文档库 最新最全的文档下载
当前位置:文档库 › 程潮铁矿地下开采引起岩层移动机制初探_程关文

程潮铁矿地下开采引起岩层移动机制初探_程关文

程潮铁矿地下开采引起岩层移动机制初探_程关文
程潮铁矿地下开采引起岩层移动机制初探_程关文

采空区引起的岩层移动及其对主要开拓巷道的影响

书山有路勤为径,学海无涯苦作舟 采空区引起的岩层移动及其对主要开拓巷道的影响 当矿石被采出后,形成采空区,这时原岩体的应力平衡状态受破坏,随后便有采空区部分及周围地压活动的出现(有时在采空区形成后一个相当长的时间,才出现地压活动),岩石逐渐变形、移动直到陷落。根据采空区的大小以及离地面的深度不同,有的在采空区形成后不长时差,地压活动会出现,迅速波及地表。有的在相隔很长一段时间后,才能影响地表。也有的因采空区容积小,与地表距离较大,将一直不会影响地表。但不管上述的哪咱情况,都应引起人们的注意。如一些老矿山,在矿山生产过程中并未出现陷落现象,但在矿山末期,就出现了问题。辽宁省几个中型矿山的末期,地表都曾出现了移动和陷落。有的使矿山地表建筑受到了破坏。如华铜矿坑口原卷扬机就受到了破坏。有的影响了公路和民用住房,甚至影响到井筒,使其受到破坏。因此,在矿山设计中,采空区岩层行动移动对主要开拓巷道位置的影响,必须予以足够的重视。 采空区上部地表发生崩落和移动的范围,分别叫做崩落带和移动带(图7- 22)。采空区边界与地表崩落带和移动带边线的边线和水平面之间的夹角,分别叫做崩落角和移动角。 崩落角与移动角的大小,与采空区上部岩层的物理机械性质、层理和节理的发育程度、水文地质构造、开采深度以及所采用的采矿方法等因素有直接关系,通常在30º~80º之间。每种岩层和地质条件有其自己的崩落角和移动角。一般说来,矿体上盘岩石移动角上于下盘岩石移动角,矿体走向两端的移动角最大。表7-6 为常见的岩石移动角。 地表移动带内区域为危险区,在移动地带内布置的开拓工程或地表永久性建(构)筑物将受到破坏。为确保安全,避免因地表移动而带来的损失,应将主

第一章 开采引起的岩层与地表移动

第一章开采引起的岩层与地表移动 煤矿开采的三性特殊性、艰巨性和困难性; 特殊困难条件下的开采 三下一上(建筑物下、铁路下、水体下和承压水上);有冲击地压危险的煤层;有煤与瓦斯突出危险的煤层;三软煤层;深部;边角煤;极薄煤层。 采用特殊开采工艺方式 短壁开采;充填采煤;上行开采;水力采煤;煤与煤层气共采;煤的地下气化 1、下沉及变化规律 主断面内地表移动向量的铅直分量,用W表示。坐标O点:最大下沉值处的地表点W坐标轴向下为正,单位为mmx坐标轴向右为正,单位为mW=W(x)最大下沉值在盆地中央,Wo=W5; x增加,W由零增加到最大,而后又趋于零W(-x)=W(x);边界点由d0决定;下沉曲线凹凸分界的拐点处,下沉值约为最大值的一半 2、倾斜 倾斜是指地表单位长度内下沉的变化,用i表示单位为mm/m,i坐标轴向下为正 倾斜是地表下沉的一阶导数,i(x) 正负号的决定:① i=tga 下沉曲线的切线与x轴正向所夹锐角为+a时,倾斜为正; 下沉曲线的切线与x轴正向所夹锐角为-a时倾斜为负。 倾斜的正负号的物理意义;垂直于地表下沉曲线的杆状物倾倒的趋向与x轴正向相同时,倾斜为正;杆状物倾倒的趋向与x 轴负向相同时倾斜为负。 3、水平移动 水平移动-地表移动向量的水平分量,用U表示,单位为mm,U=U(x),有两组方向不同的水平移动

规定:正值的水平移动与x轴的正方向一致 负值的水平移动与x轴的负方向一致 水平移动U(x)和倾斜i(x)的变化趋势同步他们之间相差一个有单位的比例系数B 4、曲率 地表单位长度内倾斜的变化,用K表示,单位为mm/m2或 10-3/m。 曲率坐标轴向上为正 . 正负号 倾斜曲线的切线与x轴正向所夹锐角为+a时,曲率为正; 倾斜曲线的切线与x轴正向所夹锐角为-a时曲率为负。 曲率正负号的物理意义 ; 正曲率的物理意义是地表下沉曲线在地面方向凸起或在煤层方向下凹.负曲率的物理意义是地表下沉曲线在地面方向下凹或在煤层方向凸起 5、水平变形 水平变形—单位长度上水平移动的变化 用 e 表示,坐标向上为正,单位:mm/m 正负号 用tga,水平移动曲线的切线与x轴正向所夹锐角为+a时,曲率为正; 水平移动曲线的切线与x轴正向所夹锐角为-a时曲率为负。 水平变形正负号的物理意义 . 水平变形正值的物理意义为地表受拉伸变形,负值的物理意义为地表受压缩变形。 水平变形的变化规律 两个相等的正极值和两个相等的负极值 正极值为最大拉伸值,位于边界点和拐点之间; 负极值为最大压缩值,位于两个拐点之间; 盆地边界点、拐点和中点处水平变形为零;

岩层及地表移动的各种参数

岩层及地表移动的各种参数(08-12-2修订) 通过地表移动观测确定地表移动参数: 边界角:在充分采动或接近充分采动条件下,地表移动盆地主断面上盆地边界点(下沉值为10mm)至采空区边界的连线与水平线在煤柱一侧的夹角。考虑松散层时,还要根据松散层移动角确定。 移动角:在充分采动或接近充分采动条件下,地表移动盆地主断面上三个临界变形值中最外边的一个临界变形值点至采空区边界的连线与水平线在煤柱一侧的夹角。考虑松散层时,还要根据松散层移动角确定。 三个临界变形值为:倾斜变形3mm/m;水平变形2mm/m;曲率变形0.2mm/m2。 裂缝角:在充分采动或接近充分采动条件下,地表移动盆地内最外侧的地表裂缝至采空区边界的连线与水平线在煤柱一侧的夹角。 充分采动角:在充分采动条件下,地表移动盆地平地边缘点至采空区边界连线与煤层在采空区一侧的夹角。 以上各角又都分为上山、下山和走向三角。 最大下沉角:非充分采动时,地表移动盆地中心区的最大下沉点至采空区中心点的连线与水平线在下山方向的夹角。充分采动

