文档库 最新最全的文档下载
当前位置:文档库 › 高中物理必修二机械能守恒习题

高中物理必修二机械能守恒习题

高中物理必修二机械能守恒习题
高中物理必修二机械能守恒习题

机 械 能 守 恒

一、单个物体的机械能守恒

判断一个物体的机械能是否守恒有两种方法:(1)物体在运动过程中只有重力做功,物体的机械能守恒。

(2)物体在运动过程中不受媒质阻力和摩擦阻力,物体的机械能守恒。

所涉及到的题型有四类:(1)阻力不计的抛体类。(2)固定的光滑斜面类。(3)固定的光滑圆弧类。(4)悬点固定的摆动类。

(1)阻力不计的抛体类 包括竖直上抛;竖直下抛;斜上抛;斜下抛;平抛,只要物体在运动过程中所受的空气阻力不计。那么物体在运动过程中就只受重力作用,也只有重力做功,通过重力做功,实现重力势能与机械能之间的等量转换,因此物体的机械能守恒。

例:在高为h 的空中以初速度v 0抛也一物体,不计空气阻力,求物体落地时的速度大小? 分析:物体在运动过程中只受重力,也只有重力做功,因此物体的机械能守恒,选水平地面为零势面,则物体抛出时和着地时的机械能相等

2202

121t mv mv mgh =+ 得:gh v v t 220+= (2)固定的光滑斜面类

在固定光滑斜面上运动的物体,同时受到重力和支持力的作用,由于支持力和物体运动的方向始终垂直,对运动物体不做功,因此,只有重力做功,物体的机械能守恒。

例,以初速度v 0 冲上倾角为θ光滑斜面,求物体在斜面上运动的距离是多少?

分析:物体在运动过程中受到重力和支持力的作用,但只有重力做功,因此物体的机械能守恒,选水平地面为零势面,则物体开始上滑时和到达最高时的机械能相等

θsin 2

120?==mgs mgh mv 得:θsin 220g v s =

(3)固定的光滑圆弧类 在固定的光滑圆弧上运动的物体,只受到重力和支持力的作用,由于支持力始终沿圆弧的法线方向而和物体运动的速度方向垂直,对运动物体不做功,故只有重力做功,物体的机械能守恒。

例:固定的光滑圆弧竖直放置,半径为R ,一体积不计的金属球在圆弧的最低点至少具有多大的速度才能作一个完整的圆周运动?

分析:物体在运动过程中受到重力和圆弧的压力,但只有重力做功,因此物体的机械能守恒,选物体运动的最低点为重力势能的零势面,则物体在最低和最高点时的机械能相等

2202

1221t mv R mg mv += 要想使物体做一个完整的圆周运动,物体到达最高点时必须具有的最小速度为:

Rg v t = 所以 gR v 50=

(4)悬点固定的摆动类

和固定的光滑圆弧类一样,小球在绕固定的悬点摆动时,受到重力和拉力的作用。由于悬线的拉力自始至终都沿法线方向,和物体运动的速度方向垂直而对运动物体不做功。因此只有重力做功,物体的机械能守恒。

例:如图,小球的质量为m ,悬线的长为L ,把小球拉开使悬线和竖直方向的夹角为θ,然后从静止释放,求小球运动到最低点小球对悬线的拉力

分析:物体在运动过程中受到重力和悬线拉力的作用,悬线的拉力对物体不做功,所以只有重力做

功,因此物体的机械能守恒,选物体运动的最低点为重力势能的零势面,则物体开始运动时和到达最低点时的机械能相等

221)cos 1(t mv mgL =-θ 得:)cos 1(22θ-=gL v t 由向心力的公式知:L

mv mg T t 2=-可知

θcos 23mg mg T -=

作题方法:

一般选取物体运动的最低点作为重力势能的零势参考点,把物体运动开始时的机械能和物体运动结束时的机械能分别写出来,并使之相等。

注意点:在固定的光滑圆弧类和悬点定的摆动类两种题目中,常和向心力的公式结合使用。这在计算中是要特别注意的。 习题:

1、三个质量相同的小球悬挂在三根长度不等的细线上,分别把悬线拉至水平位置后轻轻释放小球,已知线长L a >L b >L c ,则悬线摆至竖直位置时,细线中张力大小的关系是( )

A T c >T b >T a

B T a >T b >T c

C T b >T c >T a

D T a =T b =T c

2、一根长为l 的轻质杆,下端固定一质量为m 的小球,欲使它以上端o 为转轴刚好能在竖直平面内作圆周运动(如图),球在最低点A 的速度至少多大?如将杆换成长为L 的细线,则又如何?

3、如图,一质量为m 的木块以初速V 0从A 点滑上半径为R 的光滑圆弧轨道,它通过最高点B 时对轨道的压力FN 为多少?

4、一质量m = 2千克的小球从光滑斜面上高h = 3.5米高处由静止滑下斜面底端紧接着一个半径R = 1米的光滑圆环(如图)求:

(1)小球滑至圆环顶点时对环的压力;

(2)小球至少要从多高处静止滑下才能越过圆环最高点;

(3)小球从h 0 = 2米处静止滑下时将在何处脱离圆环(g =9.8米/秒2)。

二、系统的机械能守恒 由两个或两个以上的物体所构成的系统,其机械能是否守恒,要看两个方面

(1)系统以外的力是否对系统对做功,系统以外的力对系统做正功,系统的机械能就增加,做负功,系统的机械能就减少。不做功,系统的机械能就不变。

(2)系统间的相互作用力做功,不能使其它形式的能参与和机械能的转换。

系统内物体的重力所做的功不会改变系统的机械能

系统间的相互作用力分为三类:

1) 刚体产生的弹力:比如轻绳的弹力,斜面的弹力,轻杆产生的弹力等

2) 弹簧产生的弹力:系统中包括有弹簧,弹簧的弹力在整个过程中做功,弹性势能参与机械能的转换。

3) 其它力做功:比如炸药爆炸产生的冲击力,摩擦力对系统对功等。

在前两种情况中,轻绳的拉力,斜面的弹力,轻杆产生的弹力做功,使机械能在相互作用的两物体间进行等量的转移,系统的机械能还是守恒的。虽然弹簧的弹力也做功,但包括弹性势能在内的机械能也守恒。但在第三种情况下,由于其它形式的能参与了机械能的转换,系统的机械能就不再守恒了。 归纳起来,系统的机械能守恒问题有以下四个题型:(1)轻绳连体类(2)轻杆连体类

(3)在水平面上可以自由移动的光滑圆弧类。(4)悬点在水平面上可以自由移动的摆动类。

(1)轻绳连体类

这一类题目,系统除重力以外的其它力对系统不做功,系统内部的相互作用力是轻绳的拉力,而拉力只是使系统内部的机械能在相互作用的两个物体之间进行等量的转换,并没有其它形式的能参与机械能的转换,所以系统的机械能守恒。

例:如图,倾角为θ的光滑斜面上有一质量为M 的物体,通过一根跨过定滑轮的

细绳与质量为m 的物体相连,开始时两物体均处于静止状态,且m 离地面的高

度为h ,求它们开始运动后m 着地时的速度?

分析:对M 、m 和细绳所构成的系统,受到外界四个力的作用。它们分别是:M

所受的重力Mg ,m 所受的重力mg ,斜面对M 的支持力N ,滑轮对细绳的作用

力F 。

M 、m 的重力做功不会改变系统的机械能,支持力N 垂直于M 的运动方向对系统不做功,滑轮对细绳的作用力由于作用点没有位移也对系统不做功,所以满足系统机械能守恒的外部条件,系统内部的相互作用力是细绳的拉力,拉力做功只能使机械能在系统内部进行等量的转换也不会改变系统的机械能,故满足系统机械能守恒的外部条件。

在能量转化中,m 的重力势能减小,动能增加,M 的重力势能和动能都增加,用机械能的减少量等于增加量是解决为一类题的关键

222121sin mv Mv Mgh mgh ++=θ 可得m M M m gh v +-=)sin (2θ 需要提醒的是,这一类的题目往往需要利用绳连物体的速度关系来确定两个物体的速度关系 例:如图,光滑斜面的倾角为θ,竖直的光滑细杆到定滑轮的距离为a ,斜面上的物体M 和穿过细杆的m 通过跨过定滑轮的轻绳相连,开始保持两物体静止,连接m 的轻绳处于水平状态,放手后两物体从静止开始运动,求m 下降b 时两物体的速度大小?

(2)轻杆连体类

这一类题目,系统除重力以外的其它力对系统不做功,物体的重力做功不会改

变系统的机械能,系统内部的相互作用力是轻杆的弹力,而弹力只是使系统内部

的机械能在相互作用的两个物体之间进行等量的转换,并没有其它形式的能参与

机械能的转换,所以系统的机械能守恒。

例:如图,质量均为m 的两个小球固定在轻杆的端,轻杆可绕水平转轴在竖直平

面内自由转动,两小球到轴的距离分别为L 、2L ,开始杆处于水平静止状态,放手后两球开始运动,求杆转动到竖直状态时,两球的速度大小

分析:由轻杆和两个小球所构成的系统受到外界三个力的作用,即A 球受到的重力、B 球受到的重力、轴对杆的作用力。

两球受到的重力做功不会改变系统的机械能,轴对杆的作用力由于作用点没有位移而对系统不做功,所以满足系统机械能守恒的外部条件,系统内部的相互作用力是轻杆的弹力,弹力对A 球做负功,对B 球做正功,但这种做功只是使机械能在系统内部进行等量的转换也不会改变系统的机械能,故满足系统机械能守恒的外部条件。

在整个机械能当中,只有A 的重力势能减小,A 球的动能以及B 球的动能和重力势能都增加,我们让减少的机械能等于增加的机械能。有:

222

1212B A mv mv mgL L mg ++= 根据同轴转动,角速度相等可知

B A v v 2=所以:?

??==gL v gL v B A 52522 需要强调的是,这一类的题目要根据同轴转动,角速度相等来确定两球之间的速度关系

(3)在水平面上可以自由移动的光滑圆弧类。 光滑的圆弧放在光滑的水平面上,不受任何水平外力的作用,物体在光滑的圆弧上滑动,这一类的题目,

也符合系统机械能守恒的外部条件和内部条件,下面用具体的例子来说明

例:四分之一圆弧轨道的半径为R ,质量为M ,放在光滑的水平地面上,一质量为m 的球(不计体积)从光滑圆弧轨道的顶端从静止滑下,求小球滑离轨道时两者的速度?

