文档库 最新最全的文档下载
当前位置:文档库 › 数列求和_测试题_练习题[1]

数列求和_测试题_练习题[1]

数列求和_测试题_练习题[1]
数列求和_测试题_练习题[1]

数列求和 测试题

1.数列{1+2n -1}的前n 项和S n =________.

2.若数列{a n }的通项公式是a n =(-1)n (3n -2),则a 1+a 2+…+a 10=________.

3.数列112,314,518,7116,…的前n 项和S n =________.

4.已知数列{a n }的通项公式是a n =

1n +n +1,若前n 项和为10,则项数n =

________.

5.数列{a n },{b n }都是等差数列,a 1=5,b 1=7,且a 20+b 20=60.则{a n +b n }的前20项的和为________.

6.等比数列{a n }的前n 项和S n =2n -1,则a 21+a 22+…+a 2n =________. 7.已知等比数列{a n }中,a 1=3,a 4=81,若数列{b n }满足

b n =log 3a n ,则数列?

?????????1b n b n +1的前n 项和S n =________.

二、解答题(每小题15分,共45分)

8.已知{a n }为等差数列,且a 3=-6,a 6=0.

(1)求{a n }的通项公式; (2)若等比数列{b n }满足b 1=-8,b 2=a 1+a 2+a 3,求{b n }的前n 项和公式.

9.设{a n }是公比为正数的等比数列,a 1=2,a 3=a 2+4.

(1)求{a n }的通项公式;

(2)设{b n }是首项为1,公差为2的等差数列,求数列{a n +b n }的前n 项和S n .

4.设{a n }是等差数列,{b n }是各项都为正数的等比数列,且a 1=b 1=1,a 3+b 5

=21,a 5+b 3=13.

(1)求{a n },{b n }的通项公式;

(2)求数列????

??a n b n 的前n 项和S n .

5.在各项均为正数的等比数列{a n }中,已知a 2=2a 1+3,且3a 2,a 4,5a 3成等差数列.

(1)求数列{a n }的通项公式;

(2)设b n =log 3a n ,求数列{a n b n }的前n 项和S n .

参考答案

A 组

1. 解析 S n =n +1-2n

1-2

=n +2n -1. 答案 n +2n -1

2. 解析 设b n =3n -2,则数列{b n }是以1为首项,3为公差的等差数列,所以a 1+a 2+…+a 9+a 10=(-b 1)+b 2+…+(-b 9)+b 10=(b 2-b 1)+(b 4-b 3)+…+(b 10-b 9)=5×3=15.

答案 15

3. 解析 由题意知已知数列的通项为a n =2n -1+12n ,则S n =n (1+2n -1)2

+12? ????1-12n 1-12

=n 2+1-12n . 答案 n 2+1-12n

4. 解析 ∵a n =1

n +n +1=n +1-n ,∴S n =a 1+a 2+…+a n =(2-1)+(3-2)+…+(n +1-n )=n +1-1.令n +1-1=10,得n =120. 答案 120

5. 解析 由题意知{a n +b n }也为等差数列,所以{a n +b n }的前20项和为:

S 20=20(a 1+b 1+a 20+b 20)2=20×(5+7+60)2

=720. 答案 720

6. 解析 当n =1时,a 1=S 1=1,

当n ≥2时,a n =S n -S n -1=2n -1-(2n -1-1)=2n -1,

又∵a 1=1适合上式.∴a n =2n -1,∴a 2n =4n -

1. ∴数列{a 2n }是以a 21=1为首项,以4为公比的等比数列.

∴a 21+a 22+…+a 2n =1·(1-4n )1-4

=13(4n -1). 答案 13(4n -1)

7. 解析 设等比数列{a n }的公比为q ,则a 4a 1

=q 3=27,解得q =3.所以a n =a 1q n -1

=3×3n -1=3n ,故b n =log 3a n =n ,

所以1b n b n +1=1n (n +1)=1n -1n +1

. 则数列??????????1b n b n +1的前n 项和为1-12+12-13+…+1n -1n +1=1-1n +1=n n +1. 答案 n n +1

8. 解 (1)设等差数列{a n }的公差为d .

因为a 3=-6,a 6=0,

所以???

a 1+2d =-6,a 1+5d =0.

解得a 1=-10,d =2. 所以a n =-10+(n -1)·2=2n -12.

(2)设等比数列{b n }的公比为q .

因为b 2=a 1+a 2+a 3=-24,b 1=-8,

所以-8q =-24,即q =3.

所以{b n }的前n 项和公式为S n =b 1(1-q n )1-q

=4(1-3n ). 9. 解 (1)设q 为等比数列{a n }的公比,则由a 1=2,a 3=a 2+4得2q 2=2q +4,即q 2-q -2=0,解得q =2或q =-1(舍去),因此q =2. 所以{a n }的通项为a n =2·2n -1=2n (n ∈N *)

(2)S n =2(1-2n )1-2

+n ×1+n (n -1)2×2=2n +1+n 2-2. 10. 解 (1){a n }是等差数列.

证明如下:

因为a 1=S 1≠0,令t =1,r =n ,则由S r S t =? ????r t 2,得S n S 1

=n 2,即S n =a 1n 2, 所以当n ≥2时,a n =S n -S n -1=(2n -1)a 1,且n =1时此式也成立,所以a n +1-a n =2a 1(n ∈N *),

即{a n }是以a 1为首项,2a 1为公差的等差数列.

(2)当a 1=1时,由(1)知a n =a 1(2n -1)=2n -1,

依题意,当n ≥2时,b n =ab n -1=2b n -1-1,

所以b n -1=2(b n -1-1),又b 1-1=2,

所以{b n -1}是以2为首项,2为公比的等比数列,所以b n -1 =2·2n -1,即b n =2n +1.

(3)因为a n b n =(2n -1)(2n +1)=(2n -1)·2n +(2n -1)

T n =[1·2+3·22+…+(2n -1)·2n ]+[1+3+…+(2n -1)],即T n =[1·2+3·22+…+(2n -1)·2n ]+n 2,①

2T n =[1·22+3·23+…+(2n -1)·2n +1]+2n 2,②

②-①,得T n =(2n -3)·2n +1+n 2+6.

