文档库 最新最全的文档下载
当前位置:文档库 › 电力系统自动化及其微机保护实验指导

电力系统自动化及其微机保护实验指导

电力系统自动化及其微机保护实验指导
电力系统自动化及其微机保护实验指导

电力系统自动化及其微机保护实验指

导书

一共写四个实验( 数据根据理论计算数据填写)

第一章概述

一、系统简介:

TQDB-III多功能微机保护与变电站综合自动化实验培训系统采用集成式、开放式的设计思路,覆盖了多个专业多门课程,适合电力系统、电气类、自动化类、电工类专业学生进行研究性、综合性、设计性、开放性实验、课程设计、毕业设计及创新设计。

本实验指导书着重介绍与《电力系统继电保护原理》、《电力系统微机保护》、《变电站综合自动化》课程相关的实验。本实验台可完成:常规继电器特性实验、数字式继电器特性实验及成组微机保护综合实验三大部分。

其中包含的常规继电器有:DL-31型电流继电器、DY-36型电压继电器、LG-11型功率方向继电器、LCD-4型变压器差动继电器。

数字式继电器有:数字式电流继电器、电压继电器,反时限电流继电器,功率方向继电器,差动继电器,阻抗继电器,零序电流、零序电压继电器,负序电流继电器、负序电压继电器,反时限零序继电器、反时限负序电流继电器。

微机保护部分包括:单双电源10kv线路微机保护综合实验,单双电源35kv线路微机保护综合实验,单双电源110kv线路微机保护综合实验,变压器微机保护综合实验,电容器微机保护综合实验。

二、系统特点:

1. 实验接线非常简单明确,减小实验准备工作的强度。

2. 实验系统采用自主研制的信号发生装置提供高精度实验信号,省去了传统实验系统中的调压器、移相器、滑线电阻和测量仪表。实验接线非常简单,不需要进行实验准备工作。

3. 各种常规继电器和微机保护继电器特性实验可以设置为自动或手动测试,并在PC机屏幕上直观的显示坐标描点和绘制继电器特性曲线全过程

4. 实验台面板上具有成组微机保护实验的接线图,学生在面板上进行微机保护装置与电流、电压及出口信号的连接,在上位机界面上设置故障类型和故障点,可在接线图上或在上位机界面中执行短路操作,并观察动态的实验现象

5. 系统附带详细的原理讲解和操作说明,可以帮助学生在加深理解实验原理的基础上熟悉实验过程,达到良好的实验效果

三、系统构成:

一套实验培训系统由一个实验操作台、多个常规保护继电器、一台TQDB-II型多功能微机保护实验装置、一台TQWX-II微机型继电保护试验测试仪和一台PC机构成。系统原理构成如图1-1。

图1-1 系统结构图

1) 微机型继电保护试验测试仪:分别与PC机、多功能微机保护实验装置和多个常规继电器连接。用于受PC机控制对电力系统中任意线路或设备正常运行以及各种故障的情况进行模拟,产生相应的电流、电压信号和开关量信号,并将信号送到多功能微机保护实验装置和常规继电器的输入端,同时向PC机传送电流、电压的录波数据、各开关量变位信息及各保护或重合闸的动作时间数据。

2) 常规继电器:与微机型继电保护试验测试仪连接,用于利用微机型继电保护试验测试仪测试各种常规继电器的特性;

3) 多功能微机保护实验装置:分别与微机型继电保护试验测试仪、PC机连接,可通过PC机下载保护程序、整定各保护定值、设置参数、查询保护动作报告,接受微机型继电保护试验测试仪产生的模拟信号和开关量信号完成多种微机继电保护和测控功能,并将保护动作量通过开关量输出反馈回微机型继电保护试验测试仪,将保护和重合闸的动作信息、及各开入量状态上传给PC机。

4) PC机:分别与微机型继电保护试验测试仪、多功能微机保护实验装置连接,用于控制微机型继电保护试验测试仪产生各种模拟信号和开关量信号、向多功能微机保护实验装置下载程序、整定保护定值,并接收微机型继电保护试验测试仪和多功能微机保护实验装置上传的信息,显示实验界面和实验结果,便于进行各种微机保护实验和变电站综合自动化实验及培训。

四、实验台面板说明及内部接线:

实验台面板布置分四部分:成组微机保护接线图、多功能微机保护实验装置部分、常规保护继电器部分和微机型继电保护试验测试仪。见图1-2。

1. 多功能微机保护实验装置部分

包括多功能微机保护实验装置及电压、电流、开关量输入及开关量接线区。为方便实验接线,在实验台内部已将多功能微机保护实验装置背部的各端子分别引到实验台面上相应接线端。

2. 成组微机保护接线图

为了在进行成组微机保护综合实验时,直观地反应微机保护装置在现场的运行情况,在实验台面板上设置了成组微机保护接线图。接线图上的各接线端子已经在实验台内部和测试仪相应电流、电压及开关量端子一一连接。因此实验时可将微机保护装置接线区各接线孔用测试线分别和接线图中的各接线孔连接。见图1-3。

3. 常规保护继电器部分

为方便实验接线,在实验台内部已将各常规保护继电器背部的各接线端子分别引到实验台面上各继电器相应的电压、电流接线端。各常规保护继电器的开出接点通过“转换开关”并接在“常规

保护出口”上。

图1-2 实验台面板布置图

图1-3 成组微机保护实验接线示意图

五、操作注意事项:

1、实验前必须仔细阅读《TQWX-II微机型继电保护试验测试仪用户手册》(或继电保护信号测试

系统软件帮助文件)和《TQDB-II型多功能微机保护实验装置用户手册》,熟悉TQWX-II微机型继电保护试验测试仪和TQDB-II型多功能微机保护实验装置的操作使用后方可进行实验。

2、实验电流较大时,不得长期工作,尤其是系统的信号源――测试仪。

3、接线完毕后,要由另一人检查线路。

第二章常规继电器特性实验

由PC机控制TQWX-II微机型继电保护试验测试仪发出各种电流和电压信号,测试以下常规继电器的性能:DL-31型电流继电器、DY-36型电压继电器、LG-11型功率方向继电器、LCD-4型变压器差动继电器。

常规继电器实验方式构成原理图见下图。为方便实验接线,在实验台内部已将各常规保护继电器背部的各接线端子分别引到实验台面上各继电器相应的电压、电流接线端。各常规保护继电器的开出接点通过“转换开关”并接在“常规保护出口”上。

常规继电器实验方式构成原理图

实验一、DL-31型电流继电器特性实验

一、实验目的:

1、了解常规电流继电器的构造及工作原理。

2、掌握设置电流继电器动作定值的方法。

3、学习微机型继电保护试验测试仪的测试原理和方法,并测试DL-31型电流继电器的动作值、返回值和返回系数。

二、DL-31型电流继电器简介:

DL-31型电流继电器用于电机、变压器及输电线的过负荷和短路保护中,作为启动元件。DL-31型电流继电器是电磁式继电器,当加入继电器的电流升至整定值或大于整定值时,继电器就动作,动合触点闭合,动断触点断开;当电流降低到0.8倍整定值时,继电器返回,动合触点断开,动断触点闭合。

继电器有两组电流线圈,可以分别接成并联和串联方式,接成并联时,继电器动作电流可以扩大一倍。继电器接线端子见图2-1-1,串联接线方式为:将④、⑥短接,在②、⑧之间加入电流;并联接线方式为:将②、④短接,⑥、⑧短接,在②、⑧之间加入电流。做实验时可任意选择一种接线方式。

图2-1-1 DL-31继电器接线端子

打开电流继电器面板前盖,拨动定值设定指针,可设定电流继电器的整定值。

三、实验接线:

1. 集控台内部已连接线说明:

本实验台将继电器线圈接成串联方式,并在实验台内部已将电流继电器的电流线圈输入端子(②、⑧端子)引到实验台面上电流继电器的各接线端,将电流继电器的动合触点(①、③端子)连接到实验台面上“常规保护出口”接线端上。

2. 实验中应连接的线:

将测试仪产生的单相电流信号与电流继电器对应的I,I n端子连接,将“常规保护出口”接线端接到测试仪的任意一对开入接点上。并把实验台上的转换开关KK放在“电流”档。

四、测试方法:

控制测试仪的输出,从小到大动态地改变加入电流继电器中的电流,直至其动作;再减小电流直至其返回,测试电流继电器的动作值、返回值和返回系数。可采用自动测试方法,也可采用手动测试方法。

五、实验内容:

注:本实验需使用TQWX-II微机型继电保护试验测试仪,请仔细阅读《TQWX-II微机型继电保护试验测试仪用户手册》或继电保护信号测试系统软件帮助文件中的有关内容。

(一)手动测试继电器动作值及返回值

方法:

将测试仪设置为手控方式对继电器进行测试:手动操作不断增加测试仪发出的电流,直至电流继电器动作;再不断减小电流,直至电流继电器返回。

步骤:

1. 按“三、实验接线”中的方法接好连线。

2. 打开测试仪电源,在PC机上运行桌面上的“继电保护特性测试”系统软件,进入“继电器特性通用测试”模块。如图2-1-2。

图2-1-2继电器特性通用测试界面

3. 设置测试仪的控制参数:分别设置测试仪的控制变量,开关量连接,见图2-1-3和图2-1-4。其中当前控制变量即:实验过程中按设置规律动态变化的量,测试仪产生的其余电气量在实验过程中均保持不变。本实验中需要动态改变加入到测试仪中的电流,因此把当前变量设为“Ia幅值”(假定接入电流继电器的量为A相电流);变量的变化步长直接影响测试精度,为提高精度,可设为0.05A。

