文档库 最新最全的文档下载
当前位置:文档库 › 发那科500-511超程报警

发那科500-511超程报警

发那科500-511超程报警
发那科500-511超程报警

超程报警

500

超程:+n

超过n轴 +

句行程极限I(参数No.1320 或1326 注)

501

超程:-n

超过n—轴—向行程极限I(参数No.1321或1327 注) 502

超程:+n

超过n轴十向行程极限Ⅱ(参数No.1322)

503

超程:·n

超过n—轴-

句行程极限Ⅱ(参数No.1323) 506

超程:+n

超过n—轴十

句硬限位

507

超程:—n

超过n轴-

句硬限位

移动前冲程极限检查程序块

的终点落入N轴正(+)端冲程极限的禁

510

超程:+n

止区。请修改程序。

开始移动以前作的冲程检查

程序块的终点落入N轴负(—) 端冲程极

511

超程:—n

限的禁止区。请修改程序。注:

7)伺服报警

当信号EXLM(行程限位切

换信号)为1时,参数

1326和1327有效。

力士乐报警代码及说明一揽

力士乐报警代码及说明一揽 力士乐驱动器报警代码查询,有用力士乐驱动器的工程师,可以转载查询。DKC 故障诊断 1 诊断信息 F 和诊断信息 E 的说明 1.1 错误诊断信息 F F205 凸轮轴故障 F207 切换至未初始化运行模式 F208 UL 电机类型已变 F209 PL 装载参数默认值 F211 DISC-Error no.1(1#错误) F212 F212 F212 DISC-Error no.2(2#错误) DISC-Error no.3(3#错误) DISC-Error no.4(4#错误) F217 未接冷却风扇 F218 放大器过热关机 F219 电机过热关机 F220 制动电阻器过载关机

F221 电机温度监控器故障 F223 停止轴时的初始化过程错误 F224 超过最大制动时间 F226 功率部分欠电压 F228 过大偏差 F229 编码器 1 故障:象限错误 F230 超过编码器 1 最大信号频率 F236 位置反馈的差值过大 F237 位置指令的差值过大 F238 实际速度值的差值过大 F242 编码器 2 故障:信号幅度错误F245 编码器 2 故障:象限错误 F246 超过编码器 2 最大信号频率 F248 电池电压过低 F249 主驱动器编码器故障:信号太小

F250 目标位置预置内存溢出 F252 主驱动器编码器故障:象限错误 F253 增量编码器仿真:脉冲频率太高 F260 指令电流极限关闭 F262 状态输出口出现外部短路 F267 内部硬件同步错误 F269 电机制动器释放过程中错误 F276 绝对编码器超出允许的窗口 F277 电流测量补偿错误 F281 主回路故障 F288 EMD 模块固件升级过程中出现错误F291 EMD 模块超时 F292 EMD 模块过热 F294 Ecox 客户端超时 F296 Ecox 客户端数量不准确 F297 Ecox 客户端错误

FANUC常见报警的解释

第一章常见报警的解释 1.1 368报警(串行数据错误) 上图中368报警以及相关编码器报警的原因有: (1)电机后面的编码器有问题,如果客户的加工环境很差,有时会有切削液或液压油浸入编码器中导致编码器故障。 (2)编码器的反馈电缆有问题,电缆两侧的插头没有插好。由于机床在移动过程中,坦克链会带动反馈电缆一起动,这样就会造成反馈电缆被挤压或磨损而损坏,从而导致系统报警。尤其是偶然的编码器方面的报警,很大可能是反馈电缆磨损所致。 (3)伺服放大器的控制侧电路板损坏。 解决方案: (1)把此电机上的编码器跟其他电机上的同型号编码器进行互换,如果互换后故障转移说明编码器本身已经损坏。 (2)把伺服放大器跟其同型号的放大器互换,如果互换后故障转移说明放大器有故障。(3)更换编码器的反馈电缆,注意有的时候反馈电缆损坏后会造成编码器或放大器烧坏, 所以最好先确认反馈电缆是否正常。

