文档库 最新最全的文档下载
当前位置:文档库 › 涡旋式_滚动活塞式_往复式压缩机比较_刘卫华

涡旋式_滚动活塞式_往复式压缩机比较_刘卫华

涡旋式_滚动活塞式_往复式压缩机比较_刘卫华
涡旋式_滚动活塞式_往复式压缩机比较_刘卫华

活塞式压缩机的故障及其原因和措施

活塞式压缩机的故障及其原因和措施 作者:任玉祥出处:阅读:发布时间:2006-10-17 9:06:00供稿:(一)、常见故障及其原因和措施 1.排气量不足: 1.1 进气滤清器的故障:积垢堵塞,使排气量减少;吸气管太长,管径太小,致使吸气阻力增大影响了气量,要定期清洗滤清器。 1.2 压缩机转速降低使排气量降低:空气压缩机使用不当,因空气压缩机的排气量是按一定的海拔高度、吸气温度、湿度设计的,当把它使用在超过上述标准的高原上时,吸气压力降低等,排气量必然降低。 1.3 气缸、活塞、活塞环磨损严重、超差、使有关间隙增大,泄漏量增大,影响到了排气量。属于正常磨时,需及时更换易损件,如活塞环等。属于安装不正确,间隙留得不合适时,应按图纸给予纠正,如无图纸时,可取经验资料,对于活塞与气缸之间沿圆周的间隙,如为铸铁活塞时,间隙值为气缸直径的0.06/100~0.09/100;对于铝合金活塞,间隙为气径直径的0.12/100~0.18/100;钢活塞可取铝合金活塞的较小值。 1.4 填料函不严产生漏气使气量降低。其原因首先是填料函本身制造时不合要求;其次可能是由于在安装时,活塞杆与填料函中心对中不好,产生磨损、拉伤等造成漏气;一般在填料函处加注润滑油,它起润滑、密封、冷却作用。 1.5 压缩机吸、排气阀的故障对排气量的影响。阀座与阀片间掉入金属碎片或其它杂物,关闭不严,形成漏气。这不仅影响排气量,而且还影响间级压力和温度的变化;阀座与阀片接触不严形成漏气而影响了排气量,一个是制造质量问题,如阀片翘曲等,第二是由于阀座与阀片磨损严重而形成漏气。 1.6 气阀弹簧力与气体力匹配的不好。弹力过强则使阀片开启迟缓,弹力太弱则阀片关闭不及时,这些不仅影响了气量,而且会影响到功率的增加,以及气阀阀片、弹簧的寿命。同时,也会影响到气体压力和温度的变化。 1.7 压紧气阀的压紧力不当。压紧力小,则要漏气,当然太紧也不行,会使阀罩变形、损坏,一般压紧力可用下式计算:p=kπ/4 D2P2,D为阀腔直径,P2为最大气体压力,K为大于1的值,一般取1.5~ 2.5,低压时K=1.5~2.0,高压时K=1.5~2.5。这样取K,实践证明是好的。气阀有了故障,阀盖必然发热,同时压力也不正常。 2.排气温度不正常: 排气温度不正常是指其高于设计值。从理论上进,影响排气温度增高的

压缩机常见故障及解决方法

压缩机常见故障及解决方法 摘要:在科学技术日益发展的今天,压缩机在各个行业受到广泛应用,尤其是在大型的煤化行业、机械行业等行业中。压缩机状态的好坏直接决定着装置的安全运行。活塞式压缩机在运转过程中会出现烧瓦,注油器不上油及压力偏低气量不足等常见故障。如何迅速准确地判断并及时处理故障,直接影响压缩机的开工率和产品产量。本文主要分析压缩机的基本原理、常见故障及解决方法。 关键词:压缩机,故障,烧瓦,注油,压力偏低 1压缩机分类与简介 随着工业技术的发展。空压机的类别与型号不断更新,按原理和结构不同可以分为:活塞式、回转式,离心式与轴流式四种。 而根据应用不同又可分为不同的类型,如用于制冷的压缩机通常可分为[1]:一、封闭式压缩机:此类型压缩机由于功率小,主要用于冰箱、家用空调等电器中,它由电机(绕组、转子等)与机械(曲轴、活塞等)部分组成一体,置于密封的缸体中。一旦出现故障修复起来比较困难。二、半封闭和开启式压缩机:此类型压缩机由于功率大,广泛用于中央空调、冷库等大型制冷、空调净化等部门,由于电机与机械分为两部分,一经出现故障可便于拆装修理。 2压缩机的常见故障及解决方案 从气流的角度来讲,可能出现的故障是:风压过高或压缩空气温度过高;风量不足或风量过低。前者当保护装置失灵时,有可能引起积炭自燃、压力容器爆炸,而后者直接影响生产。图1为压缩机常见故障树。从压风机结构来看,造成压缩机故障主要有润

滑系统故障、冷却水路故障,压缩空气气路故障和机械故障四类[2]。 下面主要分析以下几点常见故障[3]: 2.1烧瓦 活塞式压缩机运转中出现烧瓦、主轴瓦或连杆大头瓦巴氏合金层烧伤或脱落,使轴瓦温度升高。产生高温并冒烟,巴氏合金熔化。 2.1.1 油温过低引起烧瓦 以往我们注意曲轴箱油温,都是担心油温过高引起烧瓦。比如说明书中注明油温不能超过60℃或7O℃,但确投有油温下限.忽略了油温过低也引起烧瓦。冬季停机之后压缩机曲轴箱油温降低,所以油非常粘稠,开机后发生烧瓦。因此,冬季采用稠度低的机油为好。 图l 压缩机常见故障树 2.1.2 曲轴箱油位过低引起烧瓦 油标下孔堵塞,油位低时不能发现油位下降,曲轴箱油位过低时.油泵断续吸入空