4. 在图2-1-2的“输出参数”区输入测试仪的固定量输出值和当前变量起始值。

注意:因当前变量变化步长为正数,当前变量Ia的大小起始值应小于设置的电流继电器动作定值。建议未连线的信号有效值设为0。

5. 按“开始试验”按钮,控制测试仪输出设定的电流。

6. 按“增加”按钮,测试仪按设定的步长增加电流的输出。直至输出的电流使电流继电器动作,测试仪采集到动作信号,并在实验结果的动作值栏中显示动作值。

图2-1-3 变量设置界面图2-1-4 开关量设置界面

7. 按“减少”按钮,测试仪按设定的步长减少电流的输出。直至输出的电流使电流继电器返回,测试仪采集到返回信号,并在实验结果的返回值栏中显示返回值,同时自动计算出电流继电器的返回系数。

8. 重复步骤3-7,测四组数据,分别计算动作值和返回值的平均值即为电流继电器的动作电流值和返回电流值,并计算整定值的误差、变差及返回系数。

误差=[最小动作值-整定值] / 整定值×100%

变差=[最大动作值-最小动作值] / 四次动作平均值×100%

返回系数=返回平均值/ 动作平均值

将测试和计算结果填入表2-1-1。

9. 改变电流继电器的整定值,再次测继电器的动作值、返回值和返回系数,与表2-1-1结果比较后填入表2-1-2。

表2-1-1 模拟式电流继电器动作值、返回值和返回系数实验数据

动作值(A) 返回值(A) 返回系数

1 3.54 3.19 0.90

2 3.55 3.17 0.89

3 3.57 3.16 0.89

4 3.5

5 3.17 0.89

平均值(A) 3.55 3.17 0.89

误差(%) 1.667%

变差(%) 0.845%

返回系数0.889

整定值(A) 3.6

(二)自动测试继电器的动作值及返回值

将测试仪设置为程控方式对继电器进行测试。设置测试仪的测试方式、变量范围,使测试仪自动按控制模式动态的改变发出的电流,自动测试电流继电器的动作值、返回值和返回系数。

表2-1-2 模拟式电流继电器返回系数测试数据

整定值(A) 返回系数

1

2

步骤:

1. 在图2-1-2界面的“控制操作”区选择“程控”方式。

2. 设置控制参数变量。其中“程控设置”参见图2-1-5。

图2-1-5 程控设置界面

“变化范围”:可界定当前设定变量变化的起点和终点,注意变化范围应能覆盖继电器的动作值和返回值。

“变化方式”:变量的变化方式,“始”为变化范围的起点,“终”为终点,“始,终”为单程变化,只能测量动作值;“始,终,始”为双程变化,可以同时测量动作值、返回值;

“步长时间”:变量按其步长变化时,每一步大小的保持时间。一般地,每步时间的设置应大于继电器的动作(或返回)时间。

“返回方式”:变量的返回方式,有动作返回和全程返回两种方式。设置为“动作返回”时,当前变量在从起点到终点的变化过程中,一旦程序确认继电器动作,则根据变化方式确定是否继续试验:当变化方式为“始,终”,则结束试验;变化方式为“始,终,始”,则改变变量的变化方向,向起点返回。设置为“全程返回”时,无论继电器动作与否,变量仅仅根据变化范围的设置进行变化,直至到达终点或返回到起点。测继电器的动作值和返回值必须设置为“动作返回”方式。

本实验中因需要测试电流继电器的动作值和返回值,应设置为“动作返回”并选择“始,终,始”的变化方式,确保测试仪测得电流继电器动作获取动作值后,减小产生的电流从而使继电器返回,再得到返回值。

3. 按“开始试验”按钮,控制测试仪按设置的方式输出电流。并将实验数据与手动方式进行比较。

六、思考题:

1、电磁型电流继电器的动作电流与哪些因素有关?

答:电流继电器是串联在负载回路里工作的。 额定电流:是指该电流继电器额定工作电流范围。

(可调) 电流继电器在额定电流下时,其常闭触点断开,常开触点闭合;当电路里的电流低于额定电流时常闭触点闭合。常开触点断开。 作用:检测监视负载中的电流,在低于负载额定电流值时,利用其触点切断控制回路,断开负载保证安全。(或发出报警提示) 负载是多大的电流,就该选择多大的电流继电器。

2、什么是电流继电器的返回系数?返回系数的高低对电流保护的整定有何影响?

答:返回电流与启动电流的比值称为继电器的返回系数Kre ,Kre=Ire/Iop ,使继电器开始动作的电流叫启动电流Iop ,动作之后,电流下降到某一点后接点复归,继电器返回到输出高电子,这一电流点叫返回电流Ire 。为了保证动作后输出状态的稳定性和可靠性,过电流继电器和过量动作继电器的返回系数恒小于1 。在实际应用中,常常要求较高的返回系数,如0.85-0.9

实验二、DY-36型电压继电器特性实验

一、实验目的:

1、了解常规电压继电器的构造及工作原理。

2、掌握设置电压继电器动作定值的方法。

3、测试DY-36型电压继电器的动作值、返回值和返回系数。

二、DY-36型电压继电器简介:

DY-36型电压继电器用于继电保护线路中,作为低电压闭锁的动作元件。DY-36型电压继电器是电磁式低电压继电器,当加入继电器的电压降低到整定电压时,继电器动作,动断触点(⑤、⑦端子)闭合,动合触点(①、③端子)断开;当加入继电器的电压超过整定电压时,继电器动合触点闭合,动断触点断开。如果利用电压继电器的动断触点控制断路器,则继电器工作在低电压方式;如果利用电压继电器的动合触点控制断路器,则继电器工作在过电压方式。继电器接线端子见图2-2-1。

图2-2-1 DY-36继电器接线端子

继电器有两组电压线圈,可以分别接成并联和串联方式,接成并联时,继电器动作电压可以扩大一倍,并联和串联接法可查看继电器表面接线说明。

打开电压继电器面板前盖,拨动定值设定指针,可设定电压继电器整定值。

注:本实验台内部已经将电压继电器的动合触点连接到实验台面上“常规保护出口”接线端上,

因此其工作方式为过电压继电器。

三、实验接线:

1. 集控台内部已连接线说明:

本实验台将继电器线圈接成串联方式,并在实验台内部已将电压继电器的电压输入端子(②、⑧端子)引到实验台面上电压继电器的各接线端,将电压继电器的动合触点(①、③端子)连接到实验台面上“常规保护出口”接线端上。

说明:该继电器已作为过电压继电器。

2. 实验中应连接的线:

将测试仪产生的单相电压信号与电压继电器对应的U,U n端子连接,将“常规保护出口”接线端接到测试仪的任意一对开入接点上。并把实验台上的转换开关KK放在“电压”档。

四、测试方法:

控制测试仪的输出,从小到大动态地改变加入电压继电器中的电压,直至其动作;再减小电流直至其返回,测试电压继电器的动作值、返回值和返回系数。

实验可采用自动测试方法,也可采用手动测试方法。

五、实验内容:

本实验主要内容为:手动或自动测试电压继电器的动作值及返回值。

步骤:

1. 按“三、实验接线”中的方法接好连线。

2. 打开测试仪电源,在PC机上运行继电保护信号测试系统软件,进入“继电器特性通用测试”模块。

3. 测试方法可参见实验一,注意“当前变量”应设置为“Ua幅值”(假定接入继电器的量为A 相电压)。测试3组数据,将结果填入表2-2-1。

表2-2-1 模拟式电压继电器动作值、返回值和返回系数实验数据

动作值(V) 返回值(V) 返回系数

1

2

3

平均值(V)

误差(%)

变差(%)

返回系数

整定值(V)

六、思考题:

1、电磁型电压继电器的动作电压与哪些因素有关?

答:电流继电器是串联在负载回路里工作的。 额定电流:是指该电流继电器额定工作电流范围。(可调) 电流继电器在额定电流下时,其常闭触点断开,常开触点闭合;当电路里的电流低于额定电流时常闭触点闭合。常开触点断开。 作用:检测监视负载中的电流,在低于负载额定电流值时,利用其触点切断控制回路,断开负载保证安全。(或发出报警提示) 负载是多大的电流,就该选择多大的电流继电器。

2、什么是电压继电器的返回系数?返回系数的高低对电压元件的整定有何影响?

答:返回电流与启动电流的比值称为继电器的返回系数Kre ,Kre=Ire/Iop ,使继电器开始动作的电流叫启动电流Iop ,动作之后,电流下降到某一点后接点复归,继电器返回到输出高电子,这一电流点叫返回电流Ire 。为了保证动作后输出状态的稳定性和可靠性,过电流继电器和过量动作继电器的返回系数恒小于1 。在实际应用中,常常要求较高的返回系数,如0.85-0.9

实验三、LG-11型功率方向继电器特性实验

一、实验目的:

1、了解常规功率方向继电器的工作原理。

2、掌握功率方向继电器的动作特性试验方法。

3、测试LG-11型功率方向继电器的最大灵敏角和动作范围。

4、测试LG-11功率方向继电器的角度特性和伏安特性,考虑出现“电压死区”的原因。

5、研究接入功率方向继电器的电流、电压的极性对功率方向继电器的动作特性的影响。

二、LG-11型功率方向继电器简介:

功率方向继电器是一种反映所接入的电流和电压之间的相位关系的继电器。当电流和电压之间的相位差为锐角时,继电器的动作转矩为正,使继电器动作,控制接点闭合,继电器跳闸;当电流和电压之间的相位差为钝角时,继电器的动作转矩为负,继电器不动作,从而达到判别相位的要求。

功率方向继电器根据其原理可分为感应型、整流型、晶体管型。本实验采用LG-11整流型功率方向继电器,它一般用于相间短路保护。这种继电器是根据绝对值比较原理构成的,由电压形成回路、比较回路和执行元件三部分组成,如图2-3-1。

图2-3-1 LG-11型功率方向继电器原理接线图

图中整流桥BZ 1所加的交流电压为?

