文档库 最新最全的文档下载
当前位置:文档库 › I-第3章%20扭转[1]

I-第3章%20扭转[1]

I-第3章%20扭转[1]
I-第3章%20扭转[1]

U PLQ

Q

PD[

P

1

u

3

7

PP

G *3D

* 3

u

*,7O

M 3S 3PD[u

u u u

O '*O ,)

7*,,'7M M W 03D

3

7

u

u

u u u

G PP O

P

u

u

u $

3

u

u u u u u *,7O M 03D

PD[ W W W %$03D

PD[ u G &W W

u *

&&W

J

&

D

3

H

*,D 0D

*,0

3

H PD[

W

3

H

*,D 0$%$&M M

U PLQ

N:

3

N1

PD[

G 7

$%

PP

N1

u

3

$

*3D

(H 07 S

H

*,O 02222

M

V G

22'

M V G

*,O 022' S

H

S

H Q

'

(V,G O 0*22

PP

Q

u u u u u u (S

,O 7*M

*3D

Q u

u

G G ':

:

G 'G

'

G

3

O

[O G G G *

[

7

@

>

3 O [G G O G [G G O G G G *7O

@ >@ G>

u

G G G G G G *7O O

G O

G G G *7O

U PLQ

Q

P

u u u u

G

u

u u u u

G P

N1 $0P

N1 &

0*3D

*

P

N1 PD[ 7

3

PD[PD[

PP

P

3

*,7O

M

PP

t G

G PP

P

N1

&0

@

>

@

>

(%

>@03D

W *3D

*

u d u

u

G W PP

PP

G

G

H

0$

*

W

J

H H

H *3D

*

P

N1

u u u

u u u u

*,

O 79

G

G

O [*,P

S S

*,O P

'

PP

G

)5N

W 03D

u u u u u u

Q

)G

PP

FP

5FP

5

5555*G

)Q O

'

S

W

Q

55

5

5

>

Q 555))57D

D G D

G G 5[

>

P

N1

H 0

W E ,D

$

$

u u u u c M

W $

$ u u u u u c *,7

K M

H

单元5 剪切与扭转变形时的承载力计算

单元5 剪切与扭转变形时的承载力计算 【学习目标】 1.能深入理解剪切和挤压的概念; 2.能进行剪应力和压应力的计算和校核; 3.能灵活运用剪切虎克定律公式和剪应力互等定理; 4.能深入理解圆轴的扭矩的概念和公式; 5.能进行圆轴圆轴扭转强度计算,最大剪应力; 5.1 剪切与挤压变形实例 5.1.1剪切的概念 它是指杆件受到一对垂直于杆轴方向的大小相等、方向相反、作用线相距很近的外力作用所引起的变形,如铆钉连接中的铆钉及销轴连接中的销等都是心剪切变形为主要变形的构件。 图5.1 如图所示。此时,截面cd相对于动将发生相对ab错动,即剪切变形。若变形过大,杆件将在两个外力作用面之间的某一截面m—m处被剪断,被剪断的截面称为剪切面,如图5.1所示。 5.1.2挤压的概念 构件在受剪切的同时,在两构件的接触面上,因互相压紧会产生局部受压,称为挤压。 图5.2

如图5.2所示的铆钉连接中,作用在钢板上的拉力F,通过钢板与铆钉的接触面传递给铆钉,接触面上就产生了挤压。两构件的接触面称为挤压面,作用于接触面的压力称挤压力,挤压面上的压应力称挤压应力,当挤压力过大时,孔壁边缘将受压起“皱”,铆钉局部压“扁”,使圆孔变成椭圆,连接松动,这就是挤压破坏。因此,连接件除剪切强度需计算外,还要进行挤压强度计算。 图5.3 5.2 铆接或螺栓连接实用计算(剪切与挤压的实用计算) 5.2.1剪切的实用计算 剪切面上的内力可用截面法求得。 图5.4 假想将铆钉沿剪切面截开分为上下两部分,任取其中一部分为研究对象,由平衡条件可知,剪切面上的内力Q必然与外力方向相反,大小由∑X=0,F-Q=0,得:Q=F这种平行于截面的内力Q称为剪力。 与剪力Q相应,在剪切面上有剪应力η存在。剪应力在剪切面上的分布情况十分复杂,工程上通常采用一种以试验及经验为基础的实用计算方法来计算,假定剪切面上的剪应力η是均匀分布的。因此:Qη=―A式中A——剪切面面积; Q——剪切面上的剪力。 为保证构件不发生剪切破坏,就要求剪切面上的平均剪应力不超过材料的许用剪应力,即剪切时的强度条件为:Q η=―≤[η]( 5.1 ) A 式中[η]——许用剪应力,许用剪应力由剪切试验测定。