滚动转子式压缩机的技术状况及发展

滚动转子式压缩机的技术状况及发展 随着世界能源的紧缺和保护环境的呼声越来越高,人们对家用电器中占重要地位的空调器提出了节能、降低对环境直接污染和间接污染等要求。滚动转子式压缩机作为房间空调器一种常用的、效率较高的压缩机形式,它与往复式压缩机相比,具有容积效率高,往复运动部件少,振动小,不需要内部悬挂支撑弹簧,零部件少等优点。据统计,相对于往复式压缩机,转子式压缩机体积减少40-50%,重量轻40-50%。从二十世纪八十年代起,对转子式压缩机的研究非常活跃,井已实现商品化。目前在国内外,滚动转子式压缩机已替代往复式压缩机而广泛应用于空调等家用制冷设备中。 1 改进液动转子式压缩机特佐的技求方寨 提高滚动转子式压缩机的性能是各个生产厂家最为关心的,力此,各个制造厂商纷纷投资研究提高滚动转子式压缩机的性能。目前,改进滚动转子式压缩机特性的技术方案主要集中在提高机组工 作效率、选用优质材料、降低噪声、增强可 靠性等四个方面。 1.l提高压缩机工作效率 提高压缩机的效率主要从电动机和压缩机机构两方面着手。 对于提高电动机效率可以采用特低铁损高磁通量的新型硅钢片作为铁芯材料,改变传统的绕线技术,提高电机的糟满率,装配过程中严格控制电机转子与定子之间的气隙等方案。 而对于提高压缩机机构的效率,采用的措施有:通过零件优化选配,减少滑动部分的间隙;采用圆形气缸,用减少螺栓扭紧力矩来减少其变形;高精度加工,提高滑动部分表面精度;采用计算机模拟技术,引入有限元方法,同时考虑到制冷剂及润滑油的泄漏、吸气加热损失、余隙中的气体膨胀等因素,建立滚动转子式压缩机的数学模型来指导设计。根据压缩机运行过程中参数的变化规律,优化零部件的结构尺寸,选取合适的配合间隙,从而提高压缩机的输气量;生产线主要设备采用计算机管理程序控制自动检测,可对零件的加工质量进行综合分析与控制,确保了零件加工质量严格控制压缩机的装配间隙主要包括滚动转子与气缸的径向间隙。 转子与上、下端盖的端面间隙、滑片与气缸憎的侧面间隙、滑片与上、下端盖的端面间隙;改善润滑油循环系统,采用L形排气管和新型的油封装置,选用最合适的油槽、油量和制冷剂流通面积。 另外,对于热泵型滚动转子式压缩机,优化储液器的内部结构,更好地适应制冷与制热工况的运行要求,也能使机组的运行效率得到改善。 1.2选用优质制造材料

往复式压缩机操作规程

往复式压缩机操作规程 一、启动前的准备和检查 (一)启动前应具备的条件 1、系统流程导通,工艺系统管网流程无误。 2、空负荷试运合格,运转中发现的问题已处理完毕。 3、循环冷却水投用正常,各冷却部位走水畅通,回水排空阀将空气排尽,压力、温度正常(保证压力~(G),温度≤32℃),无泄漏。 4、电机已送电。 5、压缩机气量调节系统调试正常。 6、润滑油更换完毕,分析合格。电机轴承箱加油正常,分析合格。 7、压缩机上所有仪表,报警、联锁再一次检查确认,调试完好具备投用条件。 8、安全消防设施齐全、完好,所有安全阀已定压,并投用。 9、环保设施已具备投用条件。 10、操作人员经严格考核已取得上岗证,电修、仪表、钳工已到位。 11、所有仪表安装完毕经检验合格。 (二)压缩机开车前的准备工作 1、清理厂房、现场,保持环境清洁,无影响操作人员工作的因素。 2、全面检查压缩机气体管路及管路上所有阀门均灵活好用,并确认关闭压缩机进出口阀、出口放空阀、去火炬放空阀、高点放空阀、入口阀、各排污总管上各支管阀、管路上高点放空阀、低点排凝阀,全开回路阀。确认安全阀的根部阀打开。 3、全面检查压缩机循环冷却水系统及管路上所有阀门均灵活好用,并依次全开油冷器,粗过滤器和精过滤器进、出口油阀,关闭其它油路阀。确认油箱液位和电机轴承座油位在2/3以上,取样分析样品合格,打开润滑油管路上所有压力表根部阀。 4、开压缩机用工器具及操作记录已准备齐全,操作人员已熟悉开停车操作程序、注意事项及事故处理预案,进入岗位待命。 二、启动

1、检查 (1)查看记录,确定压缩机备用,电气设备绝缘合格。通知机电仪相关人员到现场。 (2)检查并全开循环冷却水的总进、回水阀,并检查各冷却水回水是否畅通无阻。 (3)投用氮气密封。 (4)启动油泵(若是冬季开车,油箱油温低于15℃,先启动油箱电加热器,待油温>15℃,再启动油泵),调整进油总管压力>(G),观察压缩机中体内十字头滑道是否有油。 (5)启动盘车电机,盘车数圈,检查压缩机运动机构是否有卡涩等异常现象。(6)关闭进出口阀,开启回路阀、放空阀,检查确认压缩机处于空负荷状态。(7)将盘车电机油泵停下,将手柄调到开车处,触摸屏调到运行位置。 (8)联系电气压缩机送电。 (9)检查电机启动控制设备及自控仪表。 2、压缩机的启动 (1)压缩机进料 A 、做好准备工作后,证明机器正常无误时,压缩机吸入罐需排水,并确保排尽,即可启动,启动电机在无负荷下运转5分钟,证明其完全正常,方可升压。 B 、现场开压缩机吸入罐出口阀的前后切断阀、主控关放空阀、缓慢开启吸入罐出口阀,将介质引至压缩机进口阀前,缓慢开压机进口阀,对压缩机进行均压。 C 、缓慢关闭回路阀,逐渐升高压力,至出口压力接近额定的工作压力时打开出口阀门,使机器进入正常运转。注意压缩机出口不要超压。 D 、压缩机运转期间应做好操作记录。压缩机进口吸入罐需排水,确保基本无液位,如有大量的水马上报告班长及值班干部。 E 、按正常状态下操作,按规定进行巡回检查,如发现异常,请及时报告,特殊情况下必须紧急停机。 三、运行期间监护 1、检查测量仪表。 压缩机装置的正确运行要通过下面列出的监视数据来检查。在头 3 个月运行期