1.2 电源模块PSM控制板内风扇故障443 , 610 00009 N000 443 443 X軸Y 軸車 由軸 軸軸 軸軸 Z A X Y Z A CNV. COOLING CNV. COOL ING CNw COOLING CNV. COOL I NG CMV. COOL TNG CNV. COOL TNG CNV. COOL ING CNCOOL ING COOLIMG FAN FAN FAILURE FAN FAILURE FAN FA 1 LURE FAN FA I LURE FAN FA T LURE FAN FAILURE FAJM FAILURE FAN FA 1 LURE STOP I N PSM EDIT * * * * 狀** *** 桦■叫 1 1 :51 :0 7L J IALARM?ΛESSAG∣過程y 9059SPN 1 上图报警是电源模块控制板内风扇损坏导致的报警(使用α i电源模块时),报警时电源模块PSM的LED显示2 ”,主轴放大器SPM的LED显示59 ”。 拆下电源模块控制板后,风扇位置如下图所示: 1.3 主轴放大器SPM内冷风扇故障

FANUC报警总表

A 报警列表 A.1 报警列表(CNC) (381) (1) 与程序操作相关的报警(PS报警) (381) (2) 与后台编辑相关的报警(BG报警) (381) (3) 与通讯相关的报警(SR报警) (381) (4) 参数写入状态下的报警(SW报警) (401) (5) 伺服报警(SV报警) (401) (6) 与超程相关的报警(OT报警) (405) (7) 与存储器文件相关的报警(IO报警) (405) (8) 请求切断电源的报警(PW报警) (406) (9) 与主轴相关的报警(SP报警) (406) (10) 过热报警(OH报警) (408) (11) 其他报警(DS报警) (408) (12) 与误动作防止功能相关的报警(IE报警) (410) A.2 报警列表(PMC) (411) A.2.1 显示在PMC报警画面的信息 (411) A.2.2 PMC系统报警信息 (414) A.2.3 操作错误 (415) A.2.4 I/O通信错误 (423) A.3 报警列表(串行主轴) (426) A.4 错误代码列表(串行主轴) (431) A.1 报警列表(CNC) (1) 与程序操作相关的报警(PS报警) (2) 与后台编辑相关的报警(BG报警) (3) 与通讯相关的报警(SR报警) 这些报警种类的报警号为公用的编号。 根据报警的状态,以 PS“报警号”例)PS0003 BG“报警号”例)BG0085 SR“报警号”例)SR0001 的方式予以显示。 报警号信息内容 0001 TH错误输入设备的读入过程中检测出了TH错误。 引起TH错误的读入代码和是从程序段数起的第几 个字符,可通过诊断画面进行确认。 0002 TV校验错误在单程序段的TV检测中检测出了错误。 通过将参数TVC(No.0000#0)设定为0可以使系统 不进行TV检测。 0003 数位太多指定了比NC指令的字更多的允许位数。此允许位 数根据功能和地址而有所不同。 0004 未找到地址 NC语句的地址+数值不属于字格式。 或者在用户宏程序中没有保留字、或不符合句法时 也会发出此报警。 0005 地址后无数据不是NC语句的地址+数值的字格式。 或者用户宏程序中没有保留字、或不符合句法时会 发出此报警。 0006 负号使用非法在NC指令的字、系统变量中指定了负号。 0007 小数点使用非法在不允许使用小数点的地址中指定了小数点。或者 指定了2个或更多个小数点。

津上fanuc加工中心va报警一览表

内容:在正面门打开的情况下,按了循环启动键。 处理:请把正面门关上再按循环启动按钮 PS:或者K参数K4.6 0改1 开着门也可以按启动按钮 内容:在左侧门打开的情况下,按了循环启动键。 处理:请把左侧门关上再按循环启动按钮 PS:或者K参数K4.7 0改1 开着门也可以按启动按钮 内容:气压不足,空压低下 处理 : 调节气压阀,增加气泵 PS:维修时,K参数K4.4 0改1 可屏蔽此报警,但不能执行换刀指令内容:水箱切削液液位过低 处理 : 1. 添加切削液,加到水箱水位2/3以上 2. 如果还是报警,请调节水箱上面的液位感应灯 3. K参数 K 4.5 0改1 可屏蔽此报警 内容:油路压力不足 处理 : 1. 检查用油是否太快,油管接头是否漏油 检查导轨油加油时间的频率是是否正常