分析:由圆弧和小球构成的系统受到三个力作用,分别是M 、m 受到的重力和地面的

支持力。

m 的重力做正功,但不改变系统的机械能,支持力的作用点在竖直方向上没有位移,

也对系统不做功,所以满足系统机械能守恒的外部条件,系统内部的相互作用力是圆

弧和球之间的弹力,弹力对m 做负功,对M 做正功,但这种做功只是使机械能在系

统内部进行等量的转换,不会改变系统的机械能,故满足系统机械能守恒的外部条件。

在整个机械能当中,只有m 的重力势能减小,m 的动能以及M 球的动能都增加,我们让减少的机械能等于增加的机械能。有:

222121m M mv Mv mgR +=

根据动量守恒定律知

M m Mv mv -=0 所以:?

??+=+=)(2)(2m M M gR M v m M M gR m v M m (4)悬点在水平面上可以自由移动的摆动类。

悬挂小球的细绳系在一个不受任何水平外力的物体上,当小球摆动时,物体能在水平面内自由移动,这一类的题目和在水平面内自由移动的光滑圆弧类形异而质同,同样符合系统机械能守恒的外部条件和内部条件,下面用具体的例子来说明

例:质量为M 的小车放在光滑的天轨上,长为L 的轻绳一端系在小车上另一端拴一质量为m 的金属球,将小球拉开至轻绳处于水平状态由静止释放。求(1)小球摆动到最低点时两者的速度?(2)此时小球受细绳的拉力是多少?

分析:由小车和小球构成的系统受到三个力作用,分别是小车、小球所受到的重力和天

轨的支持力。

小球的重力做正功,但重力做功不会改变系统的机械能,天轨的支持力,由于作用点在

竖直方向上没有位移,也对系统不做功,所以满足系统机械能守恒的外部条件,系统内

部的相互作用力是小车和小球之间轻绳的拉力,该拉力对小球做负功,使小球的机械能

减少,对小车做正功,使小车的机械能增加,但这种做功只是使机械能在系统内部进行

等量的转换,不会改变系统的机械能,故满足系统机械能守恒的外部条件。

在整个机械能当中,只有小球的重力势能减小,小球的动能以及小车的动能都增加,我们让减少的机械能等于增加的机械能。有:

222

121m M mv Mv mgL += 根据动量守恒定律知M m Mv mv -=

0 所以:?

??+=+=)(2)(2m M M gL M v m M M gL m v M m 当小球运动到最低点时,受到竖直向上的拉力T 和重力作用,根据向心力的公式

L mv mg T 2

=- 但要注意,公式中的v 是m 相对于悬点的速度,这一点是非常重要的

L v v m mg T M m 2

)(+=- 解得:M

m M mg T 23+=

习题

图5-3-15

如图5-3-15所示,质量相等的甲、乙两小球从一光滑直角斜面的顶端同时由静止释放,甲小球沿斜面下滑经过a 点,乙小球竖直下落经过b 点,a 、b 两点在同一水平面上,不计空气阻力,下列说法中正确的是( )

A .甲小球在a 点的速率等于乙小球在b 点的速率

B .甲小球到达a 点的时间等于乙小球到达b 点的时间

C .甲小球在a 点的机械能等于乙小球在b 点的机械能(相对同一个零势能参考面)

D .甲小球在a 点时重力的功率等于乙小球在b 点时重力的功率

解析:由机械能守恒得两小球到达a 、b 两处的速度大小相等,A 、C 正确;设斜面的倾角为α,甲小

球在斜面上运动的加速度为a =g sin α,乙小球下落的加速度为a =g ,由t =v a

可知t 甲>t 乙,B 错误;甲小球在a 点时重力的功率P 甲=mg v sin α,乙小球在b 点时重力的功率P 乙=mg v ,D 错误. 答案:AC

2.

图5-3-16

一根质量为M 的链条一半放在光滑的水平桌面上,另一半挂在桌边,如图5-3-16(a)所示.将链条由静止释放,链条刚离开桌面时的速度为v 1.若在链条两端各系一个质量均为m 的小球,把链条一半和一个小球放在光滑的水平桌面上,另一半和另一个小球挂在桌边,如图5-3-16(b)所示.再次将链条由静止释放,链条刚离开桌面时的速度为v 2,下列判断中正确的是( )

A .若M =2m ,则v 1=v 2

B .若M >2m ,则v 1<v 2

C .若M <2m ,则v 1>v 2

D .不论M 和m 大小关系如何,均有v 1>v 2 答案:D 3.

图5-3-17

在奥运比赛项目中,高台跳水是我国运动员的强项.质量为m 的跳水运动员进入水中后受到水的阻力而做减速运动,设水对他的阻力大小恒为F ,那么在他减速下降高度为h 的过程中,下列说法正确的是(g 为当地的重力加速度)( )

A .他的动能减少了Fh

B .他的重力势能增加了mgh

C .他的机械能减少了(F -mg )h

D .他的机械能减少了Fh

解析:由动能定理,ΔE k =mgh -Fh ,动能减少了Fh -mgh ,A 选项不正确;他的重力势能减少了mgh ,B 选项错误;他的机械能减少了ΔE =Fh ,C 选项错误,D 选项正确. 答案:D 4.

图5-3-18

如图5-3-18所示,静止放在水平桌面上的纸带,其上有一质量为m =0.1 kg 的铁块,它与纸带右端的距离为L =0.5 m ,铁块与纸带间、纸带与桌面间动摩擦因数均为μ=0.1.现用力F 水平向左将纸带从铁块下抽出,当纸带全部抽出时铁块恰好到达桌面边缘,铁块抛出后落地点离抛出点的水平距离为s =0.8 m .已知g =10 m/s 2,桌面高度为H =0.8 m ,不计纸带质量,不计铁块大小,铁块不滚动.求:

(1)铁块抛出时速度大小;(2)纸带从铁块下抽出所用时间t 1;(3)纸带抽出过程产生的内能E .

解析:(1)水平方向:s =v t ① 竖直方向:H =12

gt 2② 由①②联立解得:v =2 m/s. (2)设铁块的加速度为a 1,由牛顿第二定律,得μmg =ma 1③ 纸带抽出时,铁块的速度v =a 1t 1④

③④联立解得t 1=2 s. (3)铁块的位移s 1=12a 1t 21

⑤ 设纸带的位移为s 2;由题意知,s 2-s 1=L ⑥ 由功能关系可得E =μmgs 2+μmg (s 2-s 1)⑦ 由③④⑤⑥⑦联立解得E =0.3 J.

答案:(1)2 m/s (2)2 s (3)0.3 J 5.

图5-3-19

如图5-3-19所示为某同学设计的节能运输系统.斜面轨道的倾角为37°,木箱与轨道之间的动摩擦因数μ=0.25.设计要求:木箱在轨道顶端时,自动装货装置将质量m =2 kg 的货物装入木箱,木箱载着货物沿轨道无初速滑下,当轻弹簧被压缩至最短时,自动装货装置立刻将货物御下,然后木箱恰好被弹回到轨道顶端,接着再重复上述过程.若g 取10 m/s 2,sin 37°=0.6,cos 37°=0.8.求:

(1)离开弹簧后,木箱沿轨道上滑的过程中的加速度大小; (2)满足设计要求的木箱质量.

解析:(1)设木箱质量为m ′,对木箱的上滑过程,由牛顿第二定律有:m ′g sin 37°+μm ′g cos 37°=m ′a 代入数据解得:a =8 m/s 2.

(2)设木箱沿轨道下滑的最大距离为L ,弹簧被压缩至最短时的弹性势能为E p ,根据能量守恒定律:货物和木箱下滑过程中有:(m ′+m )g sin 37°L =μ(m ′+m )g cos 37°L +E p 木箱上滑过程中有E p =m ′g sin 37°L +μm ′g cos 37°L 联立代入数据解得:m ′=m =2 kg. 答案:(1)8 m/s 2 (2)2 kg

图5-3-20

如图5-3-20所示,一个质量为m 的小铁块沿半径为R 的固定半圆轨道上边缘由静止滑下,到半圆底部时,轨道所受压力为铁块重力的1.5倍,则此过程中铁块损失的机械能为( )

A.18mgR

B.14mgR

C.12mgR

D.34

mgR 解析:设铁块在圆轨道底部的速度为v ,则1.5mg -mg =m v 2R ,由能量守恒有:mgR -ΔE =12

m v 2,所以ΔE =34

mgR . 答案:D 2.

图5-3-21

如图5-3-21所示,斜面置于光滑水平地面上,其光滑斜面上有一物体由静止下滑,在物体下滑过程中,下列说法正确的是( )

A .物体的重力势能减少,动能增加

B .斜面的机械能不变

C .斜面对物体的作用力垂直于接触面,不对物体做功

D .物体和斜面组成的系统机械能守恒

解析:物体下滑过程中,由于物体与斜面相互间有垂直于斜面的作用力,使斜面加速运动,斜面的动能增加;物体沿斜面下滑时,既沿斜面向下运动,又随斜面向右运动,其合速度方向与弹力方向不垂直,且夹角大于90°,所以物体克服相互作用力做功,物体的机械能减少,但动能增加,重力势能减少,故A 项正确,B 、C 项错误.对物体与斜面组成的系统内,只有动能和重力势能之间的转化,故系统机械能守恒,D 项正确. 答案:AD 3.

图5-3-22

如图5-3-22所示,一根跨越光滑定滑轮的轻绳,两端各有一杂技演员(可视为质点),演员a 站于地面,演员b 从图示的位置由静止开始向下摆,运动过程中绳始终处于伸直状态,当演员b 摆至最低点时,演员a 刚好对地面无压力,则演员a 与演员b 质量之比为( )

A .1∶1

B .2∶1

C .3∶1

D .4∶1

解析:由机械能守恒定律求出演员b 下落至最低点时的速度大小为v . 12

m v 2=mgl (1-cos 60°),v 2=2gl (1-cos 60°)=gl .此时绳的拉力为T =mg +m v 2l

=2mg ,演员a 刚好对地压力为0.则m a g =T =2mg .故m a ∶m =2∶1. 答案:B

4.

图5-3-23

如图5-3-23所示,一很长的、不可伸长的柔软轻绳跨过光滑定滑轮,绳两端各系一小球a和b.a球质量为m,静置于地面;b球质量为3m,用手托住,高度为h,此时轻绳刚好拉紧.从静止开始释放b后,a可能达到的最大高度为()

A.h B.1.5h C.2h D.2.5h

解析:考查机械能守恒定律.在b球落地前,a、b球组成的系统机械能守恒,且a、b两球速度大小

相等,根据机械能守恒定律可知:3mgh-mgh=1

2(m+3m)v

2,v=gh,b球落地时,a球高度为h,之

后a球向上做竖直上抛运动,在这个过程中机械能守恒,1

2m v

2=mgΔh,Δh=

v2

2g=

h

2,所以a球可能达

到的最大高度为1.5h,B项正确.答案:B

5.

