文档库 最新最全的文档下载
当前位置:文档库 › 聚合GMA高内向乳液合成多孔材料方法及其应用

聚合GMA高内向乳液合成多孔材料方法及其应用

聚合GMA高内向乳液合成多孔材料方法及其应用
聚合GMA高内向乳液合成多孔材料方法及其应用

高内向乳液合成多孔材料方法及其应用

摘要:综述了以高内相乳液作模板制备多孔材料的研究进展,介绍了油包水(W/O)乳液体系法、水包油(O/W)乳液体系法等制备方法,以及多孔材料的表面功能改性和这类聚合多孔材料在酶膜反应器、生物医学、有机化学、化学催化、固相液相杂质分离等方面的研究应用进展,并对高内向乳液合成多孔材料的研究进行了展望。

关键词:高内向乳液聚合多孔材料酶膜反应器方法应用综述

引言:

多孔材料是由连续的固相骨架和孔洞所组成的,制备方法有气泡发泡法、溶剂致孔法和模板法等,制备的关键是如何控制孔的大小形状和分布以及使孔功能化发泡法和溶剂致孔法都存在不能精确控制孔的大小和分布的缺点,而模板法由于能很好地控制孔的大小和分布,在制备新型多孔材料方面特别引人注目。聚合物多孔材料具有高孔隙率、低密度、大比表面积、泡孔及通道直径可控等优点,在吸附与分离、催化、传感器、分子识别、生物组织工程以及环境科学等方面有着广泛的应用前景。近年来,利用高内相乳液(High Internal Phase Emulsions, HIPEs)模板法制备聚合物多孔材料引起了广泛研究兴趣,并取得了很大进展,本文将国内外对该领域的最新研究与应用进展进行综述。

1高内相乳液及其类型

高内相乳液(High Internal Phase Emulsion, HIPE)又称高浓乳液,是指内相(分散相)的体积分数在74%以上,甚至高达99%的乳液,最早是由Lissant[1]在20 世纪60年代提出的。普通乳液体系中分散相的体积分数一般为30%~40%最高可达50%左右,分散相液滴以互不相连的球状分散在连续相中,如果继续向普通乳液中滴加分散相组分至体积分数为74%时,分散相液滴紧密堆积成为相互连接球状。随着分散相组分的进一步增加,液滴间由于相互挤压而成为被含有表面活性剂的连续相薄膜隔离的多面体形状液胞。高内相乳液的主要类型(体系)有油包水(W/O)型、水包油(O/W) 型等。

油包水(W/O)型HIPEs 是以油溶性单体为连续相,水为分散相,加入适当的引发剂、乳化剂和交联剂,在连续搅拌作用下使连续相聚合,再经抽提、干燥后即可制得聚合物多孔材料,是目前研究与应用最多的高内相乳液。

水包油(O/W) 型HIPEs是以极性的疏质子溶剂作连续相,用疏水的液体作分散相,经特定的乳化剂和引发剂作用而形成高内相乳液。

2 高内向乳液制备聚合多孔材料的合成方法

2.1高内相乳液法制备聚丙烯酸丁酯/二乙烯基苯多孔材料[2]

孙等以丙烯酸丁酯、二乙烯基苯为原料、山梨糖醇酐单油酸酯( span80) 为乳化剂,过硫酸钾为引发剂,无水氯化钙为电解质,水做分散相,通过高内相W/O 体系制备多孔结构的材料。探讨了聚合反应温度对乳液稳定性的影响及乳化剂用量、分散相体积分数和连续相的性质及组成对聚丙烯酸丁酯( PBA) /二乙烯基苯( DVB) 多孔材料结构的影响,并通过扫描电镜对泡孔结构进行了表征。

该方法制得多孔材料实验经过表明:聚合反应温度宜控制在55 ℃;随着乳化剂体积分数增加,材料孔径逐渐减小,且孔间的通道数量增多; 随着分散相体积分数的增加,多孔材料的孔径逐渐增加,孔间通道的直径也增大; 随着二乙烯基苯与丙烯酸丁酯比值的增加,材料孔径变小。实验经过还发现,当span80 的用量低于油相体积分数的5%时,得到的聚合物材料都是闭孔的,也就是说,每个泡孔之间是互不连通的,水相很难从结构内部移除,导致材料的密度很大,提高span80 的用量时,可以形成开孔结构的聚合物大孔材料,各泡孔之间是相互连通的,材料的密度很低,这是因为适当提高span80的用量可以降低液滴周围的单体膜的厚度,到达临界值时单体聚合时会发生体积收缩,从而使泡孔之间相互连通,形成开孔材料继续提高乳化剂浓度,泡孔之间的通道数目增加,通道直径变大,而泡孔的直径变小此结论与Barbetta 等研究了分别使用span80 和复合乳化剂(由span20 十二烷基苯磺酸钠( DDBSS) 十六烷基三甲基溴化铵( CTAB) 按一定比例组成)对聚苯乙烯多孔材料的影响相同[3]。

2.2 高内相乳液法制备有机硅聚苯乙烯多孔材料[4]

林等以四乙烯基四甲基环四硅氧烷、苯乙烯、二乙烯基苯为连续相,采用高内相乳液模板法制备了有机硅聚苯乙烯多孔吸附材料。用FT-IR、SEM、UV-VIS对材料进行表征,研究了其表面形态及其对有机染料罗丹明B水溶液的脱色效果。

该法制得的多孔材料及其对材料进行表征并用罗丹明B溶液进行脱色表明:多孔材料为互通大孔材料,材料中存在两级孔结构,“泡孔”与“毛孔”,泡孔尺寸约10um,毛孔尺寸约2um。当吸附时间为20h时,对罗丹明B水溶液脱色效果最佳,且脱色效果随多孔材料投入量,罗丹明B初始浓度的增大而增大。

2.3 高内向乳液法制备聚GMA/EHMA/EGDMA多孔材料[5]

Pulko 等采用HIPEs 模板法制备了具有交联多孔结构的甲基丙烯酸甘油酯(GMA)、二甲基丙烯酸乙二醇酯(EGDMA)、甲基丙烯酸乙基己酯(EHMA)共聚物膜。

该方法制得的多孔材料,孔径大小为3-10u m,通道尺寸为1-3 um,该多孔膜用二乙胺化学改性后作为离子交换色谱的功能化载体,可用于蛋白质的纯化,特别是对牛血清蛋白(BSA)具有较高结合量,动态结合量高达45mg/mL[6]。

3 聚合物多孔材料的表面功能改性

利用乳液模板获得的聚合物多孔材料大多为疏水性的,因为人们通常采用W/O 型HIPE

或O/W双重乳液为模板。虽然可以通过O/ W 型HIPE 或W/ O 双重乳液体系获得亲水性多孔材料, 如聚丙烯酸或甲基丙烯酸酯类多孔材[8,9]、聚丙烯酰胺多孔微球[7]等,但这些方法最大的缺点是需要使用大量的有机溶剂,所以研究报道较少。而采用较亲水的油溶性单体,其高内相乳液的稳定性差,因此报道的也很少.为了更有效地发挥多孔材料的结构优势,引入功能基团或粒子改善其界面性质,是聚合物多孔材料的一个重要研究方向。

目前,通常采取的一种途径是通过修饰材料界面上的特定基团, 如对聚苯乙烯中芳环进行溴化、硝化或磺化反应;或共聚与接枝一些带有官能团的单体,如丙烯酸酯类,然后再进行修饰[ 10, 11, 12]。由于这些丙烯酸酯类不是常用的, 需事先合成;而且经水解产生羧基后再进行表面修饰, 程序繁琐。而甲基丙烯酸缩水甘油酯(GMA)中含有的环氧基团,为后期的修饰提供了简单而广泛的可操作空间,因此是目前共聚或接枝单体中使用最广泛的[ 10 , 12]。

4 高内相乳液在聚合物多孔材料制备方面的应用

高内相乳液聚合物多孔材料由于具有体积密度小、相对质量轻的特点,广泛应用于酶解反应、工业环保、医药卫生及高新技术领域,起着结构支撑、减震缓冲、分离过滤、隔热换热、消声降噪等作用,因而引起人们的广泛研究兴趣。

4.1 用于膜固定化载体

4.1.1 用于固定化胰蛋白酶反应

聚合物整体材料上的胰蛋白酶固定化。目前,在聚合物整体材料上固定化胰蛋白酶已成为酶固定化的研究热点之一。Petro等[13]首次在聚(甲基丙烯酸酯乙烯基二甲基丙烯酸酯)整体柱材料上固定化胰蛋白酶,并以同样材料制备的微珠上固定的胰蛋白酶进行了比较,发现前者具有更高的酶解活性。他们还发展了将胰蛋白酶固定于其它多孔聚合物整体柱上的方法[14]。他们的研究表明,由丙烯酰胺单体合成的亲水性基质很适合作为高通量生物反应器中酶的固定化载体。此外,当吖内酯功能基引入到整体材料后,与蛋白质的氨基或巯基的反应更容易进行,从而使酶的固定化过程更快、更有效。

4.1.2 用于固定化脂肪酶反应

脂肪酶是亲脂蛋白质,在疏水膜上更易吸附,但对油脂水解反应亲水膜更有利。最近, 在固定化脂肪酶合成领域有一种新的倾向,即采用极性载体非极性溶剂。固定化在极性聚合物载体的酶比固定在极性较弱的载体的酶表现出更高的活性, 这可能是由于极性载体具有更好的水分保持能力,尤其对于酶结合水;而非极性溶剂从酶分子周围抽提水的能力较弱,能减少水分的流失,这对维持固定化状态下的三维结构是十分重要的。