(比如:一周添加一次) 2. 在没有漏油,加油频率正常的情况下 K参数 K13.2 0改1 可屏蔽此报警 内容:导轨油油箱液位不足 处理 : 请添加导轨油 PS:机床维修时 K参数K4.3 0改1 可屏蔽此报警 注意:正常加工时严禁屏蔽此参数,长时间屏蔽后会造成丝杆,轴承,线轨磨损加快很多。 PS:一般不会出现这个报警。 PS:出现这个报警,一般是水泵的热敏开关损坏,可对调开关做测试 PS:机床电柜右下角有两个电池盒,一个是脉冲编码器电池,一个是NC装置电池更换电池请把机床各轴回原点后再进行更换,防止机械原点丢失。 PS:出现M编码循环超时报警,它的意思是执行了这个指令,机床没有动作 1.G01 倍率开关在0的位置的时候,有些时候会出现这个报警。 2.一个程序段不能出现3个以上的M指令 内容:刀库位置异常 W轴机械坐标位置不对

QY100K-Ⅰ技术规格(欧Ⅲ、OM460LA)

1、独有的双纵臂后桥悬挂系统,及一、二、三、六桥转向,三、五、六桥驱动模式。底盘转向灵活、驱动力强劲。 2、独有的 “U”形截面吊臂,自重轻、强度大,承载力更强。 3、先进的嵌入式臂头,结构件强度大,下滑块面积变大,受力状况更好,伸缩更加平稳,可有效防止吊臂在侧载后的扭转现象。 3、独有的自装卸、多组合平衡重系统,提供多达420种主臂吊装工况。 4、卓越的结构件优化技术,以55吨产品自重提供100吨级起重性能。 5、专有MATLAB模拟优化控制程序、速度分级功能,动作平顺、操纵可靠、作业高效。 6、整车智能化检测故障自诊断系统。 7、卓越的结构件焊接技术,整机关键焊缝均采用焊接机械手焊接,工艺先进、质量可靠。

伸缩臂汽车式起重机型号QY100K-Ⅰ 最大额定起重量:100t 一、技术介绍 1、底盘部分 徐工设计、制造,豪华超宽驾驶室,6桥底盘,驱动/转向模式为12×6×6。 1.1、车架 徐工设计、制造,防扭转箱型结构,进口高强度钢材制造。支腿箱体位于2桥和3桥之间以及车架后端,具有前后牵引挂钩。 1.2、底盘发动机 制造商:戴姆勒.克莱斯勒公司; 型号:OM460LA; 型式:电控、直列六缸、水冷却、增压中冷、电喷、柴油发动机; 环保性:符合欧洲Ⅲ标准; 燃料箱容量:约430L。 1.3、动力传动系统 1.3.1、变速箱 德国ZF自动传动箱,由液压变矩器、闭锁离合器、行星变速器组成,6个前进档和1个倒退档,稳定、可靠。 1.3.2、分动箱 德国ZF,2档,采取大输入扭矩,带差速锁。 1.3.3、桥 高强度桥,维护简便。

第一桥:单胎,转向但不驱动; 第二桥:单胎,转向但不驱动; 第三桥:单胎,驱动、转向; 第四桥:双胎,不驱动也不转向; 第五桥:双胎,驱动但不转向; 第六桥:单胎,驱动、转向。 1.3.4、传动轴 驱动轴均采用端面齿连接,优化动力传输,传递扭矩大。维护简便,方便拆卸和安装。 1.4、桥悬挂 前悬架,纵置板簧式,筒式减振器,板簧与推力杆导向; 后悬架,双轴平衡、纵置板簧式,板簧与推力杆导向。 底盘的新悬挂机构,加大了车轮上下跳动量,提高了车辆的通过性。第4、5载重桥采用平衡梁+纵置板簧柔性悬挂,保证了桥荷的平衡,避免了行车时的震动。 1.5、转向 1、2、3、6桥转向,机械式转向机构,带有液压助力。方向盘位置可调。 1.6、轮胎 12.00R24,子午线轮胎,适用于重型载重汽车,通用性强。 1.7、制动 行车制动:双回路气压制动,作用于前桥和后桥的刹车鼓上; 驻车制动:弹簧加载,作用于3、4、5、6桥的所有刹车鼓上; 辅助制动:柴油发动机排气制动。 1.8、底盘驾驶室 新型豪华驾驶室,配CD音响、可调式航空座椅,可调式方向盘,四点大视野后视镜,电控洗窗器,电动门窗。