?

?

?

+r i r u I K U K ,称为工作电压;整流桥BZ 2所加的交流电

压为?

?

?

?

-r i r u I K U K ,称为制动电压。其中r U 、r I 分别为加入功率方向继电器的电压和电流;u K 为电压变换器YB 的匝比;i K 为电抗变压器DKB 的模拟电抗。JJ 为极化继电器。当电流从JJ 的“*”端流入时,JJ 动作;反之JJ 不动作。因此LG-11整流型功率方向继电器的动作条件是工作电压大于制动电压,其动作方程为:

?

?

?

?

?

?

?

?

-≥+r

i r u r i r u I K U K I K U K

功率方向继电器灵敏角的调整可通过更换面板上压板Y 的位置来实现。

三、实验接线:

1. 集控台内部已连接线说明:

本实验台内部已将功率方向继电器的电压输入端子(⑦、⑧端子)和电流输入端子(⑤、⑥端子)引到实验台面上功率方向继电器的各接线端,将继电器的动作接点(⑾、⑿端子)连接到实验台面上“常规保护出口”接线端上。

2. 实验中应连接的线:

由于功率方向继电器采用90o接线方式,因此可将U BC 和I A (或U CA 和I B ,或U AB 和I C )接入继电器,分别构成的是A 相功率方向继电器、B 相功率方向继电器和C 相功率方向继电器。

例如按A 相功率方向继电器接线时,可将测试仪产生的B 相电压和C 相电压分别与功率方向继电器对应的U ,U n 端子连接,A 相电流信号与功率方向继电器I ,I n 端子连接。

将“常规保护出口”接线端接到测试仪的任意一对开入接点上。并把实验台上的转换开关KK 放在“功率方向”档。

四、实验内容:

实验之前,首先按“三、实验接线”中的方法接好连线。

注意:

因功率方向继电器反映所接入的电流和电压之间的相位关系而动作,因此接线完毕后,一定要检查接线极性是否正确。

打开测试仪电源,在PC 机上运行继电保护信号测试系统软件,进入“继电器特性通用测试”模块。

(1) 测试LG-11功率方向继电器的最大灵敏角 方法:

功率方向继电器的I U J ???-=。以加入到继电器中的电流为参考向量,设置 05∠=A I A ,这样I ?=0°

。固定加入到继电器中的电压BC U 的大小,改变电压相角U ?即相当于改变J ?,通过测试测量功率方向继电器的动作区从而得到继电器的最大灵敏角。

为了得到正确的最大灵敏角,一定要测得功率方向继电器完整的动作区域,因此设置的电压相角改变的方向最好使继电器的动作过程为:

动作区外->动作边界1->进入动作区->动作边界2->动作区外,如图2-13。

?

A

I lm

?lm

j A e I ??

动作区内

动作区外

动作边界1

动作边界2

1J ?2

J ?

图2-13 功率方向继电器动作范围示意图

步骤如下:

a. 打开测试仪电源,在PC 机上运行“继电保护特性测试系统”软件,进入“通用继电器动作特性测试”模块。

b. 输出参数设置:手动输入测试仪的输出参数: 05∠=A I a ,为方便观测bc U 相角,设置

V

U c

00∠=,即b bc U U =。b U 大小固定为57.735V 。其他未连线的信号有效值设为0。

c. 采用程控方式测试功率方向继电器的动作范围。

变量设置为“b U 相角”,步长设置为2度。从图2-13可知,当以a I 为参考向量时,bc U 相角即b

U 相角的理论动作范围为:[lm ?-90°,lm ?+90°]。

为了同时测出动作边界1和动作边界2,返回方式应选择“全程返回”(如果设置为动作返回只能测得动作边界1)。

测试完成后记录实验结果中显示的“始角度”和“终角度”,即为1J ?和2J ?,填入表2-5。 d. 计算最大灵敏角m ?。

功率方向继电器的最大灵敏角m ?为:2

2

1J J m ???+=

,填入表2-5。

e. 改变功率方向继电器的灵敏角为-45°,重复实验,并将测量和计算结果填入表2-5。

表2-5 最大灵敏角测试实验数据(保持电流为5A ,0度)

灵敏角 1J ?

2J ?

最大灵敏角m ? -30° 50.5 —117.6 —33.55 -45°

37.4

—128.5

—45.55

(2) 测LG-11功率方向继电器角度特性)(.J J dz f U ?=

方法:整定功率方向继电器的灵敏角为-45°。设置a I 固定为 05∠A ,c U 固定为0V ∠0°,则b

U 的角度即为J ?。

在功率方向继电器的动作区内设置不同的J ?,测出每一个J ?下使继电器动作的最小起动电压

J

dz U

.,填入表2-6。并根据测得的数据绘制功率方向继电器的角度特性)(.J J dz f U ?=。

提示:

测试过程中,当前变量应选择b U 幅值。

表2-6 功率方向继电器角度特性测试数据

J ?

-45 -55

-65

-75

-85

-95

-105

-115

-125

-127

J dz U .(V)

J ?

-129 -131

-133

-135

-25

-15

-5

5

15

25

J dz U .(V)

J ?

30 32

34

36

38

40

42

J dz U .(V)

(3) 测LG-11功率方向继电器的伏安特性)(.J J dz I f U =

方法:整定功率方向继电器的灵敏角为-45°。固定加入到继电器中的电压和电流的相角,使J ?=m ?(该最大灵敏角为上述实验实测值)

,即a I 相角设为0°,c U 固定为0V ∠0°,b U 相角固定为J ?。从5A 开始依次减小a I ,测出每一个不同电流下使继电器动作的最小起动电压J dz U .(即b U 幅值)。

将数据填入表2-7,并根据测得的数据绘制功率方向继电器的伏安特性曲线)(.J J dz I f U =。

表2-7 伏安特性实验数据(保持m ?不变)

J I (A) 5 4

3

2

1

0.9

0.8

0.7

0.6

0.5

J dz U .(V)

五、思考题:

(1) LG-11型功率方向继电器的动作区是否等于180度?为什么?

答:不一定。这要通过线路实际联结方式、线路长度、负荷性质及整定计算等因素决定。一般情况需采取三段式保护,只有特殊情况可以把后备和过流保护合二为一。

(2)功率方向继电器采用90度接线方式具有什么优点?

答:首先,在双电源供电的系统中,要求在每条线路的两侧均需装设断路器和保护装置,各侧的断路器和保护装置只负责本侧母线流向线路的故障电流保护。可能引起的误动作是在所保护的线路反方向发生故障时,由对侧电源供给的短路电流所引起。对误动作的保护而言,实际短路功率的方向都是由线路流向母线,显然与其所应保护的线路故障时的短路功率方向相反。因此,为了消除这种无选择的动作,就需要在可能误动作的保护上增设一个功率方向闭锁元件,该元件只当短路功率方向由母线流向线路时动作,而当短路功率方向由线路流向母线时不动作,从而使继电保护的动作具有一定的方向性。 功率方向继电器的内角采用45°,要求90度接线,即IA与Ubc、IB与Uca、IC与Uab,对各种两相短路都没有死区,因为继电器加入的是非故障的相间电压,其值很高。

(3) 用相量图分析加入功率方向继电器的电压、电流极性变化对其动作特性的影响。

第三章成组微机保护实验

本章包含的实验项目的功能是由多功能微机保护实验装置实现的,实现不同的功能只需向装置硬件中下载相应的保护程序。为了在进行成组微机保护综合实验时,直观地反应微机保护装置在现场的运行情况,在实验台面板上设置了成组微机保护接线图。接线图上的各接线端子已经在实验台内部和测试仪相应电流、电压及开关量端子一一连接。因此实验时可将微机保护装置接线区各接线孔用测试线分别和接线图中的各接线孔连接。实验接线见图4-11-0。

图4-11-0 成组微机保护实验接线图

实验四三段式电流保护实验

一、实验目的:

1. 掌握三段式保护的基本原理

2. 熟悉三段式保护的接线方式

3. 掌握三段式电流保护的整定方法

4. 了解运行方式对灵敏度的影响

5. 了解三段电流保护的动作过程

二、 实验原理及实验说明

1. 三段式电流保护基本原理

三段式电流保护一般作为中低压线路的主保护,分电流速断(简称Ⅰ段),限时电流速断(简称Ⅱ段)和定时限过电流保护(简称Ⅲ段)。目前电力网大多由多电源系统构成,但可以发现,当输电线路由双测电源供电时,只要在单侧电源上加装方向元件,就可以把双测电源拆开成两个单侧电源看待。因此本节所述保护原理都用单侧电源说明。

(1) 电流速断保护

对于仅反映于电流增大而瞬间动作的电流保护,称为电流速断保护,作用原理如图3-14所示:当AB 段末端1d 发生短路时,希望保护1能够瞬时动作切除故障,当相邻线路BC 末端2d 发生故障时,希望保护2瞬时动作切除故障,但是实际上,1d 和2d 点短路时流经保护1的短路电流之几乎一样,则可知希望1d 点短路时速断保护1能动作,而保护2不动作,这就是动作的选择性问题,为保证选择性,则保护装置的起动参数的整定上保证下一出口处短路时不起动。则可知保护装置1的动

作电流必须大于2d 短路时的最大短路电流。对于保护1来说,应有'

max ..'1.B d dz I I >。

可选取'

max ..''1.B d k dz I K I = (3-20)

其中可靠系数'

k K 取1.2~1.3。如图3-14所示,当系统最大方式下运行时(图示线I ),电流速断的保护范围为最大,当出现其它运行方式或两相短路时,速断的保护范围都要减小,而当出现系统最小运行方式下的两相短路时(图示线II ),电流速断的保护范围为最小,但总的来说,电流速断保护不能保护线路全长,并且保护范围直接受运行方式的影响。

动作时间:电流保护I 段无时限动作,动作时间为断路器固有的动作时间。

灵敏度校验方法:求出I 段的最小保护范围,即在最小运行方式下发生两相短路时的保护范围,用MIN L 表示。

)*

2

3(1max

.'