时,在松散层不厚情况下,可依据上下山充分采动角作两直线,其交点至采空区中点连线与水平线在下山一侧的夹角。 开采影响传播角:充分采动时,倾向主断面上地表最大下沉值与该点水平移动值的比值的反正切值。 关于最大下沉角和开采影响传播角,有些书和文章不加区分,其实从以上《规程》中的定义来看,一个通过作图得到,一个通过计算得到,二者从数值上是很可能不同的。 地表移动计算参数: 下沉系数:充分采动时,地表最大下沉值与煤层法线采厚在铅垂方向投影长度的比值。 水平移动系数:充分采动时,走向主断面上地表最大水平移动值与地表最大下沉值的比值。 主要影响角正切:走向主断面上走向边界采深与其主要影响半径之比。在概率积分法预计时,不用边界角、移动角和裂缝角作为预计参数而一般采用主要影响角正切作为预计参数。 注意:主要影响角与下山移动角是不同的概念。 拐点偏距:下沉曲线的几何拐点与煤壁在水平方向上的偏离距离(偏向采空区)。 对于以上计算参数,《规程》给出了根据地表移动观测站数据计算的方法。对于缺少实际观测资料的矿区,可采用覆岩综合评价系数P及地质、开采技术条件来确定地表移动计算参数(见《规程》)。《规程》还给出了煤层群条件下,如果下层煤开采的影

岩石移动观测

关于岩石移动 一.岩石移动的测量 第一节基本要求 各生产矿山,应根据本矿山地质采矿条件,开展岩石移动和边坡滑动的观测研究工作,其目的是: 1、通过岩石移动和边坡滑动的各种测试手段(仪器观测和现场调查),及时掌握井下、地表岩层移动及露天采场、尾矿坝边坡滑动征兆,为矿山安全生产提供技术资料。 2、对矿山不同开采技术条件的地表岩层移动、变形和破坏的基本特征与规律进行观测和研究。并验证、修改和确定岩石移动角值等参数; 3、研究露天采场、尾矿坝边坡的稳定性和边坡角的经济合理性; 4、观测采空区各种不同处理方法和边坡治理工程的效果; 5、总结岩石移动观测研究工作的经验,不断改进观测方法; 岩石移滑动观测的主要手段:(如:井下、岩层内部、地表及各种专门观测站等),定期观测平面和搞成位置的变化,掌握岩石移滑动饿基本特征与规律。 岩石移动观测站饿设计,应从矿区的整体规划出发,根据矿床地质开采条件,采取由简到繁,由浅到深,由局部到整体的原则,分别轻重缓急,分期设置观测站。 除对观测站定期观测外,还必须经常深入现场,借助简易方法(如:滑尺、垂球投点等),测量采区顶板岩石移量,倾听岩体音响,观察

裂隙、错动及坍塌等现象,并作文字描述,必须时测绘成图或拍摄照片。 第二节地下开采的岩移观测 开采缓倾斜层状矿体时,地表岩移观测线,一般沿矿体走向和倾向各设一条,应分别设在移动盆地的主断面和采空区正上方。如果回踩工作面的走向长度大于1.4H0+50米(H0为平均开采深度),可设置两条倾斜方向的观测线,一条在采空区正上方,另一条在其相距50米以上的任一侧,但至起始开采或停采线的距离必须大于0.7 H0。 开采急倾斜矿体时,沿矿体走向的观测线以不知两条为宜,一条在主断面位置上,另一条在采空区正上方,两观测线艰巨应不小于30米。沿倾斜方向的观测线布置两条,即在采空区工作面走向长度大于1.6 H0+100米,应布置三条或三条以上垂直走向的观测线,一条在采空区中央,其余的在两侧相距约50米,且距左右开采边界0.8 H0以上。 当矿床地质构造复杂,走向不明显,矿体厚度变化大时,可沿回采工作面主要方向不舍观测线。 当采区形状不规则,开采深度小,地表又分布重要工业设施和目的物(河流、湖泊、塘坝等)或民用建筑密布,应增加观测点密度,采用剖面线与方格网相结合的建站方案。 确定观测线长度所用的移动角值,应尽可能采用本矿山通过岩移观测所得的各种岩石移动角值,如尚未求得时,可选用与本矿地质、采矿条件相似的矿山所求的角值,按类比法确定。

矿山压力与岩层控制部分习题答案

一、重要概念 1矿山压力、2 矿山压力显现、3矿山压力控制、4原岩应力、5支承压力、6老顶、7直接顶、8直接顶初次垮落、9顶板下沉量、10老顶初次来压、11周期来压、12关键层、13开采沉陷、14充分采动与非充分采动、15岩层移动角、16岩层变形、17沿空留巷、18沿空掘巷、19锚固力、 20软岩、 21顶板大面积来压、22浅埋煤层、23放顶煤开采。 二、简答与分析论述 1. 简述原岩应力场的概念及主要组成部分。 2. 原岩应力分布的基本特点 3. 支承压力与矿山压力的区别? 4. 煤柱下方底板岩层中应力分布特点及其实际意义? 5. 简述岩石破碎后的碎胀特征及其在控制顶板压力中的作用? 6. 分析采场上覆岩层结构失稳条件 7. 分析加快工作面推进速度与改善顶板状况的关系。 8. 试分析开采深度对采场矿山压力及其显现的影响。 9. 老顶破时在岩体内将引起什么性质的挠动,其特点是什么?有何实用意义? 10. 简述回采工作面周围支承压力分布规律。 11.是否矿山压力大矿山压力显现也必然强烈,试举例说明。 12. 简述我国缓倾斜煤层工作面顶板分类方案。 13. 支撑式、掩护式、支撑掩护式液压支架结构特征及适用范围。 14. 简述采场支架与围岩关系特点。 15. 分析采场支架工作阻力与顶板下沉量“P-△L”曲线关系 16. 试分析综采面支护质量监测对于改善工作面支架—围岩关系,确保工作面高产高效的作用。 17. 简述开采后引起的上覆岩层的破坏方式及其分区。 18. 简述绿色开采技术体系,关键层的作用。 19. 简述控制岩层移动的技术。 20. 为什么说锚注支护是软岩巷道支护的新途径? 21. 采区平巷在其服务期内沿走向的矿压规律有哪些?采动影响带的前影响区和后影响区内矿压显现时间和机理有何不同? 22. 沿空留巷矿压显现基本特征?与沿空掘巷矿压显现的主要区别? 23. 跨巷回采卸压的基本原理? 24. 画出巷道支架与围岩相互作用关系示意图,并分析支架与围岩的相互作用原理。 25. 高强度螺纹钢锚杆组成及其经常与之组合使用的支护材料。 26. 如何根据锚杆对围岩的约束方式定义锚杆锚固力? 27. 简述软岩巷道变形力学机制。 28. 简述影响顶煤冒放性的主要因素,提高顶煤冒放性的主要措施。