FANUC主轴驱动系统的故障诊断与维修

轴系统相同,但驱动器为数字式。驱动系统在攻螺纹、定位刚性、快速性与操作性能上有了较大的改进,其余性能与模拟式交流主轴系统相似。3)A06B-07**系列交流主轴电动机与A 06-6059系列数字式交流主轴驱动器配套组成的交流主轴驱动系统系列产品。该系列主轴驱动系统为FANUC公司20世纪80年代中期开发的交流主轴改进型产品,主要配套的系统有FANUCll、FANUC0、FANUCl5等。该系列产品可分为S系列(标准型)、P系列(广域恒功率调速)、H系列(高速润滑脂)、VH系列(高速油雾润滑)、HV系列(高电压输入)等几个系列。产品一般与A06-6059系列数字式交流主轴驱动器配套使用,其中,S系列为常用产品,在数控机床上使用最广。该系列产品主电动机采用了电磁心定子直冷的冷却型式,与早期的主轴驱动系统相比,提高了输出功率与转速,减小了系统的体积与重量;驱动器采用了更先进的控制技术和电子元器件,进一步提高了系统的性能。驱动系统功能强、可靠性好,在数控机床上得到了广泛应用,是数控机床维修过程中常见的主轴驱动系统之一。4)FANUC α/ai系列主轴驱动系统,它是FANUC公司的最新产品,其中αi系列主轴驱动系统为本世纪初开发的最新数控机床主轴驱动系统系列产品,是α系列的改进型。α/αi系列产品共有标准型α/αi系列、广域恒功率输出型αP/αPi系列、经济型αC/αCi系列、中空型(αT /αTi系列、强制冷却型αL/αLi系列、高电压输入型α(HV)/α(HV)i系列、高电压输入广域恒功率输出型αP(HV)/αP(HV)i系列、高电压输入中空型αT(HV)/αT(HV)i系列、高电压输入强制冷却型αL(HV)/αL(HV)i系列等产品。其中αLi系列最高输出转速为20000r/min、α(HV)i系列最大额定输出功率可达l00kW,可满足绝大多数数控机床的主轴要求。该系列产品的主要特点如下:①通过绕组转换功能,进一步增加了高速输出范围,缩短了加/减速时间,对于αPi系列,其恒功率输出范围比α系列扩大了1.5倍。②采用了最新的定子直接冷却方式,进一步减小了电动机外型尺寸,提高了输出功率和转矩。③通过精密的铝合金转子和严格的动平衡,使电动机在高速时振动级达到了V3级。④可以选择不同的排风

FANUC i系统常见有报警信息的故障排除

FANUC 0i系统常见有报警信息的故障排除 ??? FANUC 0i数控系统具有较强的自诊断功能,对于一些常见的故障,通过报警信息,对应维修说明书,能够解决许多问题。下面介绍几个常见报警故障的处理方法。 1、500好报警(超行程报警)的排除方法 在数控机床操作的过程中超行程报警经常出现,由于惯性的原因,当移动轴压下行程开关时,需减速停止,同时,系统出现500号报警,并同时显示报警信息为过行程及过行程的坐标轴。 下面是解除“500 过行程:+X”报警的基本步骤: 1)进给轴选择旋钮拨到“X”轴处; 2)进给倍率选择旋钮拨到“× 1”处; 3)旋转手摇脉冲发生器使X轴向负方向移动,离开极限位置; 4)按下MDI键盘上的“RESET”键,报警信息消失。 2、90号报警(返回参考点位置异常)的排除方法 报警条件:当返回参考点位置偏差过大或CNC没有收到伺服电机编码器转信号,出现90号报警。 解除步骤: 1)确认DGN.300中的值(允许位置偏差量)大于128。否则提高进给速度,改变倍率。2)确认电机回转是否大于1转。小于1转,说明返回的起始位置过近。调整到远一些。 3)确认编码器的电压是否大于4.75V(拆下电机后罩,测编码器印制板的+5――0V),如果低于4.75V,更换电池。 4)如果不是上述问题,一定是硬件出了问题:更换编码器。 3、401号报警(伺服准备信号报警) 报警条件:伺服放大器的准备信号(VRDY)没有接通,或者运行时信号关断。 解除步骤: 1)PSM控制电源是否接通;