1

.'

1

s dz MIN X

I

E X L -=

(3-21)

要求最小保护范围不得低于15%~20%线路全长。

式中:1X —线路的单位阻抗,一般0.4Ω/km ;max s ?X —系统最大短路阻抗。

注意:

在进行整定电流计算时,应该按照在最大运行方式下发生三相短路时通过保护装置的短路电流进行整定,按最小运行方式下发生两相短路时的短路电流进行灵敏度校验。

短路电流计算方法如下:

三相短路时,流过保护的短路电流为:s

d K

Z Z E Z E I

+=

=

φφ)3(。

两相短路时,流过保护的短路电流为:s

d K

Z Z E Z E I

+=

=

φ

φ23

)2(。

其中,φE 为电源的等效计算相电动势,d Z 为短路点至保护安装处的阻抗,s Z 为保护安装处到系统等效电源的阻抗。

A

B

C

d1d2d3

'1

.dz I I

II

'

2

.dz I d

I 1QF

2QF

图3-14 电流速断保护动作特性分析

(2) 限时电流速断保护

能以较小的时限快速切除全线路范围以内的故障称为带时限电流速断,对这个新设保护的要求,首先是在任何情况下都能保护本线路全长,并且具有足够的灵敏性,其次是在满足上述要求的前提下力求具有最小动作时限。如图3-15 ,由于要求带时限电流速断保护必须保护本线路AB 的全长,因此,它的保护范围延伸到下一线路中去,为了使AB 上的带时限电流速断保护1获得选择性,它必须和下一线路BC 的保护2 的电流速断保护配合,且保护1的限时电流速断动作电流必须大于保护2的电流速断动作电流,如图3-15所示,引入可靠系数'

'k K ,'

'k K 取1.1~1.2。

'

2.'

''

'1.dz k dz I K I = (3-22)

动作时限整定方法: 保护1的限时速断的动作时限''1t 应该比下一线路的速断保护动作时限'

2t 高

出一个时间阶段,此时间阶段用t ?表示''1t ='2t +t ?,在保护2 电流速断范围以内的故障,将以'

2t 的时间被切除,此时保护1的限时速断虽然可能起动,但是由于'

'1t 较'

2t 大一个t ?,因而时间上保证了选择性。

灵敏度校验方法:为了能够保护本线路的全长,限时电流速断保护必须在系统最小运行方式下,

线路末端发生两相短路时具有足够的反应能力,这个能力通常用lm K 来衡量,对保护1的限时电流速断而言,即应采用系统最小运行方式下线路AB 发生两相短路时的短路电流作为故障参数的计算值来校验:

lm K =

'

'1

.min ..dz B d I I ,且要求lm K >1.3~1.5。

(3) 定时限过电流保护

过电流保护是指其起动电流按照躲开最大负荷电流来整定的一种保护装置,它在正常运行时不应该起动,而在电网发生故障时,则能反应于电流的增大而动作,在一般情况下它不仅能保护本线路的全长,而且能保护相邻线路的全长,以起到后备保护的作用。当1d 点短路时,短路电流将通过保护5,4,3,这些保护都要起动,但是按照选择性要求由保护3动作切除故障,然后保护4和5由于电流减小而返回。保护3的动作电流为:

max

.f h

zq

k d I

K K K I =

(3-23)

其中,k K 为可靠系数;zq K 为自启动系数;h K 为返回系数。

动作时限的整定方法:为了保证选择性则可知过电流保护的动作时间必须按阶梯原则。相邻保护装置之间相差一个t ?。如图3-16所示。

灵敏度的校验方法:当过电流保护作为本段线路的主保护时,即采用在最小运行方式下本线路末端两相短路时的电流进行校验lm K =

'''1

.min ..dz B d I

I ,且要求lm K >1.3~1.5;当作为相邻线路的后备保护

时,则应采用最小运行方式相邻线路末端两相短路时的电流进行校验lm K =

'

''1

.min ..dz C d I I ,且要求

lm K >1.2。

A

B

c

4QF

3QF

5QF 5

t 4

t 3

t t

?t

?max

.f I l

t

图3-16 定时限过电流保护时间配合

2. 实验说明

微机继电保护实验报告

本科实验报告 课程名称:微机继电保护 实验项目:电力系统继电保护仿真实验 实验地点:电力系统仿真实验室 专业班级:电气1200 学号:0000000000 学生:000000 指导教师:000000 2015年12 月 2 日

微机继电保护指的是以数字式计算机(包括微型机)为基础而构成的继电保护。众所周知,传统的继电器是由硬件实现的,直接将模拟信号引入保护装置,实现幅值、相位、比率的判断,从而实现保护功能。而微机保护则是由硬件和软件共同实现,将模拟信号转换为数字信号,经过某种运算求出电流、电压的幅值、相位、比值等,并与整定值进行比较,以决定是否发出跳闸命令。 继电保护的种类很多,按保护对象分有元件保护、线路保护等;按保护原理分有差动保护、距离保护和电压、电流保护等。然而,不管哪一类保护的算法,其核心问题归根结底不外乎是算出可表征被保护对象运行特点的物理量,如电压、电流等的有效值和相位以及视在阻抗等,或者算出它们的序分量、或基波分量、或某次谐波分量的大小和相位等。有了这些基本电气量的计算值,就可以很容易地构成各种不同原理的保护。基本上可以说,只要找出任何能够区分正常与短路的特征量,微机保护就可以予以实现。 由此,微机保护算法就成为了电力系统微机保护研究的重点,微机保护不同功能的实现,主要依靠其软件算法来完成。微机保护的其中一个基本问题便是寻找适当的算法,对采集的电气量进行运算,得到跳闸信号,实现微机保护的功能。微机保护算法众多,但各种算法间存在着差异,对微机保护算法的综合性能进行分析,确定特定场合下如何合理的进行选择,并在此基础上对其进行补偿与改进,对进一步提高微机保护的选择性、速动性、灵敏性和可靠性,满足电网安全稳定运行的要求具有现实指导意义。 目前已提出的算法有很多种,本次实验将着重讨论基本电气量的算法,主要介绍突变量电流算法、半周期积分算法、傅里叶级数算法。 二、实验目的 1. 了解目前电力系统微机保护的研究现状、发展前景以及一些电力系统微机保护装置。 2. 具体分析几种典型的微机保护算法的基本原理。 3. 针对线路保护的保护原理和保护配置,选择典型的电力系统模型,在MATLAB软件搭建仿真模型,对微机保护算法进行程序编写。 4. 对仿真结果进行总结分析。 三、实验容 1、采用MATLAB软件搭建电力系统仿真模型 2、采用MATLAB软件编写突变量电流算法 3、采用MATLAB软件编写半周积分算法 4、采用MATLAB软件编写傅里叶级数算法算法

电力系统自动化实验报告

电力系统自动化报告 学院: 核技术与自动化学院 专业: 电气工程及其自动化 班级: 2011060505班 学号: 3201106050504 姓名: ~~~~~~ 指导老师: 顾民 完成时间: 2014年4月30日

电力系统自动化实验报告 实验一发电机组的启动与运转实验 一、实验目的: 1.了解微机调速装置的工作原理和掌握其操作方法。 2.熟悉发电机组中原动机(直流电动机)的基本特性。 3.掌握发电机组起励建压,并网,解列和停机的操作。 二、原理说明: 在本实验平台中,原动机采用直流电动机模拟工业现场的汽轮机或水轮机,调速系统用于调整原动机的转速和输出的有功功率,励磁系统用于调整发电机电压和输出的无功功率。 THLZD-2型电力系统综合自动化实验台输电线路的具体结构如下图所示: 调速系统的原理结构图:

励磁系统的原理结构示意图 三、 实验内容与步骤: 1.发电机组起励建压

接着依次打开控制柜的“总电源”、“三相电源”和“单相电源”的电源开关;再打开实验台的“三相电源”和“单相电源”开关。 ⑵将控制柜上的“原动机电源”开关旋到“开”的位置,此时,实验台上的“原动机启动”光字牌点亮,同时,原动机的风机开始运转,发出“呼呼”的声音。 ⑶按下THLWT-3 型微机调速装置面板上的“自动/手动”键,选定“自动”方式,开机默认方式为“自动方式”。 ⑷按下THLWT-3 型微机调速装置面板上的“启动”键,此时,装置上的增速灯闪烁,表示发电机组正在启动。当发电机组转速上升到1500rpm 时,THLWT-3 型微机调速装置面板上的增速灯熄灭,启动完成。 ⑸当发电机转速接近或略超过1500rpm 时,可手动调整使转速为1500rpm,即:按下THLWT-3 型微机调速装置面板上的“自动/手动”键,选定“手动”方式,此时“手动”指示灯会被点亮。按下THLWT-3 型微机调速装置面板上的“+”键或“-”键即可调整发电机转速。 ⑹发电机起励建压有三种方式,可根据实验要求选定。一是手动起励建压;一是常规起励建压;一是微机励磁。发电机建压后的值可由用户设置,此处设定为发电机额定电压400V,具体操作如下: ①手动起励建压 1) 选定“励磁调节方式”和“励磁电源”。将实验台上的“励磁调节方式”旋钮旋到“手动 调压”,“励磁电源”旋钮旋到“他励”。 2) 打开励磁电源。将控制柜上的“励磁电源”打到“开”。 3) 建压。调节实验台上的“手动调压”旋钮,逐渐增大,直到发电机电压(线电压)达到设定的发电机电压。

