文档库 最新最全的文档下载
当前位置:文档库 › 固定化酶

固定化酶

固定化酶
固定化酶

固定化酶

1.固定化酶的定义

所谓固定化酶,是指在一定空间内呈闭锁状态的酶,能连续地进行反应,反应后的酶可以回收重复使用。因此,不管用何种方法制备的固定化酶,都应该满足上述固定化酶的条件。

固定化酶与游离酶相比,具有下列优点:①极易将固定化酶与底物、产物分开;②可以再较长时间内进行反复分批反应和装柱连续反应;③在大多数情况下,能够提高酶的稳定性;④酶反应过程能够加以严格控制⑤产物溶液中没有酶的残留,简化了提纯工艺;⑥较游离酶更适合于多酶反应;⑦可以增加产物的收率;

⑧酶的使用效率提高,成本降低。

与此同时,固定化酶也存在一些缺点:①固定化时,酶活力有损失;②增加了生产的成本,工厂初始投资大;③只能用于可溶性底物,而且较适用于小分子底物,对大分子底物不适宜;④与完整菌体相比不适宜于多酶反应,特别是需要辅助因子的反应;⑤胞内酶必须经过酶的分离程序。

2.固定化酶的制备方法

迄今为止已发现的酶有效千种之多,但由于应用的性质与范围、保存稳定性和操作稳定性、成本的不同以及制备的物理、化学手段、材料等不同,可以采用不同的方法进行酶的固定化。一般要根据不同情况(不同酶、不同应用目的和应用环境)来选择不同的固定化方法,但是无论如何选择,确定什么样的方法,都要遵循几个基本原则:

①必须注意维持酶的催化活性及专一性,保持酶原有的专一性、高效催化能力和在常温常压下能起催化反应的特点。

②固定化反应有利于生产自动化、连续化,为此,用于固定化的载体必须有一定的机械强度,不能因机械搅拌而破碎或脱落。

③固定化酶应有最小的空间位阻,尽可能不妨碍与底物的接近,应不会引起酶的失活,以提高产品的产量。制备固定化酶时所选载体应尽可能地不阻碍酶和底物的接近。

④酶与载体必须结合牢固,从而使固定化酶能回收贮藏,利于反复使用,因此,在制备固定化酶时,应使酶和载体尽可能的结合牢固。

⑤固定化酶应有最大的稳定性,在制备固定化酶时,所选载体不与废物、产物或反应液发生化学反应。

⑥固定化酶应易于产物分离,即能通过简单的过滤或离心就可回收和重复使用。

⑦固定化酶成本要低,需综合考虑固定化酶在总成本中的比例,应为廉价的、有利于推广的产品,以便于工业使用。

⑧充分考虑到固定化酶制备过程和应用中的安全因素,在设计制备过程中采用的化学反应与化学试剂等就需要慎重考虑残留和有毒物质的形成等安全问题,尤其是固定化酶在食品和医药工业中应用时尤其重要。

在考虑到上述因素之后,如何选择固定化载体又是固定化酶制备过程中需要解决的重要问题。一般来说,已有的研究成果和应用过程已经表明,固定化载体的选择标准基本上与固定化方法的选择标准类似,且这两者之间有着十分密切的关系。一般需要根据载体的形式、结构、性质和酶偶联量以及实效系数等来选择合适的固定化载体。

2.1非化学结合法

非化学结合法包括结晶法、分散法、物理吸附法和离子结合法等,分别叙述如下:

2.1.1结晶法

结晶法固定化酶就是使酶结晶从而实现固定化的方法。对于酶晶体来说,载体就是酶蛋白本身,酶晶体可以提供非常高的酶浓度,这一点对于活力较低的酶来说,就显得具有很大的优越性,因为对活力低的酶来说不仅固定化技术的运用受到了很大的限制,而且活性低的酶通常都较昂贵,如果提高了酶的浓度,也就提高了单位体积的活力,应用时就大大缩短了反应时间。但是结晶法固定化酶在应用时也存在局限性,在不断地重复循环中,酶会有损耗,从而使得固定化酶浓度降低。

2.1.2分散法

分散法就是通过将酶分散于水不溶相中而实现酶固定化的方法。在实践上,对于在水不溶的有机相中进行的反应,最简单的固定化方法是将酶的干粉悬浮于溶剂中,这样不仅实现了酶的催化作用,而且可以通过过滤和离心的方法将酶与介质进行完全分离,进而实现酶的再利用。

2.1.3物理吸附法

利用各种固体吸收载体将酶活含酶菌体吸附在其表面上而实现酶固定化的方法称为物理吸附法。物理吸附法具有酶活性中心不易被破坏、酶高级结构变化少、操作方便、条件温和、载体廉价急得、可发福使用等优点,若能找到适当的载体,是实现酶固定化的很好的方法。

2.1.4离子结合法

这是酶通过离子键结合于具有离子交换基的水不溶性载体的固定化方法。离子结合法具有操作简单、处理条件温和、酶的高级结构和活性中心的氨基酸残基不易被破坏以及可以得到酶活回收率较高的固定化酶等优点,但是由于载体与酶的结合力比较弱,容易受缓冲液种类或pH的影响,在离子强度高的条件下使用时,酶往往会从载体上脱落。

2.2 化学结合法

2.2.1 共价结合法

通过共价键将酶与载体结合的龚定华方法称为共价结合法,与离子结合法或物理吸附法相比,其优点是酶与载体结合牢固,一般不会因底物浓度高或存在盐类等原因而轻易脱落,但是该方法反应条件苛刻,操作复杂。而且由于采用了比较激烈的反应条件描绘引起酶蛋白高级结构变化,破坏部分活性中心,因此往往不能得到比活高的固定化酶,酶活回收率一般为30%左右,有时甚至连底物的专一性等酶的性质也会发生变化。

2.2.1.1重氮法

将含有芳香族氨基的水不溶性载体(Ph-NH2)与亚硝酸反应,生成重氮盐衍生物,使载体引进了活泼的重氮基团,然后再与酶发生偶合反应,得到固定化酶。

2.2.1.2 叠氮法

含有肼酰基团的载体可以用烟硝酸活化生成叠氮衍生物,使载体引进了活泼的重氮基团,然后再与酶分子中的氨基形成肽键,使酶固定化。

2.2.1.3 溴化氰法

诸如纤维素、琼脂糖凝胶、葡聚糖凝胶等含有羟基的载体,可以用溴化氰活

化生成亚硝基碳酸酯衍生物,再利用活化载体上的亚硝基碳酸基团在碱性条件下与酶分子上的氨基反应制成固定化酶。

2.2.1.4烷基化法

含有羟基的载体可以用三氯均三嗪等多卤袋物进行活化,形成含有卤素基团的活化载体,再与酶分子中的氨基、巯基、羟基等发生烷基化反应制备成固定化酶。

2.2.1.5 活化酶法

含有羟基的载体可以用对甲苯磺酰氯进行活化,形成含有对甲苯磺酰基团的载体,再与酶分子中的氨基、巯基等发生反应,制备成固定化酶。

2.2.1.6 环氧化法

含有羟基的载体可以用表氯醇进行活化,形成含有环氧基的活化载体,再与酶分子中的氨基、巯基、羟基等发生烷基化反应,制备成固定化酶。

2.2.1.7 高碘酸法

将纤维素葡萄糖等含有醛基的载体经过碘酸氧化或用二甲基砜氧化裂解葡萄糖环,产生二醛高聚物,每个葡萄糖分子含有两个醛基,再与酶分子中的氨基、巯基、咪唑基等集团反应制成固定化酶。