压缩机常见三种详细故障分析报告

压缩机常见三种详细故障分析 压缩机常见故障分析(1)——电机烧毁 电动机压缩机(以下简称压缩机)的故障可分为电机故障和机械故障(包括曲轴,连杆,活塞,阀片,缸盖垫等)。机械故障往往使电机超负荷运转甚至堵转,是电机损坏的主要原因之一。电机的损坏主要表现为定子绕组绝缘层破坏(短路)和断路等。定子绕组损坏后很难及时被发现,最终可能导致绕组烧毁。绕组烧毁后,掩盖了一些导致烧毁的现象或直接原因,使得事后分析和原因调查比较困难。 然而,电机的运转离不开正常的电源输入,合理的电机负荷,良好的散热和绕组漆包线绝缘层的保护。从这几方面入手,不难发现绕组烧毁的原因不外乎如下六种:(1)异常负荷和堵转; (2)金属屑引起的绕组短路;(3)接触器问题;(4)电源缺相和电压异常;(5)冷却不足;(6) 用压缩机抽真空。实际上,多种因素共同促成的电机损坏更为常见。 1.异常负荷和堵转 电机负荷包括压缩气体所需负荷以及克服机械摩擦所需负荷。压比过大,或压差过大,会使压缩过程更为困难;而润滑失效引起的摩擦阻力增加,以及极端情况下的电机堵转,将大大增加电机负荷。 润滑失效,摩擦阻力增大,是负荷异常的首要原因。回液稀释润滑油,润滑油过热,润滑油焦化变质,以及缺油等都会破坏正常润滑,导致润滑失效。回液稀释润滑油,影响摩擦面正常油膜的形成,甚至冲刷掉原有油膜,增加摩擦和磨损。压缩机过热会引起使润滑油高温变稀甚至焦化,影响正常油膜的形成。系统回油不好,压缩机缺油,自然无法维持正常润滑。曲轴高速旋转,连杆活塞等高速运动,没有油膜保护的摩擦面会迅速升温,局部高温使润滑油迅速蒸发或焦化,使该部位润滑更加困难,数秒钟内可引起局部严重磨损。润滑失效,局部磨损,使曲轴转动需要更大力矩。小功率压缩机(如冰箱,家用空调压缩机)由于电机扭矩小,润滑失效后常出现堵转(电机无法转动)现象,并进入“堵转-热保护-堵转”死循环,电机烧毁只是时间问题。而大功率半封闭压缩机电机扭矩很大,局部磨损不会引起堵转,电机功率会在一定范围内随负荷而增大,从而引起更为严重的磨损,甚至引起咬缸(活塞卡在气缸内),连杆断裂等严重损坏。 堵转时的电流(堵转电流)大约是正常运行电流的4-8倍。电机启动瞬间,电流的峰值可接近或达到堵转电流。由于电阻放热量与电流的平方成正比,启动和堵转时的电流会使绕组迅速升温。热保护可以在堵转时保护电极,但一般不会有很快的响应,不能阻止频繁启动等引起的绕组温度变化。频繁启动和异常负荷,使绕组经受高温考验,会降低漆包线的绝缘性能。

压缩机操作知识

合格的操作人员应具备的条件: 1、具有责任心和敬业精神; 2、懂得工艺流程、熟悉操作规程; 3、能够了解本岗位各设备的名称、性质和用途,并且能够熟练操作和处理突发事故,做到“四懂”、“三会”; 4、坚守岗位,并能够积极遵守劳动纪律。 “四懂”:懂结构、懂原理、懂性能、懂用途。 “三会”:会作用、会维修、会排除故障。 工艺指标: 2、循环水、循环油的温度和压力: (1)循环水压>0.08Mpa,上水温度<32℃。 (2)循环油压0.19~0.29Mpa,循环油温度<40℃。 3、高压注油器注油量为25~40滴/分。 4、主机电压≤6千伏,电流≤73A,主机温度80~90℃。 5、气柜贮气界限≥400m3。 6、液位:循环油油位1/2~2/3处,高压注油器油位1/2~2/3处。 7、油水分离器:低压每半小时排污一次,高压每小时排污一次。 8、压缩机二段出口压力≤0.95Mpa,五段出口压力≤15.0Mpa, 六段出口压力≤31.4Mpa,每违标一次罚款10元。 9、压缩机各段排污每小时一次,少一次罚款5元;油水阀常开,发现一次罚款10元。 工艺流程: 脱硫(半水煤气)→静电除焦→1进总管→1进阀→1段缸→冷排→油水分离器→2段缸→2出阀→2出总管→去变换; 碳化、精脱硫(碳化气)→气体分离器→3进总管→3进阀→3段缸→冷排→油水分离器→4段缸→冷排→油水分离器→5段缸→冷排→油水分离器→5出阀→5出总管→甲醇(精炼);精炼(精炼气)→6进总管→6进阀→6段缸→冷排→油水分离器→6出阀→6出总管→合成。 氮氢气压缩机的型号4M8(3A)-36/320各代表什么意思? 4代表列数,M代表型式,8代表活塞力值,3A代表变换次数,36代表每分钟的打气量,320代表最终排气压力。

活塞式压缩机常见故障原因及分析

活塞式压缩机常见故障原因及分析 作者:段卫刚 来源:《科学与财富》2020年第26期 摘要:压缩机又叫空气压缩机或者空压机,是一种用于升高气压和传输气体的设备,通过这一设备能够把输入能量转化为气压能量。在我国经济飞速发展和工业进步的过程中,活塞式压缩机得到了大量的应用,成为人们日常生活和工作中不可缺少的部分。但是由于使用不当、零件磨损老化和环境影响等原因,活塞式压缩机会出现多种问题,包括排气、异响、部件和温度等,导致整个器械无法正常使用。本文针对这四类常见的问题,分析主要引发这些问题的常见原因,希望能够进一步丰富活塞式压缩机故障分析和解决领域的理论知识,也为相关人员进行维修提供参考和借鉴,进一步提高活塞式压缩机所在工作和项目的效率。 关键词:活塞式压缩机;常见故障;原因;分析 引言 活塞式空气压缩机是生活和工业中最常用的空气压缩机之一。它广泛应用于化工、机械、石油、交通等领域。由于石化工业的蓬勃发展,各种气体压缩机的数量正在不断增加,在石化工业中有着极为重要的地位,被广泛应用于生活的各个领域。在我国经济飞速发展和工业进步的过程中,活塞式压缩机得到了大量的应用,成为人们日常生活和工作中不可缺少的部分。 空气压缩机的种类繁多,涉及的行业也有巨大的差异。活塞式压缩机因为其本身质量稳定、价格低廉、效率高效的优点,被众多行业和群体所选择和使用,整个产业市场一直处于较为稳定的状态,因此研究其故障原因分析,有着较高的理论和实践价值,同时也兼具经济效益。 一、活塞式压缩机 活塞式压缩机是一种通过活塞的往复运动来加压和输送气体的压缩机,它主要由工作室、传动部件、机身和辅助部件组成。工作室直接用于压缩气体,由气缸、气缸套、阀、填料、活塞和活塞杆组成。活塞由活塞杆驱动以在气缸中进行往复运动。活塞两侧的工作室的容积依次变化。由于压力的增加,容积减小的一侧的气体通过空气阀排出,而由于气压的减小,容积增大的一侧的气体通过空气阀吸收气体。传动部件用于实现往复运动,包括曲轴连杆,偏心滑块,斜盘等。它由十字头,连杆和曲轴组成。 二、活塞式压缩机常见故障原因及分析 (一)排气问题1、排气量不足

