文档库 最新最全的文档下载
当前位置:文档库 › 液压控制系统课后思考题

液压控制系统课后思考题

液压控制系统课后思考题
液压控制系统课后思考题

第二章

1、为什么把液压控制阀称为液压放大元件?

答:因为液压控制阀将输入的机械信号(位移)转换为液压信号(压力、流量)输出,并行功率放

大,移动阀芯所需要的信号功率很小,而系统的输出功率却可以很大。

2、什么是理想滑阀?什么是实际滑阀?

理想滑阀:径向间隙为零,节流工作边锐利的滑阀

实际滑阀:存在径向间隙,节流工作边有圆角的滑阀

3、什么是三通阀、四通阀?什么是双边滑阀、四边滑阀?它们之间有什么关系?

“二通阀”、“三通阀”、“四通阀”是指换向阀的阀体上有两个、三个、四个各不相通且可与系统

中不同油管相连的油道接口,不同油道之间只能通过阀芯移位时阀口的开关来沟通。

“双边滑阀”、“四边滑阀”是指换向阀有两个、四个可控的节流口。

一般情况下,三通阀是双边滑阀,四通阀是四通阀。

4、什么叫阀的工作点?零位工作点的条件是什么?

阀的工作点是阀的压力—流量曲线上的点。零位工作点即曲线的原点,又称零位阀系数。零位

工作点的条件是0===v L L x p q 。

5、在计算系统稳定性、响应特性和稳态误差时应如何选定阀的系数?为什么?

流量增益q q =x L V

K ??,为放大倍数,直接影响系统的开环增益。 流量-压力系数c q =-

p L L K ??,直接影响阀控执行元件的阻尼比和速度刚度。 压力增益p p =x L V

K ??,表示阀控执行元件组合启动大惯量或大摩擦力负载的能力 当各系数增大时对系统的影响如下表所示。

7、径向间隙对零开口滑阀的静态特性有什么影响,为什么要研究实际实际零开口滑阀的泄漏特性?

答:理想零开口滑阀c0=0K ,p0=K ∞,而实际零开口滑阀由于径向间隙的影响,存在泄漏流量

2c c0r =32W K πμ,p0c K ,两者相差很大。

理想零开口滑阀实际零开口滑阀因有径向间隙和工作边的小圆角,存在泄漏,泄漏特性决定了阀的性

能,用泄漏流量曲线可以度量阀芯在中位时的液压功率损失大小,用中位泄漏流量曲线来判断阀的加工配合质量。

8、为什么说零开口四边滑阀的性能最好,但最难加工?

(1) 从四边滑阀角度:

四边滑阀有四个可控的节流口,双边滑阀有两个可控的节流口,单边滑阀只有一个可控的节流口,

因此,四边滑阀的控制性能最好;

(2) 从零开口角度:

零开口具有线性流量增益,性能比较好;负开口阀由于流量增益具有死区,将引起问题误差;正

开口阀在开口区内的流量增益变化大,压力灵敏度低,零位泄漏量大。因此零开口阀性能最好;

四边滑阀需要保证三个轴向配合尺寸,双边滑阀需保证一个轴向配合尺寸,单边滑阀没有轴向配合

尺寸。零开口阀还要保证零开口,径向配合要求。因此,零开口四边滑阀结构工艺复杂、成本高,难加

工。

9、什么是稳态液动力,什么是瞬态液动力?

稳态液动力:在阀口开度一定的稳态流动情况下,液流对阀芯的反作用力。方向总是指向使阀口关

闭的方向。

瞬态液动力:阀开口量变化使通过阀口的流量发生变化,引起阀腔内液流速度随时间变化,其动量

变化对阀芯产生的反作用力。与阀芯的移动速度成正比,起粘性阻尼力的作用,方向始终与阀腔内液体

的加速度方向相反。

14、喷嘴挡板阀的零位压力为什么取0.5p s 左右,n D 和fo x 对其性能有什么影响? 因为在零位压力灵敏度最高,为了满足这一要求,进行公式推导,可得出零位的控制压力为

s co p p 21=,此时,零位的压力灵敏度最高;而且控制压力c p 能充分的调节,因此,取s co p p 2

1=作为设计准则。

没有影响,不管这两个值如何变化,都能得出这一关系。

15射流管阀有什么特点,工作原理与滑阀和喷嘴挡板阀一样吗?

工作原理不一样。优点:(1)射流管阀的最大优点是抗污染能力强,对油液清洁度要求不高,从而提高

了工作的可靠性和使用寿命。(2)压力恢复系数和流量恢复系数高,一般均在70%以上,有时可达90%以上。

缺点:(1) 其特性不易预测,主要靠实验确定。(2)与喷嘴挡板阀的挡板相比,射流管的惯量较大,因

此其动态响应特性不如喷嘴挡板阀。(3)零位泄漏流量大。(4)当油液粘度变化时,对特性影响较大,低温特性较低。

滑阀是节流原理,射流管阀:压力油的压力能通过射流管的喷嘴转换为液流的动能,液流被接收后,又将动能转换为压力能。

第三章

1、 什么叫液压动力元件?有哪些控制方式?有几种基本组成类型?

答:液压动力元件(或称液压动力机构)是指利用液压能源,具有一定功率,直接推动负载运动的液压

装置,由液压放大元件(液压控制元件)和液压执行元件组成的。液压放大元件可以是液压控制阀,也

可以是伺服变量泵;液压执行元件是液压缸、液压马达。

有阀控和泵控两种两种控制方式。

四种基本组成类型:阀控液压缸、阀控液压马达、泵控液压缸、泵控液压马达。

2、 负载类型对液压动力元件的传递函数有什么影响?

答:负载对液压动力元件的传递函数为)

12(2

++=S S S K X X n n V P ωξω 当n ω减小时,则传递函数增大,系统响应变快;

当ξ增大系统变得稳定;

当K 增大时,则传递函数增大,系统的穿越频率会变大,则系统响应变快。

3、 无弹性负载和有弹性负载时,描述传递函数的性能参数分别有那几个?它们对系统动态特性有什么影

响?

答:无弹性负载描述传递函数的性能参数有流量系数q K 、总流量—压力系数ce K 、有效体积弹性模量e β、粘性阻尼系数p B 。当q K 增大时,传递函数增大,系统的穿越频率会变大,则系统响应变快。其中t t p

e h m V A w 24β=,e β越大,则h w 越大,系统带宽越大,系统反应越快。其中

t e t p m

t t e P ce h m V A B V A K ββζ4m +=,p B 较小,可以忽略不计,则h ξ可近似为t t e P ce h V A K m βζ=,ce K 增

大,系统更稳定。

无弹性负载描述传递函数的性能参数有流量系数q K 、总流量—压力系数ce K 、有效体积弹性模量e β、粘性阻尼系数p B 、负载弹簧刚度K 。前四个性能参数影响相同,K 的主要影响是用一个转折频率为r w 的惯性环节代替无弹性负载时液压缸的积分环节。随着负载刚度减小,转折频率将降低,惯性环节就接近积分环节。

4、 何为液压弹簧刚度?为什么要把液压弹簧刚度理解为动态刚度? 答:液压弹簧刚度是液压缸两腔在完全封闭的情况下,由于液体的压缩性形成的液压弹簧刚度。2e p

h t

4A K V β=它表示液压缸中的被压缩液体所产生的复位力与活塞的位移成正比,在动态时,在一定频率范围内,液压阀的泄露来不及起作用,相当于一种封闭状态。液压缸对外力的响应特性中反映出这样一种液压弹簧的存在,对阀控液压执行元件来说,可理解为动态刚度。静态时不起作用。

5、 液压固有频率和活塞位置有关,在计算系统稳定性时,四通阀控制双作用液压缸和三通阀控制差动液压

缸应取活塞的什么位置?为什么?

答:四通阀控制双作用液压缸应取活塞的中间位置,因为,活塞在中间位置时,液体压缩性影响最大,动力元件固有频率最低,阻尼比最小,此时 稳定性最差。

三通阀控制双作用液压缸应取活塞的最大位置。

6、为什么液压动力元件可以得到较大的固有频率? 答:t

t P e h m V A 24βω=

,由式子可知,增大固有频率的方法很多:1)可以通过增大液压缸的面积,2)减小总压缩比,3)减小折算到活塞上的总质量,和4)提高油液的有效体积弹性模量

7、为什么说液压阻尼比h ξ是一个“软量”?提高阻尼比的简单方法有哪几种?它们各有什么优缺点? 答:因p ce

h A K =ξ+t t e V m βP P A B 4t

e t m V β,h ξ由ce K 和P B 决定,P B 较ce K 小的多可忽略, ce K 中tp C 较Kc 小的多,故h ξ由Kc 值决定。Kc 随工作点不同会有很大的变化。其变化范围达20~30倍,所以是一个难以准确估计的软量。提高阻尼比方法,及其优缺点入下:

(1)设置旁路泄露通道。缺点是增大了功率损失,降低了系统的总压力增益和系统刚度,增加外负载力引起的误差。另外,系统性能受温度变化影响较大。

(2)采用正开口阀。可以增加阻尼,但也要使系统刚度降低,而且零位泄露量引起的功率损失比第一种办法还打,并且会带来非线性流量增益,稳态液动变化等问题。

(3)增加负载的粘性阻尼。需要另外设置阻尼器,增加了结构的复杂性。

8、何谓液压动力元件的刚度?ce P K A 2代表什么意义?