2.2.2 交联法

交联法是借助于双功能试剂或多功能试剂能使酶分子之间发生交联作用,而利用双功能或多功能试剂使酶与酶之间交联,制成网状结构固定化酶的方法。2.3 包埋法

将酶包埋在各种多孔载体中使酶固定化的方法称为包埋法。包埋法可分为网络型和微囊型两种,一般讲酶或微生物包埋在高分子凝胶细微网络中的称为网络型;将酶或微生物包埋在高分子半透膜中的称为微囊型。包埋法一般不需要与酶蛋白的氨基酸残基进行结合反应,很少改变酶的高级结构,酶活回收率较高,因此可以应用于很多酶的固定化,但是在包埋时发生化学聚合反应,容易导致酶的失活,必须巧妙设计反应条件,以获得满意的结果。由于只有小分子可以通过高分子凝胶的网格扩散,并且这种扩散阻力还会导致固定化酶动力学行为的改变,降低酶活力。因此,包埋法只适合作用于小分子底物和产物的酶,对于那些作用于大分子底物和产物的酶是不适合的。

3. 辅酶的固定化

3.1 辅基的固定化

辅基的固定化首先应选择合适的载体。理想的载体应具有以下条件:没有特异性吸附;具有多孔性;有适合引入配基的官能团;化学稳定性;具有适当的机械强度等。目前使用的载体主要有琼脂糖,此外还有纤维素、玻璃珠及合成高分子载体等。在选择好合适的载体后就需要选择间隔臂或“手臂”。一般辅基分子和载体之间需要一个0.5~1.0nm常的“手臂”。此外,必须考虑辅基的性质,如疏水性、亲水性、粒子性和体积大小等因素。用较长直链烷基作手臂时,由于疏水作用亦有吸附酶的能力,会使酶固定化辅基吸附专一性降低。

3.2 辅酶的固定化

辅酶的固定化方法与酶相似,一般采用溴化氰法、碳二亚胺法以及重氮偶联法等共价偶联,或将其进行适当的化学修饰后用在超滤器中。共价偶联法与辅基固定化十分类似。例如,NAD+通过己二胺臂后在琼脂糖上的固定化步骤如下

①用碘乙酸使NAD+/NADH腺嘌呤中的1位氮原子烷基化;

②在碱性条件下分子发生重排得到6位碳上的氨基酸被修饰的衍生物N6-羧

甲基NAD+;

③通过碳二亚胺法使长链接臂分子1,6-己二胺与NAD+衍生物的羧基偶联;

④长臂上另一端的氨基再与经过溴化氰活化了的琼脂糖偶联,从而得到了固定化辅酶。

3.3 辅酶的再生

在实际应用中要考虑辅酶再生问题,根据辅酶和酶的固定化情况,需要辅酶的酶反应系统一般有如下几种类型:①辅酶和酶均不固定的反应系统;②辅酶不固定而酶固定的反应系统;③辅酶固定而酶不固定的反应系统;④辅酶和酶分别固定的反应系统;⑤辅酶和酶共同固定的反应系统;⑥辅酶与酶分子偶联形成辅酶-酶复合物的反应系统。由于辅酶分子量小,难以截留再生,所以①、②两种系统应用较少。如果辅酶固定在水不溶载体上,显然酶反应催在较大的扩散阻力,酶的变现活性将降低,而且辅酶的再生效率较低。这在酶也被固定的情况下更为明显。如果辅酶被固定在可溶性的大分子载体上,那么效果会有较大改善。但这时系统对反应设备的要求较高,需要有一个适宜的超滤膜反应器或中空纤维反应器来截留固定化辅酶和酶。将辅酶和酶共固定在同一个载体上,可得到一种不需外加辅酶而活性持久的固定化酶。另一种较为有效的方法是将辅酶直接固定在某个酶分子上,原先可分离的辅酶便成了这一酶分子上被牢固结合着的辅基。

4.固定化酶的应用

固定化酶既保持了酶的催化特性,又克服了游离酶的不足之处,具有如下显著的优先。

①酶的稳定性增加,减少温度、pH、有机溶剂和其他外界因素对酶活力的影响,可以较长期地保持较高的酶活力。

②固定化酶可反复使用或连续使用较长的时间,提高酶的利用价值,降低生产成本。

③固定化酶易于和反应产物分开,有利于产物的分离纯化,从而提高产品质量。

故此,固定化酶已广泛地用于食品、轻工、化工、分析、环保、能源和科学研究等领域。这里主要介绍固定化酶在工业生产以及酶传感器方面的应用。

4.1固定化酶在生产中的应用

现已用于工业化生产的固定化酶主要有以下几种

4.1.1氨基酰化酶

这是世界上第一种工业化生产的固定化酶。1969年,日本田边只要公司将从米曲霉中提取分离得到的氨基酰化酶,用DEAE-葡萄糖凝胶为载体通过离子键结合法制成固定化酶,用来拆分DL-乙酰氨基酸,连续生产L-氨基酸,生产成本仅为用游离酶生产成本的60%左右。

4.1.2 葡萄糖异构酶

这是世界上生产规模最大的一种固定化酶。将培养好的含葡萄糖异构酶的放线菌细胞用60~65℃热处理15min,该酶就固定在菌体上,制成固定化酶,用于连续生产果葡萄浆。此固定化酶在国内外均进行过广泛的研究和应用。1973年就已用于工业化生产。固定化葡萄糖异构酶的制备,除用上述热处理法外,也可用吸附法、结合法、凝胶包埋法、交联法或双重固定化法等进行固定化。

4.1.3 天门冬氨酸酶

1973年日本用聚丙烯酰胺凝胶为载体,将具有高活力天门冬氨酸酶的大肠杆菌菌体包埋固定化天门冬氨酸酶,用于工业化生产,将延胡索酸转化生产天门

冬氨酸。1978年以后,改用角叉菜胶为载体制备固定化酶,也可将太难门冬氨酸酶从大肠杆菌细胞中提取分离出来,再用离子键结合法制成固定化酶,用于工业化生产。

4.1.4 青霉素酰化酶

这是在医药工业上广泛应用的一种固定化酶。可用多种方法固定化。1973年已用于工业化生产,用于制造各种半合成青霉素和头孢霉菌。用同一种固定化青霉素酰化酶,只要改变pH等条件,就既可以催化青霉素或头孢霉素水解生成6-氨基青霉酸生物进行反应,以合成新的具有不同侧脸基团的青霉素或头孢霉素。

4.1.5 延胡索酸酶

用聚丙烯酰胺凝胶包埋含有延胡索酸的产氨短杆菌菌体,制成固定化延胡索酸酶,于1974年用于工业化生产,从延胡索酸制造L-苹果酸。

4.1.6 β-半乳糖苷酶

又称乳糖酶,可用于水解乳化中存在的乳糖,用于制造低乳糖奶。采用固定化乳糖酶可连接生产低乳糖奶已于1977年实现工业化。

4.1.7天门冬氨酸-β-脱羧酶

将含天门冬氨酸-β-脱羧酶的假单胞菌菌体,用凝胶包埋法制成固定化天门冬氨酸-β-脱羧酶,于1982年用于工业化生产,催化天门冬氨酸脱去β-羧基,生产L-丙氨酸。

4.2固定化酶在酶传感器方面的应用

酶传感器是有固定化酶与能量转化器密切结合而成的传感装置,是生物传感器的一种。已广泛应用于临床诊断、工业发酵过程控制和环境监测等领域。其中研究得最多、应用最广泛的是酶电极。

酶电极是由固定化酶与各种电极密切结合的传感装置。1962年Clark和Lyons 提出模型,1967年Updike和Hicks首先制造出酶电极并把它用于陪同他的定量分析。这种酶电极用聚丙烯酰胺凝胶包埋法将葡萄糖氧化酶固定化,制成厚度为20~50um的酶膜,再与氧电极及使氧容易同多的聚四氟乙烯等高分子薄膜密切结合,自称葡萄糖氧化酶电极。使用时,把酶电极侵入样品溶液中,样品溶液中的葡萄糖扩散到酶膜中,酶催化葡萄糖与氧反应,生成葡萄糖酸,使氧被消耗,再有有点急测定氧浓度的变化,即可知道样品中葡萄糖的浓度。

酶电极用于用品组分的分析检测,有快速、方便、灵敏、精确的特点,发展很快,现已用酶电极测定各种糖类、抗生素、氨基酸、甾体化合物、有机物、脂肪、醇类、胺类以及尿素、尿酸、硝酸、磷酸等。