材料力学习题册答案-第3章 扭转

第三章扭转 一、是非判断题 1.圆杆受扭时,杆内各点处于纯剪切状态。(×) 2.杆件受扭时,横截面上的最大切应力发生在距截面形心最远处。(×) 3.薄壁圆管和空心圆管的扭转切应力公式完全一样。(×) 4.圆杆扭转变形实质上是剪切变形。(×) 5.非圆截面杆不能应用圆截面杆扭转切应力公式,是因为非圆截面杆扭转时“平截面假设”不能成立。(√) 6.材料相同的圆杆,他们的剪切强度条件和扭转强度条件中,许用应力的意义相同,数值相等。(×) 7.切应力互等定理仅适用于纯剪切情况。(×) 8.受扭杆件的扭矩,仅与杆件受到的转矩(外力偶矩)有关,而与杆件的材料及其横截面的大小、形状无关。(√) 9.受扭圆轴在横截面上和包含轴的纵向截面上均无正应力。(√) 10.受扭圆轴的最大切应力只出现在横截面上。(×) 11.受扭圆轴内最大拉应力的值和最大切应力的值相等。(√) 12.因木材沿纤维方向的抗剪能力差,故若受扭木质圆杆的轴线与木材纤维方向平行,当扭距达到某一极限值时,圆杆将沿轴线方向出现裂纹。(×)

二、选择题 1.内、外径之比为α的空心圆轴,扭转时轴内的最大切应力为τ,这时横截面上内边缘的切应力为 ( B ) A τ; B ατ; C 零; D (1- 4α)τ 2.实心圆轴扭转时,不发生屈服的极限扭矩为T ,若将其横截面面积增加一倍,则极限扭矩为( C ) 0 B 20T 0 D 40T 3.两根受扭圆轴的直径和长度均相同,但材料C 不同,在扭矩相同的情况下,它们的最大切应力τ、τ和扭转角ψ、ψ之间的关系为( B ) A 1τ=τ2, φ1=φ2 B 1τ=τ2, φ1≠φ2 C 1τ≠τ2, φ1=φ2 D 1τ≠τ2, φ1≠φ2 4.阶梯圆轴的最大切应力发生在( D ) A 扭矩最大的截面; B 直径最小的截面; C 单位长度扭转角最大的截面; D 不能确定。 5.空心圆轴的外径为D ,内径为d, α=d /D,其抗扭截面系数为 ( D ) A ()3 1 16 p D W πα= - B ()3 2 1 16 p D W πα= - C ()3 3 1 16 p D W πα= - D ()3 4 1 16 p D W πα= - 6.对于受扭的圆轴,关于如下结论: ①最大剪应力只出现在横截面上; ②在横截面上和包含杆件的纵向截面上均无正应力;

第三章扭转(习题解答)

3-1ab 作图求各杆的扭矩图 解:(1)轴的扭矩图分成二段,整个轴上无均布荷载扭矩图为间断水平线。 左段:m kN ?=6左T (背正) 右段: m kN ?-=-=4106右T (指负背正),或m kN ?-=4右T (指负) (2)画扭矩图如图题3-1(a)所示。从左至右,扭矩图的突变与外力偶矩转向一至,突变之值为外力偶的大小(从前往后看) m 10kN 4kN m T (b ) (a 题3-1(a ) (b) T 图 (kN m )4 + 题3-1(b ) 2m 2m 解:(1)轴的扭矩图分成二段,轴上的右段有均布荷载,该段扭矩图向下倾斜线段。左段无均布荷载,扭矩图为水平线段。 左段:m kN ?=?=422AB T 右段: 0422=?=?=C B T T m kN (2)画扭矩图如图题3-1(b)所示。扭矩图集中力偶处发生突变,而有均布力偶段扭矩图呈线性。显而易见,A 端有大小为m kN ?4,力偶矩矢向左的外力偶。 3-2图示钢质圆轴,m kN m m l mm D ?===15,2.1,100。试求:(1)n-n 截面上A 、B 、C 三点的剪应力数值及其方向(保留n-n 截面左段);(2)最大剪应力m ax τ;(3)两端截面的相对扭转角。 解:(1)圆轴受力偶作用面与轴线垂直的一对外力偶作用,发生扭转变形。由于扭矩在整个轴内无变化,可不画扭矩图。 (2)扭转圆轴上各点的剪应力应在各自的横截面内,垂直于所在的“半径”,与扭矩的转向一致,如图3-2(c)所示。 由求扭转剪应力的公式知: MPa Pa D D T I T P B A 43.7621 .032 1 .014.310152324 34=???=?=?==πρττ MPa Pa D D T I T P C 21.384 1 .032 1.014.31014432434=???=?=?=πρτ