微机保护实验报告

微机保护实验报告 The Standardization Office was revised on the afternoon of December 13, 2020

微机继电保护实验报告 项目名称:微机距离保护算法(1)姓名:陈发敏 学号:K03134163 班级:K0313416 实验时间: 实验地点:实验楼五楼 实验成绩:

一、 实验目的 1.熟悉MATLAB 桌面和命令窗口; 2.通过编写滤波程序、阻抗计算程序以及距离保护动作判据程序,了解微机保护工作原理。 3.定性分析各种算法的优缺点。 二、 实验内容 1、用“load ”函数导入短路电流数据和短路电压数据,对其进行滤波处理,要求滤除直流分量和二次谐波分量。注意观察数据的特征,数据第一列为时间,第二列为A 相值,第三列为B 相值,第三列为C 相值。观察滤波前后的波形。 2、编写微机保护算法程序,包括短路阻抗算法和动作判据算法(判据为相间距离保护判据),阻抗继电器的动作特性采用方向圆特性。并利用该程序对步骤1处理后的数据进行计算,观察保护的动作情况。距离保护的整定值为:Z set =+ 。 三、 实验模型及程序 1、 绘制滤波前后的电流、电压波形,并进行对比分析; 电流波形滤波前,短路瞬间电流幅值变大,到短路后的稳态呈曲线变化;经过滤波后,短路后的稳态比较平稳。 电压波形滤波前,短路瞬间电压幅值急剧变小;经过滤波后,短路后的稳态比较平稳,且短路后电压波形变化没有电流波形变化大。 4 4 4 4 4 4 5 5 5 5 5 5

2、 设计编写保护算法程序,绘制阻抗幅值变化的波形,并分析保护的动作情况。 由阻抗幅值变化的波形和保护的动作情况可知:左图的B 相的阻抗值太低,所以致使B 相动作有明显的变化。 附MATLAB 程序如下: %实验3程序 clc; clear; %电压电流数据导入 a=load('H:\To be completed\微机保护\jibao3_4\'); %导入电压量 b=load('H:\To be completed\微机保护\jibao3_4\'); %导入电流量 t=a(:,1)'; UA=a(:,2)'; UB=a(:,3)'; UC=a(:,4)'; IA=b(:,2)'; IB=b(:,3)'; IC=b(:,4)'; Ts=t(1,2)-t(1,1); N=Ts; m=size(t); %滤波处理 %%电流滤波 IIA=zeros(1,m(2)); IIB=zeros(1,m(2)); IIC=zeros(1,m(2)); for jj=101:m(2); IIA(jj)=(IA(jj)-IA(jj-100))/2; IIB(jj)=(IB(jj)-IB(jj-100))/2; IIC(jj)=(IC(jj)-IC(jj-100))/2; end subplot(3,1,1); plot(t,IIA,'r') title('电流滤波') subplot(3,1,2);

继电保护实验指导书

一、电磁型电流继电器实验 一、实验目的 熟悉DL型电流继电器的实际结构、工作原理、基本特性;掌握动作电流值、动作电压值及其相关参数的整定方法。 二、预习与思考 1、电流继电器的返回系数为什么恒小于1 2、动作电流、返回电流和返回系数的定义是什么 3、实验结果如返回系数不符合要求,你能正确地进行调整吗 4、返回系数在设计继电保护装置中有何重要用途 三、原理说明 图1-1电流继电器实验接线图

四、实验设备 五、实验步骤和要求 1、绝缘测试 (1)全部端子对铁芯或底座的绝缘电阻应不小于50兆欧。 (2)各线圈对触点及各触点间的绝缘电阻应不小于50兆欧。 (3)各线圈间绝缘电阻应不小于50兆欧。 2、整定点的动作值、返回值及返回系数测试 实验接线图1-2为电流继电器的实验接线,可根据下述实验要求分别进行。 实验参数电流值(或电压值)可用单相自耦调压器、变流器、变阻器等设备进行调节。实验中每位学生要注意培养自己的实践操作能力,调节中要注意使参数平滑变化。 a、选择ZB11继电器组件中的DL—24C/6型电流继电器,确定动作值并进行初步整定。本实验整定值为及的两种工作状态。 b、根据整定值要求对继电器线圈确定接线方式(串联或并联) c、按图1-1接线,检查无误后,调节自耦调压器及变阻器,增大输出电流,使继

电器动作。读取能使继电器动作的最小电流值,即使常开触点由断开变成闭合的最小电 流,记入表1-2;动作电流用I dj表示。继电器动作后,反向调节自耦调压器及变阻器降低输出电流,使触点开始返回至原来位置时的最大电流称为返回电流,用I fj表示,读取此值并记入表1--2,并计算返回系数;继电器的返回系数是返回电流与动作电流的 比值,用K f表示。 I fj K f =----- I dj 过电流继电器的返回系数在~之间。当小于或大于时,应进行调整。 表1-2电流继电器实验结果记录表 动作值与返回值的测量应重复三次,每次测量值与整定值的误差不应大于±3%。否则应检查轴承和轴尖。 七、实验报告 实验结束后,针对过电流继电器实验要求及相应动作值、返回值、返回系数的具体整定方法,按实验报告编写的格式和要求及时写出电流继电器实验报告和本次实验的体会,并书面解答本实验思考题。

电力系统继电保护仿真实验指导书(试用稿)

电力系统继电保护 实验指导书 张艳肖编 适用于12级电气工程及其自动化专业 西安交通大学城市学院二○一五年三月

目录 第一部分MATLAB基础 ................................................................................... - 3 - 1.1 MATLAB简介 .......................................................................................... - 3 - 1.2 MATLAB的基本界面 ........................................................................... - 3 - 1.2.1MATLAB的主窗口 ...................................................................... - 3 - 1.2.2 MATLAB的主窗口 ....................................................................... - 3 - 1.3 SIMULINK仿真工具简介.................................................................... - 4 - 1.3.1SIMULINK的启动 ........................................................................ - 4 - 1.3.2SIMULINK的库浏览器说明........................................................ - 5 - 第二部分仿真实验内容.................................................................................. - 6 - 实验一电力系统故障.................................................................................... - 6 - 实验二电流速断保护.................................................................................... - 9 - 实验三三段式电流保护.............................................................................. - 13 - 实验四线路自动重合闸电流保护.............................................................. - 17 -

继电保护交接试验作业指导书

GW 电气试验操作规程 GWSY-060 35k V系统继电保护传动 作业指导书 天津港湾电力工程有限公司 2010年4月 35kV系统继电保护调试交接试验 作业指导书 试验细则 操作程序 编写人 审核人 批准人 批准日期2010年4月 29日 35kV变电站系统继电保护传动试验细则 1目的 用于检测35kV级和10(6)kV级微机综合继电保护装置工作是否正常。

2 范围 用于保护35kV系统及与之相关的6或10kV进线的综合保护继电器(线路保护、母联保护、变压器高、低备保护、差动保护、电压保护、接地变保护、备自投保护、常规过流、速断、零序保护)。 3 责任和权限 3.1 负责传动的人员应了解调试项目、调试方法,认真做好调试记录,并应及时解决调试中出现的问题,定期维护仪器设备,对调试结果的真实性、正确性和有效性负责。 3.2 试验管理员负责出具调试报告,参与各调试项目的试验人员应对调试数据(动作值和时间)与定值单进行核准,由试验主管和负责人批准签发调试报告。 4依据标准 GB50150—2006《电气装置安装工程电气设备交接试验标准》 华北电网集团有限公司2008年《电力设备交接和预防性试验规程》 Q/TGS 1016-2007天津市电力公司企业标准2007年《电力设备交接和预防性试验规程》 5试验项目 5.135kV进线开关柜(GIS)二次回路检查; 5.235kV变压器馈线柜(GIS)二次回路检查; 5.3主变压器保护屏CT二次回路检查; 5.4线路保护屏CT二次回路检查; 5.5CT一二次回路绝缘电阻; 5.6CT二次回路直流电阻; 5.7差动及过流(后备)保护CT变比、极性; 5.8定值核对、装置刻度检查(从试验仪器向保护装置二次回路输入电流,检查 装置的电流值是否能与CT变比对应); 5.9大电流传动(用大电流试验仪器向差动CT一次回路输入电流,检查装置的 电流值是否能与输入的电流值对应); 5.1035kV GIS 进线保护过流保护调试(瞬时投入); 5.1135kV GIS 进线保护速断保护调试; 5.1235kV GIS 进线保护零序过流保护调试; 5.1335kV变压器保护差动保护I、II(高压侧及低压侧比率差动传动);