往复式压缩机的基本知识及原理

.活塞式压缩机的基本知识及原理 活塞式压缩机的分类: (1)按气缸中心线位置分类 立式压缩机:气缸中心线与地面垂直。 卧式压缩机:气缸中心线与地面平行,气缸只布置在机身一侧。 对置式压缩机:气缸中心线与地面平行,气缸布置在机身两侧。(如果相对列活塞相向运动又称对称平衡式) 角度式压缩机:气缸中心线成一定角度,按气缸排列的所呈现的形状。有分L型、V型、W型和S型。 (2)按气缸达到最终压力所需压级数分类 单级压缩机:气体经过一次压缩到终压。 两级压缩机:气体经过二次压缩到终压。 多级压缩机:气缸经三次以上压缩到终压。 (3)按活塞在气缸内所实现气体循环分类 单作用压缩机:气缸内仅一端进行压缩循环。 双作用压缩机:气缸内两端进行同一级次的压缩循环。 级差式压缩机:气缸内一端或两端进行两个或两个以上的不同级次的压缩循环。 (4)按压缩机具有的列数分类 单列压缩机:气缸配置在机身的一中心线上。 双列压缩机:气缸配置在机身一侧或两侧的两条中心线上。 多列压缩机:气缸配置在机身一侧或两侧的两条以上中线上。 活塞式压缩机工作原理: 当活塞式压缩机的曲轴旋转时,通过连杆的传动,活塞便做往复运动,由气缸内壁、气缸内的工作容积则会发生周期性变化。活塞式压缩机的活塞从气缸盖处开始运动时,气缸内的工作容积逐渐增大,这时,气体即沿着进气管,推开进气阀而进入气缸,直到工作容积变到最大时为止,进气阀关闭;活塞式压缩机的活塞反向运动时,气缸内工作容积缩小,气体压力升高,当气缸内压力达到并略高于排气压力时,排气阀打开,气体排出气缸,直到活塞运动到极限位置为止,排气阀关闭。当活塞式压缩机的活塞再次反向运动时,上述过程重复出现。总之,活塞式压缩机的曲轴旋转一周,活塞往复一次,气缸内相继实现进气、压缩、排气的过程,即完成一个工作循环。 活塞式压缩机的基本结构 活塞式压缩机基本原理大致相同,具有十字头的活塞式压缩机,主要有机体、曲轴、连杆、十字头、气缸、活塞、填料、气阀等组成。 1、机身:主要由中体、曲轴箱、主轴瓦(主轴承)、轴承压盖及连接和密封件等组成。曲轴箱可以是整体铸造加工而成,也可以是分体铸造加工后组装而成。主轴承采用滑动轴承,安装时应注意上下轴承的正确位置,轴承盖设有吊装螺孔和安装测温元件的光孔。 2、曲轴:曲轴是活塞式压缩机的主要部件之一,传递着压缩机的功率。其主要作用是将电动机的旋转运动通过连杆改变为活塞的往复直线运动。 3、连杆:连杆是曲轴与活塞间的连接件,它将曲轴的回转运动转化为活塞的往复运动,并把动力传递给活塞对气体做功。连杆包括连杆体、连杆小头衬套、连杆大头轴瓦和连杆螺栓。 4、十字头:十字头是连接活塞与连杆的零件,它具有导向作用。十字头与活塞杆的连接型式分为螺纹连接、联接器连接、法兰连接等。大中型压缩机多用联接器和法兰连接结构,使用可靠,调整方便,使活塞杆与十字头容易对中,但结构复杂。 5、气缸:气缸主要由缸座、缸体、缸盖三部分组成,低压级多为铸铁气缸,设有冷却水夹层;高压级气缸采用钢件锻制,由缸体两侧中空盖板及缸体上的孔道形成泠却水腔。气缸采用缸套结构,安装在缸体上的缸套座孔中,便于当缸套磨损时维修或更换。气缸设有支承,用于支撑气缸重量和调整气缸水平。 6、活塞:活塞部件是由活塞体、活塞杆、活塞螺母、活塞环、支承环等零件组成,每级活塞体上装有不同数量的活塞环和支承环,用于密封压缩介质和支承活塞重量。活塞环采用铸铁环或填充聚四氟乙烯塑料环;当压力较高时也可以采用铜合金活塞环;支承环采用四氟或直接在活塞体上浇铸轴承合金。 活塞与活塞杆采用螺纹连接,紧固方式有直接紧固法,液压拉伸法,加热活塞杆尾部法等,加热活塞杆尾部使其热胀产生弹性伸长变形,将紧固螺母旋转一定角度拧至规定位置后停止加热,待杆冷却后恢复变形,即实现紧固所需的预紧力。活塞杆为钢件锻制成,经调质处理及表面进行硬化处理,有较高的综合机械性能和耐磨性。活塞体的材料一般为铝合金或铸铁。

压缩机常见故障处理

一、活塞式压缩机打气量不足 产生原因: 1、吸排气阀漏气 (1)阀座与阀片之间有金属颗粒,因关闭不严引起漏气,影响气量。 (2)新的吸气阀弹簧,初用时刚性太大,引起开启迟缓;弹簧用久后,因疲劳引起开阀不及时,造成漏气。 (3)阀片与阀座磨损不均匀,因而引起密封不严而漏气,影响气量。 (4)吸气阀升起不够,流速加快阻力增大,影响气量。 消除方法: (1)拆检清洗,若吸气阀的阀盖发热,则故障在吸气阀上,否则是在排气阀上。 (2)检查弹簧刚性,或更换合适的弹簧。 (3)用研磨方法加以修理,或更换新的阀片和阀座。 (4)调整升程高度,更换适当的升程限制圈。 2、填料漏气 (1)填料或活塞杆磨损引起漏失。 (2)润滑油供应不足,降低气密性,引起漏失。

消除方法: (1)修理或更换密封圈或活塞杆。 (2)拆检吸、排气阀,发现气阀缺油,应增加润滑油量。 3、气缸与活塞环有故障 (1)气缸磨损(特别是单边磨损)超过最大允许限度,间隙增大,引起漏气,影响打气量。 (2)活塞环因润滑油质量不好,油量不足,缸内温度过高,将形成咬死现象,不但影响气量,而且影响压力。 (3)活塞环磨损,造成间隙大而漏气。 消除方法: (1)用镗削或研磨的方法进行修理,严重时更换新缸套。 (2)取出活塞,清洗活塞环或环槽,更换润滑油,改善净却条件。 (3)更换活塞环。 4、气缸余隙容积过大,降低了吸入量。 消除方法:

调整气缸余隙 二、某级压力升高 产生原因: 1、后一级的吸、排气阀漏气,必然增大前一级的排气压力。 2、活塞环泄漏引起排气量不足。 3、本级吸、排气阀因各种原因产生的泄漏。 消除方法: 1、更换后一级的吸、排气阀。 2、更换活塞环。 3、拆检气阀,并采取相应措施。 三、某级压力降低 产生原因:

滚动转子压缩机的设计

一、设计条件 设计题目:设计一台家用空调全封闭滚动转子式制冷压缩机 要求:热力计算和动力计算(转子受力分析),做出结构简图 设计条件:汽缸直径D(mm):54 相对气缸长度μ:0.8 相对偏心距τ:0.09 滑片厚度b≥2e 相对余隙容积c:1.2% 吸气孔口前边缘角β:30~35° 转速n:2980r/min 制冷剂:R410a: 计算四种工况:标准工况;T0=5oC;T1=15oC; T k=55oC;T4=50oC; 最大压差工况;T0=-5oC;T1=15oC; T k=50oC;T4=45oC; 最大轴功率工况;T0=-5oC;T1=15oC; T k=45oC;T4=40oC; 设计工况:T0=7.2oC;T1=18.3oC; T k=54.4oC;T4=46oC; 二、滚动转子示意图 转子轴向长度L=D*μ=54*0.8=43.2mm 偏心距e=R*τ=0.5D*τ=0.5*54*0.09=2.43mm 转子的半径r=R-e=0.5*54-2.43=24.57mm 滑片厚度b取2e,则b=2e=2*2.43=4.86mm 吸气孔口前边缘角β:32° 吸气后边缘角α:22° 排气后边缘角γ:32° 排气前边缘角φ:22°

三、热力计算 1.四种工况的温度表,如下 T0(℃)T1(℃)T k(℃)T4(℃)标准工况 5 15 55 50 -5 15 50 45 最大压差工 况 -5 15 45 40 最大轴功率 工况 设计工况7.2 18.3 54.4 46 各种工况循环的p-h图:

2. 热力计算,如下表: R410a 标准工况 最大压差工况 最大轴功率工况 设计工况 MPa /p p 0s 1= 0.932 0.680 0.680 0.996 MPa /p p dk 2= 3.396 3.033 2.701 3.351 压力比= εso dk p p 3.644 4.460 3.972 3.364 )(13s01kg m /v v -?= 0.030 0.044 0.044 0.029 )(132kg m /v -? 0.009 0.011 0.012 0.009 )(11kg kJ /h -? 435.51 439.52 439.52 437.41 )(12kg kJ /h -? 473.48 486.55 482.75 473.10 )(14kg kJ /h -? 292.19 280.72 270.02 282.96 等熵指数κ=γ= v p c c =1.16由r410a 的性质经计算求得 1.16 1.16 1.16 1.16

活塞制冷压缩机22种常见故障及原因

活塞制冷压缩机22种常见故障及原因 塞式制冷压缩机的日常运行中,由于种种原因,如操纵不当等轻易发生故障,可能发生的故障其种类和原因很多。 下面就对常见的压缩机故障做下简单的分类: l、压缩机不能正常启动运行 (1)供电电压过低;电机线路接触不良; (2)排汽阀片漏气。造成曲轴箱内压力太高; (3)能量调节机构失灵; (4)温度控制器失调或发生故障; (5)压力继电器失灵。 2、压缩机启动、停机频繁: (1)由于排汽阀片漏汽,使高低部分压力平衡,造成进汽压力过高; (2)温度继电器幅差太小; (3)由于冷凝器缺水造成压力过高,高压继电器动作。 3、压缩机启动后没有油压或运转中油压不起: (1)油泵管路系统连接处漏油或管道堵塞; (2)油压调节阀开启过大或阀芯脱落; (3)曲轴箱油太少; (4)曲轴箱内有氨液,油泵不进油; (5)油泵严重摩损,间隙过大; (6)连杆轴瓦和曲柄销,连杆小头衬套和活塞销摩损严重; (7)油压表阀未打开。 4、油压过高 (1)油压调节阀未开或开启太小; (2)油路系统内部堵塞; (3)油压调节阀阀芯卡住。 5、油泵不上压 (1)油泵零件严重摩损,致使间隙过大; (2)油压表不准,指针失灵; (3)油泵部件检验后装配不当。 6、曲轴箱中润滑油起泡沫 (1)润滑油中混有大量氨液,压力降低时由于氨液蒸发引起泡沫; (2)曲轴箱加油过多,连杆大头揽动润滑油引起。 7、油温过高 (1)曲轴箱油冷却器没有供水; (2)轴与瓦装配不适当,间隙过小; (3)润滑油中含有杂质,致使轴瓦拉毛; (4)轴封摩擦环安装过紧或摩擦环拉毛; (5)吸、排汽温度过高。 8、油压不稳定 (1)油泵吸进有泡沫的油; (2)油路不畅通。 9、压缩机耗油量过大 (1)油环严重摩损,装配间隙过大;

尾气压缩机C301检修总结

尾气压缩机C301检修总结 1、综述 聚丙烯回收气压缩机为往复式,介质主要是夹带聚丙烯粉末的丙烯气,尾气压缩机是瑞士布克哈德产4D300B-3Q_1型立式双作用迷宫式往复压缩机,活塞行程300mm , 4缸3级压缩(第1级配置2个气缸),共28个气阀,各级入口气阀都配置卸荷执行机构,因此机组可实现50%、75%、100%3种负荷状态下操作。机组是装置开工两年多第一次大检修,主要更换刮油环、迷宫填料、导向轴承、曲轴箱润滑油过滤器和所有吸排气阀。 2、机组检修前状态 2.1级间压力下降 同样的入口压力下,一二级出口压力相比较开工时有明显下降趋势(下降约20%),可能造成的原因有活塞磨损严重,径向间隙过大,或者活塞杆迷宫式填料环磨损,密封泄漏严重,导致一二级的压缩比发生变化。 2.2级间温度上升 同样在级间换热器冷却水全开的情况下,换热器后温度相比较开工时有明显上升,表现为换热器换热效率下降。 2.3 打气量下降 同样的工况下压缩机回流比之前降低。 3、机组关键数据测量及标准值 3.1气缸上下死点间隙及活塞径向间隙 气阀拆除后,分别从上下气阀孔伸入铅丝后将活塞盘车至上下死点位置,使用游标卡尺测量铅丝厚度测量出上下死点间隙。气缸盖吊出后,进行活塞间隙的测量。方法为:选择活塞的同样部位分别在上下死点测量,分别在东、西、南、北四个方向用塞尺进行测量。 1、2塞尺;3活塞;4气缸;5上下止点 A 活塞直径;a 上止点间隙;b 下止点间隙 图 1活塞径向间隙测量 图 2 气缸间隙测量