材料力学第3章剪切与扭转

第3章 剪切与扭转 提要:本章将讨论杆件的剪切和扭转这两种基本变形。 F。为了保证连接件的正常剪切是杆件的基本变形之一,杆件横截面上的内力为剪力 Q 工作,一般需要进行连接件的剪切强度、挤压强度计算。本章将探讨采用实用计算法来进行简化计算。 扭转也是杆件的基本变形之一。杆件横截面上的内力偶矩为扭矩T。本章将根据传动轴的功率P和转速n来计算杆件所承受的外力偶矩,并通过截面法来计算扭矩;还将探讨扭矩图的绘制方法。 本章将研究薄壁圆筒的扭转变形及其横截面上的切应力分布,并由薄壁圆筒的扭转实验推出剪切胡克定律,还要探讨切应力互等定理。 为了保证杆件在受扭情况下能正常工作,除了要满足强度要求外,还须满足刚度要求。本章将从变形几何关系、物理关系和静力学关系三方面入手导出等直圆杆扭转时横截面上的切应力公式,并以之为基础建立扭转的强度条件;同时在研究等直圆杆扭转变形的基础上,建立扭转的刚度条件。本章还将探讨杆件斜截面上的应力分布。 本章研究等直圆杆的扭转仅限于线弹性范围内,且材料符合胡克定律,并以平面假设为基本依据。 在实际工程中,有时也会遇到非圆截面等直杆的扭转问题。本章将简单介绍矩形截面杆、开口薄壁截面杆和闭口薄壁截面杆的自由扭转问题。 3.1 剪切 3.1.1 剪力和切应力 剪切(shear)是杆件的基本变形之一,其计算简图如图3.1(a)所示。在杆件受到一对相距很近、大小相同、方向相反的横向外力F的作用时,将沿着两侧外力之间的横截面发生相对错动,这种变形形式就称为剪切。当外力F足够大时,杆件便会被剪断。发生相对错动的横截面则称为剪切面(shear surface)。 既然外力F使得剪切面发生相对错动,那么该截面上必然会产生相应的内力以抵抗变形,这种内力就称为剪力(shearing force),用符号 F表示。运用截面法,可以很容易地分析 Q 出位于剪切面上的剪力 F与外力F大小相等、方向相反,如图3.1(b)所示。材料力学中通 Q 常规定:剪力 F对所研究的分离体内任意一点的力矩为顺时针方向的为正,逆时针方向的 Q 为负。图3.1(b)中的剪力为正。

湖南省对口升学机电专业第三章扭转与剪切测试卷

湖南省对口升学机电专业第三章复习题 一、填空题 1、杆件发生扭转变形时,其受力特点是 2、圆轴扭转时,其轴上所传递的功率为P,转速为n,则该轴所受的外力偶矩为 3、圆轴发生扭转变形时,各截面发生相对运动,可以推断截面上 4、圆轴扭转过程中,其横截面上的应力分布与成正比,其最大应力 发生在,最小应力发生在。 5、圆轴扭转的变形采用来表示,对于长度为L,扭矩为T的等截面圆轴其扭转角为 6、对于直径变化的圆轴(阶梯轴),或者扭矩分段变化的等截面圆轴,其相对转角等于 7、剪切的受力特点为,其产生的内力为,用符号表示 8、拉伸与压缩变形产生的应力为,其方向是,扭转变形时产生的应力为,其方向是 9、当杆件受到挤压时,当挤压面为圆柱面,取面积计算挤压面 10、对于实心圆轴,其扭转截面系数Wp= ,空心圆轴,其扭转截面系数Wp= 11、扭转变形的刚度条件为 12、以扭转为主要变形的杆件称为二、选择题 1、下列说法中正确的是() A、圆轴扭转时,横截面上有正应力产生,其大小与截面直径有关 B、圆轴扭转时,只有切应力产生,其大小与截面直径有关 C、圆轴扭转时,既有正应力也有切应力,都与截面直径无关 D、圆轴扭转时,产生的应力为剪应力,发生在被剪面积上 2、下图所示各截面上,与扭矩正确对应的切应力分布图是() A B C D 3、实心圆轴,两端受扭转外力偶矩作用,直径为d时,轴内的最大切应力为τ,若轴的直径为d∕2,其他条件不变,则轴内的最大切应力τ变为() A、8τ B、1∕8τ C、16τ D、1∕16τ 4、两根受扭圆轴的直径和长度均相同,但材料C不同,在扭矩相同的情况下,它们的最大切应力τ1、τ2和扭转角φ1、φ2之间的关系为() A、τ1=τ2, φ1=φ2 B、τ1=τ2, φ1=φ2 C、τ1=τ2, φ1=φ2 D、τ1=τ2, φ1=φ2 5、阶梯圆轴的最大切应力发生在() A 扭矩最大的截面 B 直径最小的截面 C 单位长度扭转角最大的截面 D 不能确定