答:1)负载干扰力对液压缸的输出位移和输出速度有影响,这种影响可用刚度表示。液压动力元件的刚度,包括阀控液压缸的动态位置刚度和动态速度刚度。

2)ce P K A 2代表低频段的动态速度刚度

9、三通阀控制液压缸和四通阀控制液压缸的固有顾率有什么不同?为什么? 答:三通阀控制液压缸和四通阀控制液压缸的传递函数形式是一样的,但前者的液压固有频率是后者的21。

原因:在三通阀的控制差动液压缸中只有一个控制腔,因而只形成一个液压弹簧。四通阀的控制双作用液压缸中有两个控制腔,形成两个液压弹簧,总刚度是一个控制腔的二倍。

10、阀控液压马达和泵控液压马达的特性有何不同,为什么?

答:1).泵控液压马达的液压固有频率较低

2).泵控液压马达的阻尼比较小,比较恒定

3).泵控液压马达的增益和静态速度刚度比较恒定

4).泵控液压马达的液压固有频率和阻尼比较低,所以动态特性不如阀控液压马达好。但由于总泄露

系数较小,故静态速度刚度要好。

总之,泵控液压马达相当是线性元件,动态特性更易预测。但是其液压固有频率小,还要附加变量控制伺服机构,因此总的响应特性较差。

11、为什么把v K 称为速度放大系数?速度放大系数的量纲是什么?

答:1)P47,由于传递函数中包含一个积分环节,所以在稳态时,液压缸活塞的输出速度与阀的输入位移成比例.比例系数p q

A K 即为速度放大系数(速度增益)。2)量纲为1-S

12、何谓负载匹配?满足什么条件才算最佳匹配?

答:1)负载匹配定义: 根据负载轨迹来进行负载匹配时,只要使动力元件的输出持性曲线能够包围负载轨迹,同时使输出特性曲线与负载轨迹之间的区域尽量小,便认为液压动力元件与负载相匹配。

2) 如果动力元件的输出特性曲线不但包围负载轨迹,而且动力元件的最大功率点与负载的最大功率点重合,就认为动力与负载是最佳匹配。

13、如何根据最佳负载匹配确定动力元件参数?

答:可以采用解析法确定液压动力元件的参数。 在阀最大功率点有s p L P A F 32=* (1),P

m L A q V 30=* (2)在供油压力一定的情况下,可由(1)得到,s

L p P F A 23*=可由(2)得到,P L m A V q *=30 14、泵控液压马达系统有没有负载匹配问题?满足什么条件才是泵控液压马达的最佳匹配?

答:有。计算阀控液压马达组合的动力元件时,只要将上述计算方法中液压缸的有效面积A 换成液压马达的排量D ,负载力FL 换成负载力矩TL ,负载速度换成液压马达的角速度,就可以得到相应的计算公式。

15、在长行程时,为什么不宜采用液压缸而采用液压马达?

答:液压缸是实现的对直线位移的控制,马达是实现对转角的控制。若采用长行程需要液压缸有很长活塞和缸体,体积增大。而液压马达是回转运动的执行元件,能够很好的适应长行程要求。

第四章

1. 什么是机液伺服系统?机液伺服系统有什么优缺点?

由机械反馈装置和液压动力元件所组成的反馈控制系统称为机液伺服系统。

优点:系统结构简单、工作可靠、容易维护

缺点:通常是采用双边阀,性能品质指标不如电液伺服系统,调整不容易。

2. 为什么常把机液位置伺服系统称作助理放大器或助力器?

因为系统的动力元件由四边滑阀和液压缸组成,反馈是利用杠杆来实现的。

3. 为什么机液位置伺服系统的稳定性、响应速度和控制精度由液压动力元件的特性所决定?

因为机液位置伺服系统是通过阀的位移来控制缸的位移,而Kv 、ζn 、Wn 和动力元件密切相关。

4. 为什么在机液位置伺服系统中,阀流量增益的确定很重要?

在机液伺服系统中,增益的调整是很困难的,因此在系统设计时,开环放大系数Kv 取决于Kf 、Kq 和Ap 。在单位反馈系统中,Kv 仅由Kq 和Ap 决定,而Ap 仅由负载的要求确定的。因此,Kv 主要取决于Kq 。所以,在机液位置伺服系统中,阀流量增益的确定很重要。

5. 低阻尼对液压伺服系统的动态特性有什么影响?如何提高系统阻尼?这些方法各有什么优缺点?

(1)设置旁路泄露通道。增加了泄漏系数Ctp ;增大了功率损失,降低了系统的总压力增益和系统的刚度,增加了负载力引起的误差,另外,系统性能受温度变化的影响较大。

(2)采用正开口阀,正开口阀的Kco 值大,可以增加阻尼,但也要使系统刚度降低,而且零位泄漏量引起的功率损失大。另外正开口阀还要带来非线性流量增益、稳态液动力变化等问题。

(3)增加负载的粘性阻尼。需要另外设置阻尼器,增加了结构的复杂性。

6.考虑结构刚度的影响时,如何从物理意义上理解综合刚度?

Kn 是液压弹簧刚度Kh 和结构刚度Ks1、Ks2串联后的刚度,比最小的还小。

7.考虑连接刚度时,反馈连接点对系统的稳定性有什么影响?

全闭环系统中,对于惯性比较小和结构刚度比较大的伺服系统,往往是Ws>>Wh,因而可以认为液压固有频率就是综合谐振频率。在大惯量伺服系统,往往是Ws <

半闭环系统中,系统的开环传递函数中还有二阶微分环节,当谐振频率Ws2与综合谐振频率Wn 靠的很近时,如Ws <

9.为什么机液伺服系统多用在精度和响应速度要求不高的场合?

因为校正困难,设计完后品质指标不可调,响应速度也比较低,所以机液伺服系统多用在精度和响应速度要求不高的场合。

第六章

6、未加校正的液压伺服系统有什么特点?

答:液压位置伺服系统的开环传递函数通常可以简化为一个积分环节和一个振荡环节,而液压阻尼比一般都比较小,使得增益裕量不足,相位裕量有余。另一个特点是参数变化较大,特别是阻尼比随工作点变动在很大范围内变化。

7、为什么电液伺服系统一般都要加校正装置?在电液位置伺服系统中加滞后校正、速度与加速度反馈校正、压力反馈和动压反馈校正的主要目的是什么?

答:因为在电液伺服系统中,单纯靠调整增益往往满足不了系统的全部性能指标,所以就要在系统中加校正装置。

加滞后校正的主要目的通过提高低频段增益,减小系统的稳态误差,或者在保证系统稳态精度的条件下,通过降低系统高频段的增益,以保证系统的稳定性。

加速度与加速度反馈校正的主要目的是提高主回路的静态刚度,减少速度反馈回路内的干扰和非线性的影响,提高系统的静态精度。

加压力反馈和动压反馈的目的是提高系统的阻尼。

8、电液速度控制系统为什么一定要加校正?加滞后校正和加积分校正有什么不同?

答:系统在穿越频率c ω处的斜率为40d 10oct B -,因此相位裕量很小,特别是在阻尼比n ζ较小时更是如此。这个系统虽属稳定,但是在简化的情况下得出的。如果在c ω和h ω之间有其它被忽略的环节,这时穿越频率处的斜率将变为60d 10dec B -或80d 10dec B -,系统将不稳定。即使开环增益01K =,系统也不易稳定,因此速度控制系统必须加校正才能稳定工作。

加滞后校正的系统仍然是零型系统,加积分校正的系统为I 型无差系统。

9、在力控制系统中负载刚度对系统特性有何影响?影响了哪些参数?