表一:检修间隙表 备注:a+b<5.4mm 4、活塞、刮油环、填料拆卸及数据测量 拆解前上部螺母位置距离凸台顶部位置:V1-2mm;V2-0.5;V3-2.8mm;V4-2.2mm。 拆卸步骤如下:①拆除活塞杆与十字头连接。拆除锁片,拔出定位销,松动上部螺母,在用吊链吊起活塞杆的同时松动下部螺母直到脱落,卸掉上部螺母,吊出活塞杆(注意不要对填料、刮油环、导向轴承轴瓦产生碰磨);②拆除导向轴承盖和弹簧板后可拆除刮油环;③拆除导向轴承顶部环后取出轴瓦;④拆除填料盒,安装专用工具,松开填料盒底部螺栓。 拆除后一段活塞磨损严重,尤其是V3活塞,对应的V3活塞杆填料环磨损严重,凹槽几乎磨平如图3、 4所示;由此可以证明压缩机一、二级出口压力下降是由活塞与填料磨损引起的。V3活塞导向轴承内部发现一块小缺陷,猜测是导向轴承对活塞杆定位不中引起的活塞与填料环磨损,其他活塞不同程度的有轻微磨损,其他导向轴承轴瓦内部也有少许划痕。刮油环完好未发现异常磨损,隔离室存有只有少量油,且运行期间压缩机并未出现跑油现象,这也证明了刮油环完好。 图3 V3活塞导向轴承图4 V3活塞杆填料

大型活塞式压缩机常见故障及处理措施示范文本

大型活塞式压缩机常见故障及处理措施示范文本 In The Actual Work Production Management, In Order To Ensure The Smooth Progress Of The Process, And Consider The Relationship Between Each Link, The Specific Requirements Of Each Link To Achieve Risk Control And Planning 某某管理中心 XX年XX月

大型活塞式压缩机常见故障及处理措施 示范文本 使用指引:此解决方案资料应用在实际工作生产管理中为了保障过程顺利推进,同时考虑各个环节之间的关系,每个环节实现的具体要求而进行的风险控制与规划,并将危害降低到最小,文档经过下载可进行自定义修改,请根据实际需求进行调整与使用。 【论文摘要】在石油化工及化肥行业中,气体的压缩 必不可少,而做为往复压缩机由于压力范围广,效率高、 适应性强,在石化及中小氮肥行业中的应用则更为广泛。 缺点则是它存在着外型及重量较大,需较大的基础,气流 较脉动,易损件多,增加了检修工作,由此以上特点,往 复式活塞压缩机在使用过程中正确的检修及保养显得尤为 重要。正确的检修对装置的开工率、出力率及降低吨成品 的成本都十分关键,我公司新上四台大型往复式压缩机单 机打气量190m3/min,由于多方面原因在使用过程中出现 一系列的事故,在此做以介绍,供各位同仁探讨。 一、曲柄销轴瓦的偏磨:

连杆将作用在活塞上的推力传递给曲轴,又将曲轴的旋转运动转换为活塞的往复运动,我公司一台压缩机在一段时间内频繁出现一级曲柄销瓦偏磨损坏乌金脱落的事故,且偏磨的方向一直不变,主要从以下几方面进行了分析处理。 1、仔细检测了曲柄销轴承的间隙,十字头销与十字头及连杆大、小头瓦的间隙,十字头与滑道的六点间隙,以及曲柄销轴的椭圆度,更换了新的十字头销,保证了各部间隙。 2、连杆大小头孔的平行度,利用专用工具检测,十字头销孔对于一级曲柄销轴的平行度,也利用专用工具进行了检测。平行度均不超0.02—0.03mm,在允许范围内。 3、活塞杆的跳动, 设计值不超过0.07mm/全行程,也在设计范围内 在以上三点均得到确认无误后,检修机组后开车仅3

(完整版)往复式压缩机的基础知识

职工技能培训教材 往复式活塞压缩机教案 编写胡方柱 设备动力部 2014年5月8日

往复式压缩机的基础知识 一、活塞式压缩机简介 1、按气缸的布置可将其分为: (1)立式压缩机,气缸均为竖立布置;(2)卧式压缩机,气缸均为横卧布置;(3)角式压缩机,气缸布置为V型、W型、L型、星型等不同角度;(4)对称平衡式压缩机,气缸横卧布置在曲轴两侧,相对两列气缸的曲拐错角为180℃,而且惯性力基本平衡。 2、若按排气压力可分为: (1)低压压缩机,排气压力为0.3~1MPa(表压);(2)中压压缩机,排气压力为1~10 MPa(表压);(3)高压压缩机,排气压力为10~100MPa(表压);(4)超高压压缩机,排气压力>100 MPa(表压)。 3、若按排气量可分为: (1)微型压缩机,排气量<0.017m3/s;(2)小型压缩机,排气量为0.017~0.17 m3/s;(3)中型压缩机,排气量为0.17~1.00 m3/s;(4)大型压缩机,排气量>1.00 m 3/s。 4、若按气缸达到终压所需级数可分为: (1)单级压缩机,气体经一次压缩达到终压;(2)双级压缩机,气体经两级压缩达到终压;(3)多级压缩机,气体经三级以上压缩达到终压。 5、若按活塞在气缸中的作用可分为: (1)单作用压缩机,气缸内仅一端进行压缩循环;(2)双作用压缩机,气缸内两端都进行同一级次的压缩循环;(3)级差式压缩机,气缸内一端或两端进行两个或两个以上不同级次的压缩循环。 6、若按列数的不同可分为: (1)单列压缩机,气缸配置在机身一侧的一条中心线上;(2)双列压缩机,气缸配置在机身一侧或两侧的两条中心线上;(3)多列压缩机,气缸配置在机身一侧或两侧两条以上的中心线上。