各种酶固定方法

一、D380(功能基团为伯氨基)为载体戊二醒交联固定化α一淀粉酶 1、固定化载体的预处理 吸附树脂采用乙醇、丙酣、蒸馏水交替处理,最后用蒸馆水冲洗至中性备用;离子交换树脂先用蒸馆水漫泡胀润、去杂,然后用 HCl 、NaOH 交替处理,最后用蒸锢水冲洗至中性,置于 4 "C冰箱保存备用。 2、载体选择 取处理后载体(湿态)约1.0g,分别加入 20mL 酶液摇匀,在摇床上室温 (25°C摄氏度),100r/min 振摇,过夜(12h),弃去上清,并以磷酸缓冲液反复洗涤至洗涤液中无蛋白检出。分别测定固定化酶和上清液的酶活,并计算固定化得率。根据其酶活和得率进行筛选。 3、固定化条件的优化 取处理后载体(湿态)1.0g左右,加入一定量戊二醒,在摇床上定温(25°C) , 100r/min 振摇一定时间,弃去上清,蒸馏水反复冲洗至无戊二醛残留。处理后加入酶液进行固定化,条件同载体选择。 4、蛋白质含量测定 采用 Bradford 的方法,以牛血清蛋白为标准曲线。 5、酶活收率 指实际测定的总的固定化酶活与固定化时所用的全部游离酶活之比。 6、酶活测定 以 20.0mL 的 2% 可溶性淀粉为底物,加入 5.0mL 的缓冲液。在

60 °C预热 5min 后加入适量固定化酶或稀释至适当浓度的酶液,准确反应 5min 后,立即取出1.0mL 反应液置于稀腆液5.0mL 中摇匀显色。以稀腆液为空白,于 660nm 波长下测定其吸光度值。 二、D301 树脂固定化假丝酵母脂肪酶 1、固定化载体及其预处理 选择 7 种工业应用广泛的吸附和离子交换树脂: D301、D113、AB-8、D3520、D4020、D290、D280, 购自南开大学化工厂。其中 D301 为大孔弱碱性苯乙烯系阴离子交换树脂,D113 为大孔弱酸性丙烯酸系阳离子交换树脂, AB-8、D3520 和 D4020 为大孔吸附树脂, D290 和 D280 为大孔强碱性苯乙烯系阴离子交换树脂。大孔吸附树脂: 采用乙醇、丙酮、蒸馏水交替处理,最后用蒸馏水冲洗至中性备用; 阳离子交换树脂:将树脂用水洗至流出清水后,用 2%-4% NaOH 浸泡4-8h 后用水洗至中性,再用 5%盐酸浸泡 4-8h,用水洗至 pH=6,待用;阴离子交换树脂:将树脂用水洗至流出清水后,用 5%盐酸浸泡 4-8h 后,用水洗至 pH=6,再用 2%~4%NaOH 浸泡 4~8h,用水洗至 pH 7-9,待用。 2、脂肪酶的固定化 采用单因素对比试验分别进行载体选择、5%戊二醛溶液的加入量、酶液浓度、pH 环境和反应时间等条件的优化试验。称取一定量脂肪酶粉溶解于 100 mL 设定 pH 值的磷酸缓冲液中,并倒入 250 mL 具塞三角烧瓶中, 再加入设定量的载体,在 5 °C-8 °C 低温冷却液循环

酶固定化技术及其应用

酶固定化技术及其应用 摘要: 酶因其优良的催化性能而被广泛应用,但游离酶应用过程中有许多缺点,固定 化酶技术因此而产生,并且迅速发展。本文主要介绍传统的固定化酶技术、新 型固定化酶技术、新型载体材料及固定化酶技术的应用。 关键词:酶固定化;载体;应用 The enzyme is widely applied because of its fine catalyzed performance, but in the dissociation enzyme application process has many shortcomings, the fossilization enzyme technology therefore produces, and develops rapidly. This article main introduction traditional fossilization enzyme technology, new fossilization enzyme technology, new carrier material and fossilization enzyme technology application. 一、前言 酶的本质是一类具有催化功能的蛋白质,与化学催化剂相比具有反应速度快、反应条件温和、底物专一性强,可在水溶液和中性pH 下操作等优点。但其 高级结构对环境十分敏感,物理因素、化学因素和生物因素均可使没丧失活力。 而且,随着反应过程的进行,反应速率会下降。此外,游离酶在反应液中和产 物在一起,反应后酶不能回收重复利用,也使得产物的分离纯化更为复杂。以 上的这些因素使得酶在工业中的应用受到了极大的限制,找到解决这些问题得 方法十分迫切。 可喜的是,经过专家学者的不断努力,发现将酶用特殊的载体固定,酶仍能与底物有效的进行反应。这中酶的出现,使得酶与产物在反应液中相互分离,具有可回收、重复利用等优点,从而使生产工艺可以实现连续化、自动化。 酶的固定化是指将酶限制或固定在某一局部空间或特定的固体载体上进行其特有的催化反应,并可回收及重复利用的技术,在催化反应中以固相状态作 用于底物。近年来,固定化酶的研究得到了人们极大的关注,并取得了许多重 要成果。下面以酶的固定化方法为核心,介绍一些有关酶固定化技术的应用及研 究新进展。 二、传统酶固定化技术

酶工程在食品方面的应用

浅谈酶工程及其在食品领域中的应用 摘要:酶工程是现代生物技术的重要组成部分。酶作为生物催化剂,具有高催化效率,专一性强,反应条件温和及酶活性可以调控。本文介绍了酶工程和酶在食品领域中的应用,并对酶工程技术研究应用前景做了整体展望。 关键词:酶工程,固定化,食品 1.酶和酶工程 1.1简述酶和酶工程 酶是由生物体产生的具有催化活性的蛋白质.它能特定地促成某个化学反应而本身却不参加反应,且具有反应率高、反应条件温和、反应产物污染小、能耗低、反应容易控制等特点.这些特点比传统的化学反应具有较大的优越性.【1】酶工程技术是现代五大生物工程技术之一,是利用酶或者微生物细胞、动植物细胞、细胞器等所具有的某些功能,借助于工程学手段来提供产品或服务于社会的一门科学技术。酶工程技术的应用范围很广,主要包括酶的分离和提取、各类酶的开发和生产、固定化技术的研发、酶反应器的研制等几个方面【2】 1.2酶的来源、提取、分离和纯化 酶的来源主要有植物、动物和微生物。最早人们多从植物、动物组织中提取,例如从动物胰脏和麦芽中提取淀粉酶、从动物胃膜,胰脏、木瓜、菠萝中提取蛋白酶。酶是蛋白质,因此一切蛋白质的分离原则都应该遵行。酶作为特殊的蛋白质,最重要的原则是纯化过程中一定要保持其活性。酶的分离纯化化学方法一般很据酶的分子量、等电点、疏水性等生化性质,选择相应的沉淀、盐析、层析方法。 1.3酶的生产 微生物种类多,几乎所有酶都能从微生物中找到,而且它的生产不受季节、气候限制;由于微生物容易培养,繁殖快,产量高,故酶大多有微生物生产。近年来,随着基因工程技术的迅速发展,又为酶产量的提高和新酶种的开发开辟了新的途径。例如利用改良的过氧化物酶能够在高温和酸性条件下脱甲基和烷基,生产一些食品特有的香气因子。此外,运用基因工程技术,提高葡萄搞异构酶,纤维素酶,糖化酶等酶活力的研究也取得了一定的成绩。【4】基因工程的克隆流程包括:目的基因的获得、将目的基因克隆到合适的质粒载体;、将重组质粒转染细胞和表达产物的检测。其中,目的基因的获得主要有三条途径:以含有目的的基因的生物DNA 中获得、以DNA作为目的基因和用化学方法合成目的基因。在宿主体系的选择方面,目前在食品级酶的生产中,原核生物一般选用枯草杆菌、地衣芽抱杆菌、乳酶链球菌、嗜热链球菌等。真核生物一般以酵母和哺乳动物细胞作宿主细胞。【16】 1.4 固定化酶 1.4.1固定化酶简介 酶的固定化是用固体材料将酶束缚或限制于一定区域内,进行特有的催化反应,并可回收及重复利用的技术。酶的化学本质是蛋白质,其最大弱点是不稳定性,对酸、碱、热及有机溶液容易发生酶蛋白的变性作用,从而降低或失去活性。而且酶往往在溶液中进行反应,反应以后会残留在溶液系统中不易回收,造成最终产品生化分离提纯操作上的麻烦。加之酶反应只能分批进行,难于连续化、自动化操作。这大大地阻碍了酶工程的发展应用为克服上述缺点,要将游离酶固定化后进行应用。固定化酶技术是把从生物体内提取出来的酶,用人工方法固定在载体上。由于固定化酶的运动被化学或物理的方法限制了,能将其从反应介质中回收,所以它原则上能在批量操作或连续操作中重复使用酶。固定化酶技术是酶工程的核心,它使酶工程提高到一个新水平。【6】 1. 4.2吸附法 吸附法是通过非特异性物理吸附法或生物物质的特异吸附作用将酶吸附在炭、有机聚合物、玻璃、无机盐、金属氧化物或硅胶等材料上。该方法又分为物理吸附法和离子吸附法。