Shi-Hao Pan等人解释了脂肪酶催化反应的机理:酰基供体(酸)进攻脂肪酶形成酰化酶,然

后醇分子与酰化酶反应生成酯。研究认为,酰化过程受固定化影响, 而中间产物——酰化酶的脱酰化过程不因固定化而改变.因此,在选择载体和制备固定化酶过程中,要设法提高固定化酶与底物的亲和力[29]。

4.2 生物医学材料

Busby等[15]以高内相比乳液作模板合成含有聚ε-己内酯的多孔材料,并进行了人体纤维原细胞的培养实验。具体合成方法是,在苯乙烯-二乙烯基苯乳液体系中,用一定量的ε-己内酯的低聚体替代部分苯乙烯合成含有聚ε-己内酯的多孔材料。同时考虑材料与细胞之间的相容性,在聚合过程中引入少量甲基丙烯酸甲酯(MMA)作为共聚单体。但随着MAA用量的提高,乳液的稳定性逐渐降低,材料的制备变得困难。其研究表明,在37℃下培养人体纤维原细胞2.5天,在材料的表面上,纤维原细胞得到了繁殖,并形成许多连在一起的突起,证明这种材料适合纤维原细胞的培养。

Akay等[16]制备了羟基磷灰石改性的聚苯乙烯-二乙烯基苯多孔材料,并进行了造骨细胞的养研究。首先,造骨细胞在未改性的聚苯乙烯-二乙烯基苯多孔材料上经过35d 的培养,在材料的表面形成了多层细胞层,且细胞已经迁移到材料内部 1.4μm 深处,表明材料与细胞有良好的相容性。其次,在磷灰石改性的聚苯乙烯-二乙烯基苯多孔材料上进行同样的实验,迁移到材料内部的细胞数量有了一定提高,表明细胞与材料的相容性得到改善。

神经细胞是一种较难进行人工培养的细胞,它对培养条件的要求非常苛刻。Hayman 等[17]制备了适合于神经细胞培养的聚苯乙烯-二乙烯基苯多孔材料。以苯乙烯和二乙烯基苯为连续相,水为分散相,在水相中加入1%的四氢呋喃,聚合制得泡孔直径在50~100μm 的多孔材料。为增加材料与生物细胞之间的相容性,在材料的表面浸渍一层具有生物活性的聚赖氨酸和昆布氨酸水溶液。神经细胞的培养实验证明,细胞与培养介质之间有良好的附着性,且细胞在三维空间上得到了繁殖,因此,这是一种培养神经细胞的理想材料。

Zhang等以单体N-异丙基丙烯酰胺(NIPAM)交联剂、N,N-二亚甲基双丙烯酰胺乳化剂

TritonX-405 为连续相,以溶有油红O的环己烷为油相,通过高内相比乳液法制备得到了热敏型的负载有有机纳米粒子的聚(N-异丙基丙烯酰)多孔材料,其孔隙率高达7.37cm3/g,孔径大小在 5 m 和15 m 处呈双峰分布,利用环境温度的变化可方便地控制多孔材料上的有机纳米

粒子在水中的释放与纳米分散。[18]

4.3 有机化学品清除剂

P Krajnc 等[19]合成了一种新型的对氯苯甲酰氯清除剂。首先,以二乙烯基苯和VBC 为连续相合成带有活性基团-CH2Cl的多孔材料;接着,使2-氨基乙基三胺与多孔材料表面上活性基团-CH2Cl上的Cl 发生取代反应,生成带有氨基的多孔材料。这种材料可用作对氯苯甲酰氯的清除剂。在一定条件下,用每克含有5.6mmol氨基的多孔材料处理含有1.67mmol 对氯苯甲酰氯的溶液,2min 后96.7%的对氯苯甲酰氯发生了反应;10min 后反应完全。因此,它是一种良好的对氯苯甲酰氯清除剂。

Moine 等[20]用两步法合成了1-己胺的清除剂。首先,以二乙烯基苯与2-溴-2-甲基丙酸-4-乙烯基苯酯为连续相,K2S2O8为引发剂,在适当的条件下聚合制备多孔材料;接着,再用甲基丙烯酸酯的甲苯溶流反应。电镜扫描证明,接枝甲基丙烯酸甲酯前后,材料具有相似的开孔结构,泡孔直径6~7μm。具有良好的溶剂渗透性,把材料浸入含0.5mol/L 1-己胺的四氢呋喃溶液中,18h 后,1-己胺被全部吸收。

4.4 固相催化剂载体

经改性的多孔材料可以用作有机合成的催化剂。Ottens 等[21]合成了磺酸改性的聚苯乙烯多孔材料,它可用作环己烯水合反应的催化剂。由于磺酸改性的聚苯乙烯多孔材料的表面具有亲水性,环己烯与材料表面接触情况直接影响反应的速率。在一定压力下,使环己烯强行通过开孔的聚苯乙烯多孔材料表面,就可以增加环己烯与多孔材料表面的接触几率,从而加快了反应速度。

Herve等[22]制备了用巯基改性的聚苯乙烯-二乙烯基苯多孔材料并把它用于脱卤反应。脱卤反应是一种常用的有机合成反应,由于采用的催化剂多为有机重金属催化剂如三丁基锡,其毒性限制了它的应用。以巯基改性的聚苯乙烯-二乙烯基苯多孔材料替代有机重金属催化剂,以过量的三乙基硅烷为还原剂,分别在6-溴-1-己烯和1-丙烯氧-2-溴苯的环化反应中,显示出较高的催化活性。

Pulko等以对氯甲基苯乙烯为单体二乙烯基苯为交联剂,采用HIPEs 模板法制备了含氯苄基的聚合物多孔材料,再与 4 二甲基氨基吡啶反应,可以得到一种高效的可循环使用的亲核催化剂[23],Ungureanu等将钯纳米粒子负载在通过HIPEs模板法制得的有机-无机杂化SiO2

泡沫上,可用于催化Suzuki-Miyaura和Mizoroki-Heck偶联反应[24]。

4.5 分离膜

Bhumgara等[25]用油包水高内相比乳液作模板合成了聚苯乙烯-二乙烯苯多孔薄膜,可用作碳酸钙悬浮水溶液等的过滤膜。在反应乳液体系中加入一定量的丙烯酸2-乙基己基酯,可以增强多孔薄膜的韧性。在薄膜制备中,乳液体系的搅拌时间长短明显影响材料泡孔的大小。这种薄膜是疏水性的,为使其具有一定的亲水性,可将干燥的聚苯乙烯-二乙烯苯多孔薄膜浸在浓硫酸中进行磺化反应,磺化度控制在15%~20%为宜。

4.6用于制备吸附与分离材料

Pulko等以苯乙烯(St)丙烯酸对硝基苯酯和二乙烯基苯(DVB)为有机相单体,采用HIPEs 模板法制备得到含有官能基团的聚合物多孔材料,再与哌嗪反应,制得哌嗪功能化的交联聚合物多孔材料,可以有效去除水溶液中很低浓度(低于40ppb)的除草剂[26]。

Yao等采用HIPEs模板法制备了具有亚微孔结构的聚(甲基丙烯酸甘油酯二甲基丙烯酸乙二醇酯)整体柱(monolith),利用结构上的环氧功能基团可容易地固载人体血清蛋白,所制得的高性能亲和色谱可用于D,L氨基酸的手性分离及酶催化动力学常数的测定[27]。

Pulko等采用HIPEs模板法制备了具有交联多孔结构的甲基丙烯酸甘油酯(GMA)、二甲基丙烯酸乙二醇酯(EGDMA)、甲基丙烯酸乙基己酯(EHMA)共聚物膜,孔径大小为3-10 m,通道尺寸为1-3 m,该多孔膜用二乙胺化学改性后作为离子交换色谱的功能化载体,可用于蛋白质的纯化,特别是对牛血清蛋白(BSA)具有较高结合量,动态结合量高达45mg/mL[28]。

5 存在的问题与展望

综上所述,乳液模板合成聚合物互通多孔材料的研究已成为近期的热点。乳液模板法较传统的相分离、发泡及致孔法等具有孔径可控的优点,但仍存在孔径不均、表面活性剂用量大等问题。在功能改性方面多孔聚合物材料的表面改性也存在方法复杂、效率不高、功能点偏少、有时会破坏原孔洞结构等缺点。但是采用高内相乳液作模板可以制备具有特定泡孔尺寸和通道尺寸的多孔材料,是一种简单易行、可以大批量生产并且可以调控泡孔形态的新方法,为多孔材料的可控合成开辟了一条新的途径。随着对合成机理研究的深入进行,预计越来越多种类的新型高分子多孔材料将被制备出来。随着进一步提高这类多孔材料的机械强度、热氧化性能以及功能化,其应用领域将得到很大扩展。因此,采用高内相乳液作模板制备多孔材料的研究,将越来越引起人们的重视,成为充满活力和应用前景的重要研究方向之一。

参考文献

[1]LISSANT K J.Geometry of high- inter- phase- ratio emulsions[J].J Colloid Interface Sci,1966,22: 492-464.