2)急停是否解除; 3)最后的放大器JX1B插头上是否有终端插头; 4)MCC是否接通,如果除了PSM连接的MCC外,还有外部MCC顺序电路,同样要检查。 5)驱动MCC的电源是否接通; 6)断路器是否接通; 7)PSM或SPM是否发生报警。 如果伺服放大器周围的强电电路没有问题,更换伺服放大器;如果以上措施都不能解决问题,更换主轴控制卡。 ------------------------------------------ FANUC 0i系统常见无报警信息的故障排除 1、诊断功能的使用 数控系统发生故障后,如无报警信息,通过系统的诊断画面进行故障判断。系统的诊断画面在机床出现异常时,诊断功能提供的报警信号和监控数据为故障判断提供了判断的依据。 ????? 调出诊断画面的操作方法如下: 诊断号的注释见附录2 2、利用诊断功能诊断故障 如何有效地使用诊断功能提供的诊断信息来帮助查找和排除故障呢?这一定是我们最为关注的问题。接着来学习如何使用诊断功能去解决一些在实际中经常出现的一些隐性故障。 (1)诊断号000为1时,表明系统正在执行辅助功能(M指令)。在辅助功能的执行过程中,000号将会保持为1,直到辅助功能执行完了信号到达为止。因此,当出现辅助功能执行时间超出正常值时,可能是辅助功能的条件未满足。所以出现无报警的异常,查找故障点时,若诊断号000为1,可以首先检查辅助功能所要完成的机床动作是否已经完成。 故障现象:一数控机床在自动运行状态中,每当执行M8(切削液喷淋)这一辅助功能指令时,加工程序就不再往下执行了。此时,管道是有切削液喷出的,系统无任何报警提示。

FANUC 0i系统故障报警信息

FANUC 0i系统故障报警信息 [ 内容简介] 总结本次故障,虽然在报警信号信息屏幕上所显示的是系统报警,给人的第一感觉就是数控系统出现问题了,但不是绝对都是这样的,这个故障就是一个例外,这实质上是一个外围故障。 1、报警信息的查看方法 数控系统可对其本身以及其相连的各种设备进行实时的自诊断。当数控机床出现不能保证正常运行的状态或异常都可以通过数控系统强大的功能,对其数控系统自身及所连接的各种设备进行实时的自诊断。当数控机床出现不能满足保证正常运行的状态或异常时,数控系统就会报警,并将在屏幕中显示相关的报警信息及处理方法。这样,就可以根据屏幕上显示的内容采取相应的措施。 一般情况下,系统出现报警时,屏幕显示就会跳转到报警显示屏幕,显示出报警信息,如图所示:

某些情况下,出现故障报警时,不会直接跳转到报警显示屏幕,如图所示: FANUC 0i数控系统提供了报警履历显示功能,其最多可存储并在屏幕上显示的50个最近出现的报警信息。大大方便了对机床故障的跟踪和统计工作。显示报警履历的操作如下:

2、FANUC 0i数控系统报警的分类 FANUC 0i数控系统的报警信息很多,可以归纳为以下类别,便于查找。 表7.1FANUC 0i数控系统报警分类 3、常见报警的故障排除思路 数控机床是当代高新技术机、电、光、气一体化的结晶,电气复杂,管路交叉林立,故障现象也是千奇百怪,各不相同。如何能

迅速找出故障、隐患,并及时排除?这是数控机床维修人员所面临的最现实、最直接的问题。 在这里,我们将以最常碰到的故障为例,学习使用FANUC 0i 数控系统提供的丰富的维修功能进行故障排除的方法。为方便起见,把由机床厂家根据不同的机床结构所可以预见的异常情况汇总后,由机床厂家自己编写错误代码和报警信息,这类故障称为外围报警(这是相对于数控系统而言)。也就是说不同结构类型的机床就会有不同的外部故障的错误代码和报警信息。而由数控系统生产厂家根据数控系统部件所能预见的异常情况汇总后,所编写的错误代码和报警信息,这类故障称为系统报警(数控系统故障)。数控系统故障的错误代码和报警信息不会因不同结构类型的机床而改变,不同型号的数控系统的系统报警可能会有所不同。系统报警是数控系统生产厂家在数控系统传递到机床厂家之前就编写好的,是固定不变的,机床厂家没法对其进行编辑和增删。 在一般情况下,外围故障的发生机率较系统故障的机率要高。不同结构类型的机床就会有不同的外围故障,而若要能够做到对外围故障做出快速准确的定位和排除,就必须对你所要维修的机床的机械结构、电气原理、数控系统、各个机床动作、操作方法有一个全面的认识。若在机床正常的时候,对机床的每一个动作进行仔细的观察,便能够在机床异常(也就是说机床动作不能正常进行)时,根据平时观察所得与之对比,从而做到对故障的快速诊断与排除。与此同时,高效地使用FANUC 0i系统提供的丰富的维修功能,包