图5-3-24

如图5-3-24所示,在动摩擦因数为0.2的水平面上有一质量为3 kg的物体被一个劲度系数为120 N/m 的压缩轻质弹簧突然弹开,物体离开弹簧后在水平面上继续滑行了1.3 m才停下来,下列说法正确的是(g取10 m/s2)()

A.物体开始运动时弹簧的弹性势能E p=7.8 J B.物体的最大动能为7.8 J

C.当弹簧恢复原长时物体的速度最大D.当物体速度最大时弹簧的压缩量为x=0.05 m

解析:物体离开弹簧后的动能设为E k,由功能关系可得:E k=μmgx1=7.8 J,设弹簧开始的压缩量为x0,则弹簧开始的弹性势能E p0=μmg(x0+x1)=7.8 J+μmgx0>7.8 J,A错误;当弹簧的弹力kx2=μmg 时,物体的速度最大,得x2=0.05 m,D正确,C错误;物体在x2=0.05 m到弹簧的压缩量x2=0的过程做减速运动,故最大动能一定大于7.8 J,故B错误.答案:D

6.

图5-3-25

如图5-3-25所示,电梯由质量为1×103 kg的轿厢、质量为8×102 kg的配重、定滑轮和钢缆组成,轿厢和配重分别系在一根绕过定滑轮的钢缆两端,在与定滑轮同轴的电动机驱动下电梯正常工作,定滑轮与钢缆的质量可忽略不计,重力加速度g=10 m/s2.在轿厢由静止开始以2 m/s2的加速度向上运行

1 s的过程中,电动机对电梯共做功为()

A.2.4×103 J B.5.6×103 J C.1.84×104 J D.2.16×104 J

解析:电动机做功:W=(M-m)gh+1

2(M+m)v

2=(1 000-800)×10×1+

1

2(1 000+800)×2

2=5 600 J.

答案:B 7.

图5-3-26

来自福建省体操队的运动员黄珊汕是第一位在奥运会上获得蹦床奖牌的中国选手.蹦床是一项好看又惊险的运动,如图5-3-26所示为运动员在蹦床运动中完成某个动作的示意图,图中虚线PQ是弹性蹦床的原始位置,A为运动员抵达的最高点,B为运动员刚抵达蹦床时的位置,C为运动员抵达的最低点.不考虑空气阻力和运动员与蹦床作用时的机械能损失,A、B、C三个位置运动员的速度分别是v A、v B、v C,机械能分别是E A、E B、E C,则它们的大小关系是()

A.v Av C B.v A>v B,v BE C D.E A>E B,E B=E C

A机械能守恒,E A=E B,B→A机械能守恒,E A=E B,B→C弹力对人做负功,机械能减小,E B>E C.

答案:AC

8.

图5-3-27

如图5-3-27所示,小球从A点以初速度v0沿粗糙斜面向上运动,到达最高点B后返回A,C为AB 的中点.下列说法中正确的是()

A.小球从A出发到返回A的过程中,位移为零,合外力做功为零

B.小球从A到C过程与从C到B过程,减少的动能相等

C.小球从A到B过程与从B到A过程,损失的机械能相等

D.小球从A到C过程与从C到B过程,速度的变化量相等

解析:小球从A出发到返回A的过程中,位移为零,重力做功为零,支持力不做功,摩擦力做负功,所以A选项错误;从A到B的过程与从B到A的过程中,位移大小相等,方向相反,损失的机械能等于克服摩擦力做的功,所以C选项正确;小球从A到C过程与从C到B过程,位移相等,合外力也相等,方向与运动方向相反,所以合外力做负功,大小相等,所以减少的动能相等,因此,B选项正确;小球从A到C过程与从C到B过程中,减少的动能相等,而动能的大小与质量成正比,与速度的平方成正比,所以D错误.答案:BC

9.

图5-3-28

在2008北京奥运会上,俄罗斯著名撑杆跳运动员伊辛巴耶娃以5.05 m的成绩第24次打破世界记录.图5-3-28为她在比赛中的几个画面,下列说法中正确的是()

A.运动员过最高点时的速度为零B.撑杆恢复形变时,弹性势能完全转化为动能

C.运动员要成功跃过横杆,其重心必须高于横杆D.运动员在上升过程中对杆先做正功后做负功

解析:撑杆跳运动员过最高点时竖直速度为零,水平速度不为零,选项A错误;当运动员到达最高点杆恢复形变时,弹性势能转化为运动员的重力势能和动能,选项B错误;运动员可以背跃式跃过横杆,其重心可能低于横杆,选项C错误;运动员在上升过程中对杆先做正功转化为杆的弹性势能后做负功,杆的弹性势能转化为运动员的重力势能和动能,选项D正确.答案:D

10.

图5-3-29

如图5-3-29所示,半径为R 的竖直光滑圆轨道内侧底部静止着一个光滑小球,现给小球一个冲击使其在瞬间得到一个水平初速度v 0,若v 0大小不同,则小球能够上升到的最大高度(距离底部)也不同.下列说法中正确的是( )

A .如果v 0=gR ,则小球能够上升的最大高度为R 2

B .如果v 0=2gR ,则小球能够上升的最大高度为R 2

C .如果v 0=3gR ,则小球能够上升的最大高度为

3R 2

D .如果v 0=5gR ,则小球能够上升的最大高度为2R

解析:根据机械能守恒定律,当速度为v 0=gR ,由mgh =12m v 20解出h =R 2

,A 项正确,B 项错误;当v 0=5gR ,小球正好运动到最高点,D 项正确;当v 0=3gR 时小球运动到最高点以下,若C 项成立,说明小球此时向心力为0,这是不可能的. 答案:AD

11.

图5-3-30

如图5-3-30所示,AB 为半径R =0.8 m 的1/4光滑圆弧轨道,下端B 恰与小车右端平滑对接.小车质量M =3 kg ,车长L =2.06 m ,车上表面距地面的高度h =0.2 m .现有一质量m =1 kg 的滑块,由轨道顶端无初速释放,滑到B 端后冲上小车.已知地面光滑,滑块与小车上表面间的动摩擦因数μ=0.3,当车运行了1.5 s 时,车被地面装置锁定.(g =10 m/s 2)试求:

(1)滑块到达B 端时,轨道对它支持力的大小; (2)车被锁定时,车右端距轨道B 端的距离;

(3)从车开始运动到被锁定的过程中,滑块与车面间由于摩擦而产生的内能大小;

(4)滑块落地点离车左端的水平距离.

解析:(1)设滑块到达B 端时速度为v ,由动能定理,得mgR =12

m v 2 ,由牛顿第二定律,得F N -mg =m v 2R

联立两式,代入数值得轨道对滑块的支持力:F N =3mg =30 N.

(2)当滑块滑上小车后,由牛顿第二定律,得:对滑块有:-μmg =ma 1, 对小车有:μmg =Ma 2 设经时间t 两者达到共同速度,则有:v +a 1t =a 2t, 解得t =1 s .由于1 s <1.5 s ,此时小车还未被锁定,两者的共同速度:v ′=a 2t =1 m/s

因此,车被锁定时,车右端距轨道B 端的距离:x =12

a 2t 2+v ′t ′=1 m. (3)从车开始运动到被锁定的过程中,滑块相对小车滑动的距离Δx =

v +v ′2t -12

a 2t 2=2 m 所以产生的内能:E =μmg Δx =6 J.

(4)对滑块由动能定理,得-μmg (L -Δx )=12m v ″2-12m v ′2, 滑块脱离小车后,在竖直方向有:h =12

gt ″2 所以,滑块落地点离车左端的水平距离:x ′=v ″t ″=0.16 m.

答案:(1)30 N (2)1 m (3)6 J (4)0.16 m

2.如图7-7-11所示,质量为2m 和m 可看做质点的小球A 、B ,用不计质量的不可伸长的细线相连,跨在固定的半径为R 的光滑圆柱两侧,开始时A 球和B 球与圆柱轴心等高,然后释放A 、B 两球,则B 球到达最高点时的速率是多少?

图7-7-11

2.解:此题用运动学很难解答,但选取A 、B 球及细线为研究系统,重力以外的力不做功,故用机械能守恒定律求解.

选取轴心所在水平线为势能零点,则刚开始时系统机械能为零,即

E 1=0. 当B 球到达最高点时,系统机械能为 E 2=mgR +21mv 2-2mg 2142+R π (2m )v 2 由于E 1=E 2 即0=mgR +21mv 2-2mg 2142+R π(2m )v 2

解得 v =)1(32-πgR

例1、如图示,长为l 的轻质硬棒的底端和中点各固定一个质量为m 的小球,为使轻质硬棒能绕转轴O 转到最高点,则底端小球在如图示位置应具有的最小速度v= 。

解:系统的机械能守恒,ΔE P +ΔE K =0

因为小球转到最高点的最小速度可以为0 ,所以,

例 2. 如图所示,一固定的楔形木块,其斜面的倾角θ=30°,另一边与地面垂直,顶上有一定滑轮。一柔软的细线跨过定滑轮,两端分别与物块A 和B 连结,A 的质量为4m ,B 的质量为m ,开始时将B 按在地面上不动,然后放开手,让A 沿斜面下滑而B 上升。物块A 与斜面间无摩擦。设当A 沿斜面下滑S 距离后,细线突然断了。求物块B 上升离地的最大高度H.

解:对系统由机械能守恒定律

4mgSsin θ – mgS = 1/2× 5 mv 2

∴ v 2=2gS/5

细线断后,B 做竖直上抛运动,由机械能守恒定律

mgH= mgS+1/2× mv 2 ∴ H = 1.2 S

l mg l mg v m mv 22212122?+?=??

? ??+gl gl v 8.4524==

例 3. 如图所示,半径为R 、圆心为O 的大圆环固定在竖直平面内,两个轻质小圆环套在大圆环上.一根轻质长绳穿过两个小圆环,它的两端都系上质量为m 的重物,忽略小圆环的大小。

(1)将两个小圆环固定在大圆环竖直对称轴的两侧θ=30°的位置上(如图).在

两个小圆环间绳子的中点C 处,挂上一个质量M = m 的重物,使两

个小圆 环间的绳子水平,然后无初速释放重物M .设绳子

与大、小圆环间的摩擦均可忽略,求重物M 下降的最大距离.

(2)若不挂重物M .小圆环可以在大圆环上自由移动,且绳子与大、小圆环间及大、

小圆环之间的摩擦均可以忽略,问两个小圆环分别在哪些位置时,系统可处于平衡状

态?