[2]孙华,彭少贤,赵西坡,林真,张恩瑞湖北工业大学化学与环境工程学院,1005-5770( 2012 )06-0029-04. [3]BARBETTA A,CAMERON N R.Morphology and surfacearea of emulsion derived ( poly HIPE) solid foams preparedwith oil phase soluble porogenic solvents: span80 assurfactant [J].Macromolecules,2004,37: 3188-320.

[4]林谦,周博,黄世强湖北大学材料科学与工程学院,1009-1815 (2010)01-0015-04.

[5] Pulko I, Smrekar V, Podgornik A, et al. Emulsiontemplated open porous membranes for proteinpurification[J].Journal of Chromatography A,2011,1218(17): 2396-2401

[6] Pulko I, Smrekar V, Podgornik A, et al. Emulsiontemplated open porous membranes for proteinpurification [J]. Journal of Chromatography A,2011,1218(17): 2396-2401

[7] Zhang H, Cooper A I. Chem. Mater. , 2002, 14: 4017-4020

[8] Krajnc P, Ltefanec D, Pulko I. Macromol . Rapid Commun. , 2005, 26: 1289-1293

[9] Krajnc P, Leber N, Ltefanec D, et al . J. Chromatogr. A, 2005,1065: 69- 73

[10] Ma Z, Mao Z, Gao C. Colloids Surf. B: Biointerfaces, 2007, 60: 137-157.

[11] Leber N, Fay J D B, Cameron N R, e t al. J. Polym. Sci. Part A: Polym. Chem., 2007, 45: 4043-4053

[12] Vlakh E G, Tennikova T B. J. Sep. Sci., 2007, 30: 2801- 2813

[13] PetroM,Svec F,FrechetJMJ. Biotech. Bioeng.1996, 48: 355-363

[14]Peterson D S,Rohr T,Svec F,Frechet J M J.Anal.Chem.2002, 74: 4081-4088

[15] W Busby, N R Cameron, C A B Jahoda. Biomacromolecules 2001, 2 :154-164.

[16] G Akay, M A Birch, M A Bokhari. Biomaterials 2004, 25: 3991-4000.

[17] M W Hayman, K H Smith, N R Cameron et al. Biochem.Biophys.Methods, 2005; 62: 231-240.

[18] ZhangH, CooperAI.Thermoresponsive particle pumps :Activated release of organic nanoparticles fromopen-cell macroporous polymers [J].Adv Mater,2007,19: 2439-2444

[19] P Krajnc, J F Brown, N R Cameron. Org. Lett. 2002, 15: 2497-2500.

[20] L Moine, H Deleuze, B Maillard. Tetrahedron Lett., 2003, 44: 7813-7816.

[21] M Ottens, G Leene, A Beenackers et al. Ind. Eng. Chem. Res., 2000, 39: 259-240

[22] H Deleuze, B Maillard. Bioorg Chem. Lett., 2002, 12: 1877-1880.

[23] Pulko I, Krajnc P, Cameron N R, et al. Ultra-highsurface area functional porous polymers by emulsiontemplating and hypercrosslinking: Efficient nucleophiliccatalyst supports[J].Chem Eur J, 2010, 16:

2350-2354

[24] Ungureanu S, Deleuze H, Babot O, et al. Palladiumnanoparticles heterogeneous nucleation withiorganically graftedsilica foams and their use as catalyssupports toward the Suzuki Miyaura and MizorokiHeck coupling reactions [J].Applied Catalysis AGeneral, 2010,390: 51-58

[25] Z Bhumgara. Polymeric Foam Filter Media, 1995, 245-251.

[26] Pulko I, KolaM, Krajnc P. Atrazine removal by covalentbonding to piperazine functionalized PolyHIPEs [J].Science of the Total Environment, 2007,386: 114-123

[27] Yao C, Qi L, Qiao J, et al. High-performance affinitymonolith chromatography for chiral separation anddetermination of enzyme kinetic constants [J].Talanta,2010,82: 1332-1337

[28] Pulko I, Smrekar V, Podgornik A, et al. Emulsiontemplated open porous membranes for proteinpurification [J]. Journal of Chromatography A,2011,1218(17): 2396-2401

[29] 李旭, 王立新, 欧阳藩. 第七届全国生物化工学术会议论文集. 北京: 化工出版社, 1996

乳液聚合体系及合成工艺

乳液聚合体系及合成工艺 (2007-03-12 14:35:13) 转载 分类:现代水性涂料 一、构成乳液聚合体系的组分 乳液聚合体系的主要组分有单体、乳化剂、引发剂和介质,另外根据需要加入其他组分,如助乳化剂、分子量调节剂、pH缓冲剂、抗冻剂、螯合剂、增塑剂、保护胶体、消泡剂等。 1.单体 (1)在乳液聚合中单体用量一般控制在40%-50%之间。 (2)乳液的最低成膜温度(MFT)主要决定于乳液聚合物的玻璃化温度(Tg),涂料用聚合物乳液的玻璃化温度,一般在15~25度之间,低于室温。 硬单体(玻璃化温度高的单体)有甲基丙烯酸甲酯(Tg 105)、 苯乙烯(Tg 105) 丙烯腈(Tg 100) 氯乙烯(Tg 75) 甲基丙烯酸乙酯(Tg 65) 偏二氯乙烯(Tg 52) 软单体(玻璃化温度低的单体)有丙烯酸-2-乙基己酯(Tg -85) 丙烯酸丁酯(Tg -54) 丙烯酸异丁酯(Tg -17) 丙烯酸乙酯(Tg -22) 丁二烯(Tg -20) 氯二丁烯(Tg -45)

玻璃化温度适中的单体有醋酸乙烯酯(Tg 29) 丙烯酸甲酯(Tg 8) 甲基丙烯酸丁酯(Tg 20) (3)线性聚合物进行交联,以生成网状结构聚合物。有自交联和外交联两种。 二、乳化剂 1。阴离子型、阳离子型、两性和非离子型乳化剂。 2。乳化剂的选择原则: (1)所选择的乳化剂的HLB值应和所要进行反应的乳液聚合体系相匹配。 (2)所选用的离子型乳化剂的三相点应低于反应温度 (3)所选用的非离子型乳化剂的浊点应高于反应温度 (4)对离子型乳化剂来说,应选用乳化剂分子的覆盖面积尽可能小; 对非离子型乳化剂来说,应选用乳化剂分子的覆盖面积尽可能大(5)应选用临界胶束浓度尽量小的乳化剂 (6)应选用增溶度大的乳化剂 (7)离子型乳化剂和非离子型乳化剂有协同效应,即两者联合使用比各自单独使用效果都要好。 (8)选择与单体化学结构类似的乳化剂可获得较好的乳化效果 (9)亲水性较大和亲水性较大的乳化剂联合使用时乳化效果较好。 (10)所选用的乳化剂不应干扰聚合反应。 (11)选择乳化剂时应考虑其后的生产工艺和聚合物乳液的应用 (12)所选用的乳化剂应该货源广阔、立足国内,价格低廉。 三、引发剂 热分解引发剂※氧化还原引发剂 四、分散介质

聚合物合成工艺复习

聚合物合成工艺(1~20章) 1、高分子合成工业的任务:将基本有机合成工业生产的单体,经聚合反应 合成高分子化合物,为高分子合成材料成型工业提供基本原料。 2、合成高分子材料有:合成塑料,合成橡胶,合成纤维,涂料,粘合剂,离子交换树脂。 3、合成树脂可以用:(溶液聚合/乳液聚合/悬浮聚合/本体聚合)方法制得; 合成橡胶可以用溶液聚合/乳液聚合方法制得; 、高分子化合物生产过程有: (1)原料准备与精制过程;(2)催化剂(引发剂)配制过程; (3)聚合反应过程; (4)分离过程; (5)聚合物后处理过程;(6)回收过程。 、原料准备与精制过程:包括原料(单体、溶剂、助剂等)贮存、精制、干燥、配制、计量等过程和设备。 、催化剂(引发剂)配制过程:包括催化、引发和助剂的贮存、配制、溶解、调整浓度、计量等过程与设备。 、聚合反应过程:包括以聚合装置为反应中心的有关传热传质的过程与设备。、分离过程:包括未反应单体的分离、脱除溶剂、催化剂,脱除低聚物等过程与设备 、常用分离方法:高真空脱除,蒸汽蒸馏,闪蒸,水洗,离心过滤分离;沉淀分离;喷雾干燥分离。 、聚合物后处理过程:将分离得到的聚合物经进一步处理,得到性能稳定方便使用的产品,包括干燥,造粒,筛分,批混,包装等工序与设备。、回收过程:主要是对回收的单体、溶剂进行精制,然后循环使用。包括离心分离、过滤、分馏、精馏等工序与设备。 、在聚合物生产过程中反应器上的粘结物有何危害如何防止 危害:降低反应器传热效率;影响产品质量。 防止:a.尽可能提高反应器内壁的光洁度;b.使用过程中防止内壁表面造成伤痕;c.聚合釜满釜操作减少液体界面;d.反应物料中加防粘釜剂等。 5、合成树脂与合成橡胶生产上的差别主要表现在分离过程和后处理过程差异很大。 6、如何对聚合物生产流程评价 (1)产品性能的考查;(2)原料路线的考查;(3)能量消耗与利用的考查 (4)生产技术水平的考查;(5)经济性的考查。 7、高分子聚合反应产物的特点是: 1、分子量大小不等,结构亦非完全相同的同系物的混合物; 2、其形态为坚硬的固体物、高粘度熔体或高粘度溶液;