B 组

1. 解析 设数列{a n }的公比为q .由题意可知q ≠1,且9(1-q 3)1-q =1-q 6

1-q

,解得q =2,所以数列????

??1a n 是以1为首项,12为公比的等比数列,由求和公式可得S 5=3116. 答案 3116

2. 解析 a n =2n -1,设b n =1a n a n +1=? ??

??122n -1,则T n =b 1+b 2+…+b n =12+? ????123+…+? ????122n -1=12? ????1-14n 1-14

=23? ????1-14n . 答案 23? ??

??1-14n 3. 解析 由于数列的通项a n =11+2+3+…+n =2n (n +1)=2? ??

??1n -1n +1, ∴S n =2? ??

??1-12+12-13+13-14+…+1n -1n +1= 2?

????1-1n +1=2n n +1. 答案 2n n +1

4. 解析 ∵a 4a 1

=q 3=-8,∴q =-2.∴|a 1|+|a 2|+…+|a n |=12(1-2n )1-2=2n -1-12.

答案 -2 2n -1-12

5. 解析 因S 11=35+S 6,得11a 1+11×102d =35+6a 1+6×52d ,即a 1+8d =7,

所以S 17=17a 1+17×162d =17(a 1+8d )=17×7=119.

答案 119

6. 解析 设{a n }的公差为d ≠0,由a 1,a 2,a 5成等比数列,得a 22=a 1a 5,即(7-2d )2=(7-3d )(7+d )

所以d =2或d =0(舍去).

所以a n =7+(n -4)×2=2n -1.

又a 2n =2·2n -1=2n +1-1,

故T n =(22-1)+(23-1)+(24-1)+…+(2n +1-1) =(22+23+…+2n +1)-n

=2n +2-n -4.

答案 2n +2-n -4

7. 解 (1)设{a n }的公差为d ,{b n }的公比为q ,则依题意有q >0且

??? 1+2d +q 4=21,1+4d +q 2=13,解得???

d =2,q =2. 所以a n =1+(n -1)d =2n -1,b n =q n -1=2n -1.

(2)a n b n

=2n -12n -1, S n =1+321+522+…+2n -32n -2+2n -12

n -1,① 2S n =2+3+52+…+2n -32n -3+2n -12

n -2.② ②-①,得S n =2+2+22+222+…+22n -2-2n -12

n -1 =2+2×? ????1+12+122+…+12n -2-2n -12

n -1

=2+2×1-12n -11-12

-2n -12n -1=6-2n +32n -1. 8. 解 (1)设{a n }公比为q ,由题意,得q >0,且??? a 2=2a 1+3,3a 2+5a 3=2a 4

,即??? a 1(q -2)=3,2q 2-5q -3=0.

解得??? a 1=3,q =3或????? a 1=-65,q =-12(舍去).

所以数列{a n }的通项公式为a n =3·3n -1=3n ,n ∈N *.

(2)由(1)可得b n =log 3a n =n ,所以a n b n =n ·3n . 所以S n =1·3+2·32+3·33+…+n ·3n . 所以3S n =1·32+2·33+3·34+…+n ·3n +1 两式相减,得2S n =-3-(32+33+…+3n )+n ·3n +1 =-(3+32+33+…+3n )+n ·3n +1

=-3(1-3n )1-3

+n ·3n +1 =3+(2n -1)·3n +12

. 所以数列{a n b n }的前n 项和为S n =3+(2n -1)·3n +14.

数列求和7种方法(方法全,例子多)

数列求和的基本方法和技巧(配以相应的练习) 一、总论:数列求和7种方法: 利用等差、等比数列求和公式 错位相减法求和 反序相加法求和 分组相加法求和 裂项消去法求和 分段求和法(合并法求和) 利用数列通项法求和 二、等差数列求和的方法是逆序相加法,等比数列的求和方法是错位相减法, 三、逆序相加法、错位相减法是数列求和的二个基本方法。 数列是高中代数的重要内容,又是学习高等数学的基础. 在高考和各种数学竞赛中都占有重要的地位. 数列求和是数列的重要内容之一,除了等差数列和等比数列有求和公式外,大部分数列的求和都需要一定的技巧. 下面,就几个历届高考数学和数学竞赛试题来谈谈数列求和的基本方法和技巧. 一、利用常用求和公式求和 利用下列常用求和公式求和是数列求和的最基本最重要的方法. 1、 等差数列求和公式:d n n na a a n S n n 2 ) 1(2)(11-+=+=

2、等比数列求和公式:??? ??≠--=--==) 1(11)1()1(111 q q q a a q q a q na S n n n 3、 )1(211+==∑=n n k S n k n 4、)12)(1(611 2 ++==∑=n n n k S n k n 5、 21 3 )]1(21[+== ∑=n n k S n k n [例1] 已知3 log 1 log 23-= x ,求???++???+++n x x x x 32的前n 项和. 解:由2 1 2log log 3log 1log 3323=?-=?-= x x x 由等比数列求和公式得 n n x x x x S +???+++=32 (利用常用公式) =x x x n --1)1(=2 11) 21 1(2 1--n =1-n 21 [例2] 设S n =1+2+3+…+n ,n ∈N *,求1 )32()(++= n n S n S n f 的最大值. 解:由等差数列求和公式得 )1(21+= n n S n , )2)(1(2 1 ++=n n S n (利用常用公式) ∴ 1)32()(++= n n S n S n f =64 342++n n n