最新《材料力学》第3章 扭转 习题解

第三章扭转习题解 [习题3-1] 一传动轴作匀速转动,转速min / 200r n=,轴上装有五个轮子,主动轮II输入的功率为60kW,从动轮,I,III,IV,V依次输出18kW,12kW,22kW和8kW。试作轴的扭图。 解:(1)计算各轮的力偶矩(外力偶矩) n N T k e 55 .9 = 外力偶矩计算(kW换算成kN.m) 题目编号轮子编号轮子作用功率(kW) 转速r/min Te(kN.m)习题3-1 I 从动轮18 200 0.859 II 主动轮60 200 2.865 III 从动轮12 200 0.573 IV 从动轮22 200 1.051 V 从动轮8 200 0.382 (2) 作扭矩图 [习题3-2] 一钻探机的功率为10kW,转速min / 180r n=。钻杆钻入土层的深度m l40 =。如土壤对钻杆的阻力可看作是均匀分布的力偶,试求分布力偶的集度m,并作钻杆的扭矩图。 解:(1)求分布力偶的集度m ) ( 5305 .0 180 10 549 .9 549 .9m kN n N M k e ? = ? = = 设钻杆轴为x轴,则:0 = ∑x M e M ml= ) / ( 0133 .0 40 5305 .0 m kN l M m e= = = T图(kN.m)

(2)作钻杆的扭矩图 x x l M mx x T e 0133.0)(-=- =-=。]40,0[∈x 0)0(=T ; )(5305.0)40(m kN M T e ?-== 扭矩图如图所示。 [习题3-3] 圆轴的直径mm d 50=,转速为120r/min 。若该轴横截面上的最大切应力等于60MPa ,试问所传递的功率为多大? 解:(1)计算圆形截面的抗扭截面模量: )(245445014159.316 1 161333mm d W p =??== π (2)计算扭矩 2max /60mm N W T p == τ )(473.1147264024544/6032m kN mm N mm mm N T ?=?=?= (3)计算所传递的功率 )(473.1549 .9m kN n N M T k e ?=== )(5.18549.9/120473.1kW N k =?= [习题3-4] 空心钢轴的外径mm D 100=,内径mm d 50=。已知间距为m l 7.2=的两横截面的相对扭转角o 8.1=?,材料的切变模量GPa G 80=。试求: (1)轴内的最大切应力; (2)当轴以min /80r n =的速度旋转时,轴所传递的功率。 解;(1)计算轴内的最大切应力 )(9203877)5.01(10014159.3321 )1(32144444mm D I p =-???=-= απ。 )(184078)5.01(10014159.3161 )1(16134343mm D W p =-???=-=απ 式中,D d /=α。 p GI l T ?= ?, mm mm mm N l GI T p 27009203877/80000180/14159.38.142???= = ? mm N ?=45.8563014

材料力学教案第3章 扭 转

第三章 扭 转 §3.1 扭转的概念和实例 §3.2 外力偶矩的计算,扭矩和扭矩图 §3.3 纯剪切 §3.4 圆轴扭转时的应力 §3.5 圆轴扭转时的变形 §3.6 圆柱形密圈螺旋弹簧的应力和变形 §3.7 非圆截面杆扭转的概念 §3.1 扭转的概念和实例 1.实例如: 车床的光杆 反应釜的搅拌轴 汽车转向轴 2.扭转:在杆件的两端作用等值,反向且作用面垂直于杆件轴线的一对力偶时,杆的任意两个横截面都发生绕轴线的相对转动,这种变形称为扭转变形。 §3.2 外力偶矩的计算,扭矩和扭矩图 1.M e 、m 、 P 之间的关系 M e ——外力偶矩(N ?m ) n ——转速(r/min ) P ——功率(kW )(1kW=1000N ?m/s )(马力)(1马力=735.5W ) 每秒钟内完成的功力 P n M e 100060 2 · =π或

