文档库 最新最全的文档下载
当前位置:文档库 › 降低烧结矿低温还原粉化率-冶金之家

降低烧结矿低温还原粉化率-冶金之家

降低烧结矿低温还原粉化率-冶金之家
降低烧结矿低温还原粉化率-冶金之家

降低烧结矿低温还原粉化率

齐玉珍1,孟建荣1,徐海芳1,孙雅平1,李晓云2

(1.唐山钢铁有限公司教育中心,河北唐山063001;2.唐山钢铁有限公司技术中心,河北

唐山063016)

摘要:论述了影响烧结矿低温还原粉化率的因素,并针对这些影响因素,通过优化配料结构,合理控制烧结矿中SiO2,Al2O3,MgO,R2,FeO,改进不合理工艺设备,加强操作等措施,最终改善烧结矿低温还原粉化率指标。

关键词:低温还原粉化率;烧结矿;化学成分

烧结矿质量的好坏对高炉炼铁生产技术经济指标产生重大影响,与高炉炼铁成品的优质、低耗、高效益密切相关。随着高炉“ 精料”技术的发展,对烧结矿质量要求除品位高、杂质少、粒度均匀外,还要求有较好的冶金性能。烧结矿冶金性能主要包括还原性、低温还原粉化性、软熔性能等。

烧结矿在高炉炉身上部的低温区(温度大约在500~600 ℃)还原时由于热冲击及铁矿石中Fe2O3还原(Fe2O3-Fe3O4-FeO)过程中发生Fe2O3晶形转变,会导致烧结矿严重破裂、粉化,使高炉料柱的空隙度降低、透气性变差、压差高、炉况不顺。生产实践表明:烧结矿粒度为-3.15的低温还原粉化率(以下用RD(I-3.15)表示)每升高5%,高炉产量会下降1.5%,煤气中CO利用率降低0.5%,焦比升高1.55%。目前,烧结由于大量使用进口矿粉,烧结矿RD )值高达35%以上。严重影响高炉炉况顺行及高炉寿命。为此,把“降低烧结矿低温还(I-3.15

原粉化率”作为技术攻关工作的重点。

2 影响烧结矿低温还原粉化率的因素

2.1 原料条件的影响

矿石原料主要有磁铁矿和赤铁矿两种,赤铁矿烧结矿含Fe2O3较多,因而低温还原粉化率较高。唐钢炼铁厂北区在2001年前以磁铁矿相的冀东精粉为主生产烧结矿,2001年后为了降低SiO2,提高烧结矿品位,适当配加了赤铁矿相的进口矿粉生产烧结矿,到2006年以后,赤铁矿相的进口比例大约占75%以上,致使烧结矿低温还原粉化率高达35%以上。

随着优质铁矿粉资源的逐渐减少,进口铁矿粉成分波动大,质量劣化,品种更换频繁。而在烧结这个高温、多相、复杂的反应过程中,各相之间,各组分之间相互作用,相互影响;不同种类的铁矿粉,因其基础特性各不相同,它们之间也相互作用,相互影响,因此在烧结配矿时,必须在全面了解铁矿粉的常温特性和高温特性的基础上应用互补原理和方法进行合理配矿。为此对烧结用含铁原料的冶金性能进行了系统的研究,对单品种物料的化学成分、矿物组成、脉石粒度、孔隙度、矿物结构、熔点、同化性能、液相流动性、吸水性等进行了全面分析。同时模拟生产实际,对混匀矿进行物理化学性能、成球性、烧结性能和相应烧结矿冶金性能的系统研究。

通过实验研究与生产实践可知,用单品种矿粉生产的烧结矿的粉化指标比较:巴西精矿粉、巴卡矿粉生产的烧结矿的低温还原粉化性能很差;中特SC粉、安吉拉斯矿粉、扬迪矿粉生产的烧结矿的低温还原粉化性能比较差;澳矿粉、MAC矿粉生产的烧结矿的低温还原粉化性能比较好;棒磨山精粉生产的烧结矿的低温还原粉化性能最好。根据铁矿粉烧结性能的互补原理,确定了最佳的烧结配矿方案。

目前,基本稳定了混匀矿大堆配比,实现了优势互补,有效地指导了烧结生产,保证了工艺参数的合理控制,从而稳定了烧结生产,改善了烧结矿的低温还原粉化指标。

2.2 烧结矿中SiO2,MgO,Al2O3,R2,FeO这些主要化学成分的影响

1)SiO2是烧结过程形成黏结相的主要因素。高SiO2含量有利于烧结液相的形成,改善粉化指标,但如果SiO2含量过高,一方面影响液相流动性,降低产量;另一方面,SiO2高会生成大量正硅酸钙(2CaO·SiO2)。由于正硅酸钙(2CaO·SiO2)在冷却过程中的相变

(γC2S→βC2S)体积膨胀,会造成自然粉化和降低烧结矿强度。生产实验结果:烧结矿中w (SiO2)低于4.6%时,烧结矿RD(I-3.15)达到35%以上。这主要是因为SiO2低会造成因黏结相量明显不足,铁酸钙数量减少,显微结构的均匀性显著恶化,使烧结矿粉化指标明显变差。后来逐步提高烧结矿中的w(SiO2)到4.8%,4.9%,5.0%,5.1%,5.2%,5.3%,烧结矿RD(I-3.15)是降低的趋势。通过近几年的生产实践,在现有的烧结原料条件下,较适宜的烧结矿w(SiO2)控制在在5.2%~5.3%左右。

2)由于烧结矿中的MgO与Fe2O3结合,游离低,可减轻烧结矿粉化。同时为了满足高炉造渣的要求,改善炉渣的流动性和提高脱硫能力,烧结矿中需保证一定量的MgO。但是因MgO的熔点高达2799 ℃,在烧结过程中Mg2+进入Fe3O4晶格中取代Fe2+,稳定了Fe3O4矿相,造成Fe3O4难以向Fe2O3转变形成铁酸钙,限制了铁酸钙系的发展,使矿物组成复杂化。由于各种矿物的结晶能力不同,冷凝后,必然存在应力,所以随着MgO含量增加,烧结矿的低温还原粉化指标变差。经过多次实践摸索,同时考虑炉渣对MgO含量的要求,烧结矿w(MgO)控制在2.4%~2.6%较合适。

3)Al2O3是烧结矿化学成分不可缺少的成分。因为一定的铝硅比(m(Al2O3)/m(SiO2)=0.1~0.4)是烧结过程形成铁酸钙的必要条件,但生产实践中烧结矿中w(Al2O3)>2%以后会导致液相流动性变差,还会恶化烧结矿的还原粉化指数。因为烧结矿中Al2O3的含量增加,在铁酸钙中Al2O3的固溶量增加,促进了板状铁酸钙的生成,而板状铁酸钙在低温下就开始还原产生应力,降低了烧结矿抵御裂纹扩展的能力,加剧了粉化的产生。根据生产实践经验,烧结矿中w(Al2O3)的合理控制在1.8%左右。因澳矿粉系列w(Al2O3)较高,在配矿时注意考虑了与低的w(Al2O3)矿粉的合理搭配。

4)由于烧结矿R2的不同,烧结矿生成的液相也不同。随R2升高铁酸钙黏结相增多Fe3O4晶粒与黏结相矿物形成网状熔蚀结构或柱状交织结构。特别是高R2烧结矿磁铁矿被铁酸钙熔蚀晶粒细小,形状浑圆呈它形晶或半自形晶,与铁酸钙紧紧相连而形成熔蚀结构,两者之间有较大的接触面和摩擦力,因此镶嵌牢固,烧结矿的强度相应提高,低温还原粉化指数有所改善。通过多次的生产实践摸索,就目前烧结配料结构,碱度控制在1.98~2.08之间,有利于保证烧结矿既有良好的机械强度和还原性,又有较低的低温还原粉化率。