2022高三统考数学文北师大版一轮:第五章第四节 数列求和

第四节 数列求和 授课提示:对应学生用书第98页 [基础梳理] 1.等差数列的前n 项和公式 S n =n (a 1+a n )2=na 1 +n (n -1)2 d . 2.等比数列的前n 项和公式 S n =??? na 1,q =1, a 1-a n q 1-q =a 1(1-q n )1-q ,q ≠1. 3.数列求和方法 (1)公式法求和: 使用已知求和公式求和的方法,即等差、等比数列或可化为等差、等比数列的求和方法. (2)错位相减法: 如果一个数列的各项是由一个等差数列和一个等比数列的对应项之积构成的,那么这个数列的前n 项和即可用此法来求,如等比数列的前n 项和就是用此法推导的. (3)倒序相加法: 如果一个数列{a n }的前n 项中首末两端等“距离”的两项的和相等或等于同一个常数,那么求这个数列的前n 项和即可用倒序相加法,如等差数列的前n 项和即是用此法推导的. (4)分组求和法: 一个数列的通项公式是由若干个等差数列或等比数列或可求和的数列组成,则求和时可用分组求和法,分别求和后再相加减. (5)并项求和法: 一个数列的前n 项和,可两两结合求解,则称之为并项求和.形如a n =(-1)n f (n )类型,可采用两项合并求解. 1.先看数列通项特点,再想求和方法. 2.常见的拆项公式 (1)若{a n }为各项都不为0的等差数列,公差为d (d ≠0), 则1a n ·a n +1=1d (1a n -1a n +1 ); (2)1n (n +k )=1k (1n -1 n +k ); (3)1 n +n +1 =n +1-n ; (4)log a (1+1 n )=log a (n +1)-log a n (a >0且a ≠1). 3.一些常见数列的前n 项和公式

高二数学数列中裂项求和测试题

数列中裂项求和的几种常见模型 数列问题是高考的一大热点,而且综合性较强,既注重基础知识的掌握,又注重数学思想与方法的运用。而此类问题大多涉及数列求和,所以数列求和方法是学生必须掌握的,主要的求和方法有:公式法、拆项重组法、并项求和法,裂项相消法、错位相加法、倒序相加法等等,而裂项相消法是其中较为基础、较为灵活的一种,也是出现频率最高,形式最多的一种。下面就例举几种裂项求和的常见模型,以供参考。 模型一:数列{}n a 是以d 为公差的等差数列,且 ) ,3,2,1(0,0 n a d n ,则 )1 1(111 1 n n n n a a d a a 例1已知二次函数()y f x 的图像经过坐标原点,其导函数为' ()62f x x ,数列 {}n a 的前n 项和为n S ,点(,)()n n S n N 均在函数()y f x 的图像上。 (Ⅰ)求数列{}n a 的通项公式; (Ⅱ)设11n n n b a a ,n T 是数列{}n b 的前n 项和,求使得20 n m T 对所有n N 都成立的最小正整数m ; (2006年湖北省数学高考理科试题) 解:(Ⅰ)设这二次函数f(x)=ax 2 +bx (a ≠0) ,则 f`(x)=2ax+b,由于f`(x)=6x -2,得 a=3 , b=-2, 所以 f(x)=3x 2 -2x. 又因为点(,)()n n S n N 均在函数()y f x 的图像上,所以n S =3n 2 -2n. 当n ≥2时,a n =S n -S n -1=(3n 2 -2n )- )1(2)132 n n ( =6n -5. 当n =1时,a 1=S 1=3×12 -2=6×1-5,所以,a n =6n -5 (n N ) (Ⅱ)由(Ⅰ)得知13 n n n a a b = 5)1(6)56(3 n n =)1 61 561(21 n n ,

数列求和高考专题

数列求和高考专题 1.【2017天津,理18】已知{}n a 为等差数列,前n 项和为()n S n *∈N ,{}n b 是首项为2的等比数列,且公比大于0,2312b b +=,3412b a a =-,11411S b =. (Ⅰ)求{}n a 和{}n b 的通项公式; (Ⅱ)求数列221{}n n a b -的前n 项和()n *∈N . 【答案】 (1)32n a n =-.2n n b =.(2)1328 433 n n n T +-=?+. 【解析】 (II )解:设数列221{}n n a b -的前n 项和为n T , 由262n a n =-, 12124n n b --=?,有()221314n n n a b n -=-?, 故()23 245484314n n T n =?+?+?+ +-?, ()()23414245484344314n n n T n n +=?+?+?+ +-?+-?, 上述两式相减,得()2 3 1324343434314n n n T n +-=?+?+?+ +?--?

( )()()1 112144314 14 3248.n n n n n ++?-= ---?-=--?- 得1328 433 n n n T +-= ?+. 所以,数列221{}n n a b -的前n 项和为 1328 433 n n +-?+. 2.【2017江苏,19】 对于给定的正整数k ,若数列{}n a 满足1111n k n k n n n k n k a a a a a a --+-++-++++++ ++ 2n ka =对任意正整数()n n k >总成立,则称数列{}n a 是“()P k 数列”. (1)证明:等差数列{}n a 是“(3)P 数列”; (2)若数列{}n a 既是“(2)P 数列”,又是“(3)P 数列”,证明:{}n a 是等差数列. 【答案】(1)见解析(2)见解析 (2)数列{}n a 既是“()2P 数列”,又是“()3P 数列”,因此, 当3n ≥时, 21124n n n n n a a a a a --+++++=,① 当4n ≥时, 3211236n n n n n n n a a a a a a a ---++++++++=.② 由①知, 3214n n n a a a ---+=- ()1n n a a ++,③ 2314n n n a a a ++++=- ()1n n a a -+,④ 将③④代入②,得112n n n a a a -++=,其中4n ≥, 所以345,,, a a a 是等差数列,设其公差为'd .