压缩机题库

气柜、煤锁气压缩机题库 一、填空题(共60题) ※1、油系统酸洗包括:(脱脂)(酸洗)(中和)(钝化)。 ※2、阀门是管道附件之一、用来控制管道中介质的(流量)(压力)、和(流动方向)。 ※3、煤锁气压缩机油泵的类型为:(齿轮泵)。 ▲4、煤锁气压缩机用油型号为(L-DAB150) ※5、煤锁气压缩机型号6M40-366/40,其中366代表(打气量) ▲6、煤锁气压缩机正常供油温度为(25-35℃) ▲7、煤锁气压缩机供油压力报警值为(0.25Mpa)联锁值为(0.2Mpa)※8、润滑油的五定(定点)(定时)(定质)(定量)和(定期)。※9、煤锁气压缩机的列数和级数分别为(六列五级) ▲10、润滑油油箱电加热器自启条件为油箱温度(≤10℃),自停条件为(≥30℃) ▲11、各级安全阀起跳压力分别为一级(0.24Mpa)二级(0.47Mpa)三级(1.05Mpa)四级(2.20Mpa)五级(4.40Mpa),集油器安全阀起跳压力为(0.7Mpa) ※12、气阀主要由(阀座)(弹簧)(阀片)和(升程限制器)四部分组成 ※13、往复式压缩机由(传动机构)(工作机构)(机体和辅助机构)四部分组成 ※14、活塞式压缩机的主要零部件有(气缸)(活塞组)(气阀)(运

动机构组)(密封)和(活塞环)。 ※15、往复式压缩机易损部件有(活塞环)、(填料)和(气阀)三部分 ※16、按升降方式不同,气柜可分为(直立式)和(旋转式)两种。※17、直立式低压湿式气柜由水槽,(钟罩)(塔节)水封(顶架)(导轨立柱)(导轨) ,配重及防真空装置等组成。 ▲18、我厂压缩机一二三四五级排气压力分别为(0.23MPa)(0.46MPa)(0.99MPa)(2.04MPa)(4.09MPa) ※19、活塞通过(活塞杆)由传动部分驱动,活塞上设有(活塞环)以密封活塞与气缸的间隙。 ※20、润滑油使用前,应进行三级过滤,(从油桶到油箱)、(从油箱到油壶)、(从油壶到注油点)。 ※21、压缩比是指出口压力与(进口压力)之比。 ※22、往复式压缩机流量调节采用(旁路调节)、(气动卸荷调节) 两种.我厂煤锁气压缩机采用(旁路)调节。 ※23、润滑油对轴承起:(润滑)(冷却)和(清洗)作用. ※24、系统管道试压采用的介质是(水)。 ※25、压缩机在单机试车前。轴瓦必须要进行(油洗)。 ※26、往复机切换时操作要(平稳)以(流量波动不大)为操作原则。▲27、煤锁气压缩机型号(6M40-366/40) ※28、润滑油箱容积为(3.4m3) ▲29、煤锁气压缩机供油压力为(0.35-0.45Mpa)

氨活塞式压缩机常见故障原因

氨活塞式压缩机常见故障原因 一压缩机高低压窜气 1, 吸,排气阀片损坏. 2, 汽缸套,吸排气阀座(内外阀座),假盖(阀盖)等的密封面破损, 阀盖螺栓与假盖的密封面破损. 3, 汽缸套的纸垫损坏. 4, 机体自带的安全阀损坏. 5, 汽缸套,活塞,气环,油环损坏. 6, 气环油环装配不当. 7, 双级压缩机二级汽缸套的橡胶圈损坏. 二压缩机用油量过大(费油) 1, 压缩机潮车(湿行程), (见第 12 项) 2, 压缩机吸气压力经常在负压状态 (见第 5 项) 3, 压缩机的轴封,加油三通阀,卸载油缸,油路连接锁母等处漏油, 4, 压缩机的高低压窜气, (见第 1 项) 5, 汽缸套,活塞,气环,油环损坏或装配不当, 三压缩机排气温度过高 1, 压缩机的高低压窜气, 2, 排气压力高, 3, 吸气压力低, 4, 吸气温度高, 5, 冷却水流量不足 四压缩机排气压力过低,过高单级压缩机排气压力过低: 1, 吸,排气阀片损坏. 2, 汽缸套,吸排气阀座(内外阀座),假盖(阀盖)等的密封面破损, 阀盖螺栓与假盖的密封面破损. 3, 汽缸套的纸垫损坏. 4, 机体自带的安全阀损坏. 单级压缩机排气压力过高: 1, 冷凝器供水不足,或水温度偏高(冷却塔损坏) 2, 冷凝器内含有空气 3, 冷凝器结垢或堵塞使冷凝面积减小 4, 系统中的氨液过量双级压缩机一级排气压力过低 1, 一级吸,排气阀片损坏. 2, 一级汽缸套,吸排气阀座(内外阀座),假盖(阀盖)等的密封面破损, 阀盖螺栓与假盖的密封面破损. 3, 一级汽缸套的纸垫损坏. 4, 机体自带的一级安全阀损坏. 5,二级汽缸套的橡胶圈损坏. 双级压缩机一级排气压力过高

往复式压缩机常见故障与排除

往复式压缩机常见故障原因及处理 往复式压缩相对于其他形式的压缩机来说运转部件较多,摩擦易损件也多,特别是多级压缩机,介质流程长,介质过流部件多,所以压缩机故障非常频繁,故障产生的原因常常是复杂多样,有些甚至是相互关联。因此必须经过细心的观察研究,甚至要经过多方面的试验,并依靠丰富的实践经验积累,才能判断出产生故障的真正原因所在。正是因为故障原因复杂多样,所以大致应从四个方面进行综合分析: 一、从监测仪表显示的故障例如温度、压力、振动、位移、功率方面显示的故障,首先要先检查仪器仪表监测系统,确保显示准确可靠; 二、由于工艺操作方面的原因造成的故障,例如共振引起的异常振动,介质纯度不够,杂质较多引起的系统堵塞故障等,找到故障根源,才能高效排除设备故障; 三、从设备本身部件的形状、位置、特征发生变化引起的自身故障,通常采用从简单到复杂、从局部到整体的排除方法逐一排除; 四、另外综合以上三点,还要注重平时设备运行时的巡回检查,收集相关设备运行记录信息,进行综合分析。 综合能力:作为设备检修人员来说,应该理解和掌握以下通用和常用的技能点: 一、材料线膨胀系数:(用于计算轴承、联轴器等盘状零部件冷热装配计算;相对运动部件配合间隙计算;) 二、零部件形位公差:(用于零部件装配的检测和控制标准) 三、零部件装配配合公差:(间隙配合、过渡配合、过盈配合,用于零部件装配的检测和控制标准) 四、润滑剂:(用于冷却、清洗、降低摩擦,避免或减少磨损) 精品