第5章聚合方法

思考题 2. 本体法制备有机玻璃板和通用级聚苯乙烯,比较过程特征,说明如何解决传热问题、保证产品品质。 答:本体法制备有机玻璃板过程中,有散热困难、体积收缩、产生气泡诸多问题;本体法制备通用级聚苯乙烯存在散热问题。前者采用预聚合、聚合和高温处理三阶段来控制;后者采用预聚和聚合两阶段来克服。 3. (略) 4. 悬浮聚合和微悬浮聚合在分散剂选用、产品颗粒特性上有何不同? 答:悬浮聚合分散剂主要是水溶性高分子和不溶于水的无机粉末,而微悬浮聚合在分散剂是特殊的复合乳化体系,即由离子型表面活性剂和难溶助剂组成;悬浮聚合产品的粒度一般在50μm~2000μm之间,而悬浮聚合产品的粒度介于0.2μm~1.5μm之间。 5.苯乙烯和氯乙烯悬浮聚合在过程特征、分散剂选用、产品颗粒特性上有何不同? 答:苯乙烯悬浮聚合的初始体系属于非均相,其中液滴小单元则属均相,最后形成透明小珠状,故有珠状(悬浮)聚合之称,而氯乙烯悬浮聚合中,聚氯乙烯将从单体液滴中沉析出来,形成不透明粉状产物,故可称作沉淀聚合或粉状(悬浮)聚合。 聚苯乙烯要求透明,选用无机分散剂为宜,因为聚合结束后可以用稀硫酸洗去,而制备聚氯乙烯可选用保护能力和表面张力适当的有机高分子作分散剂,有时可添加少量表面活性剂。 聚苯乙烯为透明的珠状产品,聚氯乙烯为不透明的粉状产物。 6. 比较氯乙烯本体聚合和悬浮聚合的过程特征、产品品质有何不同? 答:氯乙烯本体聚合除了悬浮聚合具有的散热、防粘特征外,更需要解决颗粒疏松结构的保持问题,多采用两段聚合来解决。本体法聚氯乙烯的颗粒特性与悬浮法树脂相似,疏松,但无皮膜,更洁净。 7. 简述传统乳液聚合中单体、乳化剂和引发剂的所在场所,链引发、链增长和链终止的场所和特征,胶束、胶粒、单体液滴和速率的变化规律。 答:单体的场所:水中、增溶胶束、单体液滴 乳化剂的场所:水中、胶束、增溶胶束、单体液滴表面 引发剂的场所:水中 引发的场所:增溶胶束 增长的场所:乳胶粒内 终止的场所:乳胶粒内 (1)增速期:这一阶段胶数不断减少直至消失,乳胶粒数不断增加,聚合速率相应提高,单体液滴数目不变,但体积减少; (2)恒速期:这一阶段只有单体液滴和乳胶粒,单体液滴数目减少直至消失,乳胶粒数目恒定,聚合速率不变; (3)降速期:这一阶段只有乳胶粒,单体液滴数目减少直至消失,乳胶粒数目恒定,聚合速率随着乳胶粒内单体浓度的降低而降低。 8. 简述胶束成核、液滴成核、水相成核的机理和区别。 答:难溶于水的单体所进行的经典乳液聚合,以胶束成核为主。经典乳液聚合体系选用水溶性引发剂,在水中分解成初级自由基,引发溶于水中的微量单体,在水相中增长成短链自由基。聚合物疏水时,短链自由基只增长少量单元就沉析出来,与初级自由基一起被增容胶束捕捉,引发其中的单体聚合而成核,即所谓胶束成核。

高分子材料的力学性能及表征方法

高分子材料的力学性能及表征方法 聚合物的力学性能是高分子聚合物在作为高分子材料使用时所要考虑的最主要性能。它牵涉到高分子新材料的材料设计,产品设计以及高分子新材料的使用条件。因此了解聚合物的力学性能数据,是我们掌握高分子材料的必要前提。聚合物力学性能数据主要是模量(E),强度(σ),极限形变(ε)及疲劳性能(包括疲劳极限和疲劳寿命)。由于高分子材料在应用中的受力方式不同,聚合物的力学性能表征又按不同受力方式定出了拉伸(张力)、压缩、弯曲、剪切、冲击、硬度、摩擦损耗等不同受力方式下的表征方法及相应的各种模量、强度、形变等可以代表聚合物受力不同的各种数据。由于高分子材料类型的不同,实际应用及受力情况有很大的差变,因此对不同类型的高分子材料,又有各自的特殊表征方法、例纤维、橡胶的力学性能表征。 表征方法及原理 (1)拉伸性能的表征 用万能材料试验机,换上拉伸实验的样品夹具,在恒定的温度、湿度和拉伸速度下,对按一定标准制备的聚合物试样进行拉伸,直至试样被拉断。仪器可自动记录被测样品在不同拉伸时间样品的形变值和对应此形变值样品所受到的拉力(张力)值,同时自动画出应力-应变曲线。根据应力-应变曲线,我们可找出样品的屈服点及相应的屈服应力值,断裂点及相应的断裂应力值,样品的断裂伸长值。将屈服应力,断裂应力分别除以样品断裂处在初制样时样品截面积,即可分别求出该聚合物的屈服强度σ屈和拉伸强度(抗张强度)σ拉值。样品断裂伸长值除以样品原长度,即是聚合物的断裂伸长率ε。应力-应变曲线中,对应小形变的曲线中(即曲线中直线部分)的斜率,即是聚合物的拉伸模量(也称抗张模量)E值。聚合物试样拉伸断裂时,试样断面单维尺寸(厚或宽的尺寸)的变化值除以试样的断裂伸长率ε值,即为聚合物样品的“泊松比”(μ)的数值。 (2)压缩性能、弯曲性能、剪切性的表征。 用万能材料试验机,分别用压缩试验,弯曲试验,剪切试验的样品夹具,在恒定的温度、湿度及应变速度下进行不同方式的力学试验。并根据不同的计算公式,求出聚合物的压缩模量、压缩强度、弯曲模量、弯曲强度、剪切模量、剪切强度等数据。 (3)冲击性能的表征。 采用摆锤式冲击试验机,按一定标准制备样品,在恒定温度、湿度下,用摆锤迅速冲击被测试样,根据摆锤的质量和刚好使试样产生裂痕或破坏时的临界下落高度及被测样品的截面积,按一定公式计算聚合物试样的冲击强度(或冲击韧性单位为J/cm2)。 (4)聚合物单分子链的力学性能。 用原子力显微镜(AFM)。将聚合物样品配成稀溶液,铺展在干净玻璃片上,除去溶剂后得到一吸附在玻璃片上的聚合物薄膜(厚度约90mm)。用原子力显微镜针尖接触、扫描样品膜,由于针间与样品中高分子的相互作用,高分子链将被拉起,记录单个高分子链被拉伸时拉力的变化,直至拉力突然降至为零。可得到若干高分子链被拉伸时的拉伸力和拉伸长度曲线,由此曲线可估算单个高分子链的长度和单个高分子从凝聚态中被拉出时的“抗张强度”。所用仪器 万能材料试验机 摆锤式冲击试验机

乳液聚合合成及生产工艺

乳液聚合 班级:高分0942 姓名:冯会科学号:200910211239 乳液聚合(emulsion polymerization)是在乳化剂的作用下并借助于机械搅拌,使单体在水中分散成乳状液,由引发剂引发而进行的聚合反应。乳液聚合是高分子合成过程中常用的一种合成方法。 乳液聚合体系至少由单体、引发剂、乳化剂和水四个组分构成,一般水与单体的配比(质量)为70/30~40/60,乳化剂为单体的0.2%~0.5%,引发剂为单体的0.1%~0.3%;工业配方中常另加缓冲剂、分子量调节剂和表面张力调节剂等。所得产物为胶乳,可直接用以处理织物或作涂料和胶粘剂,也可把胶乳破坏,经洗涤、干燥得粉状或针状聚合物。 乳液聚合的发展 自由基聚合反应是聚合物生产中应用最为广泛的方法之一,乳液聚合则是由单体和水在乳化剂作用下配制成的乳状液中进行的聚合,体系主要有单体、水、乳化剂和引发剂四种基本组分构成。 乳液聚合技术萌生于上世纪早期,一般公认最早见于文献的是德国Bayer公司的H.Hofmann的一篇关于异戊二烯单体水乳液的聚合专利。30年代见于工业生产,40年代Harkins定性地阐明了在水中溶解度很低的单体乳液聚合机理。后来,Smith和Ewart,建立了定量的理论,提出了乳液聚合的三种情况及乳液聚合过程的三个阶段,即乳胶粒生成阶段(阶段I)、乳胶粒长大阶段(阶段II)及乳液聚合完成阶段(阶段III),这一理论被视为乳液聚合的经典理论。此后乳液聚合成为研究热点。 随着乳液聚合理论的发展,乳液聚合技术也在不断的发展和创新。关于常规乳液聚合目前研究主要集中在:多组分乳液聚合体系的研究、合成高固含量的乳胶、反应型乳化剂的使用等方面。另外,在传统乳液聚合工艺的基础上,目前国内外已开发出无皂乳液聚合、细乳液聚合、反相乳液聚合、分散聚合和微乳液聚合等新的聚合工艺。从本质上来说,这些新的聚合技术与乳液聚合有着共同的特征,即都是分隔体系的聚合反应,有着共同的一些优点。 乳液聚合—聚合机理