求数列通项公式与数列求和精选练习题(有答案)

数列的通项公式与求和 112342421 {},1(1,2,3,)3 (1),,{}.(2)n n n n n n a n S a a S n a a a a a a a +===+++L L 数列的前项为且,求的值及数列的通项公式求 1112 {},1(1,2,).:(1){ };(2)4n n n n n n n n a n S a a S n n S n S a +++== ==L 数列的前项和记为已知,证明数列是等比数列 *121 {}(1)()3 (1),; (2):{}. n n n n n a n S S a n N a a a =-∈ 已知数列的前项为,求求证数列是等比数列 11211 {},,.2n n n n a a a a a n n +==++ 已知数列满足求 练习1 练习2 练习3 练习4

112{},,,.31n n n n n a a a a a n += =+ 已知数列满足求 1 11511{},,().632n n n n n a a a a a ++==+ 已知数列中,求 1 11{}:1,{}. 31n n n n n a a a a a a --==?+ 已知数列满足,求数列的通项公式 练习8 等比数列 {}n a 的前n 项和S n =2n -1,则 2 232221n a a a a ++++Λ 练习9 求和:5,55,555,5555,…,5(101)9n -,…; 练习5 练习6 练习7

练习10 求和: 111 1447(32)(31) n n +++ ??-?+ L 练习11 求和: 111 1 12123123n ++++= +++++++ L L 练习12 设{} n a 是等差数列, {} n b 是各项都为正数的等比数列,且11 1 a b == ,35 21 a b += , 5313 a b += (Ⅰ)求{} n a , {} n b 的通项公式;(Ⅱ)求数列 n n a b ?? ?? ??的前n项和n S.

数列求和测试题练习题

数列求和 测试题 A 级 基础题 1.数列{1+2n -1}的前n 项和S n =________. 2.若数列{a n }的通项公式是a n =(-1)n (3n -2),则a 1+a 2+…+a 10=________. 3.数列112,314,518,71 16,…的前n 项和S n =________. 4.已知数列{a n }的通项公式是a n =1n +n +1 ,若前n 项和为10,则项数n = ________. 5.数列{a n },{b n }都是等差数列,a 1=5,b 1=7,且a 20+b 20=60.则{a n +b n }的前20项的和为________. 6.等比数列{a n }的前n 项和S n =2n -1,则a 21+a 22+…+a 2 n =________. 7.已知等比数列{a n }中,a 1=3,a 4=81,若数列{b n }满足b n =log 3a n ,则数列? ??????? ? ?1b n b n +1的前n 项和S n =________. 二、解答题(每小题15分,共45分) 8.已知{a n }为等差数列,且a 3=-6,a 6=0. (1)求{a n }的通项公式; (2)若等比数列{b n }满足b 1=-8,b 2=a 1+a 2+a 3,求{b n }的前n 项和公式. 9.设{a n }是公比为正数的等比数列,a 1=2,a 3=a 2+4. (1)求{a n }的通项公式; (2)设{b n }是首项为1,公差为2的等差数列,求数列{a n +b n }的前n 项和S n .

10.已知首项不为零的数列{a n }的前n 项和为S n ,若对任意的r ,t ∈N *,都有 S r S t =? ????r t 2 . (1)判断{a n }是否是等差数列,并证明你的结论; (2)若a 1=1,b 1=1,数列{b n }的第n 项是数列{a n }的第b n -1项(n ≥2),求b n ; (3)求和T n =a 1b 1+a 2b 2+…+a n b n . B 级 创新题 1.已知{a n }是首项为1的等比数列,S n 是{a n }的前n 项和,且9S 3=S 6,则数列???? ? ? 1a n 的前5项和为________. 2.若数列{a n }为等比数列,且a 1=1,q =2,则T n =1a 1a 2+1a 2a 3+…+1a n a n +1的结 果可化为________. 3.数列1, 11+2,1 1+2+3 ,…的前n 项和S n =________. 4.在等比数列{a n }中,a 1=1 2,a 4=-4,则公比q =________;|a 1|+|a 2|+…+|a n |=________. 5.已知S n 是等差数列{a n }的前n 项和,且S 11=35+S 6,则S 17的值为________. 6.等差数列{a n }的公差不为零,a 4=7,a 1,a 2,a 5成等比数列,数列{T n }满足条件T n =a 2+a 4+a 8+…+a 2n ,则T n =________. 7.设{a n }是等差数列,{b n }是各项都为正数的等比数列,且a 1=b 1=1,a 3+b 5=21,a 5+b 3=13. (1)求{a n },{b n }的通项公式; (2)求数列???? ?? a n b n 的前n 项和S n .

数列求和专项训练题(学生)

数列求和的常用方法 第一类:公式法求和 利用下列常用求和公式求和是数列求和的最基本最重要的. 1、等差数列前n 和公式:()() 11122 n n n a a n n S na d +-= =+ 2、等比数列前n 和公式:1 11(1)(1)(1) 11n n n na q S a a q a q q q q =?? =--?=≠?--? 自然数方幂和公式: 3、11(1)2n n k S k n n ===+∑ 4、211 (1)(21) 6n n k S k n n n ===++∑ 5、32 1 1[(1)]2 n n k S k n n ===+∑ 【例】已知数列{}n a 满足*111,4,n n a a a n N +==+∈,求数列{}n a 的前n 项和 n S . 【练习】已知321 log log 3 x -= ,求23n x x x x +++???++???的前n 项和.

第二类:分组法求和 有一类数列,既不是等差数列,也不是等比数列,若将这类数列适当拆开,可分为几个等差、等比或常见的数列,然后分别求和,再将其合并即可. 若数列{}n c 的通项公式为n n n c a b =+,其中数列{}n a ,{}n b 分别是等差数列和等比数列,求和时一般用分组结合法。 【例】数列111111,2,3,4 ,,,24816 2n n 求数列的前n 项和. 【练习】数列{}n a 的通项公式221n n a n =+- 第三类:裂项法求和 这是分解与组合思想在数列求和中的具体应用. 裂项法的实质是将数列中的每项(通项)分解,然后重新组合,使之能消去一些项,最终达到求和的目的. 常用的通项分解(裂项)如:

数列求和习题及答案.docx

§ 数列求和 ( : 45 分 分: 100 分) 一、 ( 每小 7 分,共 35 分 ) * 1 1.在等比数列 {a n } ( n ∈ N ) 中,若 a 1= 1, a 4= 8, 数列的前 10 和 ( ) A . 2- 18 B . 2- 19 2 2 C . 2- 1 10 D . 2- 1 11 2 2 2.若数列 {a n } 的通 公式 a n =2n + 2n - 1, 数列 {a n } 的前 n 和 ( ) n 2 n + 1 2 A . 2 + n -1 B . 2 + n - 1 C . 2n + 1+ n 2- 2 D . 2n + n - 2 3.已知等比数列 {a n } 的各 均 不等于 1 的正数, 数列 {b } 足 b = lg a , b = 18,b = 12, n n n 3 6 数列 {b n } 的前 n 和的最大 等于 ( ) A . 126 B . 130 C . 132 D . 134 4.数列 {a } 的通 公式 n - 1 ·(4 n - 3) , 它的前 100 之和 S 等于 ( ) n a = ( - 1) n 100 A . 200 B .- 200 C . 400 D .- 400 5.数列 1·n , 2(n -1),3(n -2) ,?, n ·1的和 ( ) n(n + 1)(n + 2) n(n + 1)(2n + 1) n(n + 2)(n + 3) n(n + 1)(n + 2) 二、填空 ( 每小 6 分,共 24 分 ) 6.等比数列 {a } 的前 n 和 n 2 2 2 S =2 - 1, a + a +?+ a = ________. n n 1 2 n 7.已知数列 {a } 的通 a 与前 n 和 S 之 足关系式 S = 2- 3a , a = __________. n n n n n n 8.已知等比数列 {a } 中, a 1= 3,a 4= 81,若数列 {b } 足 b =log 3a , 数列 的前 n n n n n 1 b b n + 1 n 和 S = ________. n 9. 关于 x 的不等式 x 2- x<2nx (n ∈ N * ) 的解集中整数的个数 a n ,数列 {a n } 的前 n 和 S n , S 100 的 ________. 三、解答 ( 共 41 分 ) 10. (13 分 ) 已知数列 n n 和, 于任意的 * {a } 的各 均 正数, S 其前 n n ∈N 足关系式 2S n = 3a n -3. (1) 求数列 {a } 的通 公式; n (2) 数列 {b } 的通 公式是 b = 1 ,前 n 和 T ,求 : 于任意的 n n n log 3a n ·log 3a n + 1 正数 n , 有 T n <1. } 足 a + a + a = 28,且 a + 2 是 a , a 的等差 11. (14 分) 已知 增的等比数列 {a n 2 3 4 3 2 4

数列求和专项训练题(学生)

数列求和的常用方法 第一类:公式法求和 利用下列常用求和公式求和是数列求和的最基本最重要的 n 3 1 2 5、 S n k 3 [ n(n 1)]2 k 1 2 例】已知数列 a n 满足 a 1 1,a n 1 a n 4,n N * ,求数列 a n 的前 n 项和 S n . 练习 】已知 log 3 x ,求 x x 2 x 3 x n 的前 n 项和 . log 23 第二类:分组法求和 有一类数列,既不是等差数列,也不是等比数列,若将这类数列适当拆开,可分为几个 等差、等比或常见的数列,然后分别求和,再将其合并即可 . 若数列 c n 的通项公式为 c n a n b n ,其中数列 a n , b n 分别是等差数列和等比数 列,求和时一般用分组结合法。 na 1 (q 1) 2、等比数列前 n 和公式: S n a 1(1 q n ) a 1 a n q (q 1) 1 q 1 q (q 1) S n n a 1 a n na 1 21 自然数方幂和公式: 1、等差数列前 n 和公式: 3、 S n n k k1 1 n(n 1) 2 n 4、 S n k 2 k1 1 n(n 1)(2n 1) 6

1 1 1 1 1 【例】数列1 ,2 ,3 ,4 , ,n n, 求数列的前n项和. 2 4 8 16 2n

练习】数列a n 的通项公式a n 2n2n 1 第三类:裂项法求和 这是分解与组合思想在数列求和中的具体应用 . 裂项法的实质是将数列中的每项分解,然后重新组合,使之能消去一些项,最终达到求和的目的 常用的通项分解(裂项)如: 1 1 1 例1】数列1,112,1 213, ,1 2 31n, ,求该数列的前n项和 .通项) 1) a n 2) a n n1 a n 11 nk 3) a n 2n 1 2n 1 2 2n 1 2n 1 a n 5) a n log a 1 1log a n 1 log

(完整版)数列求和练习题(含答案)

2.(教材改编)数列{a n }的前n 项和为S n ,若a n =1 n (n +1) ,则S 5等于( ) A .1 B.5 6 C.16 D.130 B [∵a n =1n (n +1)=1n -1 n +1 , ∴S 5=a 1+a 2+…+a 5=1-12+12-13+…-16=5 6.] 3.(2016·广东中山华侨中学3月模拟)已知等比数列{a n }中,a 2·a 8=4a 5,等差数列{b n }中,b 4+b 6=a 5,则数列{b n }的前9项和S 9等于( ) A .9 B .18 C .36 D .72 B [∵a 2·a 8=4a 5,即a 25=4a 5,∴a 5=4, ∴a 5=b 4+b 6=2b 5=4,∴b 5=2, ∴S 9=9b 5=18,故选B.] 已知等差数列{a n }中,2a 2+a 3+a 5=20,且前10项和S 10=100. (1)求数列{a n }的通项公式; (2)若b n = 1 a n a n +1 ,求数列{b n }的前n 项和. [解] (1)由已知得???? ? 2a 2+a 3+a 5=4a 1+8d =20,10a 1+10×9 2d =10a 1+45d =100, 解得??? a 1=1, d =2, 3分 所以数列{a n }的通项公式为a n =1+2(n -1)=2n -1.5分 (2)b n = 1(2n -1)(2n +1)=12? ?? ??1 2n -1-12n +1,8分 所以T n =12? ? ???1-13+13-15+…+12n -1-12n +1 =12? ????1-12n +1=n 2n +1 .12分

求数列通项公式与数列求和精选练习题(有答案)

数列的通项公式与求和 1 练习1数列佝}的前n项为S n,且a =1, a ni=-S n(n =1,2,3,) 3 (1) 求a2,a3, a4B值及数列{a n}的通项公式. (2) 求a2a4一-玄 n ■ 2 练习2 数列{a n}的前n项和记为S n,已知a^1, 3n1 6(n = 1,2,…)?证明: n (1) 数列{§L}是等比数列; n (2) S n 1 = 4a n 1 * 练习3 已知数列{a n}的前n项为S n,S n = —@n -1)(门,N ) 3 (1)求耳忌 ⑵求证:数列{a n}是等比数列.