5)烧结矿FeO含量反映了烧结过程的动态控制状态。FeO含量不仅受配碳量、混合料水分、返矿量的交互作用,而且受原燃料配比、烧结料层厚度、透气性、工艺过程控制等的共同影响,降低烧结矿FeO含量有利于改善烧结矿的还原性,但过低的FeO又会恶化低温还原粉化率,同时FeO含量的波动区间越窄,烧结过程越稳定。

通过近几年的生产实践得出:FeO含量是影响RDI和还原性的显著因素。因此,在烧结工序中,要保证烧结矿有较好的冶金性能,关键是控制好FeO含量。FeO含量又受以下因素影响。

1)混合料水、碳的影响。烧结混合料中水、碳的合理匹配是获得优质烧结矿的保证,一般情况是:低水低碳厚料层有利于降低烧结矿中的FeO含量,随混合料配碳量的提高,烧结矿的FeO含量会升高。但由于是厚料层烧结,如配碳过高烧结过程还原气氛增强,由于料层的自动蓄热作用,会使下层烧结温度过高,燃烧带温度升高,恶化透气性,不利于针状铁酸钙的形成,而且烧结矿中燃料分布不均匀,产生热脆性,使烧结矿低温还原粉化率指标变差。

2)燃料质量的影响。烧结用的固体燃料有焦粉和无烟煤粉两个品种。生产实践表明:燃料粒度、焦粉和白煤比例,分加焦粉比例也是影响FeO含量的一个因素。由于每种燃料的燃烧特性不同,对于其粒度就应有不同的要求,当原料条件有较大幅度改变后,烧结用的燃料粒度及分加焦粉比例应有不同的需求。根据原料条件变化,需确定不同的燃料分加比例,在混匀矿粒度相对较粗时,分加焦粉比例适当降低(20%~25%);而当原料粒度相对较细

时,分加焦粉适当提高(25%~35%)。同时燃料粒度过细或白煤比例过高,会使燃料燃烧速度过快,使烧结过程液相形成不充分;燃料粒度过粗,布料时大颗粒燃料滚到料层下部,造成下层烧结温度高,燃料分布不均。目前控制焦粉大于3 mm部分85%,白煤大于3 mm 部分75%以上。

通过不断的生产实践,根据目前的原料结构,控制烧结混合料的固定碳含量(质量分数)在2.8%~2.95%之间,烧结机混合料水分在(7.8±0.2)%左右,烧结矿的w(FeO)在(9±0.5)%之间,烧结矿的低温还原粉化率指标及还原性指标比较好。表1是抽测的RDI指标与烧结矿FeO关系。

2.3 操作制度及工艺设备的影响

烧结过程的温度控制也影响烧结矿低温还原粉化率的因素,它与烧结点火温度、点火负压、负压、机速、废气温度、终点控制等有关。如机速过快或烧结负压较低,会使液相结晶发育不完善,烧结矿强度差,粉化率高。为提高点火温度,对点火炉及保温炉进行了改造更新。新式点火炉采用新型烧嘴提高点火强度,同时增加东西两排烧嘴角度,延长了点火时间。点火温度由改造前的980 ℃提高到目前的1120 ℃以上,料面点火效果有明显改善,有力保证了烧结矿低温还原粉化指标的改善。

为保证烧结过程的均匀稳定,一方面根据生产实际情况对烧结机机尾后5个风箱实行自动控制,后5个风箱设定不同的温度,达到规定温度,风箱自动关闭,这样保证了风的合理利用。另一方面对不合理的工艺、设备进行改进。如增加了疏料器长度,考虑边缘效应,适当缩短了沿台车方向的宽度;对混合料槽加蒸汽工艺不断改进,大大减轻了混合料槽南北两侧的水分和料温差别较大的现象;为减少悬料、粘料次数,配料室燃料仓改造;使用新型生石灰消化器等。

2.4 使用SYP烧结剂及烧结矿表面喷洒CaCl2

SYP烧结强化剂一般占混合料总量的万分之三至万分之四,该产品对煤气化反应,燃烧反应起到一定的催化助燃作用,使煤粉的反应活性大大提高,可使烧结过程的氧化气氛增强,促进矿物组成中SFCA的大量生成。提高烧结矿强度,防止其低温粉化。从近两年使用SYP烧结强化剂情况,使用后烧结矿RD(I-3.15)指标可降低2%左右。

在入高炉前的成品烧结矿表面喷洒CaCl2溶液后,其表面被CaCl2覆盖,低温时CaCl2不分解,在烧结矿表面形成一层保护膜,减少了与还原气体的接触,所以降低了烧结矿的RD(I -3.15)。喷洒CaCl2浓度为5%左右,表2是喷洒CaCl2前后指标对比情况。从表2看,烧结矿表面正常喷洒CaCl2可降低RD(I -3.15)7~9个百分点。

3 结语

通过优化烧结配料结构,合理控制烧结矿成分,改进不合理的工艺设备,烧结矿表面喷洒CaCl2等一系列措施,烧结矿RD(I-3.15)基本控制在30%以下,保证了高炉的稳定顺行,提高了煤气利用率,降低了焦比。取得了显著的经济效益。但由于混合料槽使用的是利用环冷余热回收自产的蒸汽,生产波动时蒸汽不稳定,造成混合料水分和料温的波动,影响了生产的稳定性。今后,拟把提高和稳定混合料温度作为重要课题进行研究。

快恢复二极管

快恢复二极管 快恢复二极管 快恢复二极管(简称FRD)是一种具有开关特性好、反向恢复时间短特点的半导体二极管,主要应用于开关电源、PWM脉宽调制器、变频器等电子电路中,作为高频整流二极管、续流二极管或阻尼二极管使用。 快恢复二极管的内部结构与普通PN结二极管不同,它属于PIN 结型二极管,即在P型硅材料与N型硅材料中间增加了基区I,构成PIN硅片。因基区很薄,反向恢复电荷很小,所以快恢复二极管的反向恢复时间较短,正向压降较低,反向击穿电压(耐压值)较高。 通常,5~20A的快恢复二极管管采用TO–220FP塑料封装,20A 以上的大功率快恢复二极管采用顶部带金属散热片的TO–3P塑料封装,5A以下的快恢复二极管则采用DO–41、DO–15或DO–27等规格塑料封装。 采用TO–220或TO–3P封装的大功率快恢复二极管,有单管和双管之分。双管的管脚引出方式又分为共阳和共阴

1.性能特点 1)反向恢复时间 反向恢复时间tr的定义是:电流通过零点由正向转换到规定低值的时间间隔。它是衡量高频续流及整流器件性能的重要技术指标。反向恢复电流的波形如图1所示。IF为正向电流,IRM为最大反向恢复电流。Irr为反向恢复电流,通常规定Irr=0.1IRM。当t≤t0时,正向电流I=IF。当t>t0时,由于整流器件上的正向电压突然变成反向电压,因此正向电流迅速降低,在t=t1时刻,I=0。然后整流器件上流过反向电流IR,并且IR逐渐增大;在t=t2时刻达到最大反向恢复电流IRM 值。此后受正向电压的作用,反向电流逐渐减小,并在t=t3时刻达到规定值Irr。从t2到t3的反向恢复过程与电容器放电过程有相似之处。 2)快恢复、超快恢复二极管的结构特点 快恢复二极管的内部结构与普通二极管不同,它是在P型、N型硅材料中间增加了基区I,构成P-I-N硅片。由于基区很薄,反向恢复电荷很小,不仅大大减小了trr值,还降低了瞬态正向压降,使管子能承受很高的反向工作电压。快恢复二极管的反向恢复时间一般为几百纳秒,正向压降约为0.6V,正向电流是几安培至几千安培,反向峰值电压可达几百到几千伏。超快恢复二极管的反向恢复电荷进一步减小,使其trr可低至几十纳秒。