乳液聚合技术

乳液聚合新技术的研究进展 摘要:乳液聚合方法具有广泛的应用范围,近期几年备受关注。本文首先介绍了乳液聚合的基本情况,并着重介绍了一些新的乳液聚合方法和研究成果。 关键词:乳液聚合;进展 前言: 乳液聚合技术的开发始于本世纪20年代末期,当时就已有和目前生产配方类似的乳液聚合的专利出现。30年代初,乳液聚合已见于工业生产。随着时问的推移,乳液聚合过程对商品聚合物的生产具有越来越大的重要性,在许多聚合物如合成橡胶、合成树脂涂料、粘合剂、絮凝剂、抗冲击共聚物等的生产中,乳液聚合已经成为主要的生产方法之一,每年通过该方法制作的聚合物数以千万吨计。【1】1.乳液聚合基本情况 乳液聚合定义 生产聚合物的方法有四种:本体聚合、溶液聚合、悬浮聚合及乳液聚合。乳液聚合是由单体和水在乳化剂作用下配制成的乳状液中进行的聚合,体系主要由单体、介质(水)、乳化剂及溶于介质(水)的引发剂四种基本组分组成。目前的工业生产中,乳液聚合几乎都是自由基加成聚合,所用的单体几乎都是烯烃及其衍生物,所用的介质大多是水,故有人认为乳液聚合是指在水乳液中按照胶柬机理形成比较独立的乳胶粒中,进行烯烃单体自由基加成聚合来生产高聚物的一种技术。但随着聚合理论的逐步完善,对乳液聚合比较完整的定义应该为:乳液聚合是在水或其他液体作介质的乳液中,按照胶束理论或低聚合物机理生成彼此孤立的乳胶粒,并在其中进行自由基加成聚合或离子加成聚合来生产高聚物的一种聚合方法。 乳液聚合体系至少由单体、引发剂、乳化剂和水四个组分构成,一般水与单体的配比(质量)为70/30~40/60,乳化剂为单体的%~%,引发剂为单体的%~%;工业配方中常另加缓冲剂、分子量调节剂和表面张力调节剂等。所得产物为胶乳,可直接用以处理织物或作涂料和胶粘剂,也可把胶乳破坏,经洗涤、干燥得粉状或针状聚合物。 乳液聚合的特点 聚合反应发生在分散在水相内的乳胶粒中,尽管在乳胶粒内部粘度很高,但由于连续相是水,使得整个体系粘度并不高,并且在反应

合成工艺学题库-作业题库

第一章 1.试述高分子合成工艺学的主要任务。 2.简述高分子材料的主要类型,主要品种以及发展方向。 3.用方块图表示高分子合成材料的生产过程,说明每一步骤 的主要特点及意义。 4.如何评价生产工艺合理及先进性。 5.开发新产品或新工艺的步骤和需注意的问题有哪些? 第二章 1.简述高分子合成材料的基本原料(即三烯、三苯、乙炔)的来源。 2.简述石油裂解制烯烃的工艺过程。 3.如何由石油原料制得芳烃?并写出其中的主要化学反应及工艺过程。 4.画出C4馏分中制取丁二烯的流程简图,并说明采用两次萃取精馏及简单精馏的目的。 5.简述从三烯(乙烯、丙烯、丁二烯)、三苯(苯、甲苯、二甲苯),乙炔出发制备高分子材料的主要单体合成路线(可用方程式或图表表示,并注明基本工艺条件)。 6.如何由煤炭路线及石油化工路线生产氯乙烯单体? 7.简述苯乙烯的生产方法。 8.乙烯氯氧化法生产氯乙烯所采用的一步法、二步法及三步

法三种方法之主要差别是什么? 9.试述合成高分子材料所用单体的主要性能,在贮存、运输过程中以及在使用时应注意哪些问题? 10.论述乙烯产量与高分子合成工艺的关系。 第三章 1.自由基聚合过程中反应速度和聚合物分子量与哪些因素有关?工艺过程中如何调节? 2.自由基聚合所用引发剂有哪些类型,它们各有什么特点? 3.引发剂的分解速率与哪些因素有关?引发剂的半衰期的含义是什么?生产中有何作用? 4.引发剂的选择主要根据哪些因素考虑?为什么? 5.举例说明在自由基聚合过程中,调节剂,阻聚剂,缓聚剂的作用。 6.为什么溶剂分子的Cs值比调节剂分子的Cs小的多,而对聚合物分子量的影响往往比调节剂大的多? 7.以苯乙烯的本体聚合为例,说明本体聚合的特点。 8.根据合成高压聚乙烯的工艺条件和工艺过程特点,组织高压聚乙烯的生产工艺流程,并划出流程示意图。 9. 高压聚乙烯分子结构特点是怎样形成的,对聚合物的加工及性能有何影响。

功能高分子材料聚合方法的研究进展

功能高分子材料聚合方法的研究进展 摘要:本文简述了对功能高分子材料的认识,功能高分子材料的特征和功能高分子材料的分类。并展望了功能高分子材料未来发展方向及其意义。 关键字:高分子;材料;应用;发展 材料是人类赖以生存和发展的物质基础。是人类文明的重要里程碑,如今有人将能源、信息和材料并列为新科技革命的三大支柱。进入本世纪80年代以来。一场与之相适应的“新材料革命”蓬勃兴起。功能材料是新材料发展的方向.而功能高分子材料占有举足轻重的地位。由于其原料丰富、种类繁多,发展十分迅速,已成为新技术革命必不可少的关键材料[1]。 1功能高分子材料 功能高分子材料一般指具有传递、转换或贮存物质、能量和信息作用的高分子及其复合材料,或具体地指在原有力学性能的基础上,还具有化学反应活性、光敏性、导电性、催化性、生物相容性、药理性、选择分离性、能量转换性、磁性等功能的高分子及其复合材料。功能高分子材料是上世纪60年代发展起来的新兴领域,是高分子材料渗透到电子、生物、能源等领域后开发涌现出的新材料。近年来,功能高分子材料的年增长率一般都在10%以上,其中高分子分离膜和生物医用高分子的增长率高达50%[2]。 2功能高分子材料的发展现状 2.1反应性高分子 反应性高分子是带有反应性官能团的高分子。可分为高分子试剂、高分子催化剂和离子交换树脂,具有广泛的应用前景,1984年诺贝尔化学奖得主就是由于多肽的固相合成法获得成功而被授与的。高分子催化剂与常规催化剂相比,优势明显,如可随时终止反应、稳定性高、可连续操作和反复使用等。尤其是高分子固定化酶催化剂,催化速度为常规催化剂的千百倍。离子交换树脂具有离子交换功能,目前发展方向主要是特种离子交换树脂,如螯合树脂、蛇笼树脂和耐热性离子交换树脂等[3]。 2.2吸附分离功能高分子 吸附分离功能高分子材料主要是指那些对某些特定离子或分子有选择性亲

无机合成方法知识点

第一部分无机合成的基础知识 知识点:溶剂的作用与分类 例如:根据溶剂分子中所含的化学基团,溶剂可以分为水系溶剂和氨系溶剂根据溶剂亲质子性能的不同,可将溶剂分为碱性溶剂、酸性溶剂、两性溶剂和质子惰性溶剂。 例如:丙酮属于()溶剂:A 氨系溶剂 B 水系溶剂 C 酸性溶剂 D 无机溶剂 进行无机合成,选择溶剂应遵循的原则: (1)使反应物在溶剂中充分溶解,形成均相溶液。 (2)反应产物不能同溶剂作用 (3)使副反应最少 (4)溶剂与产物易于分离 (5)溶剂的纯度要高、粘度要小、挥发要低、易于回收、价廉、安全等 试剂的等级及危险品的管理方法 例如酒精属于() A 一级易燃液体试剂B二级易燃液体试剂C三级易燃液体试剂D四级易燃液体试剂 真空的基本概念和获得真空的方法 低温的获得及测量 高温的获得及测量 第二部分溶胶-凝胶合成 溶胶-凝胶法:用含高化学活性组分的化合物作前驱体,在液相下将这些原料均匀混合,并进行水解/醇解、缩聚化学反应,在溶液中形成稳定的透明溶胶体系,溶胶经陈化胶粒间缓慢聚合,形成三维空间网络结构的凝胶,凝胶网络间充满了失去流动性的溶剂,形成凝胶。凝胶经过干燥、烧结固化制备出分子乃至纳米亚结构的材料。 金属醇盐是介于无机化合物和有机化合物之间的金属有机化合物的一部分,可用通式M(OR)n来表示。M是价态为n的金属,R代表烷基。 *金属醇盐可看作是醇ROH中羟基的H被金属M置换而形成的一种诱导体 *金属氢氧化物M(OH)n中羟基的H被烷基R置换而成的一种诱导体。 *金属醇盐具有很强的反应活性,能与众多试剂发生化学反应,尤其是含有羟基