矿山地表及岩层移动观测

矿山地表及岩层移动观测 为了保护井巷、建筑物、水体、铁路等免受开采的有害影响,合理提高煤炭资源回收率,并为留设保护煤柱提供技术资料,新建矿井应开展地表及岩层的移动观测工作。 地表及岩层的移动观测工作设置的各种观测站必须编写岩移观测方案,并报请集团公司地质勘测处审批。观测站设计由文字说明和图纸两部分组成。文字部分包括观测站设计书。图纸包括井上、下对照图(包括观测线和观测点的位置)、观测线剖面图(包括观测线长度的确定)、岩层柱状图、观测点的构造图等。 矿区设置观测站时应统一规划,并选择在有代表性的地方设置。地表移动观测站位置的选择,应遵循由简单到复杂的原则,初次建立地表移动观测站的位置应满足:煤层走向、倾角及厚度均稳定,地势平坦,无大断层,单煤层开采,四周无采空区。 地表移动观测站一般可设走向观测线和倾斜观测线各 一条,设在移动盆地的主断面位置。如回采工作面的走向长度大于1.4H0+50m(式中H0为平均开采深度),亦可设置两条倾斜观测线,但至少应相距50m,并且应距开切眼或停采线0.7H以上。 观测点间距离应根据开采深度按下表21确定。

表21 矿山企业应根据矿区地面控制网,按5″级导线(网) 精度要求建立岩移观测控制网。各控制点和观测点的高程测量应组成水准网,按三等水准测量的要求进行观测。 控制点和观测点的设置应符合下列要求: (一)埋设的控制点和观测点必须用全站仪按设计标定,并应尽可能使观测点中心位于控制点连线的方向上; (二)在非冻土地区,测点的埋设深度应不小于0.6m。在冻土地区,测点的底面一般应在冻结线0.5m以下。测点可采用浇注式或混凝土预制件; (三)当地表至冻结线下0.5m内有含水层时,一般应采用钢管式测点; (四)埋设的测点应便于观测和保存。如预计地表下沉后测点可能被水淹没,则点的结构应便于加高; (五)在一般情况下,倾斜观测线上观测点编号应自下山向上山方向顺序增加,走向观测线上观测点编号应按工作面推进方向顺序增加。 在观测站各点埋设10-15天后,即可进行观测。首先应

15-05-地表残余沉陷变形机理数值模拟与预计参数分析-2016年第2期

地表残余沉陷变形机理数值模拟与预计参数分析 易四海 (中煤科工集团唐山研究院有限公司,河北唐山063012) [摘要]采用数值模拟计算,通过对覆岩移动过程的模拟研究,指出了地表沉陷由岩体变形 破坏到岩体密实沉陷的发展过程,揭示了岩体密实沉陷延续是引起地表残余沉陷变形的机理;通过对岩体密实阶段地表沉陷分布规律的模拟研究,证实地表残余变形可以用概率积分法进行预计。根据数值模拟及现场实测数据,确定了长壁开采条件下地表残余沉陷变形的概率积分法预计参数。 [关键词] 残余沉陷变形;数值模拟;沉陷过程;预计参数;长壁开采 [中图分类号]TD325 [文献标识码]A [文章编号]1006-6225(2016)02-0029-04Forecast Parameters and Numerical Simulation of Mechanism of Surface Residual Subsidence Deformation YI Si-hai (CCTEG Tangshan Research Institute ,Tangshan 063012,China ) Abstract :Overburden strata movement process was studied by numerical simulation ,the results showed that surface subsidence expe- rienced the process that from rock mass deformation to rock mass subsidence ,it revealed that rock mass subsidence development was reasons that induced surface residual subsidence deformation.Surface residual deformation could be predicted by probability integral method according numerical simulation of surface subsidence distribution law during rock mass subsidence stage.On the basis of numer-ical simulation and measured data ,predicting parameters of probability integral method of surface residual subsidence deformation with long wall mining situation were confirmed. Key words :residual subsidence deformation ;numerical simulation ;subsidence process ;predicting parameters ;long wall mining [收稿日期]2015-08-19 [DOI ]10.13532/https://www.wendangku.net/doc/778558129.html,11-3677/td.2016.02.009[基金项目]国家自然科学基金项目(51474129) [作者简介]易四海(1980-),男,湖北公安人,副研究员,博士,主要从事开采沉陷规律与“三下”采煤方面的研究工作。[引用格式]易四海.地表残余沉陷变形机理数值模拟与预计参数分析[J ].煤矿开采,2016,21(2):29-32. 开采沉陷延续时间较长,地表将在很长时间内存在残余沉陷变形,对采煤塌陷区地表新建建 (构)筑物产生不利影响。因此,了解和掌握采煤塌陷区地表残余沉陷规律十分重要。但是,限于采 煤塌陷区地表残余沉陷延续时间长、数值较小,一般难以用实测方法掌握其全部发展规律。目前,对采煤塌陷区地表残余沉陷变形的预测已有了一些研究 [1-3] ,对采煤塌陷区建设利用具有一定的指导意义,但在对残余沉陷变形预测参数取值时大多凭经验,缺乏足够的理论支持,给采煤塌陷区地表建筑带来了一定的安全隐患。 为此,本文采用数值模拟计算,研究覆岩移动过程及地表残余沉陷变形的分布规律,依据实测数据建立地表残余沉陷变形的预计方法并确定相关参数,为采煤塌陷区地表安全利用提供理论依据。1 采煤沉陷数值模拟 采用离散元法进行模拟试验。试验设计煤层采厚M =3.0m ,采宽L =125m ,倾角α=0?,采深 H 0=100m ,松散层厚度H s =20m ,基岩厚度H j = 80m ,基岩由砂岩、泥岩和砂质泥岩等岩性组成。 图1为数值计算模型网格剖分图 。 图1 数值计算模型剖分 1.1地表沉陷过程 地下煤层采出后引起的地表沉陷是一个时间和空间过程。由于地表沉陷孕育与发展过程非常复杂,许多学者从不同的角度对其进行了研究 [4-6] , 这些研究多从地表点的移动量及剧烈程度的角度进 行描述。而实际上,地表移动是岩层移动的延伸和表象,岩层移动是发生在岩体内部的力学现象,只有从岩层移动的角度来研究地表沉陷过程才能真实揭示岩层与地表移动的机理与规律。 图2为数值模拟采空区上方不同高度岩层内测 9 2第21卷第2期(总第129期) 2016年4月煤矿开采 COAL MINING TECHNOLOGY Vol.21No.2(Series No.129) April 2016 中国煤炭期刊网 w w w .c h i n a c a j .n e t