微机保护的原理与试验大全

输电线路的电流、电压微机保护(一)目的 1.学习电力系统中微机型电流、电压保护时间、电流、电压整定值的调整方法。 2.研究电力系统中运行方式变化对保护的影响。 3.了解电磁式保护与微机型保护的区别。 4.熟悉三相一次重合闸与保护配合方式的特点。 (二)原理 关于三段式电流保护和电流电压联锁保护的基本原理可参考第三章有关内容,以下着重介绍本试验台关于微机保护的原理。 1.微机保护的硬件 微型机保护系统的硬件一般包括以下三大部分。 (1)模拟量输入系统(或称数据采集系统)。包括电压的形成,模拟滤波,多路转换(MPX)以及模数转换(A/D)等功能块,完成将模拟输入量准确的转换为所需要的数字量的任务。 (2)CPU主系统。包括微处理器(80C196KC),只读存储器(EPROM),随机存取存储器(RAM)以及定时器等。CPU执行存放在EPROM中的程序,对由数据采集系统输入至RAM的原始数据进行分析处理,以完成各种继电保护的功能。 (3)开关量(或数字量)输入/输出系统。由若干并行接口适配器(PIO),光电隔离器件及有触点的中间继电器组成,以完成各种保护的出口跳闸,信号报警,外部接点输入及人机对话等功能。 微机保护的典型结构图5-1所示。

图5-1 微机保护典型硬件结构图 2.数据采集系统 微机保护要从被保护的电力线路或设备的电流互感器﹑电压互感器或其他变换器上获取的有关信息,但这些互感器的二次数值﹑输出范围对典型的微机电路却不适用,故需要变换处理。在微机保护中通常要求模拟输入的交流信号为±5V 电压信号,因此一般采用中间变换器来实现变换。交流电流的变换一般采用电流中间变换器并在其二次侧并电阻以取得所需要的电压的方式。 对微机保护系统来说,在故障初瞬电压、电流中可能含有相当高的频率分量(例如2KHZ 以上),而目前大多数的微机保护原理都是反映工频量的,为此可以在采样前用一个低通模拟滤波器(ALF )将高频分量滤掉。 对于反映两个量以上的继电器保护装置都要求对各个模拟量同时采样,以准确的获得各个量之间的相位关系,因而对每个模拟量设置一套电压形成。但由于模数转换器价格昂贵,通常不是每个模拟量通道设一个A/D ,而是公用一个,中间经模拟转换开关(MPX )切换轮流由公用的A/D 转换成数字量输入给微机。模数转换器(A/D 转换器或称ADC )。由于计算机只能对数字量进行运算,而电力系统中的电流。电压信号均为模拟量,因此必须采用模数转换器将连续的模拟量变为离散的数字量。模数转换器可以认为是一编码电路。它将输入的模拟量UA 相当于模拟参考量UR 经一编码电路转换成数字量D 输出。 3.输入输出回路 (1)开关量输出回路 开关量输出主要包括保护的跳闸以及本地和中央信号等。一般都采用并行的输出口来控制有触点继电器(干簧或密封小中间继电器)的方法,但为了提高抗干扰能力,也经过一级光电 隔 离,如图5-2所示。 (2)定值输入回路 对于某些保护装置,如果需要整定的项目很有限,则可以在装置面板上设置定值插销或拨轮开关,将整定值的数码的每一位象接点那样输入。对于比较复杂的保护装置,如果需要整定的项目很多时,可以将定值由面板上的键盘输入,并在装置内设置固化电路,将输入定值固化在E 2PROM 中。本装置采用键盘输入方式设置定值,整定方法详见附录二中的有关使用说明。 4.CPU 系统 选择什么级别的CPU 才能满足微机保护的需求,关键的问题是速度。也就是 -E 图5-2 装置开关量输出回路接线图

电力系统自动化-实验一 自动准同期并网实验

实验一自动准同期并网实验 1.本次实验的目的和要求 1)加深理解同步发电机准同期并列原理,掌握准同期并列条件。 2)掌握自动准同期装置的工作原理及使用方法。 3)熟悉同步发电机准同期并列过程。 2.实践内容或原理 自动准同期并列装置设置与半自动准同期并列装置相比,增加了频差调节和压差调节功能,自动化程度大大提高。 微机准同期装置的均频调节功能,主要实现滑差方向的检测以及调整脉冲展宽,向发电机组的调速机构发出准确的调速信号,使发电机组与系统间尽快满足允许并列的要求。 微机准同期装置的均压调节功能,主要实现压差方向的检测以及调整脉冲展宽,向发电机的励磁系统发出准确的调压信号,使发电机组与系统间尽快满足允许并列的要求。此过程中要考虑励磁系统的时间常数,电压升降平稳后,再进行一次均压控制,以使压差达到较小的数值,更有利于平稳地进行并列。 图1 自动准同期并列装置的原理框图 3.需用的仪器、试剂或材料等 THLZD-2型电力系统综合自动化实验平台 4.实践步骤或环节 选定实验台上面板的旋钮开关的位置:将“励磁方式”旋钮开关打到“微机励磁”位置;将“励磁电源”旋钮开关打到“他励”位置;将“同期方式”旋钮开关打到“自动”位置。微机励磁装置设置为“恒U g”控制方式;“自动”方式。 1)发电机组起励建压,使n=1480rpm;U g=400V。(操作步骤见第一章) 2)查看微机准同期各整定项是否为附录八中表1的设置(出厂设置)。如果不符,则进行相关修改。然后,修改准同期装置中的整定项: “自动调频”:投入;“自动调压”:投入。

“自动合闸”:投入。 3)在自动准同期方式下,发电机组的并列运行操作 在这种情况下,要满足并列条件,需要微机准同期装置自动控制微机调速装置和微机励磁装置,调节发电机电压、频率,直至电压差、频差在允许范围内,相角差在零度前某一合适位置时,微机准同期装置控制合闸按钮进行合闸。 ⑴微机准同期装置的其他整定项(导前时间整定、允许频差、允许压差)分别按表1,2,3修改。 注:QF0合闸时间整定继电器设置为t d-(40~60ms)。t d为微机准同期装置的导前时间设置。微机准同期装置各整定项的设置方法可参考附录四(微机准同期装置使用说明)、实验三(压差、频差和相差闭锁与整定)等实验内容。 ⑵操作微机励磁装置上的增、减速键和微机励磁装置升、降压键,U g=410V,n=1515 rpm,待电机稳定后,按下微机准同期装置投入键。 观察微机准同期装置当“升速”或“降速”命令指示灯亮时,微机调速装置上有什么反应;当“升压”或“降压”命令指示灯亮时,微机励磁调节装置上有什么反应。 微机准同期装置“升压”、“降压”、“增速”、“减速”命令指示灯亮时,观察本记录旋转灯光整步表灯光的旋转方向、旋转速度,以及发出命令时对应的灯光的位置。 微机准同期装置压差、频差、相差闭锁与“升压”、“降压”、“增速”、“减速”灯的对应点亮关系,以及与旋转灯光整步表灯光的位置。 注:当一次合闸过程完毕,微机准同期装置会自动解除合闸命令,避免二次合闸。此时若要再进行微机准同期并网,须按下“复位”按钮。 4)发电机组的解列和停机。 5.教学方式 老师先进行实验原理及步骤的讲解,演示操作过程,并且提醒学生在实验过程当中的注意事项。同时,根据每个实验的不同,提出相关问题,激发学生的创新思维,提高学生解决实际问题的能力。 6.考核要求

继电保护实验

实验一:微机型电网电流、电压保护实验 实验台工作原理及接线 实验台一次接线如图,它是单侧电源供电的输电线路,由系统电源,AB 、BC 线路和负载构成。系统实验电源由三相调压器TB 调节输出线电压100V 和可调电阻R s 组成;线路AB 和BC 距离长短分别改变可调电阻R AB 、R BC 阻值即可;负载由电阻和灯组成。A变电站和B变电站分别安装有S300L 微机型电流电压保护监控装置。线路AB 、BC 三相分别配置有保护和测量用的电流互感器,变比15/5。 图 电流、电压实验台一次接线 线路正常运行时:线电压100V ,2,8,15,28s AB BC f R R R R =Ω=Ω=Ω=Ω 实验台对应设备名称分别是: (1)1KM 、2KM :分别为A 变电站和B 变电站模拟断路器; (2)R AB 、R BC :分别是线路AB 和BC 模拟电阻; (3)3KM 、4KM :分别是线路AB 和BC 短路实验时模拟断路器; (4)3QF 、4QF :分别是线路AB 和BC 模拟三相、两相短路开关; 实验内容: 1、正确连接保护装置A 站、B 站的电流保护回路和测量回路,注意电流互感器接线。 2、合上电源开关,调节调压器电压从0V 升到100V ,根据计算得到: A 站=set A I I . 7 A ,=set A II I . 3 A ,=set A III I . 2 A ,t =I A 0 s , t =II A s , t =III A 1 s ; B 站=set B I I . 3 A ,=set B III I . 2 A ,t =I B 0 s ,t =III B s ,将整定值分别在S300L 保护监控装置A 站、B 站保护中设定。注:A 站保护配置电流I 、II 、III 段保护,B 站只配置电流I 、III 段保护。 3、正常运行:调节Ω=Ω=Ω=15,8,2BC AB s R R R ,分别合上1KM 、2KM ,使A 站、B 站投入运行,此时指针式电流、电压表及S300L 保护监控装置显示正常运行状态的电气量。

微机保护实验指导书

微机保护(演示)实验提纲(暂用) 实验基本内容: ●微机保护装置硬件结构认识与基本接线 ●微机保护操作界面熟悉与整定操作 ●微机保护定值检验 实验项目 ●三段式微机电流保护实验 ●微机重合闸实验 ●微机变压器差动保护实验 实验设备: ●南瑞继电保护屏 ●LHDJZ-ⅢB试验台 实验地点: 电力实训中心9318,9227 南京工程学院电力学院继电保护教研室