的试剂。 例如:关于溶胶-凝胶合成法中常用的金属醇盐,以下说法错误的是(D ) A金属醇盐可看作是醇ROH中羟基的H被金属M置换而形成的一种诱导体 B金属醇盐可看作是金属氢氧化物M(OH)n中羟基的H被烷基R置换而成的一种诱导体。 C金属醇盐具有很强的反应活性,能与众多试剂发生化学反应,尤其是含有羟基的试剂。 D 异丙醇铝不属于金属醇盐 溶胶-凝胶合成法的应用 溶胶一凝胶法作为低温或温和条件下合成无机化合物或无机材料的重要方法,在软化学合成中占有重要地位。在制备玻璃、陶瓷、薄膜、纤维、复合材料等方面获得重要应用,更广泛用于制备纳米粒子。 溶胶与凝胶结构的主要区别: 溶胶(Sol)是具有液体特征的胶体体系,分散的粒子是固体或者大分子,粒子自由运动,分散的粒子大小在1~1000nm之间,,具有流动性、无固定形状。凝胶(Gel)是具有固体特征的胶体体系,被分散的物质形成连续的网状骨架,骨架空隙中充有液体或气体,无流动性,有固定形状。 溶胶-凝胶合成法的特点: (1)能与许多无机试剂及有机试剂兼容,通过各种反应物溶液的混合,很容易获得需要的均相多组分体系。反应过程及凝胶的微观结构都较易控制,大大减少了副反应,从而提高了转化率,即提高了生产效率。 (2)对材料制备所需温度可大幅降低,形成的凝胶均匀、稳定、分散性好,从而能在较温和条件下合成出陶瓷、玻璃、纳米复合材料等功能材料。 (3)由于溶胶的前驱体可以提纯而且溶胶-凝胶过程能在低温下可控制地进行,因此可制备高纯或超纯物质。 (4)溶胶或凝胶的流变性质有利于通过某些技术如喷射、旋涂、浸拉等加工成各种形状,容易制备出粉末、薄膜、纤维、块体等各种形状的材料。 (5)制品的均匀性好,尤其是多组分制品,其均匀度可达到分子或原子尺度,产品纯度高。

浅析乳液聚合的合成原理及和材料及稳定性

浅析乳液聚合的合成原理及和材料及稳定性 在乳液聚合过程中,乳化剂的种类、用量与用法、pH值、引发剂的类型、搅拌形状与搅拌速度、加料方式、聚合工艺等都会影响到聚合物乳液的稳定性。功能性单体如硅烷偶联剂、丙烯酸、丙烯酰胺、丙烯酸羟乙酯等作为交联单体参与共聚,在一定程度上可提高乳液的稳定性,但因具有极强的亲水性,聚合过程中若在水相发生均聚形成水溶性大分子,容易产生絮凝现象,极易破乳。因而选择合适的乳化体系和聚合工艺对乳液聚合过程的稳定性具有极重要。 聚合物乳液承受外界因素对其破坏的能力称为聚合物乳液的稳定性。在乳液聚合过程中局部胶体稳定性的丧失会引起乳胶粒的聚结形成宏观或微观的凝聚物,即凝胶现象。凝胶多为大小不等、形态不一的块状聚合物,有的发软、发粘,有的发硬、发脆、多孔。在搅拌作用下凝胶分散在乳液中,可通过过滤法或沉降法除去,但有时也会形成大量肉眼看不到的、普通方法很难分离的微观凝胶,使乳液蓝光减弱颜色发白,外观粗糙。严重时甚至整个体系完全凝聚,造成抱轴、粘釜和挂胶现象。凝聚物的生成在乳液研究和生产中具有极大的危害性,它不仅降低单体的有效转化率,增加聚合装置的停机时间和处理的费用,而且还会加大各釜和各批次间产品性能的不一致性,污染环境。 目前比较权威的用于解释聚合物乳液稳定性的理论是双电层理论和空间位阻理论。乳胶粒子的表面性质与吸附或结合在其上的起稳定作用的物质有关,酸性、碱性离子末端以及吸附在乳胶粒表面上的乳化剂在一定的pH值下都是以离子形式存在的,使乳胶粒子表面带上一层电荷,从而在乳胶粒子之间就存在静电斥力,乳胶粒难于互相接近而不发生聚结。当乳胶粒表面吸附有非离子型乳化剂或高分子保护胶体时,其稳定性则与空间位阻有关。 乳化剂的选择是决定乳液聚合体系稳定性的关键因素之一。乳化剂虽不直接参与反应,但乳化剂的种类及用量将直接影响到引发速率、链增长速率以及聚合物的分子量和分子量分布。此外乳化剂的类型、用量和加入方式对乳胶粒的粒径和粒径分布、乳液粒度也有着决定性的影响。如果所选用的乳化剂不适合本乳液聚合体系,则不论怎样改变乳化剂的浓度和调节聚合工艺参数,乳液聚合仍不能平稳进行或是所得到的乳液产品缺乏实用价值。 离子型乳化剂的特点是乳化效率高,可有效地降低表面张力,胶束和乳胶粒子尺寸小,机械稳定性好,但由于其离子特性对电解质比较敏感;非离子型乳化剂对电解质有较好的稳定性,但机械稳定性不好,对搅拌速度比较敏感。 离子型乳化剂主要靠静电斥力使乳液稳定,而非离子型乳化剂主要靠水化,两种乳化剂复合使用时,两类乳化剂分子交替吸附在乳胶粒子表面上,既使乳胶粒间有很大的静电斥力,又在乳胶粒表面形成很厚的水化层,二者双重作用的结果可使聚合物乳液稳定性大大提高。目前乳液聚合体系多采用阴离子型与非离子型复配乳化体系,所得乳液兼有粒子尺寸小、低泡和稳定性好的特点。 引发剂对整个聚合过程起到重要的作用,不同的引发剂制得的聚合物具有不同的分子结构及性能。乳液聚合引发剂分为两类:受热分解产生自由基的引发剂(如过硫酸铵APS、过硫酸钾KPS、过硫酸钠NPS、过氧化氢等无机过氧化物);有机过氧化物和还原剂组合可构成另一

高聚物合成工艺学重点整理

1.粘釜产生原因、危害及防止措施。 粘釜原因:物理因素:吸附作用;化学因素:粘附作用。 危害:(1)传热系数下降;(2)产生“鱼眼”,使产品质量严重下降;(3)需要清釜,非生产时间加长。 防止措施:(1)釜内金属钝化;(2)添加水相阻聚剂,终止水相中的自由基,例如在明胶为分散剂的体系中加入醇溶黑、亚硝基R盐、甲基蓝或硫化钠等;(3)釜内壁涂极性有机物,防让金属表面发生引发聚合或大分子活性链接触釜壁就被终止聚合而钝化;(4)采用分子中有机成分高的引发剂,如过氧化十二酰. 清釜;(5)提高装料系数,满釜操作。 减少粘釜的方法:目前先进的方法是聚合配方中加入防粘釜剂防粘釜剂的种类很多,(而且生产工厂技术保密,主要是苯胺染料、蒽醌染料等的混合溶液或这些染料与某些有计酸的络合物,一般用量极少,产生明星的作用)此时产生的少量粘釜物用高压水枪冲洗即可(水压>21mpa)达到清釜目的。 2.高分子合成材料的生产过程 答: 1)原料准备与精制过程特点:单体溶剂等可能含有杂质,会影响到聚合物的原子量,进而影响聚合物的性能,须除去杂质意义:为制备良好的聚合物做准备 2)催化剂配制过程特点:催化剂或引发剂的用量在反应中起到至关重要的作用,需仔细调制. 意义:控制反应速率,引发反应 3)聚合反应过程特点:单体反应生成聚合物,调节聚合物的分子量等,制取所需产品意义:控制反应进程,调节聚合物分子量 4)分离过程特点:聚合物众位反应的单体需回收,溶剂,催化剂须除去意义:提纯产品,提高原料利用率 5)聚合物后处理过程特点:聚合物中含有水等;需干燥. 意义:产品易于贮存与运输6)回收过程特点:回收未反应单体与溶剂意义:提高原料利用率,降低成本,防止污染环境 3. 生产单体的原料路线有几条?试比较它们的优缺点? 答:工业上生产的高聚物主要是加聚高聚物和缩聚高聚物。当前主要有两条路线。(1)石油化工路线(石油资源有限))石油化工路线(石油资源有限)石油经开采得油田气和原油。原油经炼制得到石脑油、煤油和柴油等馏分和炼厂气。以此为原料进行高温热裂解可得到裂解气和裂解轻油。裂解气经分离精制可得到乙烯、丙烯、丁烯和丁二烯等。裂解轻油和煤油经重整得到的重整油,经加氢催化重整使之转化为芳烃,经抽提(萃取分离)得到苯、甲苯、二甲苯和萘等芳烃化合物。(2)煤炭路线(资源有限,耗能大))煤炭路线(资源有限,耗能大)煤矿经开采得到煤炭,煤炭经炼焦得煤气、氨、煤焦油和焦炭。煤焦油经分离精制得到苯、甲苯、二甲苯、萘和苯酚等。焦炭与石灰石在高温炉中高温加热得到电石(CaC2),电石与 H2O 反应得到乙炔。炔可以合成氯乙烯、醋酸乙烯和丙烯腈等单体或其他有机原料。(3)其他原料路线)主要是以农副产品或木材工业副产品为基本原料,直接用作单体或经化学加工为单体。本路线原料不足、成本较高,但它也是充分利用自然资源,变废为宝的基础上小量生产某些单体,其出发点是可取的。 4.高压聚乙烯分子结构特点是怎么样形成的,对聚合物的加工性能有何影响? 答:乙烯在高温下按自由基聚合反应的机理进行聚合。高温状况下,PE分子间的距离缩短,且易与自由基碰撞反应,很容易发生本分子链转移,支链过多。 影响:这种PE加工流动性好,.可以采取中空吹塑,注塑,挤出成型等加工方法,具有良好的光学性能,强度,柔顺性,封合性,无毒无味,良好的电绝缘性 5.悬浮聚合与本体聚合相比有那些特点? 答:1) 以水为分散介质,价廉,不需回收,安全,易分离.2)悬浮聚合体粘度低,温度易控制,3)颗粒形态较大,可以制成不同粒径的粒子4)需要一定的机械搅拌和分散剂5)产品不如本体聚合纯净 6)悬浮聚合的操作方式为间歇,本体为连续 6.简述聚氯乙烯PVC悬浮聚合工艺过程 答:1、准备工作:首先将去离子水,分散剂及除引发剂以外的各种助剂,经计量后加于聚反应釜中,然后加剂量的氯乙烯单体, 2、聚合:升温至规定的温度.加入引发剂溶液或分散液,聚合反应随时开