酶固定化方法及载体特性

酶固定化一般方法及载体特性 酶是重要的生物催化剂,具有专一性强、催化效率高、无污染、反应条件温和等特点,在制药、食品、环保、酿造、能源等领域都得到了广泛的应用。但在实际应用中,酶也存在许多不足,如大多数的酶在高温、强酸、强碱和重金属离子等外界因素影响下,都容易变性失活,不够稳定;与底物和产物混在一起,反应结束后,即使酶仍有很高的活力,也难于回收利用,这种一次性使用酶的方式,不仅使生产成本提高,而且难于连续化生产;并且分离纯化困难,也会导致生产成本的提高等。固定化酶(immobilized enzyme)这个术语是在1971 年酶工程会议上被推荐使用的。随着固定化技术的发展,出现固定化菌体。1973年,日本首次在工业上应用固定化大肠杆菌菌体中的天门冬氨酸酶,由反丁烯二酸连续生产L-天门冬氨酸。固定化酶技术为这些问题的解决提供了有效的手段,从而成为酶工程领域中最为活跃的研究方向之一。 1酶固定化的传统方法 关键在于选择适当的固定化方法和必要的载体以及稳定性研究、改进,酶载体推荐创科催化酶载体树脂。 1.1 吸附法 吸附法是利用物理吸附法,将酶固定在纤维素、琼脂糖等多糖类或多孔玻璃、离子交换树脂等载体上的固定方式。显著特点是:工艺简便及条件温和,包括无机、有机高分子材料,吸附过程可同时达到纯化和固定化;酶失活后可重新活化,载体也可再生。但要求载体的比表面积要求较大,有活泼的表面。 1.2包埋法 包埋固定化法是把酶固定聚合物材料的格子结构或微囊结构等多空载体中,而底物仍能渗入格子或微囊内与酶相接触。这个方法比较简便,酶分子仅仅是被包埋起来,生物活性被破坏的程度低,但此法对大分子底物不适用。 1)网格型 将酶或包埋在凝胶细微网格中,制成一定形状的固定化酶,称为网格型包埋法。也称为凝胶包埋法。 2)微囊型 把酶包埋在由高分子聚合物制成的小球内,制成固定化酶。由于形成的酶小球直径一般只有几微米至几百微米,所以也称为微囊化法。

浅谈固定化酶

浅谈固定化酶 固定化酶(immobilized enzyme)是20世纪60年代发展起来的一种新技术。所谓固定化酶,是指在一定的空间范围内起催化作用,并能反复和连续使用的酶。通常酶催化反应都是在水溶液中进行的,而固定化酶是将水溶性酶用物理或化学方法处理,使之成为不溶于水的,仍具有酶活性的状态。 酶固定化后一般稳定性增加,易从反应系统中分离,且易于控制,能反复多次使用。便于运输和贮存,有利于自动化生产,但是活性降低,使用范围减小,技术还有发展空间。固定化酶是近十余年发展起来的酶应用技术,在工业生产、化学分析和医药等方面有诱人的应用前景。固定化酶的研究始于1910年,正式研究于20世纪60年代,70年代已在全世界普遍开展。酶的固定化(Immobilization of enzymes)是用固体材料将酶束缚或限制于一定区域内,仍能进行其特有的催化反应、并可回收及重复利用的一类技术。与游离酶相比,固定化酶在保持其高效专一及温和的酶催化反应特性的同时,又克服了游离酶的不足之处,呈现贮存稳定性高、分离回收容易、可多次重复使用、操作连续可控、工艺简便等一系列优点。固定化酶不仅在化学、生物学及生物工程、医学及生命科学等学科领域的研究异常活跃,得到迅速发展和广泛的应用,而且因为具有节省资源与能源、减少或防治污染的生态环境效应而符合可持续发展的战略要求。

固定化酶与水溶性酶相比的优缺点 优点:①固定化酶可重复使用,使酶的使用效率提高、使用成本降低。 ②固定化酶极易与反应体系分离,简化了提纯工艺,而且产品收 率高、质量好。 ③在多数情况下,酶经固定化后稳定性得到提高。 ④固定化酶的催化反应过程更易控制。 ⑤固定化酶具有一定的机械强度,可以用搅拌或装柱的方式作用 于底物溶液,便于酶催化反应的连续化和自动化操作。 ⑥固定化酶与游离酶相比更适于多酶体系的使用,不仅可利用多 酶体系中的协同效应使酶催化反应速率大大提高,而且还可以控制反应按一定顺序进行。 缺点:①固定化可能造成酶的部分失活,酶活力有损失。 ②酶催化微环境的改变可能导致其反应动力学发生变化。 ③固定化酶的使用成本增加,使工厂的初始投资增大、 ④固定化酶一般只适用于水溶性的小分子底物,对于大分子底物 不适宜。 ⑤与完整菌体细胞相比,固定化酶不适宜于多酶反应,特别是需 要辅助因子参加的反应。 ⑥胞内酶进行固定化时必须经过酶的分离纯化操作。 固定化细胞和固定化酶比较,2个的优缺点 固定化细胞:优点:固定化细胞内酶的活性基本没有损失。缺点:固

酶的固定化

酶的固定化 固定化酶是酶工程的核心,利于实现酶的重复利用及产物与酶的分离。下面以酶的固定化方法为核心,介绍一些有关固定化技术的研究新进展。 1 吸附法 利用多种固体吸附剂将酶或含酶细胞吸附在其表面上而使酶固定方法。该方法最显著的优点是操作简便,条件温和,不会引起酶的变异失活,且载体价廉易得,可反复使用。但酶与载体结合不牢,极易脱落,所以它的使用受到一定的限制。因此,人们不断尝试使用新的载体来解决这易脱落的问题。 通常,吸附法分为物理吸附法和离子吸附法。 酶被载体吸附而固定的方法称为物理吸附法。从载体对酶的适应性来看,这个方法效果是好的,酶蛋白的活性中心不易受破坏,酶的高级结构变化也不明显,但其缺点是酶与载体的相互作用较弱,被吸附的酶极易从载体表面上脱落下来,不能获得较高活力的固定化酶。该方法常用的载体有活性炭、多孔陶瓷、纤维素及其衍生物、甲壳素及其衍生物等。纵伟、刘艳芳等(2008)以磁性壳聚糖微球作为新型载体,并采用物理吸附法固定化脂肪酶,对影响固定化的各种因素进行考察,确定了最优条件,同时比较了游离酶和固定化酶的pH值和热稳定性。结果表明,固定化的适宜条件为:加酶量600 U/g,温度5℃,pH 7.0,固定化时问2 h。固定化酶的pH值和热稳定性都优于游离酶,