答:1)h K K >>,即负载刚度远大于液压弹簧刚度。此时ce h r 2P K K A ω≈

,0m ωω≈=节与二阶微分环节近似对消,系统动态特性主要由液体压缩性形成的惯性环节决定。

2)h K K <<,即负载刚度远小于液压弹簧刚度。此时,ce r 2P K K A ω≈

,0h m ωωω≈==。随着K 降低,r ω、m ω、0ω都要降低,但r ω和m ω降低要多,使m ω和0ω之间的距离增大,0ω处的谐振峰值抬高。 题目:电液伺服阀由哪几个部分组成?各部分的作用是什么?

答:电液伺服阀通常由力矩马达(或力马达)、液压放大器、反馈机构(或平衡机构)三部分组成。 力矩马达或力马达的作用是输入的电气控制信号转换为力矩或力,控制液压放大器运动。

液压放大器的运动去控制液压油源流向执行机构的流量或者压力。液压放大器将力矩达或力马达的输

出加以放大。

反馈机构或平衡机构的作用是使伺服阀的输出流量或输出压力获得与输入电气信号成比例的特性。 题目:电液伺服阀中对力矩马达有什么要求?

答:电液伺服阀中的力矩马达要求达到以下要求:

(1)能够产生足够的输出力和行程,同时体积小,重量轻。

(2)动态性能好,响应速度快。

(3)直线性好,死区小,灵敏度高和磁滞小。

(4)在某些使用情况下,还要求它抗振、抗冲击、不受环境温度压力等影响。

题目:对液压能源的要求

(1) 保证油液的清洁度(2)防止空气混入(3)保持油温恒定(4)保持油源压力恒定

题目:液压能源的形式

(一)定量泵-溢流阀恒压能源 (二)定量泵-蓄能器-卸荷阀恒压能源

(三)恒压变量泵液压能源

10圆柱滑阀的特点,为什么说零开口四边滑阀性能最好,但难加工?

优点:流量增益和压力增益高,输出流量大,对油液清洁度要求较低,缺点:结构工艺复杂,阀芯受力较大,阀的分辨率较低,滞环较大,响应慢。1)从四边滑阀角度:四边滑阀有四个可控的节流口,双边滑阀有两个可控的节流口,单边滑阀只有一个可控的节流口,因此,四边滑阀的控制性能最好;2)从零开口角度:零开口具有线性流量增益,性能比较好;负开口阀由于流量增益具有死区,将引起问题误差;正开口阀在开口区内的流量增益变化大,压力灵敏度低,零位泄漏量大。因此零开口阀性能最好;3)四边滑阀需要保证三个轴向配合尺寸,双边滑阀需保证一个轴向配合尺寸,单边滑阀没有轴向配合尺寸。零开口阀还要保证零开口,径向配合要求。因此,零开口四边滑阀结构工艺复杂、成本高,难加工。

10液压伺服控制系统由哪些基本元件组成,输入元件:它给出输入信号加于系统的输入端,该元件可以是机械的,电气的,气动的。反馈测量元件:测量系统的输出并转换为反馈信号。比较元件:将反馈信号与输入信号进行比较。放大转换元件:将偏差信号放大,转换成液压信号。执行元件:产生调节动作加于控制对象上,实现调节任务。控制对象:被控制的机器设备或物体,即负载。

5、对位置和速度系统为什么限定s L p p 3

2≤,力控制系统不限制,为什么 为了保证执行机构的工作速度和良好的控制性能,所以 ,,且在s L p p 3

2=时,整个液压伺服系统的效率最高,同时阀的输出功率也最大,限定s L p p 3

2≤,阀的流量增益和流量-压力系数的变化也不大,流量增益降低和流量-压力系数增大会影响系统性能。

液压课后习题

2-1 已知液压泵的额定压力和额定留量,不计管道压力损失,说明图示各种工况 下液压泵出口处的工作压力值。 解:a)0p = b)0p = c)p p =? d)F p A = e)2m m T p V π= 2-2如图所示,A 为通流截面可变的节流阀,B 为溢流阀。溢流阀的调整压力是 P y ,如不计管道压力损失,试说明,在节流阀通流截面不断增大时,液压泵的出口压力怎样变化? 答:节流阀A 通流截面最大时,液压泵出口压力P=0,溢流阀B 不打开,阀A 通流截面逐渐关小时,液压泵出口压力逐渐升高,当阀A 的通流截面关小到某一值时,P 达到P y ,溢流阀B 打开。以后继续关小阀A 的通流截面,P 不升高,维持P y 值。 2-3试分析影响液压泵容积效率v η的因素。 答:容积效率表征容积容积损失的大小。 由1v t t q q q q η?= =- 可知:泄露量q ?越大,容积效率越小 而泄露量与泵的输出压力成正比,因而有 111v t n k k p q v η= =- 由此看出,泵的输出压力越高,泄露系数越大,泵排量越小,转速越底,那么容积效率就越小。

2-4泵的额定流量为100L/min,额定压力为2.5MPa,当转速为1450r/min时,机械效率为η m =0.9。由实验测得,当泵出口压力为零时,流量为106 L/min,压力为2.5 MPa时,流量为100.7 L/min,试求: ①泵的容积效率; ②如泵的转速下降到500r/min,在额定压力下工作时,计算泵的流量为多少? ③上述两种转速下泵的驱动功率。 解:①通常将零压力下泵的流量作为理想流量,则q t =106 L/min 由实验测得的压力为2.5 MPa时的流量100.7 L/min为实际流量,则 η v =100.7 /106=0.95=95% ②q t =106×500/1450 L/min =36.55 L/min,因压力仍然是额定压力,故此时泵流量为36.55×0.95 L/min=34.72 L/min。 ③当n=1450r/min时, P=pq/(η v η m )=2.5×106×100.7×10-3/(60×0.95×0.9)w=4.91kw 当n=500r/min时, P=pq/(η v η m )=2.5×106×34.7×10-3/(60×0.95×0.9)w=1.69kw 2-5设液压泵转速为950r/min,排量=168L/r,在额定压力29.5MPa和同样转速下,测得的实际流量为150L/min,额定工况下的总功率为0.87,试求: (1)泵的理论流量; (2)泵的容积效率; (3)泵的机械效率; (4)泵在额定工况下,所需电机驱动功率; (5)驱动泵的转矩。 解:① q t =V p n=168×950 L/min =159.6 L/min ②η v =q/q t =150/159.6=94% ③η m =η/ηv =0.87/0.9398=92.5% ④ P=p q/η =29.5×106×150×10-3/(60×0.87)w=84.77kw ⑤因为η=p q/T ω

液压控制系统(王春行编)课后题答案

第二章 思考题 1、为什么把液压控制阀称为液压放大元件? 答:因为液压控制阀将输入的机械信号(位移)转换为液压信号(压力、流量)输出,并进行功率放大,移动阀芯所需要的信号功率很小,而系统的输出功率却可以很大。 2、什么是理想滑阀?什么是实际滑阀? 答: 理想滑阀是指径向间隙为零,工作边锐利的滑阀。 实际滑阀是指有径向间隙,同时阀口工作边也不可避免地存在小圆角的滑阀。 4、什么叫阀的工作点?零位工作点的条件是什么? 答:阀的工作点是指压力-流量曲线上的点,即稳态情况下,负载压力为p L ,阀位移x V 时,阀的负载流量为q L 的位置。 零位工作点的条件是 q =p =x =0L L V 。 5、在计算系统稳定性、响应特性和稳态误差时,应如何选定阀的系数?为什么? 答:流量增益q q = x L V K ??,为放大倍数,直接影响系统的开环增益。 流量-压力系数c q =- p L L K ??,直接影响阀控执行元件的阻尼比和速度刚度。 压力增益p p = x L V K ??,表示阀控执行元件组合启动大惯量或大摩擦力负载的能力 当各系数增大时对系统的影响如下表所示。 7、径向间隙对零开口滑阀的静态特性有什么影响?为什么要研究实际零开口滑阀的泄漏特性? 答:理想零开口滑阀c0=0K ,p0=K ∞,而实际零开口滑阀由于径向间隙的影响,存在泄漏 流量2c c0r = 32W K πμ ,p0c K ,两者相差很大。