1 1 已知数列{a n }满足 @ = — ,a n1 =a n ? - ,求a n . 2 n +n 练习5 已知数列 {an } 满足?岭…&an,求歸 5 1 1 n * 练习6已知数列?}中,印 ,a n 1 a n - H),求a n . 6 3 2 练习7已知数列{a n }满足:a n 色^ , a , =1,求数列{a n }的通项公式 3色」+1 { } 2 十2十2+…十2 等比数列 {a n } 的前n 项和S n = 2n - 1,则a1 a 2 a 3 a n 5 (10n -1) 练习 9 求和:5, 55, 555, 5555,…,9 练习4 练习

练习10 求和: + +… + 1 4 4 7 (3n - 2) (3n 1) ’ 1 1 1 1 练习11 求和: 1 2 12 3 12 3 n 练习12 设 {a n } 是等差数列, {b n } 是各项都为正数的等比数列,且 = b^=1 , fa 1 a 5 b 3 =13 (I)求 {a n } , { b n } 的通项公式;(H)求数列? 的前门项和S n . Sb = 21

数列求和专题训练 方法归纳

数列求和专题 方法归纳 方法1:分组转化法求和 1.已知{a n }的前n 项是3+2-1,6+4-1,9+8-1,12+16-1,…,3n +2n -1,则S n = ________. 2.等差数列{a n }中,a 2=4,a 4+a 7=15.(1)求数列{a n }的通项公式;(2)设b n =2an -2+n ,求 b 1+b 2+b 3+…+b 10的值. 方法2裂项相消法求和 3.设数列{}a n 满足a 1=1,且a n +1-a n =n +1(n ∈N * ),则数列? ???????? ?1a n 前 10项的和为______. 4. S n 为数列{a n }的前n 项和.已知a n >0,a 2n +2a n =4S n +3. ①求{a n }的通项公式; ②设b n = 1 a n a n +1 ,求数列{b n }的前n 项和. 5.若已知数列的前四项是 112 +2,122+4,132+6,1 42+8 ,则数列的前n 项和为________. 6.等差数列{a n }的前n 项和为S n ,已知a 1=10,a 2为整数,且S n ≤S 4. (1)求{a n }的通项 公式; (2)设b n =1 a n a n +1 ,求数列{b n }的前n 项和T n . 7.已知数列{a n }各项均为正数,且a 1=1,a n +1a n +a n +1-a n =0(n ∈N *). (1)设 b n =1 a n ,求证:数列{ b n }是等差数列;(2)求数列?????? ??? ?a n n +1的前n 项和S n . 方法3:错位相减法求和 8.已知{a n }是等差数列,其前n 项和为S n ,{b n }是等比数列(b n >0),且a 1=b 1=2,a 3+b 3=16,S 4+b 3=34.(1)求数列{a n }与{b n }的通项公式;(2)记T n 为数列{a n b n }的前n 项和,求 T n . 9.设等差数列{a n }的公差为d ,点(a n ,b n )在函数f (x )=2x 的图象上(n ∈N *).

等差数列求和及练习题(整理)

等差数列求和 引例:计算1+2+3+4+……+97+98+99+100 一、有关概念: 像1、2、3、4、5、6、7、8、9、……这样连起来的一串数称为数列;数列中每一个数叫这个数列的一项,排在第一个位置的叫首项,第二个叫第二项,第三个叫第三项,……,最后一项又叫末项;共有多少个数又叫项数;如果一个数列,从第二项开始,每一项与前一项之差都等于一个固定的数,我们就叫做等差数列。这个固定的数就叫做“公差”。 二、有关公式: 和=(首项+末项)×项数÷2 末项=首项+公差×(项数-1) 公差=(末项-首项)÷(项数-1) 项数=(末项-首项)÷公差+1 三、典型例题: 例1、聪明脑筋转转转: 判断下列数列是否是等差数列?是的请打“√”,并把等差数列的首项,末项、公差及项数写出来,如果不是请打“×”。 判断首项末项公差项数 (1)1、2、4、8、16、32. ()()()()()(2)42、49、56、63、70、77. ()()()()()(3)5、1、4、1、3、1、2、1. ()()()()()(4)44、55、66、77、88、99、110()()()()() 例2、已知等差数列1,8,15,…,78.共12项,和是多少?(博易P27例2)

(看ppt,推出公式) 例3、计算1+3+5+7+……+35+37+39 练习2:计算下列各题 (1)6+10+14+18+22+26+30 (3)1+3+5+7+……+95+97+99 (2)3+15+27+39+51+63 (4)2+4+6+8+……+96+98+100 (3)已知一列数4,6,8,10,…,64,共有31个数,这个数列的和是多少? 例5、有一堆圆木堆成一堆,从上到下,上面一层有10根,每向下一层增加一根,共堆了10层。这堆圆木共有多少根?(博易P27例3)(看ppt) 练习3: 丹丹学英语单词,第一天学了6个单词,以后每一天都比前一天多学会一个,最后一天学会了26个。丹丹在这些天中共学会了多少个单词? 等差数列求和练习题 一、判断下列数列是否是等差数列?是的请打“√”,并把等差数列的首项,末项 及公差写出来,如果不是请打“×”。 判断首项末项公差 1. 2、4、6、8、10、12、14、16.()()()() 2. 1、3、6、8、9、11、12、14. ()()()() 3. 5、10、15、20、25、30、35. ()()()() 4. 3、6、8、9、12、16、20、26.()()()() 二、请计算下列各题。 (1)3+6+9+12+15+18+21+24+27+30+33 (2)4+8+12+16+20+24+28+32+36+40 (3)求3、6、9、12、15、18、21、这个数列各项相加的和。 (4)2+4+6+8+……+198+200 ★(5)求出所有三位数的和。 (其他作业:练习册B 1题、4题、6题)