材料合成与制备方法

第一章 1、1 溶胶凝胶 1、什么是溶胶——凝胶? 答:就是用含高化学活性组分的化合物作前驱体,在液相下将这些原料均匀混合,并进行水解、缩合化学反应,在溶液中形成稳定的透明溶胶体系,溶胶经陈化胶粒间缓慢聚合,形成三维空间网络结构的凝胶,凝胶网络间充满了失去流动性的溶剂,形成凝胶。 2、基本原理(了解) 3、设备:磁力搅拌器、电力搅拌器 4、优点:该方法制备块体材料具有纯度高、材料成分易控制、成分多元化、均匀性好、材料形状多样化、且可在较低的温度下进性合成并致密化等 5、工艺过程:自己看 6、工艺参数:自己看 2、1水热与溶剂热合成 1、水热法:是指在特制的密闭反应器(高压釜)中,采用水溶液作为反应体系,通过对反应体系加热、加压(或自生蒸气压),创造一个相对高温、高压的反应环境。 2、溶剂热法:将水热法中的水换成有机溶剂或非水溶媒(例如:有机胺、醇、氨、四氯化碳或苯等),采用类似于水热法的原理,以制备在水溶液中无法长成,易氧化、易水解或对水敏感的材料。 3、优点:a、在有机溶剂中进行的反应能够有效地抑制产物的氧

化过程或水中氧的污染; b、非水溶剂的采用使得溶剂热法可选择原料范围大大扩大; c、由于有机溶剂的低沸点,在同样的条件下,它们可以达到比水热合成更高的气压,从而有利于产物的结晶; d、由于较低的反应温度,反应物中结构单元可以保留到产物中,且不受破坏。同时,有机溶剂官能团和反应物或产物作用,生成某些新型在催化和储能方面有潜在应用的材料 4、生产设备: 高压釜是进行高温高压水热与溶剂热合成的基本设备;(分类自己看),高压容器一般用特种不锈钢制成, 5、合成工艺:选择反应物核反应介质——确定物料配方——优化配料顺序——装釜、封釜——确定反应温度、压力、时间等试验条件——冷却、开釜——液、固分离——物相分析 6、水热与溶剂热合成存在的问题:1、无法观察晶体生长和材料合成的过程,不直观。2、设备要求高耐高温高压的钢材,耐腐蚀的内衬、技术难度大温压控制严格、成本高。3、安全性差,加热时密闭反应釜中流体体积膨胀,能够产生极大的压强,存在极大的安全隐患。 7、水热生长体系中的晶粒形成可分为三种类型: a、“均匀溶液饱和析出”机制 b、“溶解-结晶”机制 c、“原位结晶”机制

聚合物合成工艺

第一章绪论 4. 20世纪50年代,谁发现了可用于高密度聚乙烯和立构规整聚丙烯的合成催化剂?这些催化剂的基本成分是什么? 5. 21世纪高分子科学与工程学科的重要发展方向是什么? 6. 简要说明聚合物合成的生产步骤。 第二章合成聚合物的原料路线 4. 石脑油的裂解-催化重整可以获得哪些重要芳烃原材料?其中的加 氢工艺是为了除去哪些有害物质? 5. 什么是C4馏分?如何通过C4馏分制备1,3-丁二烯? 10. 从动、植物体内获得的原料路线有哪些?你认为哪些原料路线具有很好的前景。 第三章自由基本体聚合过程及合成工艺 17. 用过氧化二苯甲酰作引发剂,苯乙烯在60℃进行本体聚合,试计算正常引发反应、向引发剂转移反应、向单体转移反应三部分在聚合度倒数中各占多少百分比?对聚合度各有什么影响,计算时选用下列数据:[I]=0.04mol/L,f=0.8,k d=2.0×10-6s-1,k p=176L/mol·s,k t=3.6×107 L/mol·s,ρ(60℃)=0.887g/mL,C I=0.05,C M=0.85×10-4。 18. 为了改进聚氯乙烯的性能,常将氯乙烯(M1)与醋酸乙烯(M2)共聚 得到以氯乙烯为主的氯醋共聚物。已知在60℃下上述共聚体系的r1=1.68, r2=0.23,试具体说明要合成含氯乙烯质量分数为80%的组成均匀的氯醋共聚物应采用何种聚合工艺? 第四章自由基溶液聚合过程及合成工艺 9. 苯乙烯在60℃以过氧化二叔丁基为引发剂,苯为溶剂进行自由基溶液聚合。当苯乙烯的浓度为1mol/L,引发剂浓度为0.0lmol/L时,引发剂分解和形成聚合物的初速率分别为4×1011mol/(L·s)和1.5×

高分子材料研究方法

三、聚合物结构与性能测定方法概述 (1)链结构:广角X-衍射(WAXD )、电子衍射(ED )、 中心散射法、裂解色谱——质谱、紫外吸收光谱、红外吸收光谱、拉曼光谱、微波分光法、核磁共振法、顺磁共振法、荧光光谱、偶极距法、旋光分光法、电子能谱等。 (2)凝聚态结构:小角X-散射(SAXS )、电子衍射法 (ED )、电子显微镜(SEM 、TEM )、光学显微镜 (POM )、原子力显微镜(AFM )、固体小角激光光散射(SSALS )1、聚合物结构的测定方法 ??结晶度 :X 射线衍射法(WAXD )、电子衍射法(ED )、核磁共振吸收(NMR )、红外吸收光谱 (IR )、密度法、热分解法?聚合物取向度:双折射法(double refraction )、X 射 线衍射、圆二向色性法、红外二向色性法(infrared dichroism)?聚合物分子链整体的结构形态: ?分子量:溶液光散射、凝胶渗透色谱、沸点升高、黏度 法、扩散法、超速离心法、溶液激光小角光散射、渗透压法、气相渗透压法、端基滴定法 ?支化度:化学反应法、红外光谱法、凝胶渗透色谱法、 粘度法?交联度:溶胀法、力学测量法 ?分子量分布:凝胶渗透色谱、熔体流变行为、分级沉淀 法、超速离心法●体积的变化:膨胀计法、折射系数测定法 ●热力学性质的变化:差热分析法(DTA )、 差示扫描量热法(DSC ) ●力学性质的变化:热机械法、应力松弛 法,动态测量法如动态模量和内耗等 ●电磁效应:介电松弛、核磁共振(NMR) ?3、聚合物性能的测定(略)2、聚合物分子运动(转变与松弛)的测定

其它常用的高分子测试仪器 ?XPS ( X-射线光电子能谱) ?Ellipsometry( 椭圆偏振仪) ?X-薄膜衍射仪 1.质谱的概巵:有机列合物的分子在高真空中受到电子流轰击或强电场作用(分子会丢??个外层电子,生成带正电荷的倆子离子l同时化学键乛会发生某丛规律性的断裂,生成各种特征质量的碎片离子。这些碻孀在电场和磁场的作甪下,按照质荷比(m/z)大小的顺序分离开来,收集和记录这些离子就得到质谱图。 2. 紫外-可见吸收光谱是利用某些物质的分子吸收200 ~ 800 nm光谱区的辐射来进行分析表征的方法。这种分子吸收光谱产生于价电子在电子能级间的跃迁,广泛用于无机和有机化合物的结构表征和定量分析。 3. 紫外光谱是带状光谱的原因:在电子能级跃迁的同时,总是伴随着多个振动和转动能级跃迁。 4. 吸收带的划分