rexroth伺服驱动器故障代码

C204:(伺服电机编码器接头接触不好) C601: C602:回零故障。 (将S-0-0288显示出来的数值写到S-0-0289上即可解决) E257:直流限制功能发生作用。说明驱动器超载。 (青岛二厂新两鼓成型机径向后压辊电机通电后出现自激吱吱声,一会驱动器便出现报警参数E257,随后又出现F219。最后查原因是电机三相相序接错了) E410:不能随动或扫描0# 地址。 F219:电机过热关断。 F220: 负载势能超出伺服驱动器吸收能力。 (青岛二厂老厂18V两鼓成型机在进行第十一步侧压辊反包滚压动作时,主鼓在侧压辊反包滚压动作结束、旋转停止时,主轴伺服驱动器报警F220。而在其它正、反转动作时则没有问题。将S-0-0100参数由原来的4﹒5改变为10;将S-0-0101参数由7改变为5后将问题解决。小魏说:如果再不能解决问题,也可用将各个驱动器上顶部的L1和L2两个端子点分别串联在一起的方法加以解决) F228:过分偏差。 (青岛二厂新两鼓成型机调试时主机鼓伺服曾经出现过这个报警,查其原因是连接编码器的齿型带过于松弛,信号跳动变化太大所致。主机机械制动闸脱离不干净或机械旋转系统捌劲,也会出现这个报警。用加大S-0-0159的值加以解决) F237:设定的位置或速度值超出系统(伺服驱动器)允许的最大值。 (青岛黄海橡胶集团公司新厂19V两鼓成型机试车时在后压辊径向伺服驱动器上曾经出现过这个报警信号,表现为后压辊径向运转速度非常的慢。就象是齿数比给定的不对一样。但将伺服参数再次拷贝(F5)一遍就好了) (在调试上海载重轮胎厂工业胎成型机时,当从DriveTop看完主机驱动参数将其关闭后,成型鼓正转有且正常,而反转没有,一起动便出现F237报警.经查看是S_393<控制值方式为模数格式>的最后一位由0变为1所致.复原为0便好了) F434: 紧急停止.伺服驱动器紧急停止功能起动. F822:伺服电机编码器信号没有或太小。 F878:速度环出错。 (青岛二厂新两鼓成型机调试时主机鼓伺服曾经出现过这个报警,查其原因是连接主鼓电机和主鼓轴的齿型带太松弛,转动时齿型带跳动,跳齿时电机有时过载所致。 排除机械问题外,用增加点C-0018参数值或减少点C-0017参数值解决。 当旋转轴力矩不够时,如电机慢速动作正常,转换快速旋转时却转动不起开,伺服驱动器显示出F878。用适当增加S100值,减少S101值来解决问题) F2820 = F220: 制动电阻过载. (上海载重如皋轮胎厂23V大两鼓工程胎试车时突然出现报警,主鼓驱动器出现F2820 按复位钮后报警解除.可以点动主鼓正反转.但过了一会后报警会再次出现,即使不转动主鼓.后查得是外接电阻器<正常阻值5Ω>连接线断路所致. 如果是在刚刚开使试车出现此报警则应先加大速度循环时间[如P04速度环滤波时间<滤波周期>]常数和降低轴最高转速S91试一试)

FANUC_0i_Mate_数控系统主轴驱动的连接..