理想零开口滑阀实际零开口滑阀因有径向间隙和工作边的小圆角,存在泄漏,泄漏特性决定了阀的性能,用泄漏流量曲线可以度量阀芯在中位时的液压功率损失大小,用中位泄漏流量曲线来判断阀的加工配合质量。 8、理想零开口阀具有线性流量增益,性能比较好,应用最广泛,但加工困难;因为实际阀总存在径向间隙和工作边圆角的影响。 9、什么是稳态液动力?什么是瞬态液动力? 答:稳态液动力是指,在阀口开度一定的稳定流动情况下,液流对阀芯的反作用力。 瞬态液动力是指,在阀芯运动过程中,阀开口量变化使通过阀口的流量发生变化,引起阀腔内液流速度随时间变化,其动量变化对阀芯产生的反作用力。 习题 1、有一零开口全周通油的四边滑阀,其直径-3 d=810m ?,径向间隙-6c r =510m ?,供油压力5s p =7010a P ?,采用10号航空液压油在40C 。 工作,流量系数d C =0.62,求阀的零位 系数。 解:零开口四边滑阀的零位系数为: 零位流量增益 q0d K C =零位流量-压力系数 2c c0r 32W K πμ = 零位压力增益 p0c K = 将数据代入得 2q0 1.4m s K = 123c0 4.410m s a K P -=?? 11p0 3.1710a m K P =? 2、已知一正开口量-3 =0.0510m U ?的四边滑阀,在供油压力5s p =7010a P ?下测得零位泄 露流量c q =5min L ,求阀的三个零位系数。 解:正开口四边滑阀的零位系数为: 零位流量增益 c q0q K U = 零位流量-压力系数 c c0s q 2p K =

液压课程设计(理工大学)

目录 0.摘要 (1) 1.设计要求 (2) 2.负载与运动分析 (2) 2.1负载分析 (2) 2.2快进、工进和快退时间 (3) 2.3液压缸F-t图与v-t图 (3) 3.确定液压系统主要参数 (4) 3.1初选液压缸工作压力 (4) 3.2计算液压缸主要尺寸 (4) 3.3绘制液压缸工况图 (5) 4.拟定液压系统的工作原理图 (7) 4.1拟定液压系统原理图 (7) 4.2原理图分析 (8) 5.计算和选择液压件 (8) 5.1液压泵及其驱动电动机 (8) 5.2阀类元件及辅助元件的选 (10) 6.液压系统的性能验算 (10) 6.1系统压力损失验算 (10) 6.2系统发热与温升验算 (11) 7.课设总结 (12)

0.摘要 液压传动技术是机械设备中发展最快的技术之一,特别是近年来与微电子、计算技术结合,使液压技术进入了一个新的发展阶段,机、电、液、气一体是当今机械设备的发展方向。在数控加工的机械设备中已经广泛引用液压技术。作为机械制造专业的学生初步学会液压系统的设计,熟悉分析液压系统的工作原理的方法,掌握液压元件的作用与选型是十分必要的。 液压传动在国民经济的各个部门都得到了广泛的应用,但是各部门采用液压传动的出发点不尽相同:例如,工程机械、压力机械采用液压传动的主要原因是取其结构简单、输出力大;航空工业采用液压传动的主要原因取其重量轻、体积小;机床上采用液压传动的主要原因则是取其在工作过程中能无级变速,易于实现自动化,能实现换向频繁的往复运动等优点。 关键词:钻孔组合机床卧式动力滑台液压系统

1.设计要求 设计一台卧式钻孔组合机床的液压系统,要求完成如下工作循环式:快进→工进→快退→停止。机床的切削力为25000N ,工作部件的重量为9800N ,快进与快退速度均为7m/min ,工进速度为0.05m/min ,快进行程为150mm ,工进行程40mm ,加速、减速时间要求不大于0.2s ,动力平台采用平导轨,静摩擦系数为0.2,动摩擦系数为0.1 。要求活塞杆固定,油缸与工作台连接。设计该组合机床的液压传动系统。 2.负载与运动分析 2.1负载分析 (1)工作负载: T F =25000N (2)摩擦负载: 摩擦负载即为导轨的摩擦阻力 静摩擦阻力:Ffs = 0f ?G=1960N 动摩擦阻力:Ffd =d f ?G=980N (3)惯性负载:Fa = t v g G ??=500N (4)液压缸在个工作阶段的负载。 设液压缸的机械效率cm η =0.9,得出液压缸在各个工作阶段的负载和推力,如表1所示。 表1液压缸各阶段的负载和推力 工况 计算公式 外负载F/N 液压缸推力 F0= F / cm η/N 启动 F=Ffs 1960 2178 加速 F=Ffd +Fa 1480 1644 快进 F=Ffd 980 1089 工进 F=Ffd +T F 25980 28867 反向启动 F=Ffs 1960 2178 加速 F=Ffd +Fa 1480 1644 快退 F=Ffd 980 1089

(完整版)液压课后答案

2.1 要提高齿轮泵的压力需解决哪些关键问题?通常都采用哪些措施? 解答:(1)困油现象。采取措施:在两端盖板上开卸荷 槽。(2)径向不平衡力:采取措施:缩小压油口直径;增大扫膛处的径向间隙;过渡区连通;支撑上采用滚针轴承或滑动轴承。(3)齿轮泵的泄 漏:采取措施:采用断面间隙自动补偿装置。 ? 2.2 叶片泵能否实现反转?请说出理由并进行分析。解答:叶片泵不允许反转,因为叶片在转子中有安放角,为了提高密封性叶片本身也有方向性。? 2.3 简述齿轮泵、叶片泵、柱塞泵的优缺点及应用场合。 ?解答:(1)齿轮泵: 优点:结构简单,制造方便,价格低廉,体积小,重量轻,自吸性能好,对油液污染不敏感,工作可靠;主要缺点:流量和压力脉动大,噪声大,排量不可调。应用:齿轮泵被广泛地应用于采矿设备,冶金设备,建筑机械,工程机械,农林机械等各个行业。(2)叶片泵:优点:排油均匀,工作平稳,噪声小。缺点:结构较复杂,对油液的污染比较敏感。应用:在精密仪器控制方面应用广泛。(3)柱塞泵:优点:性能较完善,特点是泄漏小,容积效率高,可以在高压下工作。缺点:结构复杂,造价高。应用:在凿岩、冶金机械等领域获得广泛应用。? 2.4 齿轮泵的模数m=4 mm,齿数z=9,齿宽B=18mm,在额定压力下,转速n=2000 r/min时,泵的实际输出流量Q=30 L/min,求泵的容积效率。 ?解答: ηv=q/qt=q/(6.6~7)zm2bn =30/(6.6×9 ×42×18×2000 ×10-6)=0.87 ? ? 2.5 YB63型叶片泵的最高压力pmax=6.3MPa,叶片宽度B=24mm,叶片厚度δ=2.25mm,叶片数z =12,叶片倾角θ=13°,定子曲线长 径R=49mm,短径r=43mm,泵的容积效率ηv=0.90,机械效率ηm=0.90,泵轴转速n=960r/min,试求:(1) 叶片泵的实际流量是多少?(2)叶片泵的输出 功率是多少?解答: ? 2.6 斜盘式轴向柱塞泵的斜盘倾角β=20°,柱塞直径d=22mm,柱塞分布圆直径D=68mm,柱塞数z=7,机械效率ηm=0.90,容积效率ηV=0.97,泵转速n=1450r/min,泵输出压力p=28MPa,试计算:(1)平均理论流量;(2)实际输出的平均流量;(3)泵的输入功率。 ?解答:(1) qt=πd2zDntanβ/4 = π ×0.0222×7×0.068tan20°/4=0.0016 (m3/s) ?(2) q= qt ×ηV=0.0016 ×0.97=0.00155(m3/s) ?(3)N入=N出/ (ηm ηV)=pq/(ηm ηV)?=28 ×106×0. 00155/(0.9 ×0.97)

大工15秋《液压传动与控制》大作业及要求参考答案

大工15秋《液压传动与控制》大作业及要求参考答案 题目四:画一个减压回路 总则:自己绘制,不限制绘制方法。 要求:(1)说明回路的功用 (2)说明回路的组成及各元件的作用 (3)说明回路的工作原理 (4)撰写一份word文档,里面包括以上内容 解:减压回路: 一、回路的功用: 减压回路的功用在于使系统某一支路上具有地域系统压力的稳定工作压力。液压机如在机床的工件夹紧、导轨润滑及液压系统的控制油路中常需用减压回路。 二、回路的组成及各元件的作用: 1.单向减压阀:减压阀是支回路,用来设定低于主回路压力,同时还能够通过远程控制口,进行远程控制。单向减压阀是减压阀并联单项阀,使之起到单向减压的作用。