(完整word版)三、数列求和专项练习高考题(含知识点),推荐文档

数列的前n 项和的求法 1.公式法:①等差数列求和公式;②等比数列求和公式, 特别声明:运用等比数列求和公式,务必检查其公比与1的关系,必要时需分类讨论.;③常用公式: 1123(1)2n n n ++++=+L ,222112(1)(21)6n n n n +++=++L ,33332 (1)123[]2n n n +++++=L . 例1、已知3log 1log 23-=x ,求???++???+++n x x x x 32的前n 项和. 解:由2 1 2log log 3log 1log 3323=?-=?-= x x x 由等比数列求和公式得 n n x x x x S +???+++=32 (利用常用公式) =x x x n --1)1(= 2 11)211(21--n =1-n 21 2.分组求和法:在直接运用公式法求和有困难时,常将“和式”中“同类项”先合并在一起,再运用公 式法求和. 例2、 求数列的前n 项和:231 ,,71,41, 1112-+???+++-n a a a n ,… 解:设)231 ()71()41()11(12-++???++++++=-n a a a S n n 将其每一项拆开再重新组合得 )23741()1 111(12-+???+++++???+++ =-n a a a S n n (分组) 当a =1时,2)13(n n n S n -+==2)13(n n + (分组求和) 当1≠a 时,2)13(1111n n a a S n n -+--==2)13(11n n a a a n -+--- 3.倒序相加法:若和式中到首尾距离相等的两项和有其共性或数列的通项与组合数相关联,则常可考虑选用倒序相加法,发挥其共性的作用求和(这也是等差数列前n 和公式的推导方法). 例3、求οοοοο89sin 88sin 3sin 2sin 1sin 22222++???+++的值 解:设οοοοο89sin 88sin 3sin 2sin 1sin 22222++???+++=S …………. ① 将①式右边反序得 οοοοο1sin 2sin 3sin 88sin 89sin 22222+++???++=S …………..② (反序) 又因为 1cos sin ),90cos(sin 2 2=+-=x x x x ο ①+②得 (反序相加) )89cos 89(sin )2cos 2(sin )1cos 1(sin 2222222οοοοοο++???++++=S =89 ∴ S =44.5 4.错位相减法:如果数列的通项是由一个等差数列的通项与一个等比数列的通项相乘构成,那么常选用错位相减法(这也是等比数列前n 和公式的推导方法). 例4、 求和:132)12(7531--+???++++=n n x n x x x S ………………………① 解:由题可知,{1)12(--n x n }的通项是等差数列{2n -1}的通项与等比数列{1-n x }的通项之积 设n n x n x x x x xS )12(7531432-+???++++=………………………. ② (设制错位)

数列通项及求和测试题(含答案)

数列通项及求和 一.选择题: 2.已知数列{a n} 满足a1=1, 且, 且n∈N) , 则数列{ a n} 的通项公式为(?? ) A. ?? B.C.a n=n+2 ??? D.a n=( n+2)·3 n 3.数列的前项和记为,,则数列的通项公式是(?) A.???? B.????? C.???? D. 4.数列满足,且,则=??(??? ) A.10????????? B.11 C.12 ?? D.13 6.设各项均不为0的数列满足,若,则(?? ) A.??? B.2??? C.??? D.4 二.填空题: 8.已知数列的前项和为,,且满足,则_________. 9.若数列的前n项和,则数列的通项公式???????? ? 10.如果数列满足,则=_______. 11.若数列的前项和为,则该数列的通项公式????????? . 12.若数列的前项和为,则该数列的通项公式???????? . 13.已知数列的前项和为,且,则=?????? . 15.在数列中,=____________. 16.已知数列的前n项和,则的通项公式???????? ? 17.若数列的前n项和,则???? 。 18.已知数列满足,,则的最小值为________. 19.已知数列的前n项和为,且,则=___. 20.已知数列中,,前n项和为,且,则=_______

三.解答题: 25.已知等差数列的前n项和 (1)求数列的通项公式; (2)设,求数列的前n项和。 30.等差数列中, ? (1)求的通项公式 ? (2)设,求的前n项和 40.公差不为零的等差数列中,且成等比数列。 (1)求数列的通项公式; (2)设,求数列的通项公式 44.已知等差数列满足:,,的前n项和为. (1)求及; (2)令bn=(),求数列的前n项和. 36.已知数列的前项和为,且;数列满足,.. (Ⅰ)求数列和的通项公式; (Ⅱ)记,.求数列的前项和. 28.已知数列的前项和为,且, (1)求数列的通项公式 (Ⅱ)数列的通项公式,求其前项和为。 29.已知等比数列的公比且成等差数列. 数列的前项和为,且 . (Ⅰ)分别求出数列和数列的通项公式; (Ⅱ)设,求其前项和为。 32.设数列的前项和为,,且对任意正整数,点在直线上. 求数列的通项公式;

小学数学《数列求和》练习题(含答案)