提高减少烧结矿强度、改善粒级组成

提高减少烧结矿强度、改善粒级组成 刘永刚王艳于占海 (宣钢炼铁厂) 摘要:炼铁厂针对影响烧结矿强度、小粒级的因素,制定科学有效的攻关措施,并对攻关措施逐项落实,强度提高,小粒级指标有明显改善 关键词:强度粒级改善 前言 近年来,高炉冶炼技术高速发展,“精料方针”越来越受到冶金工作者的高度重视。特别是降低烧结矿5-10mm小粒级含量对高炉强化冶炼具有重要意义.宣钢有64m2烧结机两台,86m2烧结机一台,36m2步进式烧结机六台,360 m2烧结机一台;烧结系统围绕提高产量进行了较大的改造,但受原燃料质量波动等因数影响,烧结矿强度不高,5-10mm粒级含量高,高炉槽下烧结返矿率偏高。为提高烧结矿有效烧结矿量,降低机烧损耗,提高烧结矿强度,减少烧结矿小粒级含量展开技术攻关。 1、减少烧结矿小粒级措施 1.1 优化入烧原料、熔剂、燃料粒级。 入烧原燃料粒级粗,会造成大部分矿物颗粒之间仅靠点接触粘结,用手即可掰开、强度差,5-10mm粒级明显增加,为从源头解决影响我厂烧结矿小粒级的因数,我们采取了以下作法: (1)、对进口原矿进行破碎,除产生高炉使用的合格块外,进圆锥破碎机加工成烧结用粉料,控制烧结粉料+5mm粒级≤15%;对进厂粒级较粗的伊朗矿进行筛粉处理,筛上物经破碎,粒度合格后入烧。 (2)、控制灰石、云石、钙灰、镁灰粒度-3mm达到85%,调整入烧燃料粒级由原来的-3mm在80%以下,为-3mm在82以上。 1.2 优化高炉返矿和自循环返矿粒级。 烧结车间定期更换烧结冷、热筛筛板,加强日常检修对筛板缝的补焊,控制烧结自循环返矿+5mm粒级在20%以下。将一烧冷筛改为棒条筛,提高筛粉效果。加强高炉槽下返矿粒度的测定,及时更换和修补入炉矿筛筛板,保高炉槽下返矿+5mm 粒级在25%以下。 1.3 优化铁混料结构,确定适宜360m2烧结机烧结参数,控制烧结矿适宜碱度、FeO、

SnO_2纳米棒的氧化还原特性

2010 Chinese Journal of Catalysis Vol. 31 No. 1 文章编号: 0253-9837(2010)01-0044-05 DOI : 10.3724/SP.J.1088.2010.90230 研究论文: 44~48 收稿日期: 2009-03-04. 联系人: 赵鹤云. Tel: (0871)5032331; Fax: (0871)5153832; E-mail: zhao_heyun999@https://www.wendangku.net/doc/9212962908.html, 基金来源: 云南省科技厅应用基础研究项目 (2007E173M); 云南省教育厅自然科学重点研究项目 (07Z11021); 云南大学自然科学研究项目 (2007JN001). SnO 2 纳米棒的氧化还原特性 赵鹤云 1,2, 赵忠泽 3, 赵义芬 1, 柳清菊 1,2 1 云南大学材料科学与工程系, 云南昆明 650091 2 云南大学云南省高校纳米材料与技术重点实验室, 云南昆明 650091 3 云南师范大学商学院, 云南昆明 650106 摘要:利用室温固相反应在 NaCl-KCl 熔盐介质中, 通过焙烧含 SnO 2 纳米颗粒前驱体合成了 SnO 2 纳米棒, 并采用 X 射线衍射、扫描电镜、透射电镜、选区电子衍射和 X 射线光电子能谱对 SnO 2 纳米棒进行了表征. 结果表明, SnO 2 纳米棒是表面光滑、结晶完整的金红石结构单晶体, 直径为 10~20 nm, 长度为几百纳米到几个微米. 程序升温还原结果表明, SnO 2 纳米棒具有较好的氧化还原性能和催化活性. 探讨了 SnO 2 纳米棒的氧化还原机理. 关键词:二氧化锡; 纳米棒; 程序升温还原; 氧化还原特性; 催化活性; 氧化还原机理 中图分类号:O643 文献标识码:A The Redox Properties of SnO 2 Nanorods ZHAO Heyun 1,2,*, ZHAO Zhongze 3, ZHAO Yifen 1, LIU Qingju 1,2 1 Department of Materials Science and Engineering, Yunnan University, Kunming 650091, Yunnan, China 2 Yunnan Key Laboratory of Nanomaterials and Nanotechnology, Yunnan University, Kunming 650091, Yunnan, China 3 Business School, Yunnan Normal University, Kunming 650106, Yunnan, China Abstract: SnO 2 nanorods were successfully synthesized in molten NaCl-KCl salt through calcination of SnO 2 nanoparticles precursor pre-pared by solid state reaction at room temperature. The structure and morpho1ogy of SnO 2 nanorods were characterized by X-ray diffraction, scanning electron microscopy, transmission electron microscopy, selected-area electron diffraction, and X-ray photoelectron spectroscopy. The results showed that the SnO 2 nanorods with 10–20 nm diameter and several micrometers length were rutile structure. The results of H 2 temperature-programmed reduction demonstrated that the SnO 2 nanorods had good redox performance. The redox mechanism was discussed in detail. Key words: tin dioxide; nanorod; temperature-programmed reduction; redox property; catalytic activity; redox mechanism 由于纳米线和纳米棒等一维纳米材料的维度降低和结构特征尺寸减小, 量子效应、库仑阻塞效应以及多体关联和非线性光学效应越来越明显, 呈现出不同于传统材料的电、磁、光、热等物化特性, 因而在催化剂、光电材料、复合材料和传感器等领域有广阔的应用前景[1~4]. SnO 2 是一种重要的 n 型半导体材料, 可用作导电材料、传感元件材料、半导体元件材料、电极材料以及太阳能电池材料、薄膜电阻器材料、光电子器件材料等[5~8]. SnO 2 还是一种优良 的催化材料. 刘赵穹等[9~11]发现, SnO 2-TiO 2 固溶体对以 CO 为还原剂同时还原 SO 2 和 NO (SRSN) 反应具有较好的催化性能, 当 SnO 2 含量为 50% 时催化剂的活性和选择性最高. SnO 2 可以在低温催化 CO 完全氧化[12]、臭氧化[13]、富马酸基化以及甲基丙烯醛氢转移[14]等反应, V 2O 5-SnO 2 的还原温度比纯 V 2O 5 明显降低[15], 并且 SnO 2 因具有很好的水热稳定性可应用于 NO 选择催化还原 (SCR) 反应. SnO 2/TiO 2 复合半导体的光催化效率比纯 TiO 2 高一

提高白云石配比对烧结生产的影响

烧结提高白云石配比试验效果分析 魏愈宋 2006年4月1日,烧结厂按照公司高MgO试验的统一安排,将白云石配比由原来的1.8%提高到4%,4月8日根据生产要求白云石配比调整为3.5%。针对白云石配比调整前后烧结的生产实际及指标变化情况,进行试验总结。 一、试验期前后原料配比情况 表1 试验期前后原料配比情况

二、提高白云石配比对烧结矿产、质量指标的影响 试验条件:烧结矿碱度为1.7。 影响因素: A、老系统2#、1#机分别于3月27日和4月6日全密封技术改造完成开始投入使用;130烧结机4月8日全密封技术改造完成开始投入使用。 B、130烧结机系统3月份进行增效剂的开发试用与对比试验。 表2 白云石配比对130m2烧结机产、质量指标的影响 表3 白云石配比对老系统烧结机产、质量指标的影响