解:(1)重物向下先做加速运动,后做减速运动,当重物速度

为零时,下降的距离最大.设下降的最大距离为h ,

由机械能守恒定律得

解得

(另解h=0舍去)

(2)系统处于平衡状态时,两小环的可能位置为

a . 两小环同时位于大圆环的底端.

b .两小环同时位于大圆环的顶端.

c .两小环一个位于大圆环的顶端,另一个位于大圆环的底端.

d .除上述三种情况外,根据对称性可知,系统如能平衡,则两小圆环的位置一定关于大圆环竖直对称轴对称.设平衡时,两小圆环在大圆环竖直对称轴两侧α角的位置上(如图

所示).

对于重物,受绳子拉力与重力作用, 有T=mg

对于小圆环,受到三个力的作用,水平绳的拉力T 、 竖直绳子的拉力T 、

大圆环的支持力N.

两绳子的拉力沿大圆环切向的分力大小相等,方向相反

得α=α′, 而α+α′=90°,所以α=45 °

例 4. 如图质量为m 1的物体A 经一轻质弹簧与下方地面上的质量为m

2

2()??????-+=Rsin θRsin θh 2mg Mgh 2

2R 2h

=

的物体B 相连,弹簧的劲度系数为k ,A 、B 都处于静止状态。一条不可伸长的轻绳绕过轻滑轮,一端连物体A ,另一端连一轻挂钩。开始时各段绳都牌伸直状态,A 上方的一段沿竖直方向。现在挂钩上挂一质量为m 3的物体C 上升。若将C 换成另一个质量为(m 1+m 3)物体D ,仍从上述初始位置由静止状态释放,则这次B 则离地时D 的速度的大小是多少?已知重力加速度为g 。

解:开始时,B 静止平衡,设弹簧的压缩量为x 1,

g m kx 1

1= 挂C 后,当B 刚要离地时,设弹簧伸长量为x 2,有

g m kx 2

2= 此时,A 和C 速度均为零。从挂C 到此时,根据机械能守恒定律弹簧弹性势能的改变量为 )()(2

11213x x g m x x g m E +-+=? 将C 换成D 后,有

)()()()(2

121121312131x x g m x x g m m m m m E +-++=+++?v 联立以上各式可以解得

)2()(2312211m m k g m m m ++=v 针对训练

1.在光滑水平面上有两个相同的弹性小球A 、B ,质量都为m. 现B 球静止,A 球向B 球运动,发生正碰。

已知碰撞过程中总机械能守恒,两球压缩最紧时的弹性势能为E p ,则碰前A 球的速度等于 ( )

2.质量为m 的物体,在距地面h 高处以g /3的加速度由静止竖直下落到地面,

下列说法中正确的是: ( )

A. 物体的重力势能减少 1/3 mgh

B. 物体的机械能减少 2/3 mgh

C. 物体的动能增加 1/3 mgh

D. 重力做功 mgh

3.一物体从某一高度自由落下,落在直立于地面的轻弹簧上,如图所示.在A 点

时,物体开始接触弹簧;到B 点时,物体速度为零,然后被弹回.下列说法中正确

的是 [bcd ]

A .物体从A 下降到

B 的过程中,动能不断变小

B .物体从B 上升到A 的过程中,动能先增大后减小

C .物体由A 下降到B 的过程中,弹簧的弹性势能不断增大

D .物体由B 上升到A 的过程中,弹簧所减少的弹性势能等于物体所增加的动能

与增加的重力势能之和

m

2E 2D m E 2C m 2E B m E A P P P P ...

.

2.长为L质量分布均匀的绳子,对称地悬挂在轻小的定滑轮上,

如图所示.轻轻地推动一下,让绳子滑下,那么当绳子离

开滑轮的瞬间,绳子的速度为.

5.一根内壁光滑的细圆管,形状如下图所示,放在竖直平面内,

一个小球自A口的正上方高h处自由落下,第一次小球恰能

抵达B点;第二次落入A口后,自B口射出,恰能再进入

A口,则两次小球下落的高度之比h1:h2= ______

6.将质量为M和3M的两小球A和B分别拴在一根细绳的两端,绳长为L,开始

时B球静置于光滑的水平桌面上,A球刚好跨过桌边且线已张紧,如图所示.当A球下落时拉着B球沿桌面滑动,桌面的高为h,且h<L.若A球着地后停止不动,求:(1)B球刚滑出桌面时的速度大小.(2)B球和A球着地点之间的距离.

7.如图所示, 半径为r, 质量不计的圆盘盘面与地面相垂直, 圆心处有一个垂直盘面的光滑水平固定轴O,在盘的最右边缘固定一个质量为m的小球A,在O点的正下方离O点r/2处固定一个质量也为m的小球

B. 放开盘让其自由转动, 问:

(1)当A球转到最低点时, 两小球的重力势能之和减少了多少?

(2)A球转到最低点时的线速度是多少?

(3)在转动过程中半径OA向左偏离

竖直方向的最大角度是多少?

8.小球A用不可伸长的轻绳悬于O点,在O点的正下方有一固定的

钉子B,OB=d,初始时小球A与O同水平面无初速释放,绳长为L,

为使球能绕B点做圆周运动,试求d的取值范围?

9.将细绳绕过两个定滑轮A和B.绳的两端各系一个质量为m的砝码。A、B间的中点C挂一质量为M的小球,M<2m,A、B间距离为l,开始用手托住M使它们都保持静止,如图所示。放手后M和2个m开始运动。求(1)小球下落的最大位移H是多少?(2)小球的平衡位置距C点距离h是多少?

10.如图所示,桌面上有许多大小不同的塑料球,它们的密度均为ρ,有水平向左恒定的风作用在球上;使它们做匀加速运动(摩擦不计),已知风对球的作用力与球的最大截面面积成正比,即F =kS(k 为一常量).

(1) 对塑料球来说,空间存在一个风力场,请定义风力场强度及其表达式.

(2) 在该风力场中风力对球做功与路径无关,可引入风力势能和

风力势的概念,若以栅栏P 零风力势能参考平面,写出风力

势能E P 和风力势U 的表达式。

(3) 写出风力场中机械能守恒定律的表达式.(球半径用r 表示;

第一状态速度为v 1,位置为x 1;第二状态速度为v 2,位置为

x 2)

参考答案:

1. C

2. BCD

3. BCD

4. 解:由机械能守恒定律,取小滑轮处为零势能面.

5. 解:第一次恰能抵达B 点,不难看出v B1=0

由机械能守恒定律mg h 1 =mgR+1/2·mv B12

∴h 1 =R

第二次从B 点平抛

R=v B2t R=1/2·gt 2

mg h 2 =mgR+1/2·mv B22

h 2 =5R/4

h 1 :h 2 = 4:5

6. 22124212mv L mg L mg +-=??-gL v 2

1=∴2/2gR

v B =

7. 解: (1)ΔE P = mgr - mgr/2 = mgr/2 (2)

由系统机械能守恒定律 得

(3)设 OA 向

左偏离竖直方向的最大角度是θ, 由系统机械能守恒定律 得

mgr × cos θ – mgr/2× (1+sin θ )=02cos θ=1+sin θ,

4(1-sin 2θ)=1 +2sin θ +sin 2θ,

5sin 2θ+2sin θ- 3=0

Sin θ=0.6 ∴θ=37°

2 /r (1)

8. 解:设BC=r ,若刚能绕B 点通过最高点D ,必须有mg=mv D

由机械能守恒定律

mg(L-2r)=1/2m v D 2 (2)

∴r = 2L / 5

d=L-r= 3L/5

∴ d 的取值范围 3/5 L d

9.解:(1)如答案图(a)所示,M 下降到最底端时速度为零,此时两m 速度也为零,M 损失的重力势能等于

两m 增加的重力势能(机械能守恒)

解得

(2)如答案图(b)所示,当M 处于平衡位置时,合力为零,T=mg ,

则Mg-2mgsin α=0

2A 2A 2A v 45m 212v m 21m v 21m

gr 2

1

?

=?

?? ??+=

10.(1)风力场强度:风对小球的作用力与对小球最大截面积之比,

即E =F/S =k

(2)距P 为x 处,E P =Fx =kSx U =E P /S =kS

(4) 2ρrv 12/3+kx 1=2ρrv 22/3+kx 2

11. (2003上海综合)在交通运输中,常用“客运效率” 来反映交通工具的某项效能,“客运效率”表示消耗单位能量对应的载客数和运送路程的乘积,即客运效率=消耗能量路程人数?.一个人骑电动自行车,消耗1MJ (610J )的能量可行驶30Km ;一辆载有4个人的普通轿车,消耗320MJ 的能量可行驶100Km ,则电动自行车与这辆轿车的客运效率之比是

A. 6∶1

B.12∶5

C.24∶1

D.48∶1

【答案】C

12. 5.如图6-2所示,小球从高处下落到竖直放置的轻弹簧上,在弹簧压

缩到最短的整个过程中,下列关于能量的叙述中正确的应是( )

A.重力势能和动能之和总保持不变

B.重力势能和弹性势能之和总保持不变

C.动能和弹性势能之和保持不变

D.重力势能、弹性势能和动能之和总保持不变

【解析】 在球从高处下落到弹簧压缩到最短的过程中,只有重力、弹簧弹力做功,重力势能、动能、弹性势能相互转化,其总和不变,选项D 正确.

【答案】D

13. 6.飞行员进行素质训练时,抓住秋千杆由水平状态下摆,到达

竖直状态的过程中如图6-3所示,飞行员所受重力的瞬时功率变

化情况是( )

A.一直增大

B.一直减小

C.先增大后减小

D.先减小后增大

【解析】易知飞行员竖直分速y v 先增后减,由y G v mg P ?=得出飞行

员所受重力的瞬时功率G P 先增大后减小.