3采煤工作面上覆岩层移动规律讲解

第三章采煤工作面上覆岩层移动规律 第一节概述 一、煤层顶底板岩层的构成 煤层处于各种岩层的包围之中。处于煤层之上的岩层称为煤层的顶扳;处于煤层之下的岩层称为煤层的底板。 根据顶、底板岩层离煤层的距离及对开采工作的影响程度不同,煤层的顶、底板岩层可分为: (l)伪顶。紧贴在煤层之上,极易垮落的薄岩层称为伪顶。通常由炭质页岩等软弱岩层组成,厚度一般小于0.5m,随采随冒。 (2)直接顶。位于伪顶或煤层之上,具有一定的稳定性,移架或回柱后能自行垮落的岩层称为直接顶。通常由泥质页岩、页岩、砂质页岩等不稳定岩层组成,具有随回柱放顶而垮落的特征。直接顶的厚度一般相当于冒落带内的岩层的厚度。 (3)老顶。位于直接顶或煤层之上坚硬而难垮落的岩层称为老顶。常由砂岩、石灰岩、砂砾岩等坚硬岩石组成。 (4)直接底。直接位于煤层下面的岩层。如为较坚硬的岩石时,可作为采煤工作面支柱的良好支座;如为泥质页岩等松软岩层时,则常造成底臌和支柱插入底板等现象。 二、采煤工作面上覆岩层移动及其破坏 在采用长壁采煤法时,随着采工作面的不断向前推进,暴露出来的上覆岩层在矿山压力的作用下,将产生变形、移动和破坏。根据破坏状态不同,上覆岩层可划分为三个带(图3-l)。 冒落带。指采用全部垮落法管理顶板时,采煤工作面放顶后引起的煤层直接顶的破坏范围(图3-l,Ⅰ)。该部分岩层在采空区内已经垮落,而且越靠近煤层的岩石就越紊乱、破碎。在采煤工作面内这部分岩层由支架暂时支撑。 裂隙带。指位于冒落带之上、弯曲带之下的岩层。这部分岩层的特点是岩层产生垂直于层面的裂缝或断开,但仍能整齐排列(图3-l,Ⅱ)。 弯曲下沉带。一般是指位于裂隙带之上的岩层,向上可发展到地表。此带内

第六章 采场岩层移动与控制

1、充分采动的概念防治煤矿开采引起地表沉陷的主要措施有哪些? 什么是充分采动?防治煤矿开采引起地表沉陷的主要措施有哪些? 充分采动:当采空区尺寸(长度和宽度)相当大时,地表最大下沉值达到该地质条件下应有的最大值,不再随开采范围扩大而增加,此时的采动称为充分采动。 1、留煤柱开采。 1)部分开采。 (1)条带开采。沿煤层走向或倾向,将开采区域划分为若干个宽度相等或不等的条带,开采一条,保留一条,利用留下的煤柱支撑顶板,以达到减小地表沉陷的目的。成功关键在于合理设计采宽与留宽,确保覆岩主关键层和留设煤柱的稳定性。 (2)房柱式开采。在煤层内开掘一些列煤房,留下近似于矩形的煤柱来支承顶板,达到控制顶板和减轻地表沉降的目的。 2)留设保护煤柱。地面存在重要的需要保护建(构)筑物时,在其下部对应煤层的合理位置预留一定尺寸的煤柱,使岩层移动影响边界达不到该建(构)筑物。煤柱留设主要根据具体矿井条件和岩层移动角等参数进行设计。 2、充填开采。 1)采空区充填。即用充填料充填已采空间,相当于减小煤层开采厚度。按运送充填物料动力的不同分水力、风力、机械和自溜充填;按充填材料分为水砂、矸石、膏体充填。 2)覆岩离层区充填。利用岩移过程中覆岩内形成的离层空洞,总钻孔向离层空洞充填外来材料来支撑覆岩,从而减缓覆岩移动往地表的传播。 3、调整开采工艺和参数。 1)协调开采:根据开采引起地表移动与变形的分布规律,通过合理的开采布局、开采顺序、方向、时间等方法减缓和减少开采引起的地表变形。 ①减小开采边界影响的叠加。 ②多工作面协调开采。 ③对称背向开采。 2)控制开采 ①限厚开采。 ②分层间歇开采。 2、简述岩层移动规律 采用全部垮落法管理采空区的情况下,根据采空区覆岩移动破坏特点,可以分为“三带”,即垮落带、裂隙带、弯曲带。其特点如下 垮落带:破断后的岩块呈不规则垮落,排列也极不整齐,松散系数比较大,一般可达1.3之1.5.经重新压实后,碎胀系数可降到1.03左右。 裂隙带:岩层破断后,岩块仍整齐排列的区域即为裂隙带。它位于冒落带之上,由于排列比较整齐,因此碎胀系数比较小。关键层破断块体有可能形成“砌体梁”结构。垮落带与裂隙带合称为“两带”又称“导水裂隙带”,意指上覆岩层含水层位于“两带”范围内,将会导致岩体水通过岩体破断后的裂缝流入采空区和回采工作面。 “两带”高度与岩性和煤层采高有关,覆岩岩性越坚硬,高度越大。 弯曲带:自裂缝带顶界到地表的所有岩层称为弯曲带。弯曲带内岩层移动的显著特点是,岩层移动过程的连续和整体性,即裂缝带顶界以上至地表的岩层移动是成层地、整体性地发生的,在垂直刨面上,其上下各部分的下沉值很小。若存在厚硬的关键层,则可能在弯曲带内出现离层区。