由表2、表3可见,白云石配比提高到3.5~4%后: 1、新、老系统烧结矿转鼓指数与3月份相比均降低约1~1.8%。而130m2烧结机转鼓指数与2006年1、2月份相比降低约2.1%(因3月份进行增效剂的开发试用与对比试验,转鼓指数有所降低),降低的幅度更大; 2、内部返矿率提高1~1.5%,外部返矿率较3月份提高1%、较1、2月份提高1.5%,较05年提高2.7%。而白云石配加3.5%时由于全密封及烧结混匀料烧结性能变化等因素的影响,内、外部返矿率明显降低; 外部返矿率新、老系统分开: 130m2烧结机系统外部返矿率由于成4#电子秤校称及全密封技术的应用影响,没有反应出实际的变化情况。 3、利用系数,排除全密封、烧结矿送料情况、烧结机开、停机及原料烧结性能变化等因素的影响,利用系数略有降低。 从以上数据及分析来看,提高白云石配比后,烧结矿的强度明显降低。提高白云石配比使烧结矿强度降低的原因是:首先,白云石配比提高后,烧结温度必须有所提高,高温保持时间也需延长,所需燃料用量稍高,否则,对分解后的MgO矿化不利,会出现大量未反应的MgO 颗粒被烧结过程中生成的铁酸镁(MgO·Fe2O3)液相所胶结;其次,白云石与硅酸盐矿物常混在一起,生成镁橄榄石和钙铁橄榄石,其结晶细小,

氧化还原电位(ORP)的重要作用

氧化还原电位(ORP)的重要作用 氧化还原电位(ORP)的重要作用 大家逐渐认识到氧化还原电位在水产养殖上的意义,可是这个指标对于学过(水)化学的来说,理解起来都有点费力气,更不用说咱们大多数养殖户朋友了。技术员到塘口跟养殖户说:咱们这个药是氧化型的药,能提高水体氧化还原电位,很不错!养殖户听的一头雾水,而实际上很多技术人员对氧化还原电位本身也不是很清楚。 1.那么什么是氧化还原电位 在水中,每种物质都有独立的氧化还原特性,可以简单理解为在微观上,每一种不同物质都有一定的氧化还原能力,这些氧化还原性不同的物质能够相互影响,最终构成一定的宏观氧化还原性。电位为正表示溶液显示出一定的氧化性,为负则表示溶液显示出一定的还原性。 2.哪些是氧化物质、那些是还原物质 ⑴水体中常见处于氧化态(直接点就是溶氧充足的状态)的物质有: O2(氧气当然是);硫酸根、硝酸根、磷酸根和铁离子、锰离子、铜离子、锌离子等; ⑵常见处于还原态(简单说就是缺氧状态存在的)的物质: 氯离子、氮气、氨氮、亚硝酸盐、硫化氢、甲烷、亚铁离子、多数有机化合物(包括我们的残饵、粪便、池底有机质淤泥)等。 氮在水体中存在的形式:一般未受污染的天然水域中,由于溶氧丰富,氮主要以硝酸根存在;在养殖池水中氮通常有4种存在形态:硝酸根、亚硝酸盐、氮气、氨氮。 3.为什么氧化还原电位很重要氧化还原电位怎么测 海水与淡水体系氧化还原电位实测值通常约为(400mv)(V 伏特,氧化还原电位的单位),好氧微生物一般生活在+100mV以上,以+300mV~+400mV为最适。 处于氧化态的物质在适当的条件(缺氧)下可以被还原,例如无毒的硝酸盐被还原成有毒的亚硝酸盐和氨氮;同样处于还原态的物质在适当条件(富氧)下被氧化,例如硫化氢被氧化成硫酸根。 随着氧化还原电的降低,出现铁锰呼吸,干塘晒塘时被氧化成三价的铁,此时逐渐被还原成二价铁,这个过程耗氧产酸,所以底泥pH值下降。氧化还原电位继续降低,当氧化还原电位环境为-200~-250mV,专性厌氧微生物出现生长,硫酸还原菌进行硫呼吸,原本存在的硫酸根被还原成硫化氢,硫化氢跟亚铁离子、锰离子反应,生成FeS、MnS,土壤变黑(见图2)。当氧化还原电位环境为-300~-400mV,底泥处于极度缺氧状况,专性厌氧产甲烷菌即开始分解底泥中的有机质产生甲烷。淤泥厚的池塘用竹竿捅了后水面冒气泡,这种气泡即是底泥产生的

整流管与快恢复二极管区别

整流电路由于频率很低,故只对耐压有要求,只要耐压能满足,肯定是可以代用的,且快恢复二极管也有用于整流的情况,就是在开关电源次级整流部份,由于频率较高,只能使用快恢复二极管整流,否则由于二极管损耗太大会造成电源整体效率降低,严重时会烧毁二极管。另外快恢复二极管的价格较整流二极管贵很多,耐压越高越贵,所以一般是不会拿快恢复二代管使用的。当然,如果你手头上只有快恢复二极管而没有一般整流管时,想怎么用就怎么用,只要耐压足够即可。 提问者评价 首先谢谢你的回答!!! 是的,没有刚好合适耐压的整流二极管。所有用快恢复代替的 肖特基二极管和快恢复二极管的区别 快恢复二极管是指反向恢复时间很短的二极管(5us以下),工艺上多采用掺金措施,结构上有采用PN结型结构,有的采用改进的PIN结构。其正向压降高于普通二极管(1-2V),反向耐压多在1200V以下。从性能上可分为快恢复和超快恢复两个等级。前者反向恢复时间为数百纳秒或更长,后者则在100纳秒以下。 肖特基二极管是以金属和半导体接触形成的势垒为基础的二极管,简称肖特基二极管(Schottky Barrier Diode),具有正向压降低(0.4--0.5V)、反向恢复时间很短(10-40纳秒),而且反向漏电流较大,耐压低,一般低于150V,多用于低电压场合。 这两种管子通常用于开关电源。 肖特基二极管和快恢复二极管区别:前者的恢复时间比后者小一百倍左右,前者的反向恢复时间大约为几纳秒~! 前者的优点还有低功耗,大电流,超高速~!电气特性当然都是二极管阿~! 快恢复二极管在制造工艺上采用掺金,单纯的扩散等工艺,可获得较高的开关速度,同时也能得到较高的耐压.目前快恢复二极管主要应用在逆变电源中做整流元件. 肖特基二极管:反向耐压值较低40V-50V,通态压降0.3-0.6V,小于10nS 的反向恢复时间。它是具有肖特基特性的“金属半导体结”的二极管。其正向起始电压较低。其金属层除材料外,还可以采用金、钼、镍、钛等材料。其半导体材料采用硅或砷化镓,多为N型半导体。这种器件是由多数载流子导电的,所以,其反向饱和电流较以少数载流子导电的PN结大得多。由于肖特基二极管中少数载流子的存贮效应甚微,所以其频率响仅为RC时间常数限制,因而,它是高频和快速开关的理想器件。其工作频率可达100GHz。并且,MIS(金属-绝缘体-半导体)肖特基二极管可以用来制作太阳能电池或发光二极管。