【答案】C

6-2 图6-3

高一物理必修二机械能守恒定律单元测试及答案

一、选择题 1、下列说法正确的是:( ) A 、物体机械能守恒时,一定只受重力和弹力的作用。 B 、物体处于平衡状态时机械能一定守恒。 C 、在重力势能和动能的相互转化过程中,若物体除受重力外,还受到其他力作用时, 物体的机械能也可能守恒。 D 、物体的动能和重力势能之和增大,必定有重力以外的其他力对物体做功。 2、从地面竖直上抛两个质量不同而动能相同的物体(不计空气阻力),当上升到同一高度时,它们( ) A.所具有的重力势能相等 B.所具有的动能相等 C.所具有的机械能相等 D.所具有的机械能不等 3、一个原长为L 的轻质弹簧竖直悬挂着。今将一质量为m 的物体挂在弹簧的下端,用手托住物体将它缓慢放下,并使物体最终静止在平衡位置。在此过程中,系统的重力势能减少,而弹性势能增加,以下说法正确的是( ) A 、减少的重力势能大于增加的弹性势能 B 、减少的重力势能等于增加的弹性势能 C 、减少的重力势能小于增加的弹性势能 D 、系统的机械能增加 4、如图所示,桌面高度为h ,质量为m 的小球,从离桌面高H 处自由落下,不计空气阻力,假设桌面处的重力势能为零,小球落到地面前的瞬间的机械能应为( ) A 、mgh B 、mgH C 、mg (H +h ) D 、mg (H -h ) 5、某人用手将1kg 物体由静止向上提起1m, 这时物体的速度为2m/s, 则下列说法正确的是( ) A.手对物体做功12J B.合外力做功2J C.合外力做功12J D.物体克服重力做功10J 6、质量为m 的子弹,以水平速度v 射入静止在光滑水平面上质量为M 的木块,并留在其中, 下列说法正确的是( ) A.子弹克服阻力做的功与木块获得的动能相等 B.阻力对子弹做的功与子弹动能的减少相等 C.子弹克服阻力做的功与子弹对木块做的功相等 D.子弹克服阻力做的功大于子弹对木块做的功 二、填空题(每题8分,共24分) 7、从离地面H 高处落下一只小球,小球在运动过程中所受到的空气阻力是它重力的k 倍, 而小球与地面相碰后,能以相同大小的速率反弹,则小球从释放开始,直至停止弹跳为止,所通过的总路程为____________。 8、如图所示,在光滑水平桌面上有一质量为M 的小车,小车跟绳一端相连,绳子另一端通过滑轮吊一个质量为m 的砖码,则当砝码着地的瞬间(小车未离开桌子)小车的速度大小为______在这过程中,绳的拉力对小车所做的功为________。 9、物体以100 k E J 的初动能从斜面底端沿斜面向上运动,当该物体经过斜面上某一点时,动能减少了80J ,机械能减少了32J ,则物体滑到斜面顶端时的机械能为_______。(取斜面底端为零势面)

(人教版)高中物理必修二(全册)精品分层同步练习汇总

(人教版)高中物理必修二(全册)精品同步练习汇总 分层训练·进阶冲关 A组基础练(建议用时20分钟) 1.(2018·泉州高一检测)关于运动的合成和分解,下列说法中正确的是 (C) A.合运动的速度大小等于分运动的速度大小之和 B.物体的两个分运动若是直线运动,则它的合运动一定是直线运动 C.合运动和分运动具有等时性 D.若合运动是曲线运动,则其分运动中至少有一个是曲线运动

2.(2018·汕头高一检测)质点在水平面内从P运动到Q,如果用v、a、F分别表示质点运动过程中的速度、加速度和受到的合外力,下列选项正确的是(D) 3.一只小船渡河,运动轨迹如图所示。水流速度各处相同且恒定不变,方向平行于河岸;小船相对于静水分别做匀加速、匀减速、匀速直线运动,船相对于静水的初速度大小均相同、方向垂直于河岸,且船在渡河过程中船头方向始终不变。由此可以确定 (D) A.船沿AD轨迹运动时,船相对于静水做匀加速直线运动 B.船沿三条不同路径渡河的时间相同 C.船沿AB轨迹渡河所用的时间最短 D.船沿AC轨迹到达对岸前瞬间的速度最大 4.如图所示,某人用绳通过定滑轮拉小船,设人匀速拉绳的速度为v0,绳某时刻与水平方向夹角为α,则小船的运动性质及此时刻小船的水平速度v x为(A)

A.小船做变速运动,v x= B.小船做变速运动,v x=v0cos α C.小船做匀速直线运动,v x= D.小船做匀速直线运动,v x=v0cosα B组提升练(建议用时20分钟) 5.(2018·汕头高一检测)质量为1 kg的物体在水平面内做曲线运动,已知该物体在互相垂直方向上两分运动的速度-时间图象分别如图所示,则下列说法正确的是(D) A.2 s末质点速度大小为7 m/s B.质点所受的合外力大小为3 N C.质点的初速度大小为5 m/s D.质点初速度的方向与合外力方向垂直 6.(多选)在杂技表演中,猴子沿竖直杆向上做初速度为零、加速度为a的匀加速运动,同时人顶着直杆以速度v0水平匀速移动,经过时间t,猴子沿杆向上移动的高度为h,人顶杆沿水平地面移动的距离为x,如图所示。关于猴子的运动情况,下列说法中正确的是( B、D )

最新人教版高中物理必修二单元测试题全套附答案

最新人教版高中物理必修二单元测试题全套附答案 (含模块综合测试题,共4套) 第五章曲线运动章末检测试卷(一) (时间:90分钟满分:100分) 一、选择题(1~8为单项选择题,9~12为多项选择题.每小题4分,共48分) 1.关于平抛运动和圆周运动,下列说法正确的是() A.平抛运动是匀变速曲线运动 B.匀速圆周运动是速度不变的运动 C.圆周运动是匀变速曲线运动 D.做平抛运动的物体落地时的速度一定是竖直向下的 答案 A 解析平抛运动的加速度恒定,所以平抛运动是匀变速曲线运动,A正确;平抛运动水平方向做匀速直线运动,所以落地时速度一定有水平分量,不可能竖直向下,D错误;匀速圆周运动的速度方向时刻变化,B错误;匀速圆周运动的加速度始终指向圆心,也就是方向时刻变化,所以不是匀变速运动,C错误. 【考点】平抛运动和圆周运动的理解 【题点】平抛运动和圆周运动的性质 2.如图1所示为某中国运动员在短道速滑比赛中勇夺金牌的精彩瞬间.假定此时她正沿圆弧形弯道匀速率滑行,则她() 图1 A.所受的合力为零,做匀速运动 B.所受的合力恒定,做匀加速运动 C.所受的合力恒定,做变加速运动 D.所受的合力变化,做变加速运动 答案 D 解析运动员做匀速圆周运动,由于合力时刻指向圆心,其方向变化,所以是变加速运动,D正确. 【考点】对匀速圆周运动的理解 【题点】对匀速圆周运动的理解

3.各种大型的货运站中少不了旋臂式起重机,如图2所示,该起重机的旋臂保持不动,可沿旋臂“行走”的天车有两个功能,一是吊着货物沿竖直方向运动,二是吊着货物沿旋臂水平方向运动.现天车吊着货物正在沿水平方向向右匀速行驶,同时又使货物沿竖直方向向上做匀减速运动.此时,我们站在地面上观察到货物运动的轨迹可能是下图中的() 图2 答案 D 解析由于货物在水平方向做匀速运动,在竖直方向做匀减速运动,故货物所受的合外力竖直向下,由曲线运动的特点(所受的合外力要指向轨迹凹侧)可知,对应的运动轨迹可能为D. 【考点】运动的合成和分解 【题点】速度的合成和分解 4.一物体在光滑的水平桌面上运动,在相互垂直的x方向和y方向上的分运动速度随时间变化的规律如图3所示.关于物体的运动,下列说法正确的是() 图3 A.物体做速度逐渐增大的曲线运动 B.物体运动的加速度先减小后增大 C.物体运动的初速度大小是50 m/s D.物体运动的初速度大小是10 m/s 答案 C 解析由题图知,x方向的初速度沿x轴正方向,y方向的初速度沿y轴负方向,则合运动的初速度方向不在y轴方向上;x轴方向的分运动是匀速直线运动,加速度为零,y轴方向的分运动是匀变速直线运动,加速度沿y轴方向,所以合运动的加速度沿y轴方向,与合初速度方向不在同一直线上,因此物体做曲线运动.根据速度的合成可知,物体的速度先减小后增大,故A错误.物体运动的加速度等于y方向的加速度,保持不变,故B错误;根据题图可知物体的初速度大小为:v0=v x02+v y02=302+402m/s =50 m/s,故C正确,D错误.

高一物理必修二测试题

2017-2018春季学期物理第一次月考卷 班级: 姓名: 分数: 一.选择题(每小题4分,共10小题,共40分): 1、关于平抛运动,下列说法正确的是( ) A .不论抛出位置多高,抛出速度越大的物体,其水平位移一定越大 B .不论抛出位置多高,抛出速度越大的物体,其飞行时间一定越长 C .不论抛出速度多大,抛出位置越高,其飞行时间一定越长 D .不论抛出速度多大,抛出位置越高,飞得一定越远 2、关于平抛运动,下列说法正确的是( ) A .是匀变速曲线运动 B .是变加速曲线运动 C .任意两段时间内速度变化量的方向相同 D .任意相等时间内的速度变化量相等 3、物体在平抛运动过程中,在相等的时间内,下列哪些量是相等的( ) A .速度的增量 B .加速度 C .位移 D .平均速率 4、如下图所示,物体做平抛运动时,描述物体在竖直方向上的速度v y (取向下为正)随时间变化的图像是( ) 5 B .石块释放后,火车立即以加速度a 作匀加速直线运动,车上的旅客认为石块向后下方作匀加速直线运动,加速度a ′ = 2 2g a + C .石块释放后,火车立即以加速度a 作匀加速运动,车上旅客认为石块作后下方的曲线运动 D .石块释放后,不管火车作什么运动,路边的人认为石块作向前的平抛运动 6、一个物体从某一确定高度以v 0的初速度水平抛出,已知它落地时的速度为v t ,那么它的运动时间是( ) A . g v v t 0- B . g v v t 20 - C . g v v t 22 02- D 7、在高度为h 的同一位置上向水平方向同时抛出两个小球A 和B ,若A 球的初速v A 大于 B 球的初速v B ,则下列说法正确的是( ) A B C D