1 观察微机保护装置的硬件结构 1.1观察对象: 220kV线路保护屏,110kV线路保护屏,主变保护屏,母线保护屏2.2内容及步骤: 观察各保护屏外部结构; 观察保护装置的面板及部件; 背板插件插拔,观察插件上的内容; 端子排,接口及连接片(压板)等。

2 三段式电流微机保护实验 2.1实验目的 熟悉微机保护调试过程和操作方法;学习微机电流保护定值调整的方法;研究系统运行方式对保护的影响;熟悉重合闸与保护配合方式。 2.2电流保护流程

2.3实验接线 电流、电压保护实验一次系统图 微机电流保护实验原理接线图 2.4实验步骤 (1) 按图接线,同时将变压器原方CT (TA )的二次侧短接。 (2)将模拟线路电阻滑动头移动到0欧姆处。 (3)运行方式选择,置为“最小”处。 (4)合上三相电源开关,调节调压器输出,使台上电压表指示从0V 慢慢升到100V ,注意此时的电压应为变压器二次侧电压,其值为100V 。 (5)合上微机保护装置电源开关,利用菜单整定有关定值。 (6)微机电流保护Ⅰ段(速断)、Ⅱ、Ⅲ段投入,将LP1接通(微机出口连接片投入)。 (7)合上直流电源开关,合上模拟断路器,负荷灯全亮。 (8)任意选择两相短路,如果选择AB 相,合上AB 相短路模似开关。 (9)合上故障模拟断路器3KO ,模拟系统发生两相短路故障,此时负荷灯部分熄灭,电流表读数约为7.14A 左右,大于速断(Ⅰ段)保护整定值,I 段保护动 2A 2B 2C (来自PT 测量) (来自2CT 互感器二次侧)

电力系统自动化-实验一自动准同期并网实验

1.本次实验的目的和要求 1 )加深理解同步发电机准同期并列原理,掌握准同期并列条件。 2)掌握自动准同期装置的工作原理及使用方法。 3)熟悉同步发电机准同期并列过程。 2.实践内容或原理 自动准同期并列装置设置与半自动准同期并列装置相比,增加了频差调节和压差调节功能,自动化程度大大提高。 微机准同期装置的均频调节功能,主要实现滑差方向的检测以及调整脉冲展宽,向发电机组的调速机构发出准确的调速信号,使发电机组与系统间尽快满足允许并列的要求。 微机准同期装置的均压调节功能,主要实现压差方向的检测以及调整脉冲展宽,向发电机的励磁系统发出准确的调压信号,使发电机组与系统间尽快满足允许并列的要求。此过程中要考虑励磁系统的时间常数,电压升降平稳后,再进行一次均压控制,以使压差达到较小 的数值,更有利于平稳地进行并列。 3.需用的仪器、试剂或材料等 THLZD-2型电力系统综合自动化实验平台 4.实践步骤或环节 选定实验台上面板的旋钮开关的位置:将“励磁方式”旋钮开关打到“微机励磁”位置; 将“励磁电源”旋钮开关打到“他励”位置;将“同期方式”旋钮开关打到“自动”位置。 微机励磁装置设置为“恒U g”控制方式;“自动”方式。 1)发电机组起励建压,使n=1480rpm ;U g=400V。(操作步骤见第一章) 2 )查看微机准同期各整定项是否为附录八中表1的设置(出厂设置)。如果不符,则 进行相关修改。然后,修改准同期装置中的整定项: “自动调频”:投入;“自动调压”:投入。 实验自动准同期并网实验 图1自动准同期并列装置的原理框图

“自动合闸”:投入。 3)在自动准同期方式下,发电机组的并列运行操作 在这种情况下,要满足并列条件,需要微机准同期装置自动控制微机调速装置和微机励磁装置,调节发电机电压、频率,直至电压差、频差在允许范围内,相角差在零度前某一合适位置时,微机准同期装置控制合闸按钮进行合闸。 ⑴微机准同期装置的其他整定项(导前时间整定、允许频差、允许压差)分别按表1,2,3修改。 注:QFO合闸时间整定继电器设置为t d- (40?60ms )。t d为微机准同期装置的导前时 间设置。微机准同期装置各整定项的设置方法可参考附录四(微机准同期装置使用说明) 、实验三(压差、频差和相差闭锁与整定)等实验内容。 ⑵ 操作微机励磁装置上的增、减速键和微机励磁装置升、降压键,U g=410V , n=1515 rpm,待电机稳定后,按下微机准同期装置投入键。 观察微机准同期装置当“升速”或“降速”命令指示灯亮时,微机调速装置上有什么反应;当“升压”或“降压”命令指示灯亮时,微机励磁调节装置上有什么反应。 微机准同期装置“升压”、“降压”、“增速”、“减速”命令指示灯亮时,观察本记录旋转 灯光整步表灯光的旋转方向、旋转速度,以及发出命令时对应的灯光的位置。 微机准同期装置压差、频差、相差闭锁与“升压”、“降压”、“增速”、“减速”灯的对应 点亮关系,以及与旋转灯光整步表灯光的位置。 注:当一次合闸过程完毕,微机准同期装置会自动解除合闸命令,避免二次合闸。此时若要再进行微机准同期并网,须按下“复位”按钮。 5.教学方式 老师先进行实验原理及步骤的讲解,演示操作过程,并且提醒学生在实验过程当中的注 意事项。同时,根据每个实验的不同,提出相关问题,激发学生的创新思维,提高学生 解决实际问题的能力。 6.考核要求学生根据实验要求和步骤完成实验任务,按照实验报告的要求和格式按成实验报

TQXDJ-III电力系统自动化及继电保护实验培训系统继电保护部分实验指导书

Chang Sha Tong Qing Electrical and Information Co.ltd TQXDJ-III电力系统自动化及继电保护实验培训系统 继电保护部分 实验指导书 长沙同庆电气信息有限公司

目录 第1章概述 (1) 1.1 系统简介 (1) 1.2 系统特点 (1) 1.3 系统构成 (1) 1.4 实验系统配套软件 (3) 1.5 操作注意事项 (4) 第2章继电保护课程实验 (5) 2.1 继电保护课程实验概述 (5) 2.2 DL-31型电流继电器特性实验 (7) 2.3 DY-36型电压继电器特性实验 (12) 2.4 LG-11型功率方向继电器特性实验 (17) 2.5 LZ-21阻抗继电器特性实验 (22) 2.6 LCD-4型差动继电器特性实验 (29) 2.7 常规电流速断保护和电流电压联锁速断保护实验 (34) 2.8 常规电流保护与三相一次重合闸综合保护实验 (38) 第3章微机保护课程实验 (42) 3.1 微机保护课程实验概述 (42) 3.2 数字式电流继电器特性实验 (45) 3.3数字式电压继电器特性实验 (49) 3.4 数字式功率方向继电器特性实验 (53) 3.5 数字式差动继电器特性实验 (57) 3.6 数字式阻抗继电器特性实验 (60) 3.7 三段式电流保护实验 (66) 3.8 三段式距离保护实验 (82) 3.9 三相一次重合闸及后加速保护实验 (95)

3.10 35kV微机线路保护实验 (101) 3.11 变压器保护实验 (105) 第4章发电厂电气课程实验 (115) 4.1 具有事故灯光控制的断路器控制回路实验 (115) 4.2具有防跳功能的断路器控制回路实验 (122) 4.3 闪光继电器构成的中央信号实验 (126) 4.4 冲击继电器构成的中央音响信号实验 (129) 第5章电力系统分析课程实验 (134) 5.1 电力系统潮流分布和线损分析实验 (134) 5.2 电力系统故障分析实验 (138)

微机继电保护实验报告

. 本科实验报告 课程名称:微机继电保护 实验项目:电力系统继电保护仿真实验 实验地点:电力系统仿真实验室 专业班级:电气1200 学号:0000000000 学生姓名:000000 指导教师:000000 2015年12 月 2 日

微机继电保护指的是以数字式计算机(包括微型机)为基础而构成的继电保护。众所周知,传统的继电器是由硬件实现的,直接将模拟信号引入保护装置,实现幅值、相位、比率的判断,从而实现保护功能。而微机保护则是由硬件和软件共同实现,将模拟信号转换为数字信号,经过某种运算求出电流、电压的幅值、相位、比值等,并与整定值进行比较,以决定是否发出跳闸命令。 继电保护的种类很多,按保护对象分有元件保护、线路保护等;按保护原理分有差动保护、距离保护和电压、电流保护等。然而,不管哪一类保护的算法,其核心问题归根结底不外乎是算出可表征被保护对象运行特点的物理量,如电压、电流等的有效值和相位以及视在阻抗等,或者算出它们的序分量、或基波分量、或某次谐波分量的大小和相位等。有了这些基本电气量的计算值,就可以很容易地构成各种不同原理的保护。基本上可以说,只要找出任何能够区分正常与短路的特征量,微机保护就可以予以实现。 由此,微机保护算法就成为了电力系统微机保护研究的重点,微机保护不同功能的实现,主要依靠其软件算法来完成。微机保护的其中一个基本问题便是寻找适当的算法,对采集的电气量进行运算,得到跳闸信号,实现微机保护的功能。微机保护算法众多,但各种算法间存在着差异,对微机保护算法的综合性能进行分析,确定特定场合下如何合理的进行选择,并在此基础上对其进行补偿与改进,对进一步提高微机保护的选择性、速动性、灵敏性和可靠性,满足电网安全稳定运行的要求具有现实指导意义。 目前已提出的算法有很多种,本次实验将着重讨论基本电气量的算法,主要介绍突变量电流算法、半周期积分算法、傅里叶级数算法。 二、实验目的 1. 了解目前电力系统微机保护的研究现状、发展前景以及一些电力系统微机保护装置。 2. 具体分析几种典型的微机保护算法的基本原理。 3. 针对线路保护的保护原理和保护配置,选择典型的电力系统模型,在MATLAB软件搭建仿真模型,对微机保护算法进行程序编写。 4. 对仿真结果进行总结分析。 三、实验内容 1、采用MATLAB软件搭建电力系统仿真模型 2、采用MATLAB软件编写突变量电流算法 3、采用MATLAB软件编写半周积分算法 4、采用MATLAB软件编写傅里叶级数算法算法