第1章覆岩与地表移动规律

第1篇覆岩与地表移动规律 第1章覆岩与地表移动规律 1.1 概述 各种有用的矿物赋存在地下岩体中的一定位置,与周围的岩体相接触,并保持其应力平衡状态。地下矿物开采后,采出空间周围的岩层失去支撑而向采空区内逐渐移动、弯曲和破坏。这一过程随着开采工作面的不断推进,逐渐地从采场向外、向上(顶板)扩展,直至波及到地表,引起地表下沉,形成所谓的下沉盆地(Subsidence basin)。采动覆岩与地表移动变形的过程是开采破坏了原岩应力状态形成新的平衡的必然过程。 开采引起矿层及围岩的移动和破坏在时间及空间上是一个复杂的运动破坏过程,其特点如下: (1)从采空区至地表,覆岩破坏范围逐渐扩大、破坏强度逐渐减弱,根据覆岩破坏特征一般将其划分为冒落带、裂隙带和弯曲下沉带,即所谓的“三带”如图1—1所示; 图1—1 采动覆岩移动破坏三带分布图 a-冒落带;b-裂隙带;c-弯曲下沉带 (2)覆岩移动状态可划分为5个区,如图1-2所示。其中: ①垂直下移区。该区域的岩层在重力作用下作垂直于矿层的运动。 ②垂直上移区。该区域的岩层在侧向及底板应力的作用下向上移动。 ③垂直与水平移动区。该区域的岩层在覆岩自重及水平应力的作用下,作向采空区中心方向的移动。 ④底板下移区。该区域的岩层在支撑压力的作用下,向底板卸压区移动。 ⑤开采支撑压力区。该区域的岩层要承受采空区上覆岩体重力的转移,形成开采支撑压力区,开采支撑压力区的应力值一般高达原岩应力的1.5~3.0倍。

第1章 覆岩与地表移动规律 第 页 2 图1-2覆岩内部移动状态分布图 1.2 覆岩移动破坏规律 1.2.1 “三带”的形成 矿层开采后,其覆岩要发生移动和破坏。经长期的观测证实,覆岩移动和破坏具有明显的分带性,它的特征与地质、采矿等因素有关。在采用走向长壁全部冒落法开采缓倾斜中厚矿层的条件下,只要采深达到一定深度(采深与采高之比H/m >40),覆岩的破坏和移动会出现三个代表性的部分,自下而上分别称为:冒落带(Caved zone)、裂隙带(Fractured zone)和弯曲下沉带(Continuous deformation zone)(见图1-1)。 1.冒落带 冒落带也称垮落带,是指岩层母体失去连续性,呈不规则岩块或似层状巨块向采空区冒落的那部分岩层。冒落带位于覆岩的最下部,紧贴矿层。矿层采空后,上覆岩层失去平衡,由直接顶岩层开始冒落,并逐渐向上发展,直到开采空间被冒落岩块充满为止。 冒落岩块由于碎胀,体积较冒落前增大,增大比率可用碎胀系数表示,碎胀系数大小与岩性及采厚有关。硬岩及采厚较大时,其值大,反之较小,平均约在1.2~1.6范围。在自由堆积状态下,由于冒落岩块碎胀性而逐渐充填开采空间,导致冒落带发展到一定高度而自行停止。表1-1给出了常见岩石的碎胀系数。 表1-1 常见岩石的碎胀系数 岩石名称 碎 胀 系 数 初始碎胀系数K p 残余碎胀系数K s 砂 1.06~1.15. 1.01~1.03 粘土 <1.20 1.03~1.07 碎煤 <1.20 1.05 粘土页岩 1.40 1.10 砂质页岩 1.60~1.80 1.10~1.15 硬砂岩 1.50~1.80 冒落带碎落岩块在上覆岩层沉降压力下可逐渐压实,甚至部分形成再生顶板。厚矿层分层开采时,冒落岩块受重复采动的多次破坏,岩体碎度增大,碎胀系数减小。 冒落带内岩块之间空隙多,连通性强,是水体和泥沙溃入井下的通道,也是瓦斯逸出或

第一章 地表移动和变形规律

第一章地表移动和变形规律 第一节开采引起的岩层和地表移动 一、开采引起的岩层移动和破坏 (一)岩层移动和破坏过程 在地下煤层被采出前,岩体在地应力场作用下处于相对平衡状态。当部分煤层被采出后,在岩体内部形成一个采空区,其周围岩体应力平衡状态受到破坏,引起应力重新分布,从而使岩体产生移动、变形和破坏,直至达到新的平衡。随着工作面的推进,这一过程不断重复。这是十分复杂的物理、力学变化过程,也是岩层产生移动和破坏过程,这一过程和现象称为岩层移动(Strata Movement)。 为了便于理解,以近水平煤层开采为例,说明岩层移动和破坏过程和应力状态的变化。当地下煤层开采后,采空区直接顶板岩层在自重应力及上覆岩层重力的作用下,产生向下的移动和弯曲。当其内部应力超过岩层的应力强度时,直接顶板首先断裂、破碎,相继冒落,而老顶岩层则以梁、板的形式沿层面法向方向移动、弯曲,进而产生断裂、离层。随着工作面向前推进,受到采动影响的岩层范围不断扩大。当开采范围足够大时,岩层移动发展到地表,在地表形成一个比采空区范围大得多的下沉盆地,如图1-1所示。 由于岩层移动和破坏的结果,使采空区周围应力重新分布,形成增压区(支承压力区)和减压区(卸载压力区)。在采空区边界煤柱及其边界上、下方的岩层内形成支承压力区,其最大压力为原岩应力场的3~4倍。由于支承压力的作用,使该区煤柱和岩层被压缩,有时被压碎,煤层被挤向采空区。如图1-2所示。由于增压的结果,使煤柱部分被压碎,支承载荷的能力减弱,于是支承压力峰值区向煤壁深处转移。在回采工作面的顶、底板岩层内形成减压区,其应力小于采前的正常压力。由于减压的结果,使下部岩层发生弹性恢复变形。上部岩体由于受下部岩体移向采空区的结果,可能在顶板岩层内形成离层,而底板岩层在采空区范围内卸压,在煤柱范围内增压,两种压力作用的结果,可能出现采空区地板向采空区隆起的现象。 (二)岩层移动和破坏的形式 在岩层移动过程中,采空区周围岩层的移动和破坏形式主要有以下几种:1.弯曲 弯曲是岩层移动的主要形式。当地下煤层被开采后,从直接顶板开始岩层整体沿层面法线方向弯曲,直到地表。此时,有的岩层可能会出现断裂或大小不一的裂隙,但不产生脱落,保持层状结构。 2.垮落 垮落(又称冒落)这是岩层移动过程中最剧烈的形式,通常只发生在采空区直接顶板岩层中。当煤层采出后,采空区附近上方岩层弯曲而产生拉伸变形。当拉伸变形超过岩层的允许抗拉强度时,岩层破碎成大小不一的岩块,无规律地充填在采空区,此时,岩体体积增大,岩层不再保持其原有的层状结构。 3.煤的挤出 采空区边界煤层在上覆岩层强大的压力作用下,部分煤体被压碎挤向采空区,这种现象称为煤的挤出(又称片帮)。由于增压区的存在,煤层顶底板岩层