改善烧结矿低温还原粉化研究

改善烧结矿低温还原粉化研究 【摘要】本文结合国内外以及包钢有关改善烧结矿RDI指数的研究,就烧结矿碱度、烧结矿MgO含量、FeO含量、Al2O3含量以及喷洒CaCl2对烧结矿RDI指数的影响进行了全面分析。结果表明:随烧结矿的Al2O3含量升高、MgO含量降低或FeO 含量降低,烧结矿的RDI指标变差;而喷洒CaCl2溶液对改善烧结矿RDI效果明显。 【关键词】烧结矿 RDI Al2O3 CaCl2碱度 1.前言 烧结矿在高炉的低温区会发生低温还原粉化现象,它是烧结矿冶金性能的一项重要指标。RDI升高或波动直接影响高炉料柱的透气性并增加炉顶吹出量。因此,烧结矿的低温还原粉化性能受到国内外的广泛关注。 通常采用增加烧结矿成品中的FeO或MgO量,或减少烧结矿中AL2O3,TiO2量来改善烧结矿的低温还原粉化性能(RDI)。但这些措施往往达不到目的,在某些情况下反而带来反作用。西德矿石准备研究所于1985年首次提出了使用卤化物以改善烧结矿低温还原粉化性能(RDI)的新工艺,1991年武钢在实验室试验的基础上进行了烧结矿表面喷洒CaCL2的工业性试验,并开始应用于工业生产,取得显著效果。 包钢随着生产规模的不断扩大,外矿配比升高、FeO、料层、点火强度等指标的变化,烧结矿RDI迅速恶化,由前几年的10%(-3.15mm)左右,增加到40%(-3.15mm)左右,已严重影响到高炉的顺行高产。 2.AL 2O 3 对烧结矿RDI的影响 为研究烧结矿Al2O3含量对烧结矿RDI指数的影响,分别取备了不同Al2O3含量的各种含铁料,通过搭配分别烧制了不同Al2O3含量的烧结矿,烧结矿的Al2O3含量完全由澳矿配比的不同来调节。烧结工艺参数控制为:料层550mm,负压9800Pa,烧结矿碱度为2.0,MgO含量为2.0%。试样烧制控制返矿内配比例为30%,并考虑返矿平衡,返矿平衡系数控制在1.0±0.05。不同Al2O3含量烧结矿的RDI指数具体数据见图1。 图1 烧结矿Al2O3含量对RDI的影响 从图1中的数据和回归关系式可以看出:烧结矿的RDI与其Al2O3含量相关性很好,随烧结矿Al2O3含量的升高,其RDI明显恶化。从控制烧结矿RDI考虑,应尽可能控制烧结矿的Al2O3含量,以保证烧结矿的RDI能够满足高炉冶炼的要求。 3.烧结矿碱度对烧结矿RDI指数的影响 本次研究依据包钢当前的烧结配料和烧结矿化学组成情况,其工艺参数及除碱度以外的化学组成如前述。随烧结矿碱度变化,其RDI的变化情况见图2。

返矿率和返矿平衡

返矿率和返矿平衡(return fines and It’s balance) 铁矿石烧结后因强度较差和未完全烧结的烧结矿经破碎筛分处理而返回烧结工序的筛下物称返矿。返矿量与烧结混合料总量之比为返矿率。在西欧国家根据控制技术方面的需要,返矿率均以返矿量占矿石量的百分比来计算。烧结产出的返矿量(R A)与烧结混合料中配入的返矿量(R E)相等时,叫返矿平衡(B),即B=R A/R E=1。它是烧结过程得以进行的必要条件。 返矿的种类烧结矿返矿分为热返矿、冷返矿和高炉料槽下返矿3种。(1)热返矿。烧结台车运行到烧结机尾时,烧结机两侧和表层的未烧好的烧结矿;黏结成块的热烧结饼经机尾单辊破碎机剪切和热振动筛筛分后的筛下物。(2)冷返矿。热烧结矿经冷却和整粒后的筛下物。(3)高炉料槽下返矿。高炉料槽中的烧结矿在入炉前进行筛分时的筛下物。返矿粒度一般都在5mm以下;热返矿送到烧结混合料皮带上返回烧结;冷返矿和高炉料槽下返矿则返回烧结配料室。 返矿率与返矿质量烧结返矿率取决于原料的性质、原料的准备技术和设备状况以及烧结的操作技术。赤铁矿、褐铁矿和含结晶水脉石高的矿粉,以及不易脱水的高湿度的细精矿等返矿率一般较高,可达40%~50%。混合料的混合和制粒不好、烧结机的布料不均、烧结点火热量不足、烧结终点控制不好或未能烧透以及烧结矿卸出后的多次破碎及筛分等都会增加返矿率。此外,当烧结制度(如料层高度、点火温度、燃料用量、抽风负压等)与原料性质不相适应,或烧结作业失常未能及时调整时,返矿率也会升高。返矿中如含有大量未经烧结的烧结混合料,则返矿细粉多、含碳高、质量差,对烧结过程有不利的影响。质量良好的返矿多数是已烧结成矿但机械强度较差的粒状物料,其粒度一般应在5mm以下。

氧化还原电位的重要作用

氧化还原电位(ORP)的重要作用 大家逐渐认识到氧化还原电位在水产养殖上的意义,可是这个指标对于学过(水)化学的来说,理解起来都有点费力气,更不用说咱们大多数养殖户朋友了。技术员到塘口跟养殖户说:咱们这个药是氧化型的药,能提高水体氧化还原电位,很不错!养殖户听的一头雾水,而实际上很多技术人员对氧化还原电位本身也不是很清楚。 1.那么什么是氧化还原电位? 在水中,每种物质都有独立的氧化还原特性,可以简单理解为在微观上,每一种不同物质都有一定的氧化还原能力,这些氧化还原性不同的物质能够相互影响,最终构成一定的宏观氧化还原性。电位为正表示溶液显示出一定的氧化性,为负则表示溶液显示出一定的还原性。 2.哪些是氧化物质、那些是还原物质? ⑴水体中常见处于氧化态(直接点就是溶氧充足的状态)的物质有: O2(氧气当然是);硫酸根、硝酸根、磷酸根和铁离子、锰离子、铜离子、锌离子等; ⑵常见处于还原态(简单说就是缺氧状态存在的)的物质: 氯离子、氮气、氨氮、亚硝酸盐、硫化氢、甲烷、亚铁离子、多数有机化合物(包括我们的残饵、粪便、池底有机质淤泥)等。 氮在水体中存在的形式:一般未受污染的天然水域中,由于溶氧丰富,氮主要以硝酸根存在;在养殖池水中氮通常有4种存在形态:硝酸根、亚硝酸盐、氮气、氨氮。 3.为什么氧化还原电位很重要?氧化还原电位怎么测? 海水与淡水体系氧化还原电位实测值通常约为(400mv)(V 伏特,氧化还原电位的单位),好氧微生物一般生活在+100mV以上,以+300mV~+400mV为最适。 处于氧化态的物质在适当的条件(缺氧)下可以被还原,例如无毒的硝酸盐被还原成有毒的亚硝酸盐和氨氮;同样处于还原态的物质在适当条件(富氧)下被氧化,例如硫化氢被氧化成硫酸根。 随着氧化还原电的降低,出现铁锰呼吸,干塘晒塘时被氧化成三价的铁,此时逐渐被还原成二价铁,这个过程耗氧产酸,所以底泥pH值下降。氧化还原电位继续降低,当氧化还原电位环境为-200~-250mV,专性厌氧微生物出现生长,硫酸还原菌进行硫呼吸,原本存在的硫