五、材料性能:(用于选用材料时考虑其承受温度、压力、耐腐蚀等的性能) 六、具备一定的制图,识图能力。 往复式压缩机常见故障产生的原因及处理措施如下: 精品

往复式压缩机的日常维护与保养

往复式压缩机的日常维护与保养 良好的维护保养,是使压缩机组安全运行,延长使用寿命,并降低运行成本的基本保证。为此,机组的维护保养应按正确的操作规程进行压缩机组的维护保养分为预防性维护、每班、每旬、半年、一年、三年维护保养。每次保养作业后应认真做好保养记录。 (一)预防性维护保养 1、在维护保养中,首先应做到清洁,无论是润滑油还是冷却水,都应 保持其清洁。 2、应保证曲轴箱和注油器内有足够的润滑油,并防止水或杂质进入润滑系统。 3、冷却系统应充满冷却水,不允许有气堵或泄漏。 4、机组启动前,使活塞处于不同的位置,手动注油器手压泵,以预 润滑气缸、活塞杆。 5、对于刚启动的机组,启动后不要马上加载,应使其空转,待机组 升温后再加载

6、在机组的运行过程中,应避免超载运行 7、对运转中发出的不正常响声和泄漏,应停机查找原因,排除后再启动运行。 (二)每班维护保养 1 、检查并消除机组油、气、水泄漏现象,保持设备表面和环境的清 洁。 2、监视检查润滑油油箱、注油器、曲轴箱油位、机油泵工作情况; 机组各部位运转有无异响和振动。 3、检查压缩机系统进排气压力、温度和油压是否正常。 4 、检查机组地脚螺栓和各连接部位紧固情况 5 、检查并排除分离器积液。 6、检查各控制仪表工作是否正常。 7 、检查电气设备工作是否正常。 三)每旬维护保养(250 小时)

1、每班维护保养的全部内容 2、检查联轴器连接情况。 (四)每月维护保养(700 小时) 1、每旬维护保养的全部内容。 2、检查润滑油储油箱油位,适当补充新油。 3、检查润滑油滤清器压力降,允许压力降不大于0.042MPa超过该 值时应对滤清器滤芯进行清洗 4、给水泵轴承加注规定牌号的润滑脂。 5、检查清洗压缩机进、排气阀,更换损坏零件 6、检查十字头销、活塞杆锁紧螺母的松紧程度。 7、检查清晰分离器滤芯及分离器排污装置。 五)半年维护保养(4000 小时) 1、每月维护保养的全部内容。 2、检查所有安全保护装置和仪控、电控系统的工作可靠性、灵敏度,

涡旋式压缩机与滚动转子式压缩机的比较

涡旋式压缩机与滚动转子式压缩机的比较 随着社会发展,人类对生存环境的舒适性要求也越来越高,所以提高压缩机的压缩效率和工作可靠性、开发应用节材、节能型压缩机就成为制冷技术发展的主要方向之一,第三代制冷与空调用压缩机---涡旋式压缩机就是在这种背景下应运而生并得到广泛应用、并在众多的商用空调系统中取代传统的第一、二代压缩机而占据主导地位,而滚动转子式压缩机(第二代压缩机)由于其相对较低的制造成本和相对较高的性能在小容量(3HP以下)空调机组中仍占据主要地位。本文就涡旋式压缩机和滚动转子式压缩机在空调技术上的具体应用及有关性能进行具体比较。 涡旋压缩机是靠气体容积减小而使压力升高的一种压缩机,是一种借助于容积的变化来实现气体压缩的流体机械,这一点与往复式压缩机相同;涡旋式压缩机是通过主轴旋转带动工作转子运动来改变压缩机容积,以达到吸气、压缩和排气的目的,它的主要部件动涡盘的运动,是在偏心轴的直接驱动下进行的,这一点又与旋转式压缩机相同;但涡旋式压缩机的压缩腔,既不同于往复式的又不同于旋转式的,故把它称做新一代容 积式压缩机即第三代压缩机,该型压缩机具有非常高的效率,比第二代压缩机转子压缩机效率高5%左右。 涡旋压缩机中的主要部件是两个形状相同但角相位置相对错开180°的渐开线涡旋盘,其一是固定涡旋盘,而另一个是由偏心轴带动,其轴线绕着固定涡旋盘轴线做公转的绕行涡旋盘。工作中两个涡旋盘在多处相切形成密封线,加上两个涡旋盘端面处的适当密封,从而形成好几个月牙形气腔。两个涡旋盘间公共切点处的密封线随着绕行涡旋盘的公转而沿着涡旋曲线不断转移,使这些月牙形气腔的形状大小一直在变化。压缩机的吸气口开在固定涡旋盘外壳的上部。当偏心轴顺时针旋转时,气体从吸气口进入吸气腔,相继被摄入到外围的与吸气腔相通的月牙形气腔里。随着这些外围月牙形气腔的闭合而不再与吸气腔相通,其密闭容积便逐渐被转移向固定涡旋盘的中心且不断缩小,气体被不断压缩而压力升高。 从具体结构上看,涡旋压缩机没有吸、排气阀,这大大提高了高速运转的可靠性。 综合起来看,涡旋压缩机有以下几个主要特点: ⑴、属于第三代压缩机,多个压缩腔同时工作,相邻压缩腔之间的气体压差小,气体泄漏量少,容积效率高,可达98%,比第二代压缩机转子压缩机效率高5%左右。 ⑵、驱动动涡盘运动的偏心轴可以高速旋转,因此,涡旋式压缩机体积小重量轻 ⑶、动涡盘与主轴等运动部件的受力变化小,整机振动小 ⑷、没有吸、排气阀,涡旋压缩机运转可靠,且特别适应于变转速运动和变频调速技术 ⑸、涡旋压缩机的压缩腔是由涡旋型线构成的,为多室压缩机构,当动涡盘中心绕静涡盘中心作圆周运动时,各压缩腔容积随主轴转角发生变化,将相应地减小或扩大,由此实现气体的吸入、压缩和排气过程,由于吸排气过程几乎连续进行,整机噪声很低 ⑹、轴向和径向柔性结构提高了涡旋压缩机的生产效率,而且保证轴向间隙和径向间隙的密封效果,不因摩擦和磨损而降低,即涡旋压缩机有可靠和有效的密封性,所以其制冷系数不是随运行时间的增加而减小,而是略有提高 ⑺、涡旋压缩机有着良好的工作特性,性能主要受自身压缩比和吸气压力的影响,

相关文档
相关文档 最新文档