固定化酶连续使用5次后,其相对酶活仍为使用前的57.8%,具有较好的操作稳定性。近年来,随着介孔分子筛制备技术的日臻成熟,人们正在考虑用其担当固定化酶的载体。与其他材料相比,介孔分子筛规则的孔道、大的比表面积、极强的吸附性能、稳定的结构等特点,使其具有担当固定化酶载体得天独厚的优势。 王炎等(2008)以介孔分子筛MCM一41作为载体,采用物理吸附法对漆酶进行了固定化,考察了时间、pH和给酶量对固定化效果的影响,并对固定化酶的活性及其稳定性进行了研究,讨论了影响固定化过程和固定化酶性质的主要原因。结果显示,在pH为3.0时,酶和载体比例为62.5 mg/g时吸附12 h固定化效果最好,固定化酶活性回收率为50%。与游离漆酶相比,MCM一41固定化漆酶的最适反应pH略有升高,最适温度没有变化,其pH稳定性和热稳定性都显著优于游离漆酶。固定化漆酶具有可重复操作的性质,与底物反应反复操作1O批次后剩余活性为4O%。 将酶与含有离子交换基团的水不溶性载体以静电作用力相结合 的固定化方法。该方法的处理条件温和,且酶的高级结构和活性中心的氨基酸很少发生变化,因而可以得到较高活性的固定化酶。采用此法固定的酶有葡萄糖异构酶、糖化酶、淀粉酶、纤维素酶等。陈姗姗等(2008)以阴离子交换树脂为载体、戊二醛为交联剂,对果胶酶进行固定化分析,探讨了温度、pH值、时间、加酶量、戊二醛浓度、交联温度、交联时问对果胶酶固定化效果的影响,同时对固定化果胶酶的酶学特性进行研究。研究结果表明,果胶酶的最佳固定化条件为:温

《酶工程》 课后习题答案

第一章酶工程基础 1.名词解释:酶工程、比活力、酶活力、酶活国际单位、酶反应动力学 ①酶工程:由酶学与化学工程技术、基因工程技术、微生物学技术相结合而产生的一门新技术,是工业上有目的地设计一定的反应器和反应条件,利用酶的催化功能,在常温常压下催化化学反应,生产人类所需产品或服务于其它目的地一门应用技术。 ②比活力:指在特定条件下,单位质量的蛋白质或RNA所拥有的酶活力单位数。 ③酶活力:也称为酶活性,是指酶催化某一化学反应的能力。其大小可用在一定条件下,酶催化某一化学反应的速度来表示,酶催化反应速度愈大,酶活力愈高。 ④酶活国际单位: 1961年国际酶学会议规定:在特定条件(25℃,其它为最适条件)下,每分钟内能转化1μmol底物或催化1μmol产物形成所需要的酶量为1个酶活力单位,即为国际单位(IU)。 ⑤酶反应动力学:指主要研究酶反应速度规律及各种因素对酶反应速度影响的科学。 2.说说酶的研究简史 酶的研究简史如下: (1)不清楚的应用:酿酒、造酱、制饴、治病等。 (2)酶学的产生:1777年,意大利物理学家 Spallanzani 的山鹰实验;1822年,美国外科 医生 Beaumont 研究食物在胃里的消化;19世纪30年代,德国科学家施旺获得胃蛋白酶。1684年,比利时医生Helment提出ferment—引起酿酒过程中物质变化的因素(酵素);1833年,法国化学家Payen和Person用酒精处理麦芽抽提液,得到淀粉酶;1878年,德国 科学家K?hne提出enzyme—从活生物体中分离得到的酶,意思是“在酵母中”(希腊文)。 (3)酶学的迅速发展(理论研究):1926年,美国康乃尔大学的”独臂学者”萨姆纳博士从 刀豆中提取出脲酶结晶,并证明具有蛋白质的性质;1930年,美国的生物化学家Northrop 分离得到了胃蛋白酶、胰蛋白酶、胰凝乳蛋白酶结晶,确立了酶的化学本质。 3.说说酶工程的发展概况 I.酶工程发展如下: ①1894年,日本的高峰让吉用米曲霉制备淀粉酶,酶技术走向商业化: ②1908年,德国的Rohm用动物胰脏制得胰蛋白酶,皮革软化及洗涤; ③1911年,Wallerstein从木瓜中获得木瓜蛋白酶,用于啤酒的澄清; ④1949年,用微生物液体深层培养法进行 -淀粉酶的发酵生产,揭开了近代酶工业的序幕; ⑤1960年,法国科学家Jacob和Monod提出的操纵子学说,阐明了酶生物合成的调节机制,通过酶的诱导和解除阻遏,可显著提高酶的产量; ⑥1971年各国科学家开始使用“酶工程”这一名词。 II.在酶的应用过程中,人们注意到酶的一些不足之处,如:稳定性差,对强酸碱敏感,只 能使用一次,分离纯化困难等,解决的方法之一是固定化。 固定化技术的发展经历如下历程: ①1916年,Nelson和Griffin发现蔗糖酶吸附到骨炭上仍具催化活性; ②1969年,日本千佃一郎首次在工业规模上用固定化氨基酰化酶从DL-氨基酸生产L-氨基酸; ③1971年,第一届国际酶工程会议在美国召开,会议的主题是固定化酶。 4. 酶的催化特点 酶催化作用特性有: ①极高的催化效率:在37℃或更低的温度下,酶的催化速度是没有催化剂的化学反应速率 的1012-1020倍;

固定化酶的研究进展

固定化酶的研究进展 固定化酶是20世纪60年代发展起来的一项新技术。最初主要是将水溶性酶与不溶性体结合起来,成为不溶于水的酶衍生物,所以曾叫过“水不溶酶”和“固相酶”。但是,后来发现,也可以将酶包埋在凝胶内或置于超滤装置中,高分子底物与酶在超滤膜一边,而反应产物可以透过膜逸出。在这种情况下,酶本身仍是可溶的,只不过被固定在一个有限的空间内不能再自由流动。因此,用水不溶酶或固相酶的名称就不再恰当。在1971年第一届国际酶工程会议上,正式建议采用“固定化酶”的名称[1]。 一固定化酶的发展历程[1] 酶参与体内各种代谢反应,而且反应后其数量和性质不发生变换。作为一种生物催化剂,酶可以在常温常压等温和条件下高效地催化反应,一些难以进行的化学反应在酶的催化作用下也可顺利地进行反应,而且反应底物专一性强、副反应少等优点大大促进了人们对酶的应用和酶技术的研究。近年来,酶被人们广泛应用于食品生产与检测、生物传感器、医药工程、环保技术、生物技术等领域。 1916年美国科学家NELSON和GRIFFIN最先发现了酶的固定化现象;直到20世纪50年代,酶固定化技术的研究才真正有效地开展;1953年,德国科学家GRUB-HOFER 和SCHLEITH首先将聚氨基苯乙烯树脂重氮化,然后将淀粉酶、胃蛋白酶、羧肽酶和核糖核酸酶等与上述载体结合制备固定化酶;到20世纪60年代,固定化技术迅速发展;1969年日本千畑一郎利用固定化氨基酰胺酶从DL-氨基酸生产L-氨基酸,是世界上固定化酶大规模应用的首例;在1971年的第一届国际酶工程会议上,正式建议使用固定化酶(mimobilizedenzyme)这个名称。我国的固定化酶研究开始于1970年,首先是中国科学院微生物所和上海生化所的酶学工作者同时开始了固定化酶的研究工作 二固定化酶的特点[2] [3] 固定化酶具有许多优点:极易将固定化酶与底物、产物分开;可以在较长时间内进行分批反应和装柱连续反应;在大多数情况下,可以提高酶的稳定性;酶反应过程能够加以严格控制;产物溶液中没有酶的残留,简化了提取工艺;较水溶性酶更适合于多酶反应;可以增加产物的收率,提高产物的质量;酶的使用效率提高,成本降低。但是,固定化酶也有其不足之处,如固定化时,酶活力有损失;增加了固定化的成本,工厂开始投资大;只能用于水溶性底物,而且较适用于小分子。 三固定化酶固定化方法[3] [4] 由于所固定的酶或细胞的不同,或者固定的目的及固定用的载体的不同,使固定化方法大相径庭。根据固定的一般机理,可将之分为如下几种方法。酶的固定化方法有:

浅析生物技术在环境工程中的应用与前景

浅析生物技术在环境工程中的应用与前景浅析生物技术在环境工程中的应用与前景 1我国生态环境的现状 我国生态环境污染日趋严重,如“三废”污染、水体污染、土壤污染、废弃塑料和农用地膜污染、农用化肥和农药污染等,造成水资源严重短缺,土地荒漠化日益加剧,森林覆盖率剧减,草场严重退化。生态环境的恶化,时刻威胁着人们的生命财产安全,疾病发病率也迅速提高。因此,必须积极发展高新技术,如现代环保生物技术等,采用防治结合的方式,解决当前的环境危机,维护生态平衡,已迫在眉睫。 2环境生物技术简介 生物技术是建立在生命科学的基础上,通过直接或间接的方式利用生物或生物有机体的特定部分或某些功能,建立降低或消除污染物的生产工艺或能够高效净化环境污染,同时又能生产有用物质的工程技术。主要包括基因工程、细胞工程、酶工程、蛋白质工程、染色体工程、生化工程等。生物技术在环保领域发挥着越来越重要的作用,正衍生出一门新兴的学科与技术,即我们所说的“环境生物技术”,

亦称“环境生物工程”。其特点如下: 2.1 实现对污染物的循环利用 对垃圾废弃物的降解生成的产物或副产物,一般都可重新利用。这样,可把污染降到最小程度,不仅可解决长期污染的问题,还实现了对固废的循环利用。 2.2安全可靠、效果明显 利用发酵工程技术治理,产生的物质基本属于稳定无害的物质,常见的包括CO2、水、氮气、甲烷等。并且,多数都是一步到位,无二次污染。因此,该技术既安全、彻底又高效。 2.3简化流程,节约成本 生物技术是建立在酶促反应基础上的生物化学过程。酶作为生物催化剂,实质是一种活性蛋白质。一般在常温常压或近乎中性的条件下即可发生反应。因此,绝大部分生物治理对环境条件要求不高,并可就地实施。 3.环境生物技术在三废处理中的应用 3.1在废水处理方面的应用 废水中含有许多有毒有害物质,比如,酚类、氰化物、重金属、有机磷、有机汞、有机酸、醛、醇、蛋白质等。废水生化处理经近百

固定化酶技术与应用

固定化酶技术与应用 姓名:高强 专业:生物科学 学号:2004083011 日期:2013年5月

固定化酶技术及应用 摘要:近年来由于固定化酶技术的发展,对固定化酶载体的研究非常活跃。本文对固定化酶载体,固定化酶的应用生产,酶传感器,固定化细胞技术进行简单介绍。 关键词:固定化酶载体应用固定化细胞 引言 固定化技术的应用可追溯到20世纪50年代,最初是将水溶性酶与不溶性载体结合起来,成为不溶于水的酶的衍生物。1971年第一届国际酶工程会议上正式建议采用“固定化酶”的名称。所谓固定化酶,即在一定空间内呈闭锁状态存在的酶,能连续地进行反应,反应后的酶可以回收重复使用。固定化酶属于修饰酶,其具有以下优点:1极易将固定化酶与底物,产物分开;2可以在较长时间内进行反复分批反应和装柱连续反应;3在大多数情况下,能够提高酶的稳定性;4反应过程能够加以严格控制;5产物溶液中没有酶的残留,简化了提纯工艺;6较游离酶更适合于多酶反应;7可以增加产物的收率,提高产物的质量;8酶的使用效率提高,成本降低。鉴于固定化酶的优点,本文从固定化酶载体的研究进展,固定化酶的应用,固定化酶的生产,在食品加工中的使用,固定化细胞技术等方面进行介绍。 固定化酶载体研究进展 载体材料的选择是决定酶能否成功固定化以及固定化酶活力高低的重要因素。酶蛋白的活性中心是酶催化活性所必需的,酶蛋白的空间结构也与酶活力密切相关,因而.在固定化的过程中,必须注意酶活性中心的氨基酸残基不受到载体的影响.而且要避免酶蛋白高级结构的破坏[1]。 甲壳素及壳聚糖作为载体的固定化方法报道较多的有吸附法、通过双功能试剂交联的共价结合法。目前,使用较多的是用戊二醛作交联剂的共价结合法。载体的形态有片状、球状、膜状、无定形等。1982年.John Wiley 利用甲壳素、壳聚糖的吸附作用固定化胰蛋白酶,把甲壳素、壳聚糖固态混合研磨40h,加入粉末状胰蛋白酶混合研磨进行固定化,另一对照样加入酶液进行固定化。结果表明胰蛋白酶以粉末状进行固定化时效果更好,且研磨时间越长,固定化效果越好。得出结论:甲壳素、壳聚糖表面积的增加有利于胰蛋白酶的固定化溶液酶在数天内几乎失去全部活力,而固定化酶在室温或高于室温的条件下仍保持其活力。 纳米粒子作为酶固定化的载体,当其具有磁性时,制备的固定化酶易从反应体系中分离和回收,操作简便;并且利用外部磁场可以控制磁性材料固定化酶的运动方式和方向,替代传统的机械搅拌方式,提高固定化酶的催化效率。在众多纳米材料中,氧化铁因其在磁性、催化等多方面的良好特性而备受瞩目[2]。 微胶囊是一种采用高分子聚合物或其他成膜材料将物质的微粒或微滴包覆所形成的微小容器,其粒径一般在微米至毫米级范围,通常为5~400μm。将酶用微胶囊包覆后形成的微胶囊固定化酶,由于被催化物质和产物可自由通过囊壁,因而能起到酶催化剂的作用[3]。酶经过微胶囊固化后,还使酶具有如下的优点:①提高了酶的稳定性,使其可以在恶劣的条件下存活。微胶囊囊壁可将对酶活性和稳定性有影响的抑制因子、有害因子等排除在外,同时还可与一定量的稳定剂、整合剂等一起包埋,进一步增加其耐极端条件的能力;②通过选择合适的胶囊,可控制酶的释放时间。这对于多阶段加工过程中酶的活力要在后一阶段发挥的情况