梅钢降低3#烧结机内返矿率的生产实践

梅钢降低3#烧结机内返矿率的生产实践 通过理念的创新、工艺和参数的改进、精细化的操作有效的减少了生产的波动,减少了超厚料层和小水分物料引起的生料和夹生料,强化了烧结过程,有效提高了烧结矿强度,降低梅钢3#烧结机的内返矿率。 标签:内返矿厚料层边缘效应 0 引言 内返矿是烧结过程中的筛下产物(-5mm),其中包括没有烧透和没有烧结的混合料,是整個烧结过程中的循环产物。内返矿由于粒度较粗、气孔多,加入混合料中可可改善烧结料层的透气性。同时,由于内返矿中含有已烧结的低熔点物质,它有助于烧结过程液相的生成[1]。但是,过多的内返矿不仅影响烧结成品率,降低烧结矿产量,也增加了内返矿重新加工的能源消耗,导致生产成本的上升。随着目前国际铁矿粉价格的提升,钢铁行业原料成本亦大幅度提高,降低生产成本显得尤为重要,而降低烧结矿返矿率是降低铁前成本的有效途径。 1 影响内返矿的主要因素 梅钢3#烧结机面积为180m2,自投产以来,内返矿率一直处于较高水平,生料、夹生料产生较多,混合料液相形成不足,烧结矿强度不够。造成梅钢3#烧结机生产波动大,烧结矿强度不足的主要因素有几下方面: 1.1 对内返矿率重视不够。过于侧重烧结矿产量和烧结机利用系数,脱离烧结过程参数,盲目提高烧结过程上料量,以为提高上料量就能提高产量,使得烧结终点和终点温度无法得到保障,致使烧不透、跑生料情况的经常出现。 1.2 过程波动大,稳定性不够 1.2.1 物料下料不畅通,熔剂、燃料经常出现悬料、堵料等现象,导致烧结过程热量供应不足,透气性较差,物料结晶不够充分。 1.2.2 水分的波动,由于物料、内返矿质量的波动及生石灰消化器故障,致使混合料水分无法满足生产需要。 1.2.3 设备的故障,如原料圆盘下料电子秤精度不够、设备故障导致切换过程中衔接不够精确、生石灰消化器故障影响生石灰消化效果、小矿槽窜料等。 1.3 熔剂、燃料质量和用量。熔剂和燃料的粒度和粒度组成不够合理,熔剂和燃料有效组分含量较低,岗位人员为降低能耗,最大限度减小焦粉,致使烧结过程热量不够,液相生成不足,影响烧结矿强度。烧结矿异常亚铁和碱度对烧结矿强度和内返矿率的影响见下表:

高中化学 氧化还原反应配平电子的得失过程本质和特征

氧化还原反应的本质和特征 氧化还原反应的定义 ?氧化还原反应: 有电子转移(得失或偏移)的反应;(无电子转移(得失或偏移)的反应为非氧化还原反应) 反应历程: 氧化还原反应前后,元素的氧化数发生变化。根据氧化数的升高或降低,可以将氧化还原反应拆分成两个半反应:氧化数升高的半反应,称为氧化反应;氧化数降低的反应,称为还原反应。氧化反应与还原反应是相互依存的,不能独立存在,它们共同组成氧化还原反应。 ?氧化还原反应中存在以下一般规律: 强弱律:氧化性:氧化剂>氧化产物; 还原性:还原剂>还原产物。 价态律:元素处于最高价态,只具有氧化性;元素处于最低价态,只具有还原性; 处于中间价态,既具氧化性,又具有还原性。 转化律:同种元素不同价态间发生归中反应时,元素的氧化数只接近而不交叉,最多达到同种价态。 优先律:对于同一氧化剂,当存在多种还原剂时,通常先和还原性最强的还原剂反应。守恒律:氧化剂得到电子的数目等于还原剂失去电子的数目。

氧化还原性的强弱判定: 物质的氧化性是指物质得电子的能力,还原性是指物质失电子的能力。物质氧化性、还原性的强弱取决于物质得失电子的能力(与得失电子的数量无关)。从方程式与元素性质的角度,氧化性与还原性的有无与强弱可用以下几点判定: (1)从元素所处的价态考虑,可初步分析物质所具备的性质(无法分析其强 弱)。最高价态——只有氧化性,如H2SO4、KMnO4中的S、Mn元素;最低价态,只有还原性,如Cl-、S2-等;中间价态——既有氧化性又有还原性,如Fe、S、SO2等。 (2)根据氧化还原的方向判断:氧化性:氧化剂>氧化产物;还原性:还原剂>还原产物。 (3)根据反应条件判断:当不同的氧化剂与同一种还原剂反应时,如氧化产物中元素的价态相同,可根据反应条件的高、低进行判断,如是否需要加热,是否需要酸性条件,浓度大小等等。 ?电子的得失过程: 其过程用核外电子排布变化情况可表示为:

肖特基二极管和快恢复二极管有什么区别

肖特基二极管和快恢复二极管有什么区别 肖特基二极管的基本原理是:在金属(例如铅)和半导体(N型硅片)的接触面上,用已形成的肖特基来阻挡反向电压。肖特基与PN结的整流作用原理有根本性的差异。其耐压程度只有40V 左右。其特长是:开关速度非常快:反向恢复时间特别地短。因此,能制作开关二极管和低压大电流整流二极管。 肖特基二极管(Schottky Barrier Diode) 它是具有肖特基特性的“金属半导体结”的二极管。其正向起始电压较低。其金属层除钨材料外,还可以采用金、钼、镍、钛等材料。其半导体材料采用硅或砷化镓,多为型半导体。这种器件是由多数载流子导电的,所以,其反向饱和电流较以少数载流子导电的PN结大得多。由于肖特基二极管中少数载流子的存贮效应甚微,所以其频率响仅为RC时间常数限制,因而,它是高频和快速开关的理想器件。其工作频率可达100GHz。并且,MIS(金属-绝缘体-半导体)肖特基二极管可以用来制作太阳能电池或发光二极管。 肖特基二极管(Schottky Diodes):肖特基二极管利用金属与半导体接触所形成的势垒对电流进行控制。它的主要特点是具有较低的正向压降(0.3V至0.6V);另外它是多子参与导电,这就比少子器件有更快的反应速度。肖特基二极管常用在门电路中作为三极管集电极的箝位二极管,以防止三极管因进入饱和状态而降低开关速度。 肖特基势垒二极管SBD(Schottky Barrier Diode,简称肖特基二极管)是近年来间世的低功耗、大电流、超高速半导体器件。其反向恢复时间极短(可以小到几纳秒),正向导通压降仅0.4V 左右,而整流电流却可达到几千安培。这些优良特性是快恢复二极管所无法比拟的。中、小功率肖特基整流二极管大多采用封装形式。 1.结构原理 综上所述,肖特基整流管的结构原理与PN结整流管有很大的区别通常将PN结整流管称作结整流管,而把金属-半导管整流管叫作肖特基整流管,近年来,采用硅平面工艺制造的铝硅肖特基二极管也已问世,这不仅可节省贵金属,大幅度降低成本,还改善了参数的一致性。 肖特基整流管仅用一种载流子(电子)输送电荷,在势垒外侧无过剩少数载流子的积累,因此,不存在电荷储存问题(Qrr→0),使开关特性获得时显改善。其反向恢复时间已能缩短到10ns 以内。但它的反向耐压值较低,一般不超过去时100V。因此适宜在低压、大电流情况下工作。利用其低压降这特点,能提高低压、大电流整流(或续流)电路的效率。 快恢复二极管是指反向恢复时间很短的二极管(5us以下),工艺上多采用掺金措施,结构上有采用PN结型结构,有的采用改进的PIN结构。其正向压降高于普通二极管(1-2V),反向耐压多在1200V以下。从性能上可分为快恢复和超快恢复两个等级。前者反向恢复时间为数百纳秒或更长,后者则在100纳秒以下。 肖特基二极管是以金属和半导体接触形成的势垒为基础的二极管,简称肖特基二极管(Schottky Barrier Diode),具有正向压降低(0.4—1.0V)、反向恢复时间很短(0-10纳秒),而且反向漏电流较大,耐压低,一般低于150V,多用于低电压场合。