FANUC 0i Mate 数控系统主轴驱动的连接 FANUC 0i Mate系统主轴控制可分为主轴串行输出/主轴模拟输出(Spindle serial output/Spindle analog output)。用模拟量控制的主轴驱动单元(如变频器)和电动机称为模拟主轴,主轴模拟输出接口只能控制一个模拟主轴。按串行方式传送数据(CNC给主轴电动机的指令)的接口称为串行输出接口;主轴串行输出接口能够控制两个串行主轴,必须使用FANUC的主轴驱动单元和电动机。 1、FANUC 0i MateC 数控系统模拟主轴的连接如下图: 图5-6 802C系统与变频器的连接 系统与主轴相关的系统接口有: JA40:模拟量主轴的速度信号接口(0~10V),CNC输出的速度信号(0-10V)与变频器的模拟量频率设定端连接,控制主轴电机的运行速度。 JA7A:串行主轴/主轴位置编码器信号接口,当主轴为串行主轴时,与主轴变频器的JA7B连接,实现主轴模块与CNC系统的信息传递;当主轴为模拟量主轴时,该接口又是

主轴位置编码的主轴位置反馈接口。 2、FANUC Oi Mate主轴相关参数表5.7 FANUC Oi Mate主轴相关参数

1)FANUC 0i的模拟主轴设置和siemens802s/c的模拟主轴设置基本类似,也可以分为单极性主轴和双极性主轴。单/双极性主轴的设置首先通过CNC主轴参数3706#6、#7设置极性。 TCW、CWM为主轴速度输出时电压极性。 其次,通过变频器参数选择频率控制输入信号的类型,以FUJI FRENIC-Multi为例,设置F01为1。

发那科机器人常见故障代码和故障处理方法

常用故障代码和故障排除方法 伺服 - 001操作面板紧急停止 SRVO- 001 Operator panel E-stop [现象]按下了操作箱/操作面板的紧急停止按扭。 SYST-067面板HSSB断线报警同时发生,或者配电盘上的LED(绿色)熄灭时,主板(JRS11)-配电盘(JRS11)之间的通信有异常,可能是因为电缆不良、配电盘不良、或主板不良。(注释) [对策1]解除操作箱/操作面板的紧急停止按扭。 [对策2]确认面板开关板(CRM51)和紧急停止按扭之间的电缆是否断线,如果断线,则更换电缆。 [对策3]如果在紧急停止解除状态下触点没有接好,则是紧急停止按扭的故障。逐一更换开关单元或操作面板。 [对策4]更换配电盘。 [对策5]更换连接配电盘(JRS11)和主板(JRS11)的电缆。 在采取对策6之前,完成控制单元的所有程序和设定内容的备份。 [对策6]更换配电盘。 (注释)SYST-067面板HSSB断线报警同时发生,或RDY LED熄灭时,有时会导致下面的报警等同时发生。(参阅示教操作盘的报警历史画面) 伺服-001操作面板紧急停止 伺服-004栅栏打开 サーボ-007外部紧急停止 伺服-204外部(SVEMG异常)紧急停止 伺服-213保险丝熔断(面板PCB) 伺服-280SVOFF输入 伺服 - 002示教操作盘紧急停止 SRVO- 002 Teach pendant E-stop [现象]按下了示教操作盘的紧急停止按扭。 [对策1]解除示教操作盘的紧急停止按扭。 [对策2]更换示教操作盘。 伺服 - 003紧急时自动停机开关 SRVO- 003 Deadman switch released [现象]在示教操作盘有效的状态下,尚未按下紧急时自动停机开关。 [对策1]按下紧急时自动停机开关并使机器人操作。 [对策2]更换示教操作盘。 伺服 - 021SRDY断开(组:i轴:j) SRVO- 021 SRDY off (Group:i Axis:j) [现象]当HRDY断开时,虽然没有其他发生报警的原因,SRDY处在断开状态。(所谓HRDY,就是主机相对于伺服发出接通还是断开伺服放大器的电磁接触器的信号。SRDY是伺服相对于主机发出伺服放大器是否已经停止的信号。