电力系统自动化与继电保护综合实验

一、电磁型电流继电器和电压继电器实验 一、实验目的 熟悉DL型电流继电器和DY型电压继电器的实际结构、工作原理、基本特性:掌握动作电流值、动作电压值及其相关参数的整定方法。 二、预习与思考 1、电流继电器的返回系数为什么恒小于1 ? 2、动作电流(压)、返回电流(压)和返回系数的定义是什么? 3、实验结果如返回系数不符合要求,你能正确地进行调整吗? 4、返回系数在设计继电保护装置中有何重要用途? 三、原理说明 DL-20c系列电流继电器用于反映发电机、变压器及输电线路短路和过负荷的继电保护装置中。 DY-20c系列电压继电器用于反映发电机、变压器及输电线路的电压升高(过电压保护)或电压降低(低电压起动)的继电保护装置中。 D L-20c、D Y-20c系列继电器的内部接线图见图l-l。 上述继电器是瞬时动作的电磁式继电器,当电磁铁线圈中通过的电流达到或超过整定值时,衔铁克服反作用力矩而动作,且保持在动作状态。 过电流(压)继电器:当电流(压)升高至整定值(或大于整定值)时,继电器立即动作,其常开触点闭合,常闭触点断开。 低电压继电器:当电压降低至整定电压时,继电器立即动作,常开触点断开,常闭触点闭合。 继电器的铭牌刻度值是按电流继电器两线圈串联,电压继电器两线圈并联时标注的指示值等于整定值:若上述二继电器两线圈分别作并联和串联时,则整定值为指示值的2倍。 转动刻度盘上指针,以改变游丝的作用力矩,从而改变继电器动作值。

图1-3过电压继电器实验接线图 四、实验设备 序号设备名称使用仪器名称数量l ZBll DL-24C/6电流继电器l 2 ZBl5 DY-28C/160电压继电器 1 3 ZB35 交流电流表 1 4 ZB36 交流电压表l 5 DZB0l-l 单相自耦调压器l 交流器 1 触点通断指示灯 1 单相交流电源l 可调电阻Rl 6.3 Ω/10A l 6 1000伏兆欧表l l、绝缘测试 单个继电器在新安装投入使用前或经过解体检修后,必须进行绝缘测试,对于额定电压为100伏及以上者,应用1000伏兆欧表测定绝缘电阻:对于额定电压为100伏以下者,则应用500伏兆欧表测定绝缘电阻。测定绝缘电阻时,应根据继电器的具体接线情况,注意把不能承受高压的元

S690U系列微机综合保护装置校验规程(参考Word)

PS690U系列微机综合保护装置校验规程 一、总则 1.1 本检验规程适用于PS690U系列微机型保护的全部检验以及部分检验的内 容。 1.2本检验规程需经设备维修部电气试验专业点检员编制,设备维修部检修专工、生产设备技术部责工审核后由生产厂长或总工批准后方可使用。 1.3检验前,工作负责人必须组织工作人员学习本规程,要求熟悉和理解本规程。 1.4保护设备主要参数: CT二次额定电流Ie : 5A;交流电压:100V, 50Hz;直流电压:220V。 1.5 本装置检验周期为: 全部检验:每6年进行1次; 部分检验:每3年进行1次。 二、概述 PS690U系列综合保护测控装置是国电南京自动化股份有限公司生产的,是一种集保护、测量、计量、控制、通讯于一体的高性能微机综合保护测控装置。本规程规定了PSM692U型电动机微机综合保护,PST692U型低压变压器微机综合保护,PSM691U型电动机微机差动保护,PST691U型低压变压器差动微机保护。 三、引用文件、标准 3.1 继电保护和电网安全自动装置现场工作保安规定 3.2设备制造厂的使用说明书和技术说明书 3.3 电力系统继电保护及安全自动装置反事故措施要点 3.4继电保护和自动装置技术规程GB/T 14285—2006 3.5微机继电保护装置运行管理规程DL/T 587—1996 3.6 继电保护及电网安全自动装置检验规程DLT995-2006 3.7 电力系统继电保护及安全自动装置运行评价规程DL/T 623—1997 3.8 火力发电厂、变电所二次接线设计技术规定NDGJ 8-89 四、试验设备及接线的基本要求 4.1 试验仪器应检验合格,其精度不低于0.5级。 4.2 试验回路接线原则,应使加入保护装置的电气量与实际情况相符。应具备对保护装置的整组试验的条件。 4.3试验设备:继电保护测试仪。 五、试验条件和要求注意事项 5.1交、直流试验电源质量和接线方式等要求参照《继电保护及电网安全自动装置检验规程》有关规定执行。 5.2 试验时如无特殊说明,所加直流电源均为额定值。 5.3 加入装置的的试验电压和电流均指从就地开关柜二次端子上加入。 5.4 试验前应检查屏柜及装置接线端子是否有螺丝松动。 5.5 试验中,一般不要插拨装置插件, 不触摸插件电路, 需插拨时, 必须关闭电源。 5.6 使用的试验仪器必须与屏柜可靠接地。 5.7 为保证检验质量,对所有特性试验中的每一点,应重复试验三次,其中每次试验的数据与整定值的误差要求<5%,保护逻辑符合设计要求。

微机保护装置调试作业指导书

微机保护装置 调试作业指导书 编制: 审核: 批准: 2018年11月20日发布2018年11月20日实施

1.目的 为保证微机保护装置的试验质量,特制定本规定。 2.范围 本规范仅适用于:线路保护装置;主变保护装置;电容器保护装置;备用电源自投装置;PT并列保护装置;综合测控保护装置;小电流接地检测装置;非电量保护;差动保护等的调试。 3.职责 3.1试验人员负责试验全过程的安全防护; 3.2试验人员负责试验的准备和实施; 3.3试验人员负责试验的结果的记录、试验数据的处理; 3.4试验人员负责试验设备的使用和管理。 4.工作装备 4.1调整必备设备无 5.工作内容 5.1、系统参数定值的整定: 保护CT变比;测量CT变比;零序CT变比;母线PT变比;线路PT(如进线柜PT)变比及接线方式; 严格按照一次系统图结构及参数对CT的接线方式、CT、PT额定值进行设置。不使用的可以不设置。 5.2保护压板投切: 常用的保护段:速断,时限速断,过流,零序过流,欠压,过压,重合闸,低周减载,PT并列,备自投,非电量等保护。 保护压板设为“投”或“1”,则为此保护功能投上。保护定值中有控制字的可通过控制字进行投退,且可通过后台进行投退。只有控制字,软压板状态(若未设置则不判),硬压板状态(若未设置则不判)均有效是才投入相关的保护元件,否则退出该保护元件。 根据各单元柜控制回路原理图,确定所需要的保护类型,其他不用的均需要“退”掉,防止对投入的保护段造成影响。 5.3保护定值修改: 常用的三段电流保护:速断,时限速断,过流。还有零序过流,欠压,过压,重合闸,低周减载,PT并列,备自投,非电量等保护。此类保护定值一般有两部分组成:定值大小,动作时间。仔细阅读保护说明书,根据图纸要求和试验条件合理整定保护参数,定值修改

( OA自动化)TDZII电力系统自动化实验培训系统实验指导书

(OA自动化)TDZII电力系统自动化实验培训系统实验 指导书

C HANG S HA T ONG Q ING E LECTRICALAN D I NFORMATION C O.LTD TQXDZ-II电力系统自动化实验培训系统 实验指导书 长沙同庆电气信息有限公司

目录 1.3.1发电机组及控制屏 (1) 1.3.2电力系统自动化实验培训系统 (8) 1.3.3组态接线屏 (13) 2.1.3.1机组启动和建压 (17) 2.1.3.1.3恒定越前时间测试 (18) 2.1.3.2手动准同期并列实验 (19) A.按准同期条件手动合闸 (19) B.偏离准同期并列条件合闸 (20) 2.1.3.5半自动准同期并列 (21) 2.1.3.6全自动准同期并列 (21) 2.1.3.7不同准同期条件对比实验 (22)

2.2.3.1不同Α角对应的励磁电压测试 (25) 2.2.3.2同步发电机起励 (26) A.恒机端电压方式起励 (26) B.恒励磁电流方式起励 (26) 2.2.3.3伏/赫限制实验 (27) 2.2.3.4调差特性实验 (28) 2.2.3.5强励实验 (30) 2.2.3.6欠励限制实验 (31) 2.2.3.7过励限制实验 (32) 3.1.3.1负荷调节实验 (35) 3.1.3.2单回路与双回路稳态对称运行比较实验 (35) A.单回路稳态对称运行实验 (35) B.双回路对称运行与单回路对称运行比较实验 (36) 3.2.3.1原动机转速自动方式(自动调节)下负荷容量对发电机的电压,频率的影响.37 3.2.3.2原动机转速手动方式(无调节)下负荷容量对发电机的电压,频率的影响 (38)

相关文档