其他一些根本就合成不了,原因尚不清楚,一家组装DNA部件的新创公司银杏生物工作室(Ginkgo Bioworks)的共同创立者拉赫曼·谢蒂(Reshma Shetty)说到。他还说,公司利用软件自动化操作来设计构建单元和其他部件,并控制液体处理机器人将DNA片段拼接到一起,这些DNA片段是从专业从事DNA合成的公司订购的。目前,正是这最后一步成了主要瓶颈。公司一直在追踪做出这些序列要花费多长时间,怎样才能更快。 哈佛大学的一位系统生物学教授帕梅拉·斯丽芙(Pamela Silver)说,创造新有机体所需的资金和时间限制了创造性。每当合成生物学家们尝试一个新设计,他们都不得不花钱合成DNA,等着它返回,然后将其转入细胞中,再进行测试。斯丽芙说,所有这些都意味着合成生物学们不愿意失败或从中吸取经验教训,这也是可以理解的。 她对大家说:“我仍然坚信这个梦想,有朝一日你们当中有人最终能够坐在电脑前,设计实验,并且在第二天就能得到DNA。”合成生物学若要兑现其承诺,DNA合成就必须“廉价、快速、可预测并且精确,还有对所有人开放,”包括哪些实验室里并没有太多设备和资金的研究人员。 幸运的是,跟DNA测序技术很相似,DNA合成技术成本正在迅速降低。哈佛大学计算基因组中心(the Center for Computational Genomics at Harvard)主任乔治·丘奇(George Church)在他的谈话中提到,DNA合成和测序技术的成本一直在以令人惊讶的速度下降,近来每年降低到 1/10。 合成生物学:正在起飞的技术 2010年06月01日 15:56 东方网-文汇报 美国生物学家克雷格·文特尔、汉密尔顿·史密斯及其同事在5月20日出版的美国《科学》杂志上宣布,他们创造了一个人造生命。更准确地说,他们利用实验室里现成的化学物质,制造出了载有约1000个基因的DNA片断。这是自万物起源以来第一个没有祖先的生命,这个名为"辛西娅"(synthia)的人造生物的诞生,意味着人造生命的时代已经来临。 "科学家对基因修改的研究已有多年,但交换整个基因组则是完全不同的,其他一些研究通常所作的改变是将少量的基因从细菌中分离。现在我们可以从计算机中提取信息开始,可以从数字代码开始,以四个实验瓶中的化学物质(指组成DNA的A,T,G,C)创建新的遗传密码,我想这就是最大的不同。" ——克雷格·文特尔 曲折的创造生命之路 从最基本的生命组件创造一个活生生的有机生命,是文特尔15年前就有的一个雄心勃勃的理想。纵观以往的生命史,生命的实质就是信息的传递,但是首个人造生命的诞生表明,不需要闪电的激活,不需要生命的代代相传,就可以让生命从最基本的组件中诞生,从非生命物质到活生生的生命,相比之下,以往的基因改造只是入门之作,而文特尔在合成生物学上跨出的这一步,才是真正掌握了操纵生命的艺术。

“合成生物学”重点专项2020 年度项目申报指南

“合成生物学”重点专项2020年度 项目申报指南 合成生物学以工程化设计理念,对生物体进行有目标的设计、改造乃至重新合成。“合成生物学”重点专项总体目标是针对人工合成生物创建的重大科学问题,围绕物质转化、生态环境保护、医疗水平提高、农业增产等重大需求,突破合成生物学的基本科学问题,构建几个实用性的重大人工生物体系,创新合成生物前沿技术,为促进生物产业创新发展与经济绿色增长等做出重大科技支撑。 2020年本专项将围绕基因组人工合成与高版本底盘细胞、人工元器件与基因线路、人工细胞合成代谢与复杂生物系统、使能技术体系与生物安全评估等4个任务部署项目。 根据专项实施方案和“十二五”期间有关部署,2020年优先支持21个研究方向,其中包括4个部市联动任务。同一指南方向下,原则上只支持1项,仅在申报项目评审结果相近,技术路线明显不同,可同时支持2项,并建立动态调整机制,根据中期评估结果,再择优继续支持。国拨经费总概算3.8亿元(其中,拟支持青年科学家项目不超过2个,国拨总经费不超过1000万元)。 申报单位针对重要支持方向,面向解决重大科学问题和突破 —1—

关键技术进行一体化设计,组织申报项目。鼓励围绕一个重大科学问题或重要应用目标,从基础研究到应用研究全链条组织项目。鼓励依托国家重点实验室等重要科研基地组织项目。 项目执行期一般为5年。为保证研究队伍有效合作、提高效率,项目下设课题数原则上不超过4个,每个项目所含单位数原则上不超过6个。青年科学家项目可参考重要支持方向(标*的方向)组织申报,但不受研究内容和考核指标限制。部市联动任务申报分两类:一类是由深圳市科技创新委员会推荐,深圳市有关单位作为项目牵头单位进行申报(标#的方向);另一类可由专项所有推荐渠道组织推荐,申报项目中至少有一个课题由深圳市有关单位作为课题牵头单位。 本专项所有涉及人体被试和人类遗传资源的科学研究,须尊重生命伦理准则,遵守《涉及人的生物医学研究伦理审查办法》《中华人民共和国人类遗传资源管理条例》等国家相关规定,严格遵循技术标准和伦理规范。涉及实验动物和动物实验,要遵守国家实验动物管理的法律、法规、技术标准及有关规定,使用合格实验动物,在合格设施内进行动物实验,保证实验过程合法,实验结果真实、有效,并通过实验动物福利和伦理审查。 1.人工基因组合成与高版本底盘细胞构建 1.1合成基因信息存储* 研究内容:针对遗传物质DNA具有信息密度大、稳定性高的优点,研究数字化信息与基因序列的编码与读取方法,揭示基因—2—

相关文档