P n M e 5.73560 2 ·=π {}{}{}{}{}{}min /7024 min /kW 9549..r n P M r n P M m N e m N e 马力 == 2.扭矩和扭矩图 (1)截面法、平衡方程 ΣM x =0 T-M e =0 T =M e (2)扭矩符号规定:为无论用部分I 或部分II 求出的同一截面上的扭矩不但数值相同且符号相同、扭矩用右手螺旋定则确定正负号。 (3)扭矩图 例1 主动轮A 输入功率P A =50kW ,从动轮输出功率P B =P C =15kW ,P D =20kW ,n =300r/min ,试求扭矩图. 解:(1) 1591300 50 95499549 =?==n P M eA m N ? m N 637m N 477300 15 9549?=?=?==eD eC eB M M M (2)求T ΣM x =0 T 1+M eB =0 T 1=-M eB =-477 T 2-M eA +M eB =0 T 2=1115N T 3-M eD =0 T 3=M ed =63T

第三章扭转

第三章 扭转 第一节 工程实际中的受扭杆 在第一章中已经指出,扭转是杆变形的一种基本形式,是由一对转向相反、作用在垂直于杆轴线的两个平面内的外力偶所引起的。在工程实际中以扭转为主要变形的杆也比较多。例如图3-1中所示的(a )机器传动轴,(b )钻杆,(c )水电站机组中的传动轴,(d )发动机的机座等,都是受扭杆的实例。另外,在土建、水利工程建筑物中,也常会遇到受扭的构件,甚至体积巨大的重力拱坝或重力坝,由于重力、水压力、温度应力等的作用,日子久了,其坝体也会发生扭转变形。 t 1 t 2 T 1 T 2 (a)(b) (c) (d) 电磁力偶 法兰盘螺栓反力 h 机座 M n h 图3-1 受扭杆的实例 对受扭杆件进行强度计算和刚度计算的步骤,基本上与受拉(压)杆相同。即首先求出杆的内力——扭矩,然后计算出它的应力和变形,再根据材料的力学性能和对杆的使用要求,建立其强度条件和刚度条件。 第二节 受扭杆的内力——扭矩 扭矩图 2.1 扭转 当杆受到外力偶作用发生扭转变形时,在杆的横截面上同时会产生相应的内力,我们

称它为扭矩..,用符号M n 表示。扭矩的量纲和外力偶矩的量纲相同,都为[力] ·[长度]。在国际单位制中常用的单位是牛·米或千牛·米(N·m 或kN·m )。 求受扭杆的内力(扭矩)时,仍可采用截面法。如图3-2(a )所示的杆,在其两端有一对矩均为m 但转向相反的外力偶作用。若要求杆任一横截面n-n 上的内力,可设想将杆沿截面n-n 切开为两段,并取其中的一段为脱离体,例如左段为脱离体(如图3-2(b ))或右段为脱离体(如图3-2(c )),则根据静力平衡条件,可由 ∑=0x M ,0=-n M m 求出横截面上的扭矩 m M n = (3-2-1) m (b) x m n m x m x (c) (a)M n M'n n 图3-2 用截面法求受扭杆的内力 当一杆同时受到多个外力偶作用时,其各段杆横截面上的扭矩同样可用截面法求得。如图3-3(a )所示的AB 杆,同时受到矩为m 1、m 2、m 3、m 4的四个外力偶作用,且m 1+m 2+m 3+m 4=0。则杆各段横截面上的扭矩可用截面法求得。 m 1 m 2 m 3 m 4 Ⅰ Ⅰ Ⅱ Ⅱ A C D B x m 1 m 1+m 2 m 4 x (a) (b) M n 图3-3 扭矩图

3-第三章 扭转解析

第三章扭转 3.1 扭转的概念 一、定义 在杆两端作用两大小相等、方向相反、且作用面垂直于杆件轴线的力偶,使杆的任意两个截面发生绕轴的相对转动。杆件的这种变形称为扭转变形。 二、基本概念 轴:工程中一般将发生扭转变形的直杆称为轴 扭转角:扭转时杆的任意两个横截面的相对角位移 三、实例 搅拌机轴、汽车传动轴等 1、螺丝刀杆工作时受扭