聚合物合成工艺学习题

名词解释 Ziegler-Natta催化剂:中文译名“齐格勒-纳塔”催化剂,由三乙基铝与四氯化钛组成,是一种优良的定向聚合催化剂。催化剂又称触媒,可以组合成Ziegler-Natta触媒的化合物种类相当多,Ziegler-Natta触媒可由下列的化合物组合而成:周期表中第IV到第VIII族的过渡金属化合物,和周期表中第I到第III族的金属所组成的有机金属化合物。其中过渡金属化合物为触媒,而有机金属化合物为助触媒。 爆炸极限:可燃物质与空气或氧气必须在一定浓度范围内均匀混合,形成预混气,遇火源才会发生爆炸,这个浓度范围成为爆炸极限,或爆炸浓度极限 逐步加成反应:某些单体的官能团可按逐步反应的机理相互加成而获得聚合物,但又不会析出小分子副产物,这种反应称为逐步加成聚合反应。 界面缩聚:两种单体分别溶解在水及与水不相混溶的有机溶剂中,在常温常压下,在水和有机溶剂的界面进行缩聚反应的方法。 工程塑料:是指被用做工业零件或外壳材料的工业用塑料,是强度、耐冲击性、耐热性、硬度及抗老化性均优的塑料。 表面活性剂:是指具有固定的亲水亲油基团,在溶液的表面能定向排列,并能使表面张力显著下降的物质。 乳化剂:能降低互不相溶的液体间的界面张力,使之形成乳浊液的物质。乳化剂是乳浊液的稳定剂,是一类表面活性剂 HBL值:用来衡量表面活性剂分子中的亲水部分和亲油部分对其性质所作贡献大小的物理量。 种子乳液聚合:单体原则上仅在已生成的微粒上聚合,而不形成新的微粒,即仅增加原来微粒的体积,而不增加反应体系中微粒的数目。

核-壳聚合:两种单体进行共聚合时,如果一种单体首先进行乳液聚合,然后加入第二种单体再次进行乳液聚合,则前一种单体聚合形成乳胶粒子的核心,好似种子,后一种单体则形成乳胶粒子的外壳。 金属茂催化剂:由过渡金属锆(Zr)与两个环戊二烯基或环戊二烯取代基及两个氯原子(或甲基)形成的有机金属络合物和助催化剂甲基铝氯烷组成。 Phillips催化剂活化处理:400~800℃温度下,于干燥空气中进行活化,使铬原子处于Cr+6状态。 熔融指数:热塑性塑料在一定温度和压力下,熔体在10分钟内通过标准毛细管的重量值,以(g/min)为单位。 聚合反应的操作方式:间歇聚合:分批生产,适于小批量生产;连续聚合:自动化程度高,质量稳定,适合大批量生产。聚合反应器:管式、塔式、釜式、特殊形式;反应热排除方式:夹套冷却、内冷管冷却、反应物料部分闪蒸、反应介质预冷、回流冷凝器冷却等。 1、聚合反应釜中搅拌器的形式有哪些?适用范围如何? ①常用搅拌器的形式有平桨式、旋桨式、涡轮式、锚式以及螺带式等; ②涡轮式和旋桨式搅拌器适于低粘度流体的搅拌;平桨式和锚式搅拌器适于高粘度流体的搅拌;螺带式搅拌器具有刮反应器壁的作用,特别适用于粘度很高流动性差的合成橡胶溶液聚合反应釜的搅拌。 2、简述合成树脂与合成橡胶生产过程的主要区别。 —合成橡胶生产中所用的聚合方法主要限于自由基聚合反应的乳液聚合法和离子与配位聚合反应的溶液聚合法两种。而合成树脂的聚合方法则是多种的。合成树脂与合成橡胶由于在性质上的不同,生产上的差别主要表现在分离过程和后处理过程差异很大:①分离过程的差异:合成树脂,通常是将合成树脂溶液逐渐加入第二种非溶剂中,而此溶剂和原来的溶剂是可以混溶的,在沉淀

高分子材料聚合工艺综述

高分子材料聚合工艺综述 姓名:王庆阳 班级:高分子材料与工程1301班 学号:0707130104

高分子材料聚合工艺综述 高分子材料与工程1301班王庆阳 0707130104 摘要:介绍高分子材料的主要工业合成工艺,以及产品的形貌及使用性能。 关键词:高分子材料;合成工艺;自由基聚合;缩合聚合;逐步加成聚合 一、前言 高分子材料作为新时期的全新全能型材料,是现代人类发展的重要支柱,是发展高新科技的基础与先导,高分子材料的应用将会使人类支配改造自然的能力和社会生产力的发展带到一个新的水平,对人类的发展将会出现前所未有的促进。 而作为高分子材料生产的工业基础,高分子材料的合成工艺及其重要,因为它不仅关乎到高分子材料后续产品的性能,并且易于改良、优化从而提高材料的综合性能;因此,本文将对高分子材料的主要合成工艺,即:自由基聚合工艺、缩合聚合工艺、逐步加成聚合工艺,作简单的探讨,为今后在高分子材料工业合成方面的学习及工作奠定基础。 二、自由基聚合工艺 2.1综述 自由基聚合反应是当前高分子合成工业中应用最广泛的化学反应之一。工业中,我们将自由基聚合工艺定义为:单体借助于光、热、辐射、引发剂的作用,使单体分子活化为活性单体自由基,再与单体连锁聚合形成高聚物的化学反应;通过高分子化学的学习,我们知道自由基聚合化学反应主要包括链引发、链增长和链终止三个“基元反应”;同时,在链引发阶段,我们通常选择引发剂作为产生自由基的物质,并通过改变自由基的种类来适应不同的聚合生产工艺。 通常而言,我们将自由基聚合工艺,以实施方法的为分类标准,继续细分为本体聚合、乳液聚合、悬浮聚合和溶液聚合。每种聚合方法聚合体系、产品形态、产品用途各具特色,具体可见表2-1高聚物生产中采用的聚合方法、产品形态与用途。 下面,我们将对这几种自由基聚合工艺的聚合体系组成、产品形貌及性能、适用范围做详细介绍。

13103202-材料制备及合成方法

《材料制备及合成方法》课程教学大纲 一、课程基本信息 课程编号:13103202 课程类别:专业选修课程 适应专业:材料物理 总学时:36 总学分:2 课程简介: 材料制备及合成方法是一门面向材料物理专业开设的选修课程,通过本课程学习,旨在使学生初步了解无机化学的研究领域,要求学生掌握无机材料合成的主要技术、方法、应用及前沿领域,培养学生综合运用所学各种物理、化学知识进行材料制备及合成的基础能力。 授课教材:《无机合成与制备化学》,徐如人主编,高等教育出版社,2009年。 参考书目: [1] 《The Synthesis and Characterization of Inorganic Compounds》, Prentice-Hall, W. L. Jolly,Inc. Englewood Cliffs, New Jersey, 1985年。 [2] 《材料合成与制备方法》,曹茂盛,哈尔滨工业大学出版社,2008年。 [3] 《无机材料合成与制备》,朱继平,合肥工业大学出版社,2009年。 二、课程教育目标 通过本课程教学,要求掌握: (1) 通过溶剂对化学反应的影响,了解溶剂效应以及在合成反应中的作用。 (2) 重点介绍无机合成方法,了解经典合成方法、特殊合成方法等的基本原理。 (3) 通过学习典型无机材料和无机化合物的合成方法,了解合成领域的规律和无机化合物性质。 (4) 非水溶剂在无机合成中的作用。 (5) 传统合成方法的发展过程,其基本原理在现代合成中的应用。 (6) 晶体生长原理以及无机合成化学的理论研究。 (7) 新型无机材料的合成方法。 三、教学内容与要求 第一章绪论 教学重点:无机合成的几个基本问题 教学难点:21世纪化学四大难题 教学时数:2学时 教学内容:无机合成的发展简史及其重要作用;无机合成的几个基本问题;无机合成化学中若干前言课题;21世纪化学四大难题及合成化学展望

高分子材料的合成工艺

高分子材料的合成工艺 1.1 基本概念 单体(Monomer)----高分子化合物是由一类相对分子质量很高的分子聚集而成的化合物,也称为高分子、大分子等。一般把相对分子质量高于10000的分子称为高分子。高分子通常由103~105个原子以共价键连接而成。由于高分子多是由小分子通过聚合反应而制得的,因此也常被称为聚合物或高聚物,用于聚合的小分子则被称为“单体”。 链节(Repreat unit)----链节指组成聚合物的每一基本重复结构单元。 聚合度(Dregree of Polymerization)----衡量聚合物分子大小的指标。以重复单元数为基准,即聚合物大分子链上所含重复单元数目的平均值,以n表示;以结构单元数为基准,即聚合物大分子链上所含结构单元数目的平均值,以x表示。聚合物是由一组不同聚合度和不同结构形态的同系物的混合物所组成,因此聚合度是统一计平均值。 自由基----是指带电子的电中性集团,具有很高的反应活性。 引发剂(Initiator)----又称自由基引发剂,指一类容易受热分解成自由基(即初级自由基)的化合物,可用于引发烯类、双烯类单体的自由基聚合和共聚合反应,也可用于不饱和聚酯的交联固化和高分子交联反应。 分子量(molecular weight)----化学式中各个原子的相对原子质量的总和,就是相对分子质量(Relative molecular mass),用符号Mr表示。 分子量分布(molecular weight distribution)----由于高聚物一般由不同分子量的同系物组成的混合物,因此它的分子量具有一定的分布,分子量分布一般有分布指数和分子量分布曲线两种表示方法。 均聚物(Homopolymer)----由一种单体聚合而成的聚合物。 共聚物(Copolymer)----由一种以上单体聚合而成的聚合物,生产聚合物的聚合反应成为共聚反应。 无规共聚物(Random Copolymerization)---- 在高分子链中不同单体单元的序列分布无规则。A和B两种单元在链中的排列顺序是不能预示的。在烯类单

相关文档