高一物理必修二经典例题带答案

高一物理必修2复习 第一章曲线运动 1、 曲线运动中速度的方向不断变化,所以曲线运动必定是一个变速运动。 2、物体做曲线运动的条件: 当力F 与速度V 的方向不共线时,速度的方向必定发生变化,物体将做曲线运动。 注意两点:第一,曲线运动中的某段时间内的位移方向与某时刻的速度方向不同。位移方向是由起始位置指向末位置的有向线段。速度方向则是沿轨迹上该点的切线方向。第二,曲线运动中的路程和位移的大小一般不同。 3、 平抛运动:将物体以某一初速度沿水平方向抛出,不考虑空气阻力,物体所做的运动。 平抛运动的规律:(1)水平方向上是个匀速运动(2)竖直方向上是自由落体运动 位移公式:t x 0ν= ;2 2 1gt y = 速度公式:0v v x = ; gt v y = 合速度的大小为:22 y x v v v += ; 方向,与水平方向的夹角θ为:0 tan v v y = θ 1. 关于质点的曲线运动,下列说法中不正确的是 ( ) A .曲线运动肯定是一种变速运动 B .变速运动必定是曲线运动 C .曲线运动可以是速率不变的运动 D .曲线运动可以是加速度不变的运动 2、某人骑自行车以4m/s 的速度向正东方向行驶,天气预报报告当时是正北风,风速也是4m/s ,则骑车人感觉的风速方向和大小( ) A.西北风,风速4m/s B. 西北风,风速24 m/s C.东北风,风速4m/s D. 东北风,风速24 m/s 3、有一小船正在渡河,离对岸50m 时,已知在下游120m 处有一危险区。假设河水流速为5s m ,为了使小船不通过危险区而到达对岸,则小船自此时起相对静水速度至少为( ) A 、2.08s m B 、1.92s m C 、1.58s m D 、1.42s m 4. 在竖直上抛运动中, 当物体到达最高点时 ( ) A. 速度为零, 加速度也为零 B . 速度为零, 加速度不为零 C. 加速度为零, 有向下的速度 D. 有向下的速度和加速度 5.如图所示,一架飞机水平地匀速飞行,飞机上每隔1s 释放一个铁球,先后共释放4个,若不计空气阻力,则落地前四个铁球在空中的排列情况是( ) 6、做平抛运动的物体,每秒的速度增量总是:( ) A .大小相等,方向相同 B .大小不等,方向不同 C .大小相等,方向不同 D .大小不等,方向相同 7.一小球从某高处以初速度为v 0被水平抛出,落地时与水平地面夹角为45?,抛出点距地面的 高度为 ( ) A .g v 20 B .g v 202 C .g v 220 D .条件不足无法确定

高中物理必修2机械能复习题(附答案)

高2014级物理必修2期末机械能单元复习 一、单项选择题 1. 下列物体运动过程中满足机械能守恒的是( ) A .跳伞运动员张开伞后,在空中匀速下降 B .忽略空气阻力,物体竖直上抛 C .火箭升空 D .拉着物体沿光滑斜面匀速上升 2. 如图所示,在两个质量分别为m 和2m 的小球a 和b 之间,用一根长 为L 的轻杆连接(杆的质量可不计),而小球可绕穿过轻杆中心O 的水平轴无 摩擦转动,现让轻杆处于水平位置,然后无初速度释放,重球b 向下,轻球 a 向上,产生转动,在杆转至竖直的过程中( ) A .a 球的机械能守恒 B .b 球的机械能守恒 C .a 球和b 球的总机械能守恒 D .a 球和b 球的总机械能不守恒 3.如图所示,质量相同的物体分别自斜面AC 和BC 的顶端由静止开 始下滑,物体与斜面间的动摩擦因数都相同,物体滑到斜面底部C 点时 的动能分别为E k1和E k2,下滑过程中克服摩擦力所做的功分别为W 1和 W 2,则( ) A .E k1>E k2 W 1E k2 W 1=W 2 C .E k1=E k2 W 1>W 2 D . E k1W 2 4. 如图所示,质量为m 的物块与转台之间能出现的最大静摩擦力为物块重 力的k 倍,物块与转轴OO ′相距R ,物块随转台由静止开始转动,当转速增加 到一定值时,物块即将在转台上滑动,在物块由静止到滑动前的这一过程中, 转台的摩擦力对物块做的功为( ) A .0 B .2πkmgR C .2kmgR D.12 kmgR 5. 如图所示,A 、B 两球质量相等,A 球用不能伸长的轻绳系于O 点,B 球用轻弹簧系于O ′点,O 与O ′点在同一水平面上,分别将A 、B 球拉到与悬点等高处,使绳和轻弹簧均处于水平,弹簧处于自然状态,将两球分别由静止开始释放,当两球达到各自悬点的正下方时,两球仍处在同一水平面上,则( ) A .两球到达各自悬点的正下方时,两球动能相等 B .两球到达各自悬点的正下方时,A 球动能较大 C .两球到达各自悬点的正下方时,B 球动能较大 D .两球到达各自悬点的正下方时,A 球受到向上的拉力较大 6. 如图所示,质量相等的甲、乙两物体开始时分别位于同一水平线 上的A 、B 两点.当甲物体被水平抛出的同时,乙物体开始自由下落.曲 线AC 为甲物体的运动轨迹,直线BC 为乙物体的运动轨迹,两轨迹相交 于C 点,空气阻力忽略不计.则两物体( ) A .在C 点相遇 B .经 C 点时速率相等 C .在C 点时具有的机械能相等 D .在C 点时重力的功率相等 7. 有一竖直放置的“T ”形架,表面光滑,滑块A 、B 分别套在水平 杆与竖直杆上,A 、B 用一不可伸长的轻细绳相连,A 、B 质量相等,且可 看作质点,如图所示,开始时细绳水平伸直,A 、B 静止.由静止释放B 后,已知当细绳与竖直方向的夹角为60°时,滑块B 沿着竖直杆下滑的速 度为v ,则连接A 、B 的绳长为( )

2021新人教版高中物理必修2全册复习教学案

高中物理必修2(新人教版)全册复习教学案 内容简介:包括第五章曲线运动、第六章万有引力与航天和第七章机械能守恒定律,具体可以分为,知识网络、高考常考点的分析和指导和常考模型规律示例总结,是高一高三复习比较好的资料。 一、 第五章 曲线运动 (一)、知识网络 (二)重点内容讲解 1、物体的运动轨迹不是直线的运动称为曲线运动,曲线运动的条件可从两个角度来理解:(1)从运动学角度来理解;物体的加速度方向不在同一条直线上;(2)从动力学角度来理解:物体所受合力的方向与物体的速度方向不在一条直线上。曲线运动的速度方向沿曲线的切线方向,曲线运动是一种变速运动。 曲线运动是一种复杂的运动,为了简化解题过程引入了运动的合成与分解。一个复杂的运动可根据运动的实际效果按正交分解或按平行四边形定则进行分解。合运动与分运动是等效替代关系,它们具有独立性和等时性的特点。运动的合成是运动分解的逆运算,同样遵循曲线运动

平等四边形定则。 2、平抛运动 平抛运动具有水平初速度且只受重力作用,是匀变速曲线运动。研究平抛运动的方法是利用运动的合成与分解,将复杂运动分解成水平方向的匀速直线运动和竖直方向的自由落体运动。其运动规律为:(1)水平方向:a x =0,v x =v 0,x= v 0t 。 (2)竖直方向:a y =g ,v y =gt ,y= gt 2 /2。 (3)合运动:a=g ,2 2y x t v v v += ,22y x s +=。v t 与v 0方向夹角为θ,tan θ= gt/ v 0, s 与x 方向夹角为α,tan α= gt/ 2v 0。 平抛运动中飞行时间仅由抛出点与落地点的竖直高度来决定,即g h t 2= ,与v 0无关。水平射程s= v 0 g h 2。 3、匀速圆周运动、描述匀速圆周运动的几个物理量、匀速圆周运动的实例分析。 正确理解并掌握匀速圆周运动、线速度、角速度、周期和频率、向心加速度、向心力的概念及物理意义,并掌握相关公式。 圆周运动与其他知识相结合时,关键找出向心力,再利用向心力公式F=mv 2/r=mr ω2 列式求解。向心力可以由某一个力来提供,也可以由某个力的分力提供,还可以由合外力来提供,在匀速圆周运动中,合外力即为向心力,始终指向圆心,其大小不变,作用是改变线速度的方向,不改变线速度的大小,在非匀速圆周运动中,物体所受的合外力一般不指向圆心,各力沿半径方向的分量的合力指向圆心,此合力提供向心力,大小和方向均发生变化;与半径垂直的各分力的合力改变速度大小,在中学阶段不做研究。 对匀速圆周运动的实例分析应结合受力分析,找准圆心的位置,结合牛顿第二定律和向心力公式列方程求解,要注意绳类的约束条件为v 临=gR ,杆类的约束条件为v 临=0。 (三)常考模型规律示例总结 1.渡河问题分析 小船过河的问题,可以 小船渡河运动分解为他同时参与的两个运动,一是小船相对水的运动(设水不流时船的运动,即在静水中的运动),一是随水流的运动(水冲船的运动,等于水流的运动),船的实际运动为合运动. 例1:设河宽为d,船在静水中的速度为v 1,河水流速为v 2 ①船头正对河岸行驶,渡河时间最短,t 短= 1 v d ②当 v 1> v 2时,且合速度垂直于河岸,航程最短x 1=d 当 v 1< v 2时,合速度不可能垂直河岸,确定方法如下: 如图所示,以 v 2矢量末端为圆心;以 v 1矢量的大小为半径画弧,从v 2矢量的始端向圆弧作切线,则 合速度沿此切线航程最短, 由图知: sin θ=2 1v v

高中物理必修二测试题含答案word版本

F α l F α A B C 地球 卫星 高一物理 下学期期末测试 卷 一、单项选择题(本题共10小题,每小题3分,共30分。在每小题给出的四个选项中,只有一个选项是符合题意的。) 1.在光滑水平面上,一质量为m 的小球在绳的拉力作用下做半径为r 的匀速圆周运动,小球运动的线速度大小为v ,则绳的拉力F 大小为 A .r v m B . r v m 2 C .mvr D .mvr 2 2.如图所示,一个物块在与水平方向成α角的恒定推 力F 的作用下,沿水平面向右运动一段距离l 。在此过程中,恒力F 对物块所做的功为 A .Fl B .Fl sin α C .Fl cos α D .Fl tan α 3.一颗运行中的人造地球卫星,若它到地心的距离为r 时,所受万有引力为F ,则它到地心的距离为2r 时,所受万有引力为 A . 41 F B .2 1F C .4F D .2F 4.将一小球以3m/s 的速度从0.8m 高处水平抛出,不计空气阻力,取g =10m/s 2,小球 落地点与抛出点的水平距离为 A .0.8m B .1.2m C .1.6m D .2.0m 5.如图所示,一卫星绕地球运动,运动轨迹为椭圆, A 、B 、C 、D 是轨迹上的四个位置,其中A 点距离地球 最近,C 点距离地球最远。卫星运动速度最大的位置是 A .A 点 B .B 点 C .C 点 D .D 点 6.质量是2g 的子弹,以300m/s 的速度垂直射入厚度为5cm 的木板,射穿后的速度为100m/s 。则子弹射穿木板过程中受到的平均阻力大小为 A .1000N B .1600N C .2000N D .2400N 7.如图所示,一半圆形碗,内径为R ,内壁光滑。将一质量为m 的小球从碗边缘A 点由静止释放,当球滑到碗底的最低点B 时,球对碗底的压力大小为 A .mg B .2mg C .3mg D .4mg 8.在一根两端封闭的玻璃管中注满清水,水中放一个圆柱形的红蜡块R ,(蜡块的直径略小于玻璃管的内径),轻重适宜,它能在玻璃管内的水中匀速上升。如图,当红蜡块从A 端开始匀速上升的同时,将玻璃管由静止开始水平向右匀加速移动。红蜡块与玻璃管间的摩擦很小,可以忽略不计,在这一过程中红蜡块相对于地面 B A 乙 R 甲 R A B a v