2.液压缸:液压缸是将液压能转变为机械能的、做直线往复运动 (或摆动运动)的液压执行元件。它结构简单、工作可靠。用它来实现往复运动时,可免去减速装置,并且没有传动间隙,运动平稳,因此在各种机械的液压系统中得到广泛应用。液压缸输出力和活塞有效面积及其两边的压差成正比;液压缸基本上由缸筒和缸盖、活塞和活塞杆、密封装置、缓冲装置与排气装置组成。缓冲装置与排气装置视具体应用场合而定,其他装置则必不可少。 3.电磁换向阀:电磁换向阀主要是利用电磁铁通电吸合时产生的力来操纵滑阀阀芯移动的, 作用是变换阀芯在阀体内的相对运动,使阀体各个油口连通或断开,从而控制执行元件的换向或启停。 4.液压泵:液压泵是液压系统的动力元件,其作用是将原动机的机械能转换成液体的压力能,指液压系统中的油泵,它向整个液压系统提供动力。液压泵的结构形式一般有齿轮泵、叶片泵和柱塞泵。 5.溢流阀:一种液压压力控制阀。在液压设备中主要起定压溢流作用,稳压,系统卸荷和安全保护作用。系统卸荷作用:在溢流阀的遥控口串接溢小流量的电磁阀,当电磁铁通电时,溢流阀的遥控口通油箱,此时液压泵卸荷。溢流阀此时作为卸荷阀使用。安全保护作用:系统正常工作时,阀门关闭。只有负载超过规定的极限(系统压力超过调定压力)时开启溢流,进行过载保护,使系统压力不再增加(通常使溢流阀的调定压力比系统最高工作压力高10%~20%)。 三、回路的工作原理

液压传动课程设计液压系统设计举例

液压系统设计计算举例 液压系统设计计算是液压传动课程设计的主要内容,包括明确设计要求进行工况分析、确定液压系统主要参数、拟定液压系统原理图、计算和选择液压件以及验算液压系统性能等。现以一台卧式单面多轴钻孔组合机床动力滑台液压系统为例,介绍液压系统的设计计算方法。 1 设计要求及工况分析 设计要求 要求设计的动力滑台实现的工作循环是:快进 → 工进 → 快退 → 停止。主要性能参数与性能要求如下:切削阻力F L =30468N ;运动部件所受重力G =9800N ;快进、快退速度υ1= υ3=0.1m/s ,工进速度υ2=×10-3m/s ;快进行程L 1=100mm ,工进行程L 2=50mm ;往复运动的加速时间Δt =;动力滑台采用平导轨,静摩擦系数μs =,动摩擦系数μd =。液压系统执行元件选为液压缸。 负载与运动分析 (1) 工作负载 工作负载即为切削阻力F L =30468N 。 (2) 摩擦负载 摩擦负载即为导轨的摩擦阻力: 静摩擦阻力 N 196098002.0s fs =?==G F μ 动摩擦阻力 N 98098001.0d fd =?==G F μ (3) 惯性负载 N 500N 2.01 .08.99800i =?=??= t g G F υ (4) 运动时间 快进 s 1s 1.0101003 11 1=?==-υL t 工进 s 8.56s 1088.010503 322 2=??==--υL t 快退 s 5.1s 1.010)50100(3 3 2 13=?+=+= -υL L t 设液压缸的机械效率ηcm =,得出液压缸在各工作阶段的负载和推力,如表1所列。

液压习题答案

第2章习题 1-1液压缸直径D=150mm ,活塞直径d=100mm ,负载F=5 104N 。若不计液压油自重及活塞及缸体质量,求如下图a,图b 两种情况下的液压缸内压力。 (a ):设液压缸压力为p 根据流体静力学原理,活塞处于静力平衡状态,有: F=p ·πd 2 /4 p=4F/πd 2=20 104/3.14 0.12 p=6.37 106 pa (b ):设液压缸压力为p 根据流体静力学原理,活塞处于静力平衡状态,有: F=p ·πD 2 /4 p=4F/πD 2=20 104/3.14 0.152 p=2.83 106 pa 此题做法有待于考虑 F=p ·Πd 2 /4 p=4F/Πd 2=20 104/3.14 0.12 p=6.37 106 pa 1-2如图所示 的开式水箱(水箱液面与大气相通)。其侧壁开一小孔,水箱液面与小孔中心距离为h 。水箱足够大,h 基本不变(即小孔流出水时,水箱液面下降速度近似等于0)。不计损失,求水从小孔流出的速度(动能修正系数设为1)。(提示,应用伯努利方程求解) 解:取水箱液面为1-1过流断面,小孔的外部截面为2-2过流断面,设大气压为p 1 根据伯努力方程: 1-3判定管内流态:(1)圆管直径d=160mm ,管内液压油速度u=3m/s ;液压油运动黏度 =114mm 2/s ; (2)圆管直径d=10cm ,管内水的流速u=100cm/s 。假定水温为20 C (相应运动粘度为1.308mm 2/s 。 解:管内流态根据雷诺数判断. 雷诺数计算公式: (1): 管内液流状态为:湍流状态 (2)232076452101.30810.1Re 6 - =??= 管内液流状态为:湍流状态 1-4 如图,液压泵从油箱吸油,吸油管直径 d=10cm ,泵的流量为 Q=180L/min, 油液的运动粘度υ=20 x10-6 m 2/s ,密度ρ=900kg/m 3,当泵入口处的真空度 p =0.9x105pa 时,求泵最大允许吸油的高度 h 。 (提示:运用伯努利方程与压力损失理论) 解:取油箱液面为1-1过流断面,油泵进油口为2-2过流断面,设大气压为p 0 由伯努力方程得: 判断油管的流动状态: 油管的流态为层流:动能修正系数为:22=α 局部压力损失----沿程压力损失: 层流状态:e /64R =λ 2 382.09001.0e 642 ?=?h R p f =21.99h 带入伯努力方程得:

液压与气压传动课后习题问题详解

《液压与气压传动》习题解答 第1章液压传动概述 1、何谓液压传动?液压传动有哪两个工作特性? 答:液压传动是以液体为工作介质,把原动机的机械能转化为液体的压力能,通过控制元件将具有压力能的液体送到执行机构,由执行机构驱动负载实现所需的运动和动力,把液体的压力能再转变为工作机构所需的机械能,也就是说利用受压液体来传递运动和动力。液压传动的工作特性是液压系统的工作压力取决于负载,液压缸的运动速度取决于流量。 2、液压传动系统有哪些主要组成部分?各部分的功用是什么? 答:⑴动力装置:泵,将机械能转换成液体压力能的装置。⑵执行装置:缸或马达,将液体压力能转换成机械能的装置。⑶控制装置:阀,对液体的压力、流量和流动方向进行控制和调节的装置。⑷辅助装置:对工作介质起到容纳、净化、润滑、消声和实现元件间连接等作用的装置。⑸传动介质:液压油,传递能量。 3、液压传动与机械传动、电气传动相比有哪些优缺点? 答:液压传动的优点:⑴输出力大,定位精度高、传动平稳,使用寿命长。 ⑵容易实现无级调速,调速方便且调速围大。⑶容易实现过载保护和自动控制。⑷机构简化和操作简单。 液压传动的缺点:⑴传动效率低,对温度变化敏感,实现定比传动困难。⑵出现故障不易诊断。⑶液压元件制造精度高,⑷油液易泄漏。 第2章液压传动的基础知识 1、选用液压油有哪些基本要求?为保证液压系统正常运行,选用液压油要考

虑哪些方面? 答:选用液压油的基本要求:⑴粘温特性好,压缩性要小。⑵润滑性能好,防锈、耐腐蚀性能好。⑶抗泡沫、抗乳化性好。⑷抗燃性能好。选用液压油时考虑以下几个方面,⑴按工作机的类型选用。⑵按液压泵的类型选用。⑶按液压系统工作压力选用。⑷考虑液压系统的环境温度。⑸考虑液压系统的运动速度。⑹选择合适的液压油品种。 2、油液污染有何危害?应采取哪些措施防止油液污染? 答:液压系统中污染物主要有固体颗粒、水、空气、化学物质、微生物等杂物。其中固体颗粒性污垢是引起污染危害的主要原因。1)固体颗粒会使滑动部分磨损加剧、卡死和堵塞,缩短元件的使用寿命;产生振动和噪声。2)水的侵入加速了液压油的氧化,并且和添加剂一起作用,产生粘性胶质,使滤芯堵塞。3)空气的混入能降低油液的体积弹性模量,引起气蚀,降低其润滑性能。 4)微生物的生成使油液变质,降低润滑性能,加速元件腐蚀。 污染控制贯穿于液压系统的设计、制造、安装、使用、维修等各个环节。在实际工作中污染控制主要有以下措施:1)油液使用前保持清洁。2)合理选用液压元件和密封元件,减少污染物侵入的途径。3)液压系统在装配后、运行前保持清洁。4)注意液压油在工作中保持清洁。5)系统中使用的液压油应定期检查、补充、更换。6)控制液压油的工作温度,防止过高油温造成油液氧化变质。 3、什么是液压油的粘性和粘温特性?为什么在选择液压油时,应将油液的粘度作为主要的性能指标? 答:液体流动时分子间相互牵制的力称为液体的摩擦力或粘滞力,而液体