低温还原粉化的知识与分析

低温还原粉化性(reduction disintegration property) 铁矿石(烧结矿及球团矿)在低温还原过程中发生碎裂粉化的特性。在高炉炼铁过程中,当铁矿石进入高炉后,炉料下降到400~600℃的区间,在这里受到来自高炉下部的煤气的还原作用,会发生不同程度的碎裂粉化。严重时则影响高炉上部料柱的透气性,破坏炉况顺行。铁矿石这种性能的强弱以低温还原粉化指数(RDI)来表示,或称LTB(Low Temperature Break-down)。 粉化原因及影响因素 低温还原粉化的根本原因是矿石中的Fe2O3。在低温(400~600℃)还原时,由赤铁矿变成磁铁矿发生了晶格的变化,前者为三方晶系六方晶格,而后者为等轴晶系立方晶格,还原造成了晶格的扭曲,产生极大的内应力,导致铁矿石在机械力作用下碎裂粉化。影响铁矿石(烧结矿及球团矿)低温还原粉化性能的因素有矿石的种类、Fe2O3的结晶形态、人造富矿的碱度、还原温度及铁矿石中的其他元素的含量。 矿石的种类 以赤铁矿粉为原料的烧结矿RDI,较高;以磁铁矿粉为原料的烧结矿RDI,较低。例如:烧结原料中澳大利亚赤铁矿配加量由43.5%增加到60.6%时,烧结矿的RDI值由 31.36%提高到38.08%。德国K.格勒勃等研究表明:在烧结矿中碱度、脉石含量及机械应力相同的条件下,烧结矿中Fe。0。(包括原始及次生Fe2O3)含量与RDI有密切的关系,Fe2O3含量愈高,则RDI愈高。 Fe2O3的结晶形态 Fe2O3结晶形态的差异能引起RDI较大的变化。结晶良好的天然Fe2O3,RDI一般在30%以下(按日本钢铁厂方法检验,以下同);天然磁铁矿氧化焙烧成的Fe2O3的结晶,焙烧初期呈线状,RDI为22.4%,焙烧后期呈多晶状,RDI为10.3%;焙烧良好的球团矿,其中的Fe2O3大部分是斑状,RDI较低,酸性球团矿RDI为34.1%,自熔性球团矿为3.1%;烧结矿中的Fe2O3,如斑状结晶体RDI较低,但当磁铁矿原料高温烧结后,在降温初期Fe3O4迅速再氧化成Fe2O3,内部尚包裹着Fe3O4、硅酸盐玻璃质、CaO?Fe2O3,它的晶体外形多为菱形的骸晶状Fe2O3,具有最高的RDI。由于矿物内外还原速度和膨胀情况的不同,导致所生成的烧结矿产生许多裂纹,造成更大的碎裂粉化。 烧结矿的碱度 烧结矿的RDI一般随着烧结矿碱度提高而降低,因为烧结矿碱度提高,烧结矿中Fe2O3含量下降,因之RDI也降低,由于烧结矿本身的强度随着烧结矿碱度而变化,一般在碱度1.5时出现强度衰弱区,因而也导致在该碱度条件下烧结矿的RDI出现低值。

提高烧结矿产能方案

提高烧结矿产量攻关方案 2008年为了充分发挥烧结机的产能,提高高炉烧结矿配比,降低铁系统配矿成本,公司要求生产管理中心牵头组织相关单位进行提高烧结矿产量攻关。 攻关目标:烧结矿平均日产量21200吨,正常日产量21800吨。要求各车间每天烧结矿最低生产量:一烧11800吨,二烧6700吨,三烧6700吨。 攻关措施分解如下: 1、优化并安定烧结配矿方案,提高混合料的烧结性能。 负责单位:生产管理中心参加单位:进出口、采购部、物流中心、科技中心一是确保进口矿配比60%左右,进口矿结构合理,其中澳矿28%以上、南非矿8-10%左右,巴西矿20%左右。二是进口矿、国内精矿和铁皮平均到达,其中铁皮采购量进出口保证2万吨/月,采购部保证3万吨/月,安定配矿方案的目标是一、二、三烧配矿方案分别至少要安定两堆混匀料,以确保烧结工艺控制安定。三是科技中心加强优化配矿方案研究,根据原燃料特点和矿石到达的不平均性,分别研究适合一、二、三烧生产特点的配矿方案。 2、加强生石灰质量管理,提高生石灰质量。 负责单位:生产管理中心参加单位:采购部、科技中心 一是生产管理中心进一步完善生石灰圆盘取样制度,并做到例外供应商输送的生石灰与配料室圆盘一一对应,以便于取样;二是生产管理中心和采购部一起进一步加强生石灰供应商合格供方的管理,做到优胜劣汰;三是科技中心牵头在合适的时候对生石灰质量标准进行从头修定。 3、分级入炉攻关。负责人:杨礼平李竺青 根据测定结果,目前高炉日返矿量约(小于6.3mm含量)3400吨,经检测返矿中大于4mm含量约占20%左右,每天近700吨,这部分粒级的烧结矿强度和还原性能都比较好,若能充分利用,对降低炼铁配矿成本会起到严重的作用。 目前国内同行有宝钢、南京钢厂等进行了烧结返矿小粒级分级入炉改造。

阶跃恢复二极管特性

电子知识 2015年10月23日 深圳华强北华强集团2号楼7楼 电池管理系统能实时监控电池状态,延长电池续航时间、避免电池过充过放的情况出现,在电子产品中起着至关重要的作用。特别是可穿戴设备的兴起对电池管理系统提出新的挑战,此次“消费电子电池管理系统技术论坛”,我们将邀请业界领先的半导体厂商、方案设计商与终端产品制造商,共探消费电子电池管理系统市场发展趋势及创新技术,助力设计/研发工程师显著改进电池管理系统,进而从技术的层面为业界解决电子产品的电池续航问题。 立即报名>> IBIS模型是一种基于V/I曲线对I/O BUFFER快速准确建模方法,是反映芯片驱动和接收电气特性一种国际标准,它提供一种标准文件格式来记录如驱动源输出阻抗、上升/下降时间及输入负载等参数,非常适合做振荡和串扰等高频效应计算与仿真。 IBIS本身只是一种文件格式,它说明在一标准IBIS文件中如何记录一个芯片驱动器和接收器不同参数,但并不说明这些被记录参数如何使用,这些参数需要由使用IBIS模型仿真工具来读取。欲使用IBIS进行实际仿真,需要先完成四件工作:获取有关芯片驱动器和接收器原始信息源;获取一种将原始数据转换为IBIS格式方法;提供用于仿真可被计算机识别布局布线信息;提供一种能够读取IBIS和布局布线格式并能够进行分析计算软件工具。 IBIS模型优点可以概括为:在I/O非线性方面能够提供准确模型,同时考虑了封装寄生参数与ESD结构;提供比结构化

方法更快仿真速度;可用于系统板级或多板信号完整性分析仿真。可用IBIS模型分析信号完整性问题包括:串扰、反射、振荡、上冲、下冲、不匹配阻抗、传输线分析、拓扑结构分析。IBIS尤其能够对高速振荡和串扰进行准确精细仿真,它可用于检测最坏情况上升时间条件下信号行为及一些用物理测试无法解决情况;模型可以免费从半导体厂商处获取,用户无需对模型付额外开销;兼容工业界广泛仿真平台。 IBIS模型核由一个包含电流、电压和时序方面信息列表组成。IBIS模型仿真速度比SPICE快很多,而精度只是稍有下降。非会聚是SPICE模型和仿真器一个问题,而在IBIS仿真中消除了这个问题。实际上,所有EDA供应商现在都支持IBIS模型,并且它们都很简便易用。大多数器件IBIS模型均可从互联网上免费获得。可以在同一个板上仿真几个不同厂商推出器件。 IBIS模型是一种基于V/I曲线对I/O BUFFER快速准确建模方法,是反映芯片驱动和接收电气特性一种国际标准,它提供一种标准文件格式来记录如驱动源输出阻抗、上升/下降时间及输入负载等参数,非常适合做振荡和串扰等高频效应计算与仿真。 IBIS本身只是一种文件格式,它说明在一标准IBIS文件中如何记录一个芯片驱动器和接收器不同参数,但并不说明这些被记录参数如何使用,这些参数需要由使用IBIS模型仿真工具来读取。欲使用IBIS进行实际仿真,需要先完成四件工作:获取有关芯片驱动器和接收器原始信息源;获取一种将原始数据转换为IBIS格式方法;提供用于仿真可被计算机识别布局布线信息;提供一种能够读取IBIS和布局布线格式并能够进行分析计算软件工具。 IBIS模型优点可以概括为:在I/O非线性方面能够提供准