高一物理必修二第七章--机械能守恒定律及答案

高一物理必修二第七章--机械能守恒定律及 答案 -CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN

2 第七章 机械能守恒定律 一、选择题 1.质量为m 的小物块在倾角为α的斜面上处于静止状态,如图所示。若斜面体和小物块一起以速度v 沿水平方向向右做匀速直线运动,通过一段位移x 。斜面体对物块的摩擦力和支持力的做功情况是( ) A .摩擦力做正功,支持力做正功 B .摩擦力做正功,支持力做负功 C .摩擦力做负功,支持力做正功 D .摩擦力做负功,支持力做负功 2.在粗糙水平面上运动着的物体,从A 点开始在大小不变的水平拉力F 作用下做直线运动到B 点,物体经过A 、B 点时的速度大小相等。则在此过程中( ) A .拉力的方向一定始终与滑动摩擦力方向相反 B .物体的运动一定不是匀速直线运动 C .拉力与滑动摩擦力做的总功一定为零 D .拉力与滑动摩擦力的合力一定始终为零 3.材料相同的A 、B 两块滑块质量m A >m B ,在同一个粗糙的水平面上以相同的初速度运动,则它们的滑行距离x A 和x B 的关系为( ) A .x A >x B B .x A = x B C .x A <x B D .无法确定 4.某人在高h 处抛出一个质量为m 的物体,不计空气阻力,物体落地时速度为 v ,该人对物体所做的功为( ) A .mgh B .22v m C .mgh +2 2 v m D .2 2 v m -mgh 5.如图所示的四个选项中,木块均在固定的斜面上运动,其中图A 、B 、C 中的斜面是光滑的,图D 中的斜面是粗糙的,图A 、B 中的F 为木块所受的外力,方向如图中箭头所示,图 A 、B 、D 中的木块向下运动,图C 中的木块向上运动,在这四个图所示的运动过程中机械能守恒的是 A B C D 6.在下面列举的各个实例中,哪些情况机械能是守恒的?( ) A .汽车在水平面上匀速运动 B .抛出的手榴弹或标枪在空中的运动(不计空气阻力) C .拉着物体沿光滑斜面匀速上升 D .如图所示,在光滑水平面上运动的小球碰到一个弹簧,把弹簧压缩后,又被弹回来 7.沿倾角不同、动摩擦因数 相同的斜面向上拉同一物体,若上升的高度相同,则( ) v v

高一物理必修二综合测试题(含答案).

高一综合测试卷 班级 姓名得分 一、单选(30分) 1.发现万有引力定律和测出引力常量的科学家分别是() A. 开普勒、卡文迪许 B. 牛顿、伽利略 C. 牛顿、卡文迪许 D. 开普勒、伽利略 2.下列关于匀速圆周运动的说法中正确的是() A .匀速圆周运动状态是平衡状态 B .匀速圆周运动是匀变速曲线运动 C .匀速圆周运动是速度和加速度都不断改变的运动 D .匀速圆周运动的物体受到的合外力是恒力 3.假如一做圆周运动的人造地球卫星的轨道半径增大到原来的2倍,仍做圆周运动,则() A .根据公式v=ωr ,可知卫星运动的线速度将增大到原来的2倍 B .根据公式r v m F 2 ,可知卫星运动的线速度将增大到原来的 2倍C .根据公式F=m r v 2 ,可知卫星所需要的向心力将减小到原来的21倍D .根据公式F=G 2 r Mm ,可知地球提供的向心力将减小到原来的 4 1倍 4.一起重机吊着物体以加速度a(a

(完整word版)高一物理必修二期中试卷及答案

高一物理必修二期中试卷及答案 一、选择题 1、小球以水平速度v 0向竖直墙抛出,小球抛出点与竖直墙的距离为L ,在抛出点处有一点光源,在小球未打到墙上前,墙上出现小球的影子向下运动,则影子的运动是:( ) A 、匀速运动 B 、匀加速运动,加速度是g C 、匀加速运动,加速度大于g D 、匀加速运动,加速度小于g 2、火车以0.98M/S 2的加速度在平直轨道上加速行驶,车厢中一乘客把手伸出窗外从距地面高2.5m 处自由释放一物体,不计空气阻力,物体落地时与乘客的水平距离为:( ) A 、0 B 、0.25m C 、0.50m D 、因不知火车速度无法判断 3、从离地面高为h 处,以水平速度v 0抛出一物体,物体落地时的速度与竖直方向所成的夹角为θ,取下列四组h 和v 0的值时,能使θ角最大的一组数据是:( ) A 、hm v m s ==5100,/ B 、hm v m s ==5150,/ C 、h m v m s ==1050,/ D 、h m v m s ==10200,/ 4、匀速圆周运动中的向心加速度是描述:( ) A 、线速度大小变化的物理量 B 、线速度大小变化快慢的物理量 C 、线速度方向变化的物理量 D 、线速度方向变化快慢的物理量 5、飞机驾驶员最多可承受9倍的重力加速度带来的影响,当飞机在竖直平面上沿圆弧轨道俯冲时速度为v ,则圆弧的最小半径为:( ) A 、v g 29 B 、v g 28 C 、v g 27 D 、v g 2 6、如图7所示。a 、b 两质点从同一点O 分别以相同的水平速度v 0沿x 轴正方向被抛出, A 在竖直平面内运动,落地点为P 1,B 沿光滑斜面运动,落地点为P 2。P 1和P 2在同一水平面上,不计空气阻力。则下面说法中正确的是:( ) A .a 、b 的运动时间相同 B .a 、b 沿x 轴方向的位移相同 C .a 、b 落地时的动量相同 D .a 、b 落地时的动能相同 7、把甲物体从2h 高处以速度V 水平抛出,落地点的水平距离为L,把乙物体从h 高处以速度2V 水平抛出,落地点的水平距离为S,比较L 与S,可知:( ) A 、L=S/2 B 、L=2S C 、L S =1 2 D 、 L S =2 8、下图是物体做平抛运动的x-y 图象,物体从O 点抛出,x 、y 分别为其水平和竖直位移,在物体运动的过程中,经某一点P(x,y)时,其速度的反向延长线交于x 轴上的A 点,则OA 的长为:( ) A 、x B 、0.5x C 、0.3x D 、不能确定. 9、如图所示,在皮带传动装置中,主动轮A 和从动轮B 半径不等,皮带与轮之间无相对滑动,则下列说法中正确的是:( ) A B

高中物理必修二第七章-机械能守恒定律知识点总结

机械能知识点总结 一、功 1概念:一个物体受到力的作用,并在力的方向上发生 了一段位移,这个力就对物体做了功。功是能 量转化的量度。 2条件:. 力和力的方向上位移的乘积 3公式:W=F S cos θ W ——某力功,单位为焦耳(J ) F ——某力(要为恒力) ,单位为牛顿(N ) S ——物体运动的位移,一般为对地位移,单位为米(m ) θ——力与位移的夹角 4功是标量,但它有正功、负功。 某力对物体做负功,也可说成“物体克服某力做功”。 当)2 ,0[πθ∈时,即力与位移成锐角,功为正;动力做功; 当2π θ=时,即力与位移垂直功为零,力不做功; 当],2 (ππ θ∈时,即力与位移成钝角,功为负,阻力做功; 5功是一个过程所对应的量,因此功是过程量。 6功仅与F 、S 、θ有关,与物体所受的其它外力、速度、加速度无关。 7几个力对一个物体做功的代数和等于这几个力的合力对物体所做的功。 即W 总=W 1+W 2+…+Wn 或W 总= F 合Scos θ 8 合外力的功的求法: 方法1:先求出合外力,再利用W =Fl cos α求出合外力的功。

方法2:先求出各个分力的功,合外力的功等于物体所受各力功的代数和。 二、功率 1概念:功跟完成功所用时间的比值,表示力(或物体)做功的快慢。 2公式:t W P =(平均功率) θυcos F P =(平均功率或瞬时功率) 3单位:瓦特W 4分类: 额定功率:指发动机正常工作时最大输出功率 实际功率:指发动机实际输出的功率即发动机产生牵引力的功率,P 实≤P 额。 5分析汽车沿水平面行驶时各物理量的变化,采用的基本公式是P =Fv 和F-f = ma 6 应用: (1)机车以恒定功率启动时,由υF P =(P 为机车输出功率,F 为机车牵引力,υ为机车前进速度)机车速度不断增加则牵引力不断减小,当牵引力f F =时,速度不再增大达到最大值m ax υ,则f P /max =υ。 (2)机车以恒定加速度启动时,在匀加速阶段汽车牵引力F 恒定为f ma +,速度不断增加汽车输出功率υF P =随之增加,当额定P P =时,F 开始减小但仍大于f 因 此机车速度继续增大,直至f F =时,汽车便达到最大速度m ax υ,则f P /max =υ。 三、重力势能 1定义:物体由于被举高而具有的能,叫做重力势能。 2公式:mgh E P =

人教版高中物理必修二万有引力练习题

高中物理学习材料 (马鸣风萧萧**整理制作) 万有引力练习 1.关于万有引力定律应用于天文学研究的历史事实,下列说法中正确的是() A.天王星、海王星和冥王星,都是运用万有引力定律、经过大量计算后而发现的 B.在18世纪已经发现的7个行星中,人们发现第七个行星——天王星的运动轨道总是同根据万有引力定律计算出来的结果有比较大的偏差,于是有人推测,在天王星轨道外还有一个行星,是它的存在引起了上述偏差 C.第八个行星,是牛顿运用自己发现的万有引力定律,经大量计算而发现的 D.冥王星是英国剑桥大学的学生亚当斯和勒维列合作研究后共同发现的 答案:B 解析:只要认真阅读教材,便能作出正确判断。 2.2007年1月17日,我国在西昌发射了一枚反卫星导弹,成功地进行了一次反卫星武器试验。相关图片如图所示,则下列说法正确的是()