2、汽车方向盘的转动轴工作时受扭 3、机器中的传动轴工作时受扭 4、汽车换轮胎

3.2 外力偶矩计算、扭矩和扭矩图 一、 外力偶矩计算 在工程实际中,作用于轴(shaft )上的外力偶矩往往是未知的,已知的往往是轴的转速以及轴上各轮所传送的功率。以下图所示的齿轮轴简图为例,主动轮B 的输入功率经轴的传递,由从动轮A 、C 输出给其它构件。 1. 外力偶矩与功率、角速度关系 e P M ?= 2. 外力偶矩与功率、转速关系 ()()()() r/m in 7024r/m in kW 9549 n P n P m 马力== (1马力=735.5N ?m/s) 二、扭转杆件的内力——扭矩和扭矩图 1、扭转杆件的内力(截面法) 由平衡方程0M T =∑,e e M M 0M -M T T ==得,T M 称为截面m-m 上的扭矩。 T

2、扭矩的符号规定:按右手螺旋法则判断。按右手螺旋法则把T M 表示为矢量,当矢量方向与截面的外法线的方向一致时,T M 为正;反之,为负。 右手的四指代表扭矩的旋转方向,大拇指代表其矢量方向,若其矢量方向与截面的外法线方向(背离截面方向)相同,则扭矩规定为正值,反之为负值。 以横轴表示横截面的位置,纵轴表示相应截面上的扭矩,绘成的图形称为扭矩图。 3、内力图(扭矩图)表示构件各横截面扭矩沿轴线变化的图形 扭矩图作法:同轴力图 例题:一传动轴如图所示,主动轮A 输入功率22kW P A =,从动轮B 、C 输出功率分别为kW 2.7P 14.8kW,P C B ==,轴的转速为300r/min n =。试求横截面上的扭矩,并画出扭矩图。

第三章扭转习题讲解学习

第三章扭转习题

第三章 扭转习题 一、单项选择题 1、横截面都为圆的两个杆,直径分别为d 和D ,并且d=0.5D 。两杆横截面上扭矩相等两杆横截面上的最大切应力之比maxD maxd ττ为 A 、2倍, B 、4倍, C 、8倍, D 、16倍。 二、1、扭转变形时,公式p Tl GI τ=中的 表示单位长度的扭转角,公式中的T 表示横截面上的 ;G 表示杆材料的 弹性模量;I P 表示杆横截面对形心的 ;GI P 表示杆的抗扭 。 2、截面为圆的杆扭转变形时,所受外力偶的作用面与杆的轴线 . 3、实心圆轴扭转时,横截面上的切应力分布是否均匀,横截面上离圆心愈远的点处切应力 ,圆心处的切应力为 ,圆周上切应力 4、两根实心圆轴的直径d 和长度L 都相同,而材料不同,在相同扭矩作用下,它们横截面上的最大切应力是否相同 ,单位长度的扭转角是否相 同 。 5、剪切虎克定律的表达式 G τ γ=,式中的G 表示材料的 模量,式中 的γ称为 。 6、根据切应力互等定理,单元体两互相垂直截面上在其相交处的切应力成对存在, 且 相等,而 现反。

三、 1、如图所示圆轴,一端固定。圆轴横截面的直径D=100mm ,所受的外力偶矩M 1=6kN?m, M 2=4kN?m 。试求圆轴横截面上的最大扭矩和最大切应 力。 答:圆轴横截面上的最大扭矩为 kN?m ; 圆轴横截面上的最大切应力为 Mpa 。 2、如图所示阶梯形圆轴,一端固定。圆轴横 截面的直径分别为50mm 和75mm ,所受的外 力偶矩M C =1200 N?m ,M B =1800 N?m 。 试求BC 段横截面上的扭矩和该阶梯轴的最 大切应力。 答:BC 段横截面上的扭矩为 N?m ; 该阶梯轴的最大切应力为 Mpa 。 3、如图所示圆轴,一端固定。圆轴横截面的直径d=100mm ,所受的外力偶矩 M 1=7000 N?m M 2=5000 N?m 。试求圆轴横截面上的最大扭矩和最大切应力。 答:最大扭矩为 N ?m 。 最大切应力为 Mpa 。 图3.3.1 图3.3.2 图 3.3.3

相关文档