液压传动课程设计题目2

1.汽车板簧分选实验压力机(立式),液压缸对工件(汽车板簧)施加的最大压 力为3万N,动作为:快进→工进→加载→保压→慢退→快退,快进速度14mm/s,工进速度0.4mm/s,要求液压缸上位停止、下行时、保压后慢退不能失控。最大行程600mm。试完成: (1)系统工况分析; (2)液压缸主要参数确定; (3)拟定液压系统原理图; (4)选取液压元件; (5)油箱设计(零件图);* (6)油箱盖板装配图、零件图;* (7)集成块零件图; 2.钻孔动力部件质量m=2000kg,液压缸的机械效率ηw=0.9,钻削力Fc=16000N 工作循环为:快进→工进→死挡铁停留→快退→原位停止。行程长度为150mm ,其中工进长度为50mm。快进、快退速度为75mm/s,工进速度为1.67 mm/s。导轨为矩形,启动、制动时间为0.5s。要求快进转工进平稳可靠,工作台能在任意位置停止。 3.单面多轴钻孔组合机床动力滑台液压系统,要求设计的动力滑台实现的工作 循环是:快进——工进——快退——停止。主要性能参数与性能要求如下:切削阻力FL=30468N;运动部件所受重力G=9800N;快进、快退速度1=

3=0.1m/s,工进速度2=0.88×10-3m/s;快进行程L1=100mm,工进行程 L2=50mm;往复运动的加速时间Δt=0.2s;动力滑台采用平导轨,静摩擦系数μs=0.2,动摩擦系数μd=0.1。液压系统执行元件选为液压缸。 4.卧式钻孔组合机床液压系统设计:设计一台卧式钻孔组合机床的液压系统, 要求完成如下工作循环:快进→工进→快退→停止。机床的切削力为25×103 N,工作部件的重量为9.8×103 N,快进与快退速度均为7 m/min,工进速度为0.05 m/min,快进行程为150 mm,工进行程为40 mm,加速、减速时间要求不大于0.2 s,动力平台采用平导轨,静摩擦系数为0.2,动摩擦系数为 0.1。要求活塞杆固定,油缸与工作台连接。设计该组合机床的液压传动系统。 5.某厂需要一台加工齿轮内孔键槽的简易插床,插头刀架的上下往复运动采用 液压传动。工件安装在工作台上,采用手动进给。 其主要技术规格如下: 1)加工碳钢齿轮键槽,插槽槽宽t=12mm,走刀量S=0.3mm/行程; 2)插头重量500N; 3)插头工作行程(下行)的速度为13m/min。 试设计该插床的液压系统及其液压装置。 6.设计一台钻镗专用机床,要求孔的加工精度为二级,精镗的光洁度为▽6。加 工的工作循环是工件定位、夹紧——动力头快进——工进——快退——工件松开、拔销。加工时最大切削力(轴向)为20000N,动力头自重30000N,工作进给要求能在20-120mm/min内进行无级调速,快进、快退的速度均为6m/min,动力头最大行程为400mm,为使工作方便希望动力头可以手动调整进退并且能中途停止,动力滑台采用平导轨。 要求:1)按机床工作条件设计油路系统,绘系统原理图。 2)列出电磁铁动作顺序图。

液压课后习题答案

第三章 3.18 液压泵的额定流量为100 L/min ,液压泵的额定压力为2.5 MPa ,当转速为1 450 r/min 时,机械效率为ηm =0.9。由实验测得,当液压泵的出口压力为零时,流量为106 L/min ;压力为2.5 MPa 时,流量为100.7 L/min ,试求:(1)液压泵的容积效率ηV 是多少?(2)如果液压泵的转速下降到500 r/min ,在额定压力下工作时,估算液压泵的流量是多少?(3)计算在上述两种转速下液压泵的驱动功率是多少? 解:(1)ηv t q q = ==1007106 095.. (2)=??= = =95.01061450 500111v t v q n n Vn q ηη 34.7L/min (3)在第一种情况下: 3 3 6 0109.460 9.010 106105.2?=????= == -m t m t i pq P P ηηW 在第二种情况下: 3 3 6 1 1 011069.195 .0609.010 7.34105.2?=?????= == -m t m t i pq P P ηηW 答:液压泵的容积效率ηV 为0.95,在液压泵转速为500r/min 时,估算其流量为34.7L/min ,液压泵在第一种情况下的驱动功率为4.9?103W ,在第二种情况下的驱动功率为1.69?103 W 。 3.20 某组合机床用双联叶片泵YB 4/16×63,快速进、退时双泵供油,系统压力p = 1 MPa 。工作进给时,大泵卸荷(设其压力为0),只有小泵供油,这时系统压力p = 3 MPa ,液压泵效率η = 0.8。试求:(1)所需电动机功率是多少?(2)如果采用一个q = 20 L/min 的定量泵,所需的电动机功率又是多少? 解:(1)快速时液压泵的输出功率为: 6 3 0111110(1663)10 1316.760 P p q -??+?== = W 工进时液压泵的输出功率为: 6 3 022******** 80060 P p q -???== = W 电动机的功率为: 16468 .07.131601 === η P P 电 W

液压与气压传动的课后习题答案

1-1 填空题 1.液压传动是以(液体)为传动介质,利用液体的(压力能)来实现运动和动力传递的一种传动方式。 2.液压传动必须在(密闭的容器内)进行,依靠液体的(压力)来传递动力,依靠(流量)来传递运动。 3.液压传动系统由(动力元件)、(执行元件)、(控制元件)、(辅助元件)和(工作介质)五部分组成。 4.在液压传动中,液压泵是(动力)元件, 它将输入的(机械)能转换成(压力)能,向系统提供动力。 5.在液压传动中,液压缸是(执行)元件, 它将输入的(压力)能转换成(机械)能。 6.各种控制阀用以控制液压系统所需要的(油液压力)、(油液流量)和(油液流动方向),以保证执行元件实现各种不同的工作要求。 7.液压元件的图形符号只表示元件的(功能),不表示元件(结构)和(参数),以及连接口的实际位置和元件的(空间安装位置和传动过程)。 8.液压元件的图形符号在系统中均以元件的(常态位)表示。 1-2 判断题 1.液压传动不易获得很大的力和转矩。( × ) 2.液压传动装置工作平稳,能方便地实现无级调速,但不能快速起动、制动和频繁换向。( × ) 3.液压传动与机械、电气传动相配合时, 易实现较复杂的自动工作循环。( √ ) 4.液压传动系统适宜在传动比要求严格的场合采用。( × ) 2-1 填空题 1.液体受压力作用发生体积变化的性质称为液体的(可压缩性),可用(体积压缩系数)或(体积弹性模量)表示,体积压缩系数越大,液体的可压缩性越(大);体积弹性模量越大,液体的可压缩性越(小)。在液压传动中一般可认为液体是(不可压缩的)。 2.油液粘性用(粘度)表示;有(动力粘度)、(运动粘度)、(相对粘度)三种表示方法; 计量单位m 2/s 是表示(运动)粘度的单位;1m 2/s =(106 )厘斯。 3.某一种牌号为L-HL22的普通液压油在40o C 时(运动)粘度的中心值为22厘斯cSt(mm 2 /s )。 4. 选择液压油时,主要考虑油的(粘度)。(选项:成分、密度、粘度、可压缩性) 5.当液压系统的工作压力高,环境温度高或运动速度较慢时,为了减少泄漏,宜选用粘度较(高)的液压油。当工作压力低,环境温度低或运动速度较大时,为了减少功率损失,宜选用粘度较(低)的液压油。 6. 液体处于静止状态下,其单位面积上所受的法向力,称为(静压力),用符号(p )表示。其国际单位为(Pa 即帕斯卡),常用单位为(MPa 即兆帕)。 7. 液压系统的工作压力取决于(负载)。当液压缸的有效面积一定时,活塞的运动速度取决于(流量)。 8. 液体作用于曲面某一方向上的力,等于液体压力与(曲面在该方向的垂直面内投影面积的)乘积。 9. 在研究流动液体时,将既(无粘性)又(不可压缩)的假想液体称为理想液体。 10. 单位时间内流过某通流截面液体的(体积)称为流量,其国标单位为 (m 3/s 即米 3 /秒),常用单位为(L/min 即升/分)。 12. 液体的流动状态用(雷诺数)来判断,其大小与管内液体的(平均流速)、(运动粘度)和管道的(直径)有关。 13. 流经环形缝隙的流量,在最大偏心时为其同心缝隙流量的()倍。所以,在液压元件中,为了减小流经间隙的泄漏,应将其配合件尽量处于(同心)状态。 2-2 判断题 1. 液压油的可压缩性是钢的100~150倍。(√) 2. 液压系统的工作压力一般是指绝对压力值。(×) 3. 液压油能随意混用。(×) 4. 作用于活塞上的推力越大,活塞运动的速度就越快。(×) 5. 在液压系统中,液体自重产生的压力一般可以忽略不计。 (√) 6. 液体在变截面管道中流动时,管道截面积小的地方,液体流速高,而压力小。(×) 7. 液压冲击和空穴现象是液压系统产生振动和噪音的主要原因。(√) 3-1 填空题 1.液压泵是液压系统的(能源或动力)装置,其作用是将原动机的(机械能)转换为油液的(压力能),其输出功率用公式(pq P ?=0或pq P =0)表示。 2.容积式液压泵的工作原理是:容积增大时实现(吸油) ,容积减小时实现(压油)。 3.液压泵或液压马达的功率损失有(机械)损失和(容积)损失两种;其中(机械)损失是指泵或马达在转矩上的损失,其大小用(机械效率ηm )表示;(容积)损失是指泵或马达在流量上的损失,其大小用(容积效率ηv )表示。