A.火箭发射时,由于反冲而向上运动 B.发射初期时,弹头处于超重状态,但它受到的重力越来越小C.高温高压燃气从火箭尾部喷出时对火箭的作用力与火箭对燃气的作用力大小相等 D.弹头即将击中卫星时,弹头的加速度大于卫星的加速度 答案:ABC 解析:火箭发射时,向下喷出高速高压燃气,得到反冲力,从而向上运动,而且燃气对火箭的作用力与火箭对燃气的作用力为作用力与反作用力,大小一定相等,故A、C正确;发射初期,弹头加速度向上,处于超重状态,但随它离地高度的增大,重力越来越小,B正=ma可知,弹头击中卫星时,在同一高度处,弹头与确。由GMm (R+h)2 卫星的加速度大小相等,D错误。 3.(2012·河北冀州中学高一期中)宇航员乘飞船前往A星球,其中有一项任务是测该星球的密度。已知该星球的半径为R,引力常量为G。结合已知量有同学为宇航员设计了以下几种测量方案。你认为

高一物理必修二期末考试试卷

高一物理必修二期末模拟试卷 一、选择题(本题共12小题,每小题4分,共48分。在每小题给出的四个选项中,有的小 题只有一个选项正确,有的小题有多个选项正确。全部选对的得4分,选不全的得2分,有选错或不答的得0分。) 1.下列说法正确的是 ( ) A .木块放在桌面上要受到一个向上的弹力,这是由于木块发生微小的形变而产生的 B .拿一根细竹竿拨动水中的木头,木头受到竹竿的弹力,这是由于木头发生形变而产生的 C .放在斜面上的物体对斜面的压力是由于斜面发生微小形变而产生的 D .挂在电线下面的电灯受到向上的拉力,是因为电线发生微小的形变而产生的 2.关于力,速度,加速度,运动状态之间的关系,下列说法正确的是 ( ) A .运动物体的加速度逐渐增大,速度也一定增大 B .物体的速度为零时,加速度也一定为零 C .如果物体运动状态会发生改变,则物体所受的合外力一定不为零 D .物体受到的合外力的方向与物体加速度方向相同,与速度方向也一定相同 3.用手将一个水桶竖直上加速..提起时,下列判断正确的是 ( ) A .手提桶的大力于桶所受的重力 B .手提桶的力等于桶所受的重力 C .手提桶的力大于桶拉手的力 D .手提桶的力等于桶拉手的力 4.冰面对溜冰运动员的最大静摩擦力为运动员重力的k 倍,在水平冰面上沿半径为R 的圆周滑行的运动员,其安全速度的最大值是 ( ) A .gR k B .kgR C .kgR 2 D .k gR / 5.假如一个做匀速圆周运动的人造地球限卫星的轨道半径增大到原来的2倍,仍做圆周运动,则 ( ) A .根据公式v =ωr ,可知卫星运动的线速度将增大到原来的2倍 B .根据公式r v m F 2 =,可知卫星所需的向心力将减小到原来的21 C .根据公式2 r Mm G F =,可知地球提供的向心力将减小到原来的41 D .根据上述B 和C 中给出的公式,可知卫星运动的线速度将减小到原来的2 2 6. 汽车关闭发动机后,它的位移随时间变化的关系是s=20t -2t 2(s 的单位是m ,t 的单位是s)则它停下来所花的时间是: ( ) A .2.5s B .5s C .10s D .20s 7.如图所示,小船以大小为v 1、方向与上游河岸 成θ的速度(在静水中的速度)从A 处过河, 经过t 时间,正好到达正对岸的B 处。现要使小 船在更短的时间内过河并且也正好到达正对岸B 处,在水流速度不变的情况下,可采取下列方法 中的哪一种: ( ) A .只要增大v 1大小,不必改变θ角B .只要增大θ角,不必改变v 1大小 C .在增大v 1的同时,也必须适当增大θ角 D .在增大v 1的同时,也必须适当减小θ角

最新教科版高中物理必修二测试题全套及答案

最新教科版高中物理必修二测试题全套及答案 重点强化卷(一)平抛运动规律的应用 一、选择题 1.一个物体以速度v0水平抛出,落地时速度的大小为2v0,不计空气的阻力,重力加速度为g,则物体在空中飞行的时间为() A.v0 g B. 2v0 g C.3v0 g D. 2v0 g 【解析】如图所示,gt为物体落地时竖直方向的速度,由(2v0)2=v20+(gt)2得:t=3v0 g, C正确. 【答案】 C 2. (多选)如图1所示,在高空匀速飞行的轰炸机,每隔1 s投下一颗炸弹,若不计空气阻力,则() 图1 A.这些炸弹落地前排列在同一条竖直线上 B.这些炸弹都落于地面上同一点 C.这些炸弹落地时速度大小方向都相同 D.相邻炸弹在空中距离保持不变 【解析】这些炸弹是做平抛运动,速度的水平分量都一样,与飞机速度相同.相同时间内,水平方向上位移相同,所以这些炸弹排在同一条竖直线上.这些炸弹抛出时刻不同,落地时刻也不一样,不可能落于地面上的同一点.由于这些炸弹下落的高度相同,初速度也相同,这些炸弹落地时速度大小和方向都相同. 两相邻炸弹在空中的距离为

Δx =x 1-x 2=12g (t +1)2-12gt 2=gt +1 2g . 由此可知Δx 随时间t 增大而增大. 【答案】 AC 3. (多选)某人在竖直墙壁上悬挂一镖靶,他站在离墙壁一定距离的某处,先后将两只飞镖A 、B 由同一位置水平掷出,两只飞镖插在靶上的状态如图2所示(侧视图),若不计空气阻力,下列说法正确的是( ) 图2 A . B 镖的运动时间比A 镖的运动时间长 B .B 镖掷出时的初速度比A 镖掷出时的初速度大 C .A 镖掷出时的初速度比B 镖掷出时的初速度大 D .A 镖的质量一定比B 镖的质量小 【解析】 飞镖A 、B 都做平抛运动,由h =1 2gt 2得t = 2h g ,故B 镖运动时间比A 镖运 动时间长,A 正确;由v 0=x t 知A 镖掷出时的初速度比B 镖掷出时的初速度大,B 错误,C 正确;无法比较A 、B 镖的质量大小,D 错误. 【答案】 AC 4.从O 点抛出A 、B 、C 三个物体,它们做平抛运动的轨迹分别如图3所示,则三个物体做平抛运动的初速度v A 、v B 、v C 的关系和三个物体在空中运动的时间t A 、t B 、t C 的关系分别是( ) 图3 A .v A >v B >v C ,t A >t B >t C B .v A t B >t C D .v A >v B >v C ,t A

(人教版)高中物理必修2配套练习(全册)同步练习汇总

(人教版)高中物理必修2配套练习(全册)同步练习汇总 1.1 新提升·课后作业 一、选择题 1.对于豌豆的一对相对性状的遗传试验来说,必须具备的条件是 ①选作杂交试验的两个亲本一定要是纯种 ②选定的一对相对性状要有明显差异 ③一定要让显性性状作母本 ④一定要实现两个亲本之间的有性杂交 ⑤杂交时,须在开花前除去母本的雌蕊 A.①②③④ B.①②④ C.③④⑤ D.①②⑤ 【解析】在该实验中,选作杂交实验的两个亲本一定要是纯种,①正确;为了便于观察,选定的一对相对性状要有明显差异,②正确;该试验进行了正交和反交试验,结果均相同,因此不一定要让显性亲本作母本,隐性亲本也可作母本,③错误;孟德尔遗传试验过程为先杂交后自交,因此要让两个亲本之间进行有性杂交,④正确;杂交时,须在开花前除去母本的雄蕊,而不是雌蕊,⑤错误。故B项正确,A、C、D项错误。 【答案】 B 2.下列各组中不属于相对性状的是

A.水稻的早熟和晚熟 B.豌豆的紫花和红花 C.小麦的抗病和易感染病 D.绵羊的长毛和细毛 【解析】相对性状是指同种生物的同一性状的不同表现型,水稻的早熟和晚熟是相对性状,故A正确。豌豆的紫花和红花是相对性状,故B正确。小麦的抗病和易感病是相对性状,故C正确。绵羊的长毛和细毛不是同一性状,故D错误。 【答案】 D 3.某男子患白化病,他父母和妹妹均无此病,如果他妹妹与白化病患者结婚,生出病孩的概率是 A.1/2 B.2/3 C.1/3 D.1/4 【解析】该男子患白化病,而其父母和妹妹均无病,说明其双亲是白化病携带者,其妹妹有1/3是纯合子,2/3是杂合子的概率,与白化病患者结婚,生出病孩的概率是2/3×1/2=1/3,故C正确,A、B、D错误。 【答案】 C 4.大豆的白花和紫花为一对相对性状。下列实验中,能判定性状显隐性关系的是 ①紫花×紫花→紫花 ②紫花×紫花→301紫花+110白花 ③紫花×白花→紫花 ④紫花×白花→98紫花+107白花 A.①和③ B.②和③ C.③和④ D.④和① 【解析】亲本和子代都一样,无法判断显隐性,故①错误,A、D错误。亲本都是紫花,而子代出现了白花,说明紫花是显性性状,故②正确。紫花和白花后代都是紫花,说明紫花是显性性状,故③正确,故B正确。亲本是紫花和白花后代也是紫花和白花,无法说明显隐性,故④错误。 【答案】 B 5.孟德尔的一对相对性状的遗传实验中,F2高茎豌豆与矮茎豌豆的数量比接近3:1,最关键的原因是 【解析】分析图形可知,A、B、C都是减数分裂形成配子的过程,D是受精作用产生子代的过程;基因分离定律中,因为杂合子减数分裂能产生D:d=1:1的配子,雌雄配

(推荐)高一物理必修2圆周运动测试题

高一物理必修2圆周运动测试题 第Ⅰ卷(选择题) 一.选择题 (请将你认为正确的答案代号填在Ⅱ卷的答题栏中,本题共12小题) 1. 冰面对滑冰运动员的最大摩擦力为其重力的k 倍,在水平冰面上沿半径为R 的圆周滑行的运动员,若仅依靠摩擦力来提供向心力而不冲出圆形滑道,其运动的速度应满足 A.v kRg ≥ B.v kRg ≤ C.2v kRg ≤ D./2v kRg ≤ 2. 高速行驶的竞赛汽车依靠摩擦力转弯是有困难的,所以竞赛场地的弯道处做成斜坡,如果弯道半径为r ,斜坡和水平面成角,则汽车完全不依靠摩擦力转弯时的速度大小为. A.gr sin B.gr cos C.αtan gr D.αcot gr 3. 如图所示,ab 、cd 是竖直平面内两根固定的光滑细杆,a 、b 、c 、d 位于同一圆周上,b 点为圆周的最低点,c 点为圆周的最高点,若每根杆上都套着一个小滑环(图中未画出),将两滑杆同时从a 、c 处由静止释放,用t 1、t 2分别表示滑环从a 到b 、c 到d 所用的时间,则 A.t 1=t 2 B.t 1>t 2 C.t 1

相关文档
相关文档 最新文档