浅谈微生物在环境保护中的应用

浅谈微生物在环境保护中的应用 一、我国生态环境现状 目前我国由于工业“三废”污染、农用化肥和农药的污染以及废弃塑料和农用地膜的污染,严重的影响了我国的生态环境,使得水污染日益加剧,水资源严重短缺,全国600多个城市中已有一半城市缺水,农村则有8000万人和6000万头牲畜饮水困难;土壤污染严重,耕地面积锐减,近10年来每年流失的土壤总量达50亿t,土地荒漠化日益加剧;森林覆盖面积下降,草场退化,每年减少森林面积达2500万亩;人们的身体健康受到严重威胁,疾病发病率急剧上升。因此,加大环境保护和环境治理力度,加快应用高新技术,如现代生物技术来控制环境污染和保持生态平衡,提高环境质量已成为环保工作者的工作重点。 二、现代生物技术与环境保护 现代生物技术是以DNA分子技术为基础,包括微生物工程,细胞工程,酶工程,基因工程等一系列生物高新技术的总称。现代生物技术不仅在农作物改良、医药研究、食品工程方面发挥着重要作用,而且也随着日益突出的环境问题在治理污染、环境生物监测等方面发挥着重要的作用。自20世纪80年代以来生物技术作为一种高新技术,已普遍受到世界各国和民间研究机构的高度重视,发展十分迅猛。与传统方法比较,生物治理方法具有许多优点: 1.生物技术处理垃圾废弃物是降解破坏污染物的分子结构,降解的产物以及副产物,大都是可以被生物重新利用的,有助于把人类活动产生的环境污染减轻到最小程度,这样既做到一劳永逸,不留下长期污染问题,同时也对垃圾废弃物进行了资源化利用。 2.利用发酵工程技术处理污染物质,最终转化产物大都是无毒无害的稳定物质,如二氧化碳、水、氮气和甲烷气体等,常常是一步到位,避免污染物的多次转移而造成重复污染,因此生物技术是一种既安全又彻底消除污染的手段。 3.反应条件大大简化,具有设备简单、成本低廉、效果好、过程稳定、操作简便等优点。所以,当今生物技术已广泛应用于环境监测、工业清洁生产、工业废弃物和城市生活垃圾的处理,有毒有害物质的无害化处理等各个方面。 三、现代生物技术在环境保护中的应用 1.污水的生物净化: (1).污水中的有毒物质的成分十分复杂,包括各种酚类、氰化物、重金属、有机磷、有机汞、有机酸、醛、醇及蛋白质等等。微生物通过自身的生命活动可以解除污水的毒害作用,从而使污水中的有毒物质转化为有益的无毒物质,使污水得到净化。 (2).当今固定化酶和固定化细胞技术处理污水就是生物净化污水的方法之一。固定化酶和固定化细胞技术是酶工程技术。固定化酶又称水不溶性酶,是通过物理吸附法或化学键合法使水溶性酶和固态的不溶性载体相结合,将酶变成不溶于水但仍保留催化活性的衍生物,微生物细胞是一个天然的固定化酶反应器,用制备固定化酶的方法直接将微生物细胞固定,即是可催化一系列生化反应的固定化细胞。 (3).运用固定化酶和固定化细胞可以高效处理废水中的有机污染物、无机金属毒物等,此方面国内外成功的例子很多,如德国将能降解对硫磷等9种农药的酶,以共价结合法固定于多孔玻璃及硅珠上,制成酶柱,用于处理对硫磷废水,去除率达95%以上;近几年我国在应用固定化细胞技术降解合成洗涤剂中的表面活性剂直链烷基苯磺酸钠(LAS)方面取得较大进展,对于含100mg/L废水,降解率和酶活性保存率均在90%以上;利用固定化酵母细胞降解含酚废水也已实际应用于废水 2.污水生物处理时,微生物生长条件: (1).稳定的水(包括水量和水质) (2).充足的营养(不能少,也不能过量) (3).优良的环境(比如厌氧需要厌氧环境,好养需要好氧环境) (4).适当的温度(根据你的菌而定,有高温低温常温) (5).合适的PH(这个也是根据你的菌种而定)

固定化酶的生产

酶的固定化技术 摘要:固定化酶(Immobilized Enzyme)是20世纪60年代发展起来的一项新技术。它是通过物理的或化学的手段,将酶束缚于水不溶的载体,或将酶束缚在一定的空间内,限制酶分子的自由流动,但能使酶充分发挥催化作用。这么好的酶是如何生产的以及它的应用前景是怎样的,本篇文章就对这些问题进行一些论述。 关键字:固定化、束缚、生物技术、固定化细胞 Abstract:Immobilized Enzyme was a new technology of developing from sixty years of twenty century.It depends on physical or chemical means to bound enzymes on carriers which are not dissolved into water or in a certain space. It can limit the free flow of enzymes molecule, but the catalysis can be come into play fully. So, this passage will discuss how to produce such a good enzyme and what is the applied in future. Keywords:Immobilized, bounded, biotechnology, Immoilized cell 前言:固定化酶是指经过一定改造后被限制在一定的空间内,能模拟体内酶的作用方式,并可反复连续地进行有效催化反应的酶。固定化酶又称固相酶。在理论研究上,固定化酶可以作为探讨酶在体内作用的模型;在实际使用中,可使生产工艺自动化和连续化,提高酶的使用效率。

酶工程习题

一、填空题 1常用的菌种纯化方法很多,主要有划线分离法、平板分离与稀释分离法。 2产酶菌种的要求安全可靠、产酶性能要稳定、产酶量高与营养要求低。 3常用菌种保藏方法有斜面低温、液石蜡封、固体曲法、沙土管法、冷冻干燥、液氮法。4控制发酵过程产生泡沫的方法有:选育不易产生泡沫的菌种、调节培养基中营养成分,减少或缓加易起泡的原料、机械消泡或化学消泡 5酶发酵的培养方式与其她发酵大同小异,基本上分为固体曲培养法、液体深层培养法 6按发酵的操作方式可分分批式反应、连续式反应、流加分批式反应。 7酶的比活力就是反应速度的量度指标,酶转换数就是量度指标。 1、用阳离子交换树柱分离AA,在pH=2时,碱性氨基酸与酸性氨基酸相比,哪一个优先被洗脱? 2、细胞破碎的主要方法有机械破碎法、物理破碎法、化学破碎、酶解破碎。 3、酶的提取方法主要有盐溶液提取、酸溶液提取、碱溶液提取、有机溶剂提取。 4、酶浓缩的方法主要有蒸发浓缩、超滤浓缩、脱水浓缩、反复冻融浓缩。 5、酶干燥的方法主要有冷冻干燥、直接干燥、喷雾干燥。 6、结晶的方法主要有盐析结晶法、有机溶剂结晶法、等电点结晶法、蒸发浓缩。 7、离心方法主要有差速离心、密度梯度离心、等密度梯度离心。 8、加压膜分离可以分为微滤、超滤、反渗透。 9酶化学修饰的方法酶的表面修饰、酶分子的内部修饰、与辅因子相关的修饰、金属酶的金属取代等。 10酶化学修饰后的性质都发生了怎样的变化热稳定性、抗原性、对各类失活因子的抵抗力、修饰酶在体内的半衰期、最适pH、Km 的变化。 11用带负电荷的载体制备的固定化酶,其最适pH比游离酶的最适pH ,用带正电荷的载体制备的固定化酶,其最适pH比游离酶的最适pH ,用不带电荷的载体制备固定化酶,其最适pH比游离酶的最适pH 。 12、酶电极就是由半透膜与酶胶层密切结合的传感装置。 13、氨基酸酰化酶可以催化( )。 A、D,L-氨基酸生成D-氨基酸与L-氨基酸。 B、D,L-乙酰氨基酸水解生成D,L-氨基酸。 C、L-乙酰氨基酸水解生成L-氨基酸。 D、D-乙酰氨基酸水解生成D-氨基酸。 14与水介质中相比,酶在有机介质中热稳定性提高,催化活性降低。 15非水介质主要包括有机介质、气相介质、超临界液体介质、离子液介质。 16必需水就是指(D) A、维持酶催化反应速度所必需的水量 B、酶催化反应速度达到最大时所必需的水量 C、与酶分子紧密结合的水量 D、维持酶分子完整的空间构象所必需的最低水量 17有机介质中酶催化的最适水含量就是指(C) A、酶溶解度达到最大时的含水量 B、底物溶解度最大时的含水量 C、酶催化反应速度达到最大时的含水量 D、酶活力达到最大时的含水量