液压控制系统(王春行版)课后题答案

` 第二章 思考题 1、为什么把液压控制阀称为液压放大元件 答:因为液压控制阀将输入的机械信号(位移)转换为液压信号(压力、流量)输出,并进行功率放大,移动阀芯所需要的信号功率很小,而系统的输出功率却可以很大。 2、什么是理想滑阀什么是实际滑阀 答:理想滑阀是指径向间隙为零,工作边锐利的滑阀。 实际滑阀是指有径向间隙,同时阀口工作边也不可避免地存在小圆角的滑阀。 4、什么叫阀的工作点零位工作点的条件是什么 | 答:阀的工作点是指压力-流量曲线上的点,即稳态情况下,负载压力为p L ,阀位移x V 时, 阀的负载流量为q L 的位置。 零位工作点的条件是q=p=x=0 L L V 。 5、在计算系统稳定性、响应特性和稳态误差时,应如何选定阀的系数为什么 答:流量增益 q q = x L V K ? ? ,为放大倍数,直接影响系统的开环增益。 流量-压力系数 c q =- p L L K ? ? ,直接影响阀控执行元件的阻尼比和速度刚度。 压力增益 p p = x L V K ? ? ,表示阀控执行元件组合启动大惯量或大摩擦力负载的能力 当各系数增大时对系统的影响如下表所示。 , 7、径向间隙对零开口滑阀的静态特性有什么影响为什么要研究实际零开口滑阀的泄漏特性 答:理想零开口滑阀 c0=0 K, p0= K∞,而实际零开口滑阀由于径向间隙的影响,存在泄漏

流量2c c0r = 32W K πμ ,p0c K ,两者相差很大。 理想零开口滑阀实际零开口滑阀因有径向间隙和工作边的小圆角,存在泄漏,泄漏特性决定了阀的性能,用泄漏流量曲线可以度量阀芯在中位时的液压功率损失大小,用中位泄漏流量曲线来判断阀的加工配合质量。 9、什么是稳态液动力什么是瞬态液动力 答:稳态液动力是指,在阀口开度一定的稳定流动情况下,液流对阀芯的反作用力。 瞬态液动力是指,在阀芯运动过程中,阀开口量变化使通过阀口的流量发生变化,引起阀腔内液流速度随时间变化,其动量变化对阀芯产生的反作用力。 > 习题 1、有一零开口全周通油的四边滑阀,其直径-3 d=810m ?,径向间隙-6c r =510m ?,供油压力5s p =7010a P ?,采用10号航空液压油在40C 。 工作,流量系数d C =0.62,求阀的零位 系数。 解:零开口四边滑阀的零位系数为: 零位流量增益 q0d K C =零位流量-压力系数 2c c0r 32W K πμ = 零位压力增益 p0c K = 将数据代入得 2q0 1.4m s K = ! 123c0 4.410m s a K P -=?? 11p0 3.1710a m K P =? 2、已知一正开口量-3 =0.0510m U ?的四边滑阀,在供油压力5s p =7010a P ?下测得零位泄 露流量c q =5min L ,求阀的三个零位系数。 解:正开口四边滑阀的零位系数为:

液压传动系统课程设计模板

液压传动系统课程 设计

液压传动控制系统课程设计 指 导 书 刘辉等编 江西理工大学应用科学学院

液压传动控制系统课程设计步骤 一、设计依据及参数的提出 1.根据生产或加工对象工作要求选择液压传动机构的结构形式和 规格; 2.分析机床或设备的工作循环和执行机构的工作范围; 3.对生产设备各种部件(电气、机械、液压)的工作顺序、转换 方式和互锁 要求等要详细说明或了解; 4.一些具体特殊要求的动作(如高速、高压、精度等)对液压传 动执行机构的 特殊要求; 5.液压执行机构的运动速度、载荷及变化范围(调节范围); 6.对工作的可靠性、平稳性以及转换精度的要求; 7.其它要求(如检测、维修)。 二、负载分析 2.1负载特性 液压执行机构在运动或加工的过程中所承受的负载有工作阻力、摩擦力、惯性力、重力,密封阻力和背压力。可是从负载角度归纳为三种负载,即阻力负载、负值负载、惯性负载。 1.阻力负载(或正值负载)——负载方向与进给方向相反,即机 床切削力(如:铣、钻、镗等),摩擦力,背压力。

切削力+重力+惯性力 切削力+惯性力+摩擦力 图 2-1 切削力分析图 2.负值负载(或超越负载)——负载方向与执行机构运动方向相同 (如:顺铣、重力下降,制动减速等)。 3.惯性负载——机构运动转换过程中由惯性所形成的负载(如前冲 和后冲,系统的爬行)。 2.2 执行机构负载分析 1.液压缸机械负载计算 (1)液压缸机械负载计算 在设计选取功率匹配时,一般主要考虑工进阶段的驱动功率,即负载F 为: ()f t g m F F F F η=++(2-1) Ff —摩擦力 Ft —负载 Fg —惯性力 m η一般取0.9~0.95

液压系统课程设计任务书

学号: 课程设计任务书 2013~2014 学年第二学期 学生姓名:专业班级: 指导教师:工作部门: 一、课程设计题目: 二、课程设计内容 液压传动课程设计一般包括以下内容: (1) 明确设计要求进行工况分析; (2) 确定液压系统主要参数; (3) 拟定液压系统原理图; (4) 计算和选择液压件; (5) 验算液压系统性能; (6) 结构设计及绘制零部件工作图; (7) 编制技术文件。 学生应完成的工作量: (1) 液压系统原理图1张; (2) 部件工作图和零件工作图若干张; (3) 设计计算说明书1份。 三、进度安排

四、基本要求 (1) 液压传动课程设计是一项全面的设计训练,它不仅可以巩固所学的理论知识,也可以为以后的设计工作打好基础。在设计过程中必须严肃认真,刻苦钻研,一丝不苟,精益求精。 (2) 液压传动课程设计应在教师指导下独立完成。教师的指导作用是指明设计思路,启发学生独立思考,解答疑难问题,按设计进度进行阶段审查,学生必须发挥主观能动性,积极思考问题,而不应被动地依赖教师查资料、

给数据、定方案。 (3) 设计中要正确处理参考已有资料与创新的关系。任何设计都不能凭空想象出来,利用已有资料可以避免许多重复工作,加快设计进程,同时也是提高设计质量的保证。另外任何新的设计任务又总有其特定的设计要求和具体工作条件,因而不能盲目地抄袭资料,必须具体分析,创造性地设计。 (4) 学生应按设计进程要求保质保量的完成设计任务。 液压传动课程设计原始资料 一、课程设计内容(含技术指标) 设计中等复杂程度的机床液压传动系统,确定液压传动方案,选择有关液压元件,设计液压缸的结构,编写技术文件并绘制有关图纸。 1、设计一台卧式单面多轴钻孔组合机床液压动力滑台的液压系统。已知参数:切削负载FL=30500N,机床工作部件总质量m=1000kg,快进、快退速度均为5.5m/min,工进速度在20~100mm/min范围内可无级调节。滑台最大行程400mm,其中工进行程150mm,往复运动加、减速时间≤0.2s,滑台采用平导轨,其摩擦系数fs=0.2,动摩擦系数fd=0.1。滑台要求完成“快进-工进-快退-停止”的工作循环。 2、设计一台卧式单面多轴钻孔组合机床的液压系统,要求液压系统完成“快进—工进—快退—停止”的工作循环。已知:轴向切削力为32000N,移动部件总重量为10810N,工作台快进行程为150mm,工进行程为100mm,快进、快退速度为7m/min,工进速度为60mm/min,加、减速时间为0.2s,导轨为平导轨,静摩擦系数为0.2,动摩擦系数为0.1。 3、设计一台专用卧式钻床的液压系统,要求液压系统完成“快进—工进—快退—停止”的工作循环。已知:最大轴向钻削力为14000N,动力滑台自重为15000N,工作台快进行程为100mm,工进行程为50mm,快进、快退速度为 5.5m/min,工进速度为51—990mm/min,加、减速时间为0.1s,动力滑台为平导轨,静摩擦系数为0.2,动摩擦系数为0.1。 4、设计一台专用卧式铣床的液压系统,要求液压系统完成“快进—工进—快退—停止”的工作循环。已知:铣头驱动电动机功率为8.5kw,铣刀直径为70mm,转速为350r/min,