小学数学《数列求和》练习题(含答案) 【例1】找找下面的数列有多少项? (1)2、4、6、8、……、86、98、100 (2)3、4、5、6、……、76、77、78 (3)4、7、10、13、……、40、43、46 (4)2、6、10、14、18、……、82、86 分析:(1)我们都知道:1、2、3、4、5、6、7、8、……、95、96、97、98、99、100 这个数列是100项,现在不妨这样去看:(1、2)、(3、4)、(5、6)、(7、8)、……、(95、96)、(97、98)、(99、100),让它们两两一结合,奇数在每一组的第1位,偶数在第2位,而且每组里偶数比奇数大,小朋友们一看就知道,共有100÷2=50组,每组把偶数找出来,那么原数列就有50项了。 (2)连续的自然数列,3、4、5、6、7、8、9、10……,对应的是这个数列的第1、2、3、4、5、6、7、8、……,发现它的项数比对应数字小2,所以78是第76项,那么这个数列就有76项。对于连续的自然数列,它们的项数是:末项—首项+ 1 。 (3)配组:(4、5、6)、(7、8、9)、(10、11、12)、(13、14、15)、……、(46、47、48),注意等差是3 ,那么每组有3个数,我们数列中的数都在每组的第1位,所以46应在最后一组第1位,4到48有48-4+1=45项,每组3个数,所以共45÷3=15组,原数列有15组。当然,我们还可以有其他的配组方法。 (4)22项. 对于一个等差数列的求和,在许多时候我们不知道的往往是这个数列的项数。这种找项数的方法在学生学习了求项数公式后,也许稍显麻烦,但它的思路很重要,对于以后学习数论知识有较多的帮助。希望教师能帮助孩子牢固掌握。 【例2】计算下列各题: (1)2+4+6+…+96+98+100 (2)2+5+8+…+23+26+29 分析:(1)这是一个公差为2的等差数列,首项是2,末项是100,项数为50。 所以:2+4+6+…+96+98+100=(2+100)×50÷2=2550 (2)这是一个公差为3,首项为2,末项为29,项数是10的等差数列。 所以:2+5+8+…+23+26+29=(2+29)×10÷2=155 其实在这里,我们还有一个找项数的公式。那么让我们一起从等差数列的特性来找找吧! 【例3】你能找出几个等差数列的特征?从你的结果中,你能找到等差数列求项数的公式么? 分析:我们都知道,所谓等差数列就是:从第二项开始,每一项与它前一项的差都相等,那么我们可以得

2015高考数列求和专项训练

数列求和专项训练 1. (2011?重庆)设{a n}是公比为正数的等比数列a i=2, a3=a2+4. ([)求{a n}的通项公式; (n)设{b n}是首项为1,公差为2的等差数列,求数列{a n+b n}的前n项和S. 分析:(I)由{a n}是公比为正数的等比数列,设其公比,然后利用a1=2, a3=a2+4可求得q,即可求得{a n}的通项公式(n)由{b n}是首项为1,公差为2的等差数列可求得b n=1+ ( n- 1) X 2=2 n- 1,然后利用等比数列与等差数列的前 n项和公式即可求得数列{a n+b n}的前n项和S. 解答:解:(I):设{a n}是公比为正数的等比数列 ???设其公比为q, q > 0 ■/ a3=a2+4, a1=2 2 ?2X q =2X q+4 解得q=2 或q= - 1 ■/ q>0 ?- q=2 ?{a n}的通项公式为a n=2X 2n- 1=2n (n):{b n}是首项为1,公差为2的等差数列 ?b n=1+ ( n - 1) X 2=2n - 1 ?数列{a n+b n}的前n 项和S= f =2n+1- 2+n2=2n+1+n2- 2 1-2 2 2. (2011?辽宁)已知等差数列{a n}满足a2=0, &+a8= - 10 (I)求数列{a n}的通项公式; (II )求数列{—}的前n项和. 分析:(I) 根据等差数列的通项公式化简a2=0和a e+a8=- 10,得到关于首项和公差的方程组,求出方程组的解即可得到数列的首 项和公差,根据首项和公差写出数列的通项公式即可; (II ) 把(I )求出通项公式代入已知数列,列举出各项记作①,然后给两边都除以2得另一个关系式记作②,①-②后,利 用a n的通项公式及等比数列的前n项和的公式化简后,即可得到数列{一}的前n项和的通项公式. r ai+<^0 解答:解:(I)设等差数列{a n}的公差为d,由已知条件可得* , 2a t H2d=-10 L 1 31=1 解得:?, d=-1 故数列{a n}的通项公式为a n=2 - n; (II )设数列{一}的前n项和为S,即S=a1+ : +…+一—①,故S=1, 9 rfL—1 戸旷1 a l a2 .… 2 Z \②,

高三数学数列求和专项复习

高中数学数列求和专题复习 1.公式法求和 ( 1 )等差数列前项和公式 ( 2 )等比数列前项和公式时 时 ( 3 )前个正整数的和 前个正整数的平方和 前个正整数的立方和 公式法求和注意事项( 1 )弄准求和项数的值; ( 2 )等比数列公比未知时,运用前项和公式要分类。 例 1 .求数列的所有项的和 例 2 .求和 ( ) 2 .分组法求和 有一类数列,既不是等差数列,也不是等比数列,若将这类数列适当拆开,可分为几个等差、等比或常见的数列,然后分别求和,再将其合并即可.形如: 的形式,其中{ a n }、{ b n }是等差数列、等比数列或常见的数列. 例 1 、求数列的前 n 项和:,… 例 2.求数列 1 ,,,…,的所有项的和。

例 3 .已知数列中,,求。 练习 1 、求和: 练习 2 、求数列 1, , 前 n 项的和 . 练习 3 、已知: .求 . 练习 4 、已知等比数列分别是某等差数列的第 5 项、第 3 项、第 2 项,且 (Ⅰ)求; (Ⅱ)设,求数列 3 .并项法求和 针对一些特殊的数列,将某些项合并在一起就具有某种特殊的性质,因此,在求数列的和时,可将这些项放在一起先求和,然后再求 S n . 例 1 、求 cos1 ° + cos 2 ° + cos 3 ° + ··· + cos 178 ° + cos1 79 °的值 . 例 2 、在各项均为正数的等比数列中,若 的值 . 例 3 .数列中,,求。 例 64.数列中,,,求及。 4 .错位相减法求和 例 1 、 练习 1 、已知数列

练习 2 、已知数列,求数列的前 n 项和。 练习 3.求和()。 5 .裂项法求和 : 把数列各项拆成两项或多项之和,使之出现成对互为相反数的项。 把一个数列的通项公式分成两项差的形式,相加过程中消去中间项,只剩下有限项再求和.常见的拆项公式有: 若是公差为的等差数列,则; ; ; ; * ; 例 1 .求和。 例 2 .求和。 练习1、数列 { } 的前 n 项和为,且满足 ( I )求与的关系式,并求 { } 的通项公式; ( II )求和

相关文档
相关文档 最新文档