降低烧结矿低温还原粉化率-冶金之家

降低烧结矿低温还原粉化率 齐玉珍1,孟建荣1,徐海芳1,孙雅平1,李晓云2 (1.唐山钢铁有限公司教育中心,河北唐山063001;2.唐山钢铁有限公司技术中心,河北 唐山063016) 摘要:论述了影响烧结矿低温还原粉化率的因素,并针对这些影响因素,通过优化配料结构,合理控制烧结矿中SiO2,Al2O3,MgO,R2,FeO,改进不合理工艺设备,加强操作等措施,最终改善烧结矿低温还原粉化率指标。 关键词:低温还原粉化率;烧结矿;化学成分 烧结矿质量的好坏对高炉炼铁生产技术经济指标产生重大影响,与高炉炼铁成品的优质、低耗、高效益密切相关。随着高炉“ 精料”技术的发展,对烧结矿质量要求除品位高、杂质少、粒度均匀外,还要求有较好的冶金性能。烧结矿冶金性能主要包括还原性、低温还原粉化性、软熔性能等。 烧结矿在高炉炉身上部的低温区(温度大约在500~600 ℃)还原时由于热冲击及铁矿石中Fe2O3还原(Fe2O3-Fe3O4-FeO)过程中发生Fe2O3晶形转变,会导致烧结矿严重破裂、粉化,使高炉料柱的空隙度降低、透气性变差、压差高、炉况不顺。生产实践表明:烧结矿粒度为-3.15的低温还原粉化率(以下用RD(I-3.15)表示)每升高5%,高炉产量会下降1.5%,煤气中CO利用率降低0.5%,焦比升高1.55%。目前,烧结由于大量使用进口矿粉,烧结矿RD )值高达35%以上。严重影响高炉炉况顺行及高炉寿命。为此,把“降低烧结矿低温还(I-3.15 原粉化率”作为技术攻关工作的重点。 2 影响烧结矿低温还原粉化率的因素 2.1 原料条件的影响 矿石原料主要有磁铁矿和赤铁矿两种,赤铁矿烧结矿含Fe2O3较多,因而低温还原粉化率较高。唐钢炼铁厂北区在2001年前以磁铁矿相的冀东精粉为主生产烧结矿,2001年后为了降低SiO2,提高烧结矿品位,适当配加了赤铁矿相的进口矿粉生产烧结矿,到2006年以后,赤铁矿相的进口比例大约占75%以上,致使烧结矿低温还原粉化率高达35%以上。 随着优质铁矿粉资源的逐渐减少,进口铁矿粉成分波动大,质量劣化,品种更换频繁。而在烧结这个高温、多相、复杂的反应过程中,各相之间,各组分之间相互作用,相互影响;不同种类的铁矿粉,因其基础特性各不相同,它们之间也相互作用,相互影响,因此在烧结配矿时,必须在全面了解铁矿粉的常温特性和高温特性的基础上应用互补原理和方法进行合理配矿。为此对烧结用含铁原料的冶金性能进行了系统的研究,对单品种物料的化学成分、矿物组成、脉石粒度、孔隙度、矿物结构、熔点、同化性能、液相流动性、吸水性等进行了全面分析。同时模拟生产实际,对混匀矿进行物理化学性能、成球性、烧结性能和相应烧结矿冶金性能的系统研究。 通过实验研究与生产实践可知,用单品种矿粉生产的烧结矿的粉化指标比较:巴西精矿粉、巴卡矿粉生产的烧结矿的低温还原粉化性能很差;中特SC粉、安吉拉斯矿粉、扬迪矿粉生产的烧结矿的低温还原粉化性能比较差;澳矿粉、MAC矿粉生产的烧结矿的低温还原粉化性能比较好;棒磨山精粉生产的烧结矿的低温还原粉化性能最好。根据铁矿粉烧结性能的互补原理,确定了最佳的烧结配矿方案。 目前,基本稳定了混匀矿大堆配比,实现了优势互补,有效地指导了烧结生产,保证了工艺参数的合理控制,从而稳定了烧结生产,改善了烧结矿的低温还原粉化指标。 2.2 烧结矿中SiO2,MgO,Al2O3,R2,FeO这些主要化学成分的影响 1)SiO2是烧结过程形成黏结相的主要因素。高SiO2含量有利于烧结液相的形成,改善粉化指标,但如果SiO2含量过高,一方面影响液相流动性,降低产量;另一方面,SiO2高会生成大量正硅酸钙(2CaO·SiO2)。由于正硅酸钙(2CaO·SiO2)在冷却过程中的相变

烧结矿成本

烧结矿成本占生铁成本的48.6%~66%,而生铁成本又占各工序生产能力相对均衡企业最终产品钢材成本的60%左右,即烧结矿成本占钢材成本的30%~40%,比重大。加之,烧结矿成本中原燃料占90~95%,其中,主要是外购原燃料。所以,优化烧结矿成本必然成为钢铁联合企业成本工作的重要部分。 1.烧结矿成本计算依据 在烧结矿成本计算中,产量的统计方法不一,有净矿和毛矿之分。净矿是以炼铁工序实际消耗的烧结矿和库存烧结矿的变动量为计算 依据,毛矿则是以烧结工序的产出为凭,两者差别在返矿,而体现在烧结矿成本上的则为返矿损失(烧结矿成本与返矿价格之差)。计算工序成本时归属不同,毛矿法返矿损失计算在炼铁工序,净矿法则体现在烧结工序。公司烧结矿是以毛矿量为成本计算依据的,返矿损失体现在炼铁工序,比值为烧结矿成本的8%左右。由于成本计算依据的不同,这就给通过指标对比挖掘潜力工作增加了难度。 2.烧结矿成本分析方法 作为探讨降低成本途径的有效方法,就是对成本的分析。优化烧结矿成本的有效方法是对烧结矿成本的分析,其分析的任务是寻求资源的优化配置,进一步优化烧结矿成本。从公司烧结矿成本的构成来看,含铁料占80%以上(加上熔剂占85.55%),燃料动力占7.91%,辅料、工资、制造费用仅占烧结成本的6.54%。因此,分析的重点应是含铁料的分析。含铁料有进口铁矿粉和国产铁矿粉两大类。进口铁矿主要由澳大利亚、巴西、南非等国进口,每一进口国的铁矿粉又是

由多个矿山组成。化学成分不一,烧结性能有别。熔剂、燃料同铁矿粉一样,由多种成分组成为其共性,这一共性导致传统的量价差分析法已不适于由不同等级的原料组成的原燃料消耗的分析,因为它不能定性地分析性质相同、等级有别、组成成分复杂的成本的相互比较,消耗数量的增加或减少不能成为节约和超支(因为可以相互替代)的判断标准,也就不能通过对含铁料、熔剂和燃料的分析,找出优化成本的途径。应当采用的成本分析方法是配比分析法。配比分析是按照生产工艺的要求,将不同品种、等级和规格的材料,按技术规定的比例投入到生产制造产品中。具体体现在烧结矿这一产品上,它的多种含铁料,均含有益元素铁,但各种铁矿粉的烧结基础特征,如:同化性、液态流动性等,含铁多少、有益元素、有害元素的多寡等不尽相同,结晶水也有区别,粒度组成也不同,因此,造成各铁矿粉的采购成本有很大差别。合理配置铁矿粉是生产工艺的要求,优化配比则为优化烧结矿成本,提高经济效益所必需。 3.配比分析方法的优点 (1)配比分析能克服传统分析方法的不足。烧结矿成本的传统分析方法,是对各种具有共性的原燃、熔剂料的逐一分析,其报告期与基期的消耗量差异和价格差异,为成本变动的原因。如基期单价低于其料种的平均单价的原料消耗量降低,应当是成本升高的因素,但在传统分析方法中,只要消耗量降低就是成本的降低,这与实际结果不相符,只有改为配比分析才能准确分析成本的升降因素,才能找到降低成本的途径。

相关文档