液压习题及答案.doc

1顺序阀和溢流阀是否可以互换使用? 答:顺序阀可代替溢流阀,反之不行。 2试比较溢流阀、减压阀、顺序阀(内控外泄式)三者之间的异同点 答:相同点:都是利用控制压力与弹簧力相平衡的原理,改变滑阀移动的开口量,通过开口量的大小来控制系统的压力。结构大体相同,只是泻油路不同。 不同点:溢流阀是通过调定弹簧的压力,控制进油路的压力,保证进口压力恒定。出 油口与油箱相连。泄漏形式是内泄式,常闭,进出油口相通,进油口压力为调整压力, 在系统中的联结方式是并联。起限压、保压、稳压的作用。 减压阀是通过调定弹簧的压力,控制出油路的压力,保证出口压力恒定。出油口与减压回路相连。泄漏形式为外泄式。常开,出口压力低于进口压力,出口压力稳定在调定 值上。在系统中的联结方式为串联,起减压、稳压作用。 顺序阀是通过调定弹簧的压力控制进油路的压力,而液控式顺序阀由单独油路控制压力。出油口与工作油路相接。泄漏形式为外泄式。常闭,进出油口相通,进油口压力允 许继续升高。实现顺序动作时串联,作卸荷阀用时并联。不控制系统的压力,只利用系统的 压力变化控制油路的通断 3 如图所示溢流阀的调定压力为4MPa ,若阀芯阻尼小孔造成的损失 不计,试判断下列情况下压力表读数各为多少? (1) Y断电,负载为无限大时; (2) Y断电,负载压力为2MPa时; (3 )Y通电,负载压力为2MPa 时 答:( 1) 4;( 2) 2;( 3) 0 4 如图所示的回路中,溢流阀的调整压力为5.0 MPa ,减压阀的调整压 力为 2.5 MPa ,试分析下列情况,并说明减压阀阀口处于什么状态? ( 1)当泵压力等于溢流阀调整压力时,夹紧缸使工件夹紧后,A、 C

《液压与气动技术》习题集[附答案]

液压与气动技术习题集(附答案) 第四章液压控制阀 一.填空题 1.单向阀的作用是控制液流沿一个方向流动。对单向阀的性能要求是:油液通过时,压力损失小;反向截止时,密封性能好。 2.单向阀中的弹簧意在克服阀芯的摩檫力和惯性力使其灵活复位。当背压阀用时,应改变弹簧的刚度。 3.机动换向阀利用运动部件上的撞块或凸轮压下阀芯使油路换向,换向时其阀芯移动速度可以控制,故换向平稳,位置精度高。它必须安装在运动部件运动过程中接触到的位置。 4.三位换向阀处于中间位置时,其油口P、A、B、T间的通路有各种不同的联接形式,以适应各种不同的工作要求,将这种位置时的内部通路形式称为三位换向阀的中位机能。为使单杆卧式液压缸呈“浮动”状态、且泵不卸荷,可选用 Y型中位机能换向阀。 5.电液动换向阀中的先导阀是电磁换向阀,其中位机能是“Y”,型,意在保证主滑阀换向中的灵敏度(或响应速度);而控制油路中的“可调节流口”是为了调节主阀的换向速度。 6.三位阀两端的弹簧是为了克服阀芯的摩檫力和惯性力使其灵活复位,并(在位置上)对中。 7.为实现系统卸荷、缸锁紧换向阀中位机能(“M”、“P”、“O”、“H”、“Y”)可选用其中的“M”,型;为使单杆卧式液压缸呈“浮动”状态、且泵不卸荷,中位机能可选用“Y”。型。 8.液压控制阀按其作用通常可分为方向控制阀、压力控制阀和流量控制阀。 9.在先导式减压阀工作时,先导阀的作用主要是调压,而主阀的作用主要是减压。10.溢流阀的进口压力随流量变化而波动的性能称为压力流量特性,性能的好坏用调压偏差或开启压力比、闭合压力比评价。显然(p s—p k)、(p s—p B)小好, n k和n b大好。 11.将压力阀的调压弹簧全部放松,阀通过额定流量时,进油腔和回油腔压力的差值称为阀的压力损失,而溢流阀的调定压力是指溢流阀达到额定流量时所对应的压力值。 12.溢流阀调定压力P Y的含义是溢流阀流过额定流量时所对应的压力值;开启比指的是开启压力与调定压力的比值,它是衡量溢流阀静态性能的指标,其值 越大越好。 13.溢流阀应用在定量泵节流调速回路中起溢流稳压作用,这时阀口是常开的;而应用在容

哈工大液压大作业压力机概要

压力机液压系统设计 1 明确液压系统设计要求 设计一台压制柴油机曲轴轴瓦的液压机的液压系统。轴瓦毛坯为长×宽×厚= 365×92×7.5(mm)的钢板,材料为08Al,并涂有轴承合金;压制成内经为Φ220mm的半圆形轴瓦。液压机压头的上下运动由主液压缸驱动,顶出液压缸用来顶出工件。其工作循环为主缸快速空程下行、慢速下压、快速回程、静止、顶出缸顶出及顶出缸回程。液压机的结构形式为四柱单缸液压机。 2 分析液压系统工况 液压机技术参数如下: (1)主液压缸 (a)负载 压制力。压制时工作负载可区分为两个阶段。第一阶段负载力缓慢地线性增加。达到最大压制力的10%左右,其上升规律也近似于线性,其行程为90mm(压制总行程为110mm)第二阶段负载力迅速线性增加到最大压制力18×105N,其行程为20mm 回程力(压头离开工件时的力):一般冲压液压机的压制力与回程力之比为5~10,本压机取为5,故回程力为F h = 3.6×105N 移动件(包括活塞、活动横梁及上模)质量=3058kg。 (b)行程及速度 快速空程下行:行程S l = 200mm,速度v1=60mm/s; 工作下压:行程S2 = 110mm,速度v2=6 mm/s。 快速回程:行程S3 = 310mm,速度v3=53 mm/s。 (2)顶出液压缸 (a)负载:顶出力(顶出开始阶段)F d=3.6×105N,回程力F dh= 2×105N

(b)行程及速度;行程L4 = 120mm,顶出行程速度v4=55mm/s,回程速度v5=120mm/s 液压缸采用V型密封圈,其机械效率ηCm=0.91.压头起动、制动时间:0.2s 设计要求。本机属于中小型柱式液压机,有较广泛的通用性,除了能进行本例所述的压制工作外,还能进行冲孔、弯曲、较正、压装及冲压成型等工作。对该机有如下性能要求。 (a)为了适应批量生产的需要应具有较高的生产率,故要求本机有较高的空程和回程速度。 (b)除上液压缸外还有顶出缸。顶出缸除用以顶出工件外,还在其他工艺过程中应用。主缸和顶出缸应不能同时动作,以防出现该动作事故。 (c)为了降低液压泵的容量,主缸空程下行的快速行程方式采用自重快速下行。因此本机设有高位充液筒(高位油箱),在移动件快速空程下行时,主缸上部形成负压,充液筒中的油液能吸入主缸,以补充液压泵流量之不足。 (d)主缸和顶出缸的压力能够调节,压力能方便地进行测量。 (e)能进行保压压制。 (f)主缸回程时应有顶泄压措施,以消除或减小换向卸压时的液压冲击。 (g)系统上应有适当的安全保护措施。 3 确定液压缸的主要参数 (1)初选液压缸的工作压力 (a)主缸负载分析及绘制负载图和速度图 液压机的液压缸和压头垂直放置,其重量较大,为防止因自重而下滑;系统中设有平衡回路。因此在对压头向下运动作负载分析时,压头自重所产生的向下作用力不再计入。另外,为简化问题,压头导轨上的摩擦力不计。 惯性力;快速下降时起动

相关文档
相关文档 最新文档