矿山压力与岩层控制习题答案.

矿山压力与岩层控制习题答案 一、名词解释: 1、老顶:通常把位于直接顶之上对采场矿山压力直接造成影响的厚而坚硬的岩层称为老顶。 2、顶板下沉量:一般指煤壁到采空区边缘裸露的顶底板的相对移近量,顶底板的相对移近量。 3、原岩应力:存在于地层中未受工程扰动的天然应力称为原岩应力。 4、周期来压:由于裂隙带岩层周期性失稳而引起的顶板来亚现象称为工作面顶板的周期来压。 5、回采工作面:在煤层或矿床的开采过程中,一般把直接进行采煤或采有用矿物的空间称为回采工作面,简称采场。 6、直接顶:一般把直接位于煤层上方的一层或几层性质相近的岩层称为直接顶。 7、矿山压力:由于矿山开采活动的影响,在巷硐周围岩体中形成和作用在巷硐支护物上的力定义为矿山压力。 8、矿山压力显现:由于矿山压力作用使巷硐周围岩体和支护物产生的种种力学现象统称为矿山压力显现。 9、矿山压力控制:所有减轻,调节,改变和利用矿山作用的各种方法,均叫做矿山压力控制。 10、老顶初次来压:当老顶悬露达到极限跨距时,老顶断裂形成三铰拱式的平衡,同时发生已破断的岩块回转失稳有时可能伴随滑落失稳,从而导致工作面顶板急剧下沉,此时,工作面支架呈现受力普遍

加大的现象称为老顶初次来压。 11、支承压力:在岩体内开掘巷道后,巷道围岩必然出现应力重新分布,一般将巷道两侧改变后的切向应力增高部分称为之承压力。12、关键层:将对上覆岩层局部或直至地表的全部岩层活动起控制作用的岩层称为关键层。 13、冲击能指数:在单轴压缩状态下,煤样全“应力---应变”曲线峰值C前所积聚的变形能Es与峰值后所消耗的变形能Ex之比值。 13、沿空留巷:在上区段工作面采过后,通过加强支护或采用其他有效方法,将上区段工作面运输平巷保留下来,供下区段工作面回采时作为回风平巷。 14、沿空掘巷:回采工作面采过后,沿采空区边缘掘进的巷道。 15、软岩:是一种特定环境下的具有显著塑性变形的复杂岩石力学介质。 16、底鼓:底板向上鼓起的现象。 17、煤矿动压现象:煤矿开采过程中,在高应力状况下积聚有大量弹性能的煤或岩体在一定的条件下发生破坏,冒落或抛出,使能量突然释放,呈现声响,震动以及气浪等明显的动力效应,这些现象通称为煤矿动压现象。它有三种形式:冲击矿压,顶板大面积来压,煤与瓦斯突出。 18、冲击矿压:冲击矿压是聚积在矿井巷道和采场周围煤岩体中的能量突然释放,在井巷发生爆炸性事故,产生的动力将煤岩抛向巷道,同时发出强烈声响,造成煤岩体振动和煤岩体破坏,支架和设备损坏,

岩层移动与保护煤柱

第十三章岩层移动与保护煤柱 一、学习目的与要求 1.了确岩层与地表移动概念。 2.掌握保护煤柱的留设方法 二、课程内容与知识点 第一节岩层与地表移动概念 一、概述 当采空区范围很大时,岩层移动过程发展到地表,在地表形成一个范围较大的洼地。这个洼地就是通常所说的地表移动盆地。 影响岩层与地表移动的因素很多,主要有岩石的物理力学性质;煤层的倾角、开采煤层的厚度及开采深度;采空区的形状、大小及采煤方法;地表的地形条件以及地质构造、水文地质条件,等等。它们综合影响着岩层与地表移动过程。为了工程上的需要,人们把上覆岩层的移动形态划分为冒落带Ⅰ、裂隙带Ⅱ和弯曲带Ⅲ(图13-1)。 根据岩层与地表移动的规律,研究建筑物下、铁路下、水体下(简称三下)的采煤方法与措施,以便安全、合理地开采出地下煤炭资源。 二、地表移动盆地与移动角 研究岩层与地表移动的主要任务,就是观测移动盆地的变形规律,确定各种移动参数。 1.移动盆地的特征 移动盆地的形状,主要取决于采空区的形状和煤层的倾角。当采空区为长方形时,移动盆地大致车工椭圆形,其面积总是大于采空区的面积。当开采水平煤层时,移动盆地的中心即为采空区的中心;当开采倾斜煤层时,移动盆地向下山方向便宜,地表移动盆地和采空区的位置互不对称(图13-2和13-3)。

2.移动盆地的主断面 为了表示移动盆地的特征,通过移动盆地的最大下沉点,分别作平行于煤层走向和倾向的断面,称为走向主断面和倾向主断面。主断面上既可以反映出移动盆地的最大范围,又可以反映出地表的最大移动量。这样,我们就可以沿主断面设置地表移动观测站,研究移动盆地的变形规律。 倾向主断面的位置在采空区的中央;走向主断面的位置,可由图13-3中的θ角来决定,θ角为倾向主断面舢板感最大下沉点与采空区中心连线的倾角,称为最大下沉角。 θ角值可以从实际观测资料中求得,也可以按下列近似公式计算: 当α<45°时,θ=90°-0.5α 当α>45°时,θ=90°-(0.4~0.2)α 式中α——煤层倾角。