固定化酶

1.2 脂肪酶的研究与应用 1.2.1 脂肪酶的研究概况 脂肪酶可以根据其来源分类,分为微生物脂肪酶、动物脂肪酶和植物脂肪酶。脂肪酶可以很容易地从微生物真菌(如南极洲假丝酵母)或细菌(如荧光假单胞菌)中通过发酵过程高产量地生产出来,其过程缺乏基本的净化步骤。一些脂肪酶表现出对底物的位置专一性,而另一些则不然。对不同来源的游离脂肪酶类型的比较研究表明,荧光P.脂肪酶具有最高的酶活性。通常,来自真菌来源的脂肪酶比来自细菌来源的脂肪酶表现出更好的甘油三酯酯交换活性。 作为一种多功能生物催化剂,脂肪酶具有其他酶蛋白无法比拟的优点[15]:1、在有机溶剂中具有良好的稳定性;2、催化过程不需要辅助因子,一般不发生副反应;3、可以催化水解,酯化,酯交换等众多反应[16];4、具有独特的化学选择性、区域选择性及立体选择性;5、底物谱广,可催化非天然底物进行反应。与动植物脂肪酶相比,微生物脂肪酶生产周期短,分离纯化相对简单,并可利用基因工程和蛋白质工程等技术实现酶的改造并构建生产工程菌[17],适合工业化生产与应用。1994年,丹麦Novozymes公司首次应用基因工程菌生产来源于Thermomyces lanuginosus的脂肪酶Lipolase,此后许多来源于微生物的脂肪酶也实现了商业化生产[18]。脂肪酶的应用领域日益扩大,被广泛运用于生物柴油、食品加工、面粉改良、造纸造酒、有机合成等化工领域[19]。 1.2.2 脂肪酶的结构及催化机制 脂肪酶是一类重要的水解酶,催化三酰甘油酯中酯键的裂解,具有广泛的生物技术应用价值。脂肪酶是在人体内正确分配和利用油脂所必需的酶。脂蛋白脂肪酶(LPL)在毛细血管中很活跃,它通过水解包装脂蛋白中的甘油三酯,在防止血脂异常方面起着至关重要的作用。30年前,有人提出了一种不活泼的LPL低聚物的存在。M., Tushar Ranjan (2020)指出天然油中高浓度的omega - 3脂肪酸(?-3 FAs)对于维持身体健康非常重要。脂肪酶是一种很有前途的富集催化剂,但脂肪酶的脂肪酸特异性较差。 在脂肪酶催化酯键水解的过程中,活性酶的构象和四面体跃迁态的稳定都是至关重要的。利用蛋白酶定点突变实验的x射线结构数据和结果已被用作预测可

催化剂 论文

题目:催化剂的应用﹑性质及发展趋势 学校:芜湖职业技术学院 专业:09应用化工技术(2) 姓名:李国俊 指导老师:樊陈莉

催化剂的应用﹑性质及发展趋势 樊陈利①李国俊① 一.摘要: 本文较全面地介绍了国内外多种催化剂新技术、新材料和新产品发展动态和发展趋势,针对我国催化剂技术发展现状,对催化剂行业的发展提出了自己的见解。以及通过一些简单的实验来验证催化剂的一些简单的性质。 关键词:催化剂、化学反应。 二.引言 从19世纪末至20世纪初,化学工业中利用催化技术的生产过程日益增多,为适应对工业催化剂的要求,逐步形成了产品品种多、制造技术进步、生产规模和产值与日俱增的催化剂工业。 催化剂发展史概述 萌芽时期(20世纪以前) 奠基时期(20世纪初) 金属催化剂 氧化物催化剂 液态催化剂 大发展时期(20世纪30~60年代) 工业催化剂生产规模的扩大 工业催化剂品种的增加 有机金属催化剂的生产 选择性氧化用混合催化剂的发展 加氢精制催化剂的改进 分子筛催化剂的崛起 大型合成氨催化剂系列的形成 更新换代时期(20世纪70~80年代) 高效络合催化剂的出现 固体催化剂的工业应用 分子筛催化剂的工业应用 环境保护催化剂的工业应用 生物催化剂的工业应用 中国催化剂工业的发展 催化剂的主要作用是降低化学反应的活化能,加快反应速度,因此被广泛应用于炼油、化工、制药、环保等行业。催化剂的技术进展是推动这些行业发展的最有效的动力之一。一种新型催化材料或新型催化工艺的问世,往往会引发革命性的工业变革,并伴随产生巨大的社会和经济效益。1913年,铁基催化剂的问世实现了氨的合成,从此化肥工业在世界范围迅速发展;20世纪50年代末,Ziegler-Natta催化剂开创了合成材料工业;20世纪50年代初,分子筛凭借其特殊的结构和性能引发了催化领域的一场变革;20世纪70年代,汽车尾气净化催化剂在美国实现工业化,并在世界范围内引起了普遍重视;20世纪80年代,金属茂催化剂使得聚烯烃工业出现新的发展机遇。目前,人类正面临着诸多重大挑战,如:资

浅谈环境生物技术在环境保护中的应用及其发展趋势

浅谈环境生物技术在环境保护中的应用及其发展趋势 葛露萍 151805290003 【摘要】:环境生物技术是一门由现代生物技术与环境工程相结合的新兴交叉学科,是直接或间接利用完整的生物体或生物体的某些组成部分或某些机能,建立降低或消除污染物产生的生产工艺,或者能够高效净化环境污染以及同时生产有用物质的人工技术系统。现如今随着经济社会的快速发展,城市在不断更新,随之衍生出很多的环境问题,环境生物技术在环境保护中发挥了重要作用,并且希望通过进一步研究发展,更深一步开发环境生物技术在环境保护中的应用,从而达到在环保的同时能够促进环境、社会、经济三者协调可持续发展。 【关键词】:环境生物技术环境保护高效净化可持续发展

【Abstract】:Environmental biotechnology is an emerging research field by modern biotechnology and environmental engineering are combined, directly or indirectly using the intact organisms or organisms in some part or some function, set up to reduce or eliminate pollutants produced in the production process, or to the environmental pollution and high purifying technology and artificial system for production of useful substances. Nowadays, with the rapid economic and social development in the city, constantly updated, derived from many environmental problems, environmental biotechnology has played an important role in environmental protection, and hope that through further research and development, application of a deeper development of environmental biotechnology in environmental protection, so as to promote the social and economic environment, can the three coordinated sustainable development in environmental protection at the same time. 【Key words】:Environmental Biotechnology Environmental protection High efficiency purification Sustainable development

固定化酶的制备及应用

固定化酶的制备及应用 徐玉尚 08生工(2) 20080804243 摘要:酶的固定化技术是用固体材料将酶束缚或限制于一定区域内,酶仍能进行其特有的催化反应、并可回收及重复利用的一类技术。本文主要从传统固定化酶技术以及新型固定化酶技术两大方面介绍了固定化酶的制备方法。另外,又对固定化酶在医药、食品、环保、生物传感器、能源五大方面的应用作了综述。本文旨在进一步研究固定化酶的制备方法以及探究固定化酶在多个领域的应用。 关键词:固定化酶;制备;载体;应用 酶是重要的生物催化剂,具有专一性强、催化效率高、无污染、反应条件温和等特点,在制药、食品、环保、酿造、能源等领域都得到了广泛的应用。但在实际应用中,酶也存在许多不足,如大多数的酶在高温、强酸、强碱和重金属离子等外界因素影响下,都容易变性失活,不够稳定;与底物和产物混在一起,反应结束后,即使酶仍有很高的活力,也难于回收利用,这种一次性使用酶的方式,不仅使生产成本提高,而且难于连续化生产;并且分离纯化困难,也会导致生产成本的提高等。固定化酶的研究始于1910年,正式研究于20世纪60年代,70年代已在全世界普遍开展。酶的固定化(Immobilization of enzymes)是用固体材料将酶束缚或限制于一定区域内,仍能进行其特有的催化反应、并可回收及重复利 用的一类技术。与游离酶相比,固定化酶在保持其高效专一及温和的酶催化反应特性 的同时,又克服了游离酶的不足之处,呈现贮存稳定性高、分离回收容易、可多次重复使用、操作连续可控、工艺简便等一系列优点。现今,固定化酶的制备方法已由传统走向新型,并在多个领域有重要应用[1]。 1固定化酶的传统制备方法 1.1吸附法 吸附法是利用物理吸附法,将酶固定在纤维素、琼脂糖等多糖类或多孔玻璃、离子交换树脂等载体上的固定方式。显著特点是:工艺简便及条件温和,包括无机、有机高分子材料,吸附过程可同时达到纯化和固定化;酶失活后可重新活化,载体也可再生。但要求载体的比表面积要求较大,有活泼的表面[2]。 1.2包埋法 包埋固定化法是把酶固定聚合物材料的格子结构或微囊结构等多空载体中,而底物仍能渗入格子或微囊内与酶相接触。这个方法比较简便,酶分子仅仅是被包埋起来,生物活性被破坏的程度低,但此法对大分子底物不适用。 (1)网格型 将酶或包埋在凝胶细微网格中,制成一定形状的固定化酶,称为网格型包埋法。也称为凝胶包埋法。 (2)微囊型 把酶包埋在由高分子聚合物制成的小球内,制成固定化酶。由于形成的酶小球直径一般

相关文档