矿山开采沉陷学知识点整理

矿山开采沉陷学 第一章: 1:在地下开采前,岩体在地应力场作用下处于相对平衡状态。局部矿体被采出后,在岩体内部形成一个采空区,导致周围岩体应力状态发生变化,引起应力重分布,从而使岩体产生移动变形和破坏,直至达到新的平衡。随着采矿工作的进行,这一过程不断重复。它是一个十分复杂的物理、力学变化过程,也是岩层产生移动和破坏过程,这一过程和现象称为岩层移动。 2: 充分采动区COD位于采空区中部上方,其移动特征是:煤层顶板在上覆岩体重力作用下,先向采空区方向弯曲,然后破碎成大小不一的岩块向下冒落而充填采空区。此后,岩层成层状向下弯曲,同时伴随有离层、裂隙、断裂等现象。成层状弯曲的岩层下沉,使冒落破碎的岩块逐渐被压实。移动结束后,此区内下沉的岩层仍平行于它的原始层位,层内各点的移动向量与煤层法线方向一致,在同一层内的移动向量彼此相等。 3:岩层移动形式 (一)弯曲,这岩层移动的主要形式。当地下开采后,从直接顶板开始沿层面法线方向弯曲,直到地表。 (二)岩层的垮落(或称冒落)。当煤层采出后,采空区附近上方岩层弯曲而产生拉伸变形。当拉伸变形超过岩层的允许抗拉强度时,岩层破碎成大小不一的岩块,冒落充填于采空区。此时,岩层不再保持其原有的层状结构。这是岩层移动过程中最剧烈的形式,通常只发生在采空区直接顶板岩层中。 (三)煤的挤出(又称片帮)。采空区边界煤层在支承压力作用下,一部分被压碎挤向采空区,这种现象称为片帮。由于增压区的存在,煤层顶底板岩层在支承压力作用下产生竖向压缩,从而使采空区边界以外的上覆岩岩层和地表产生移动。 (四)岩石沿层面的滑移。在开采倾斜煤层时,岩石在自重力的作用下,除产生沿层面法线方向的弯曲外,还会产生沿层面方向的移动。岩层倾角越大,岩层沿层面滑移越明显。沿层面滑移的结果,使采空区上山方向的部分岩层受拉伸,甚至剪断,而下山方向的部分岩层受压缩。 (五)垮落岩石的下滑(或滚动)。煤层采出后,采空区为冒落岩块所充填。当煤层倾角较大,而且开采自上而下顺序进行,下山部分煤层继续开采而形成新的采空区时,采空区上部垮落的岩石可能下滑而充填新采空区,从而使采空区上部的空间增大,下部空间减小,使位于采空区上山部分的岩层移动加剧,而下山部分的岩层移动减弱。 (六)底板岩层的隆起。当底板岩层较软时,在煤层采出后,底板在垂直方向减压,水平方向受压,导致底板向采空区方向隆起。

RFPA(岩层移动模块)

RFPA工程算例(岩层移动模块) X.H.Zhu (Mechsoft) 试验一:开采诱发的岩层移动及其应力分布的数值模拟 试验内容: (1)模拟分步开采诱发的地应力重新分布情况 (2)模拟分析随着采动工作面的推进,上覆岩层的断裂过程及应力重分布情况 (3)模拟分析随着采动工作面的推进,地表沉陷和水平移动的发展规律 模型建立及参数选择 上硬下软型岩层顶板冒落 本模型尺寸50m×100m,网格单元划分100×200个;共划分20000个单元。采用平面应变模型。本模型共分不同岩性的5层岩层,力学参数及厚度如表1所示。本模型计算的目的是主要在于考察自下而上厚度和强度呈递增状态的顶板破坏过程及特征。 表1 上硬下软型岩层模型参数 层序岩性 厚度 (m) 弹性模量 (MPa) 抗压强度 (MPa) 自重 3 / N mm 摩擦角 (度) 泊松比 顶板3 砂岩30 8000 80 2.65 30 0.25 顶板2 砂岩7.5 5000 50 2.5 35 0.30 顶板1 砂页岩 5 3000 30 2.5 37 0.30 煤层 2.5 1000 25 1.8 38 0.35 底版砂岩 5 10000 100 2.65 30 0.25 位置均质度弹性模量抗压强度自重M S -T M S -C 压拉比节理50 1000 10 2.0 1.0 20 50 RFPA数值模型 上硬下软型岩层破坏分析数值模型 模拟结果:

模拟结果分析: (1)直接顶冒落阶段 随着采场工作面的推进,上覆岩层悬露,在重力的作用下弯曲岩梁悬露的跨度达到一定的跨度后,弯曲沉降发展到一定的限度,在岩梁的端部开裂,在此模型中,当工作面推进20m时发生开裂。在岩梁的中部开裂形成“假塑性岩梁”。如图F,当岩梁的沉将值超过“假塑性岩梁”允许的沉降值时,悬露岩层即自行冒落,如图H。冒落形态呈非对称性。(2)老顶初次破断阶段 随着采场工作面的进一步推进,老顶在重力的作用下弯曲下沉。当工作面推进到35m 时,如图I所示,老顶出现大范围的移动,采空区前后煤臂上方基岩的上部、中部出现拉裂缝。当工作面推进到40m时,如图I所示,基岩的老顶初次垮落,垮落的形态表现为不对称性。老顶破断岩块沿工作面煤臂切落。顶板第一次断裂结束。 (3)老顶周期性破断阶段 老顶初次破断后,当工作面推进45m 如图K所示,上部顶板出现离层、端部中部断裂现象。上部顶板断裂第二次周期开始。 (4)地表沉陷阶阶段 当煤矿埋藏离地面不深时,开采区离地面较浅或采空区面积较大时,将引起地表沉陷等灾害。 (5)工作面推进时地表移动的变化特征:由模拟结果下沉可以看出,随着工作面的推进地表的下沉逐渐增大,下沉曲线基本上关于采空区中心线对称,下沉最大值也随着工作面的推进而前移。由水平移动可以看出,开挖区两侧的地表都向开挖去区移动,且随着采空区的加大,地表水平移动也逐渐增大。

拐点偏移距的影响因素及形成机理_郝延锦

2000年第1期 中州煤炭 总第103期 收稿日期:1999-10-12 作者简介:郝延锦(1965-),男,山西翼城县人,讲师,硕士,现从事开采沉陷方面的教学与研究工作。 拐点偏移距的影响因素及形成机理 郝延锦,吴立新 (中国矿业大学北京校区,北京 100083) 摘要:在整理和分析实测资料的基础上,研究了拐点偏移距的统计规律,并分析了拐点偏移距在开采过程中的形成机理。 关键词:拐点偏移距;硬岩层;采深;采动系数中图分类号:TD821 文献标识码:A 文章编号:1003-0506(2000)01-0004-02 在开采沉陷预计中,概率积分法是应用最广的一 种预计方法,拐点偏移距是其预计过程中的一个重要参数,它的大小直接影响着预计地表下沉盆地的形状和范围,目前要提高概率积分法的预计精度,重要的是要提高它的预计参数的准确性,因此,研究拐点偏移距的变化规律和形成机理具有重要的意义。 1 影响拐点偏移距的因素 1.1 硬岩层对拐点偏移距的影响 根据规程规定:岩层硬度系数f >6的属坚硬岩层,硬度系数f =3~6的为中硬岩层,硬度系数f <3的属软弱岩层。一般情况下认为,如果覆岩中硬岩层所占比例较大,那么拐点偏移距也较大。但对我国各主要矿区(77个煤矿或观测线,工作面的地质采矿条件为较薄松散层、开采厚度平均2.6m 、均为走向长壁开采、全陷法管理顶板)实测的、比较完整的地表移动资料进行综合分析后发现:拐点偏移距的大小和拐点偏移距的正负与硬岩层所占覆岩比例的大小没有显著的统计关系,也就是说,有的工作面覆岩中硬岩层所占比例较大且拐点偏移距较小,而有的工作面覆岩中硬岩层所占比例较小且拐点偏移距较大。例如包头河滩沟矿西二区,硬岩层占覆岩比例为91%,拐点偏移距为-30.5m ,而彩屯矿走向硬岩层占覆岩的比例为64%,拐点偏移距为+52m 。还有覆岩中同样没有硬岩层,但也有出现较大的正偏移距和负偏移距的现象。从统计中还发现:拐点偏移距为负值的比例为58%,拐点偏移距为正值的比例为38%,拐点偏移距为0的比例为4%。1.2 采深对拐点偏移距的影响 在对实际资料分析中发现,采深对拐点偏移距的影响较为显著,如图1是采深与正拐点偏移距的关系曲线图,图2是采深与负拐点偏移距的关系曲线图 。 图1 采深与正拐点偏移距曲线 从采深与拐点偏移距的回归曲线(图1和图2)中可以看出,无论是正拐点偏移距还是负拐点偏移距都是随着采深的增大而增大,但正拐点偏移距随采深变化的曲线要比负拐点偏移距随采深变化曲线陡峭,即采深对正拐点偏移距影响较大,对负拐点偏移距影响较小;但对何时出现正拐点偏移距、何时出现负拐点偏移距的机理有待进一步研究和探讨 。 图2 采深与负拐点偏移距曲线 1.3 采动程度对拐点偏移距的影响 采动程度是指地下矿层开采使得地表移动和变形的程度,它一般情况下可用采宽与采深的比值(D /H )来表示,其表达式为 n =K D H 式中 D —工作面的采宽,m ; H —工作面的平均采深,m ; K —小于1的系数,由实测或类比确定,一般取 0.8; · 4·

弱胶结覆岩高强度开采岩层与地表移动规律研究

弱胶结覆岩高强度开采岩层与地表移动规律研究本文以营盘壕煤矿2201工作面地质采矿条件为依托原型,采用实测数据分析、数值模拟实验与相似材料模拟实验相结合的方法,对弱胶结覆岩高强度开采下的地表与岩层移动变形规律进行了研究,取得的主要研究成果如下:1)对营盘壕矿区岩层进行实地取样并进行力学实验,实验表明90%的岩层抗压强度均低于30MP,且岩层结构均以泥质胶结为主,具有胶结性差、易风化、对扰动敏感等物理特性,故确定了营盘壕矿区上覆岩层均属于弱胶结性岩层。2)根据现场实测数据绘制出了地表移动变形曲线图,揭示了弱胶结覆岩地表动态移动变形的变化规律;并进一步详细对比分析了营盘壕煤矿与临近的小纪汗煤矿的地质采矿参数与岩层结构,采用类比法确定了营盘壕煤矿2201工作面地表预计参数大小。3)采用数值模拟实验研究了一次性采全高与分层开采两种开采方式下的地表与覆岩移动变形规律以及覆岩内部应力场、塑性区变化规律,揭示了在弱胶结覆岩地层条件下更适合一次性采全高的开采方式,为2201工作面实际开采时提供了理论支撑。4)将理论分析与相似材料模拟实验结果相结合,得出了直接顶应力随着距离开切眼距离的不同而呈现不同类型函数的变化规律;且在高围压状态下,弱胶结覆岩由于自身物理性质而易产生假塑性弯曲,这些“假塑性体”内部产生了与正应力呈不同角度的裂隙,依然可以看成为两端固定,中间悬空的“简支梁”平衡结构;对于地表移动变形而言,下沉曲线收敛速度较一般地质采矿条件下的地表下沉曲线收敛速度慢,且下沉值偏小。5)以弱胶结覆岩岩层动态移动过程为研究基

础,建立了弱胶结覆岩开采岩层移动力学模型。并以该力学模型为理论依据,结合材料力学相关知识,推导出了新的弱胶结覆岩开采垮落带发育高度的预测方法。6)理论分析了弱胶结覆岩地表下沉系数远远小于我国东部软岩条件下开采的经验下沉系数的四个因素。三个次要因素:弱胶结覆岩水化膨胀因素、似“覆岩离层注浆”因素、冲洪积砂的流动性因素;一个主要因素:岩层的巨厚特性因素。岩层巨厚的特点使得其在岩层移动变形向地表传递的过程中形成了类似于东部煤矿坚硬岩层的抗变形的作用。

相关文档
相关文档 最新文档