(EcoDrive)DKC伺服驱动器故障排除手册

力士乐EcoDrive驱动器故障排除手册

1诊断信息说明............................................................................1–1 诊断信息说明的概述.........................................................................................1–1诊断信息的类型...........................................................................................................1–1 诊断信息的结构...........................................................................................................1–1 驱动模块上的显示器...................................................................................................1–2 2诊断信息F和诊断信息E的说明............................................2–1 错误诊断信息F.................................................................................................2–1 F207 切换至未初始化运行模式...............................................................................2–2 F208 UL电机类型已变............................................................................................2–2 F209 PL负载参数默认值.........................................................................................2–3 F218 放大器过热关机...............................................................................................2–3 F219 电机过热关机...................................................................................................2–3 F221 电机温度监视缺陷...........................................................................................2–4 F226 电源部分欠电压...............................................................................................2–4 F228 过大偏差..........................................................................................................2–5 F229 编码器故障:象限错误...................................................................................2–5 F233 外部电源错误...................................................................................................2–5 F236 位置反馈差过大...............................................................................................2–6 F237 位置指令差过大...............................................................................................2–7 F242 编码器故障:信号过小...................................................................................2–7 F245 外部编码器故障:象限错误...........................................................................2–8 F248 蓄电池电压过低...............................................................................................2–8 F249 主驱动器编码器故障:信号太小...................................................................2–9 F252 主驱动编码器故障:象限错误.......................................................................2–9 F253 增量编码调制器:脉冲频率太高...................................................................2–9 F254 增量编码器,硬件故障.................................................................................2–10 F255 外部电源DAE 02错误.................................................................................2–10 F267 内部硬件同步错误.........................................................................................2–10 F268 制动器错误.....................................................................................................2–10 F270 回零开关电源错误.........................................................................................2–11 F271 移动限位开关电源错误.................................................................................2–11 F272 探头输入电源错误.........................................................................................2–12 F273 急停开关电源错误.........................................................................................2–12 F276 绝对编码器超出允许窗口.............................................................................2–12 F280 与地短路.........................................................................................................2–13 F316 电源软启动故障.............................................................................................2–13 F318 电源过热........................................................................................................2–13 F320 旁路器过载.....................................................................................................2–13 F360 电源过流........................................................................................................2–14 F369 电源的24V、15V、5V电压故障................................................................2–14 F380 电源对地短路.................................................................................................2–14 F381 主回路故障.....................................................................................................2–14

fanuc伺服驱动器的常见故障(1)

FANUC交流速度控制单元有多种规格,早期的交流伺服为模拟式,目前一般都使用数字式伺服,在数控机床中,常用的规格型号有以下几种: 1)与FANUC交流伺服电动机AC0、5、10、20M、20、30、30R等配套的模拟式交流速度控制单元。它是FANUC最早的AC伺服产品,速度控制单元采用正弦波PWM控制,大功率晶体管驱动。在结构形式上,可以分单轴独立型、双轴一体型、三轴一体型三种基本结构。单轴独立型速度控制单元,常用的型号有 A06B-6050-H102/H103/H104/H113等;双轴一体型速度控制单元,常用的型号有A06B-6050-H201/H202/H203等;三轴一体型速度控制单元,常用的型号有A06B-6050-H401/H402/H403/H404等,多与FANUC 11、0A、0B等系统配套使用。 2)与FANUC交流S (L、T)系列伺服电动机配套的S (L、C)系列数字式交流伺服驱动器,它是FANUC中期的AC伺服产品,驱动器采用全数字正弦波PWM控制,IGBT驱动。其中,S系列用量最广,规格最全;L 系列只有单轴型结构,常用的型号有A06B-6058-H001-H007/H102/H103等;C系列有单轴型、双轴型两种结构,常用的单轴型有A06B-6066-H002-H006等规格,常用的双轴型有A06B-6066-H222~H224/H233、H234、H244等规格。 作为常用规格,S系列有单轴型、双轴型、三轴型三种结构,常用的单轴型有 A06B-6058-H001~H007/H023/H025等;常用的双轴型有A06B-6058-H221~H231/H251-H253等规格;常用的三轴型有A06B-6058-H331-H334等规格;多与FANUC 0C、11、15系统配套使用。 3)与FANUC α/αC/αM/αL系列伺服电动机配套的FANUC α系列数字式交流伺服驱动器,它是FANUC 当前常用的AC伺服产品,驱动器带有IPM智能电源模块,采用全数字正弦波PWM控制,IGBT驱动。FANUC α系列数字式交流速度控制单元有如下两种基本结构形式: ①各驱动公用电源模块(PSM)、伺服驱动单元(SVM)为模块化安装的结构形式,驱动器可以是单轴型、双轴型与三轴型三种结构。常用的单轴型有A06B-6079-H101~H106等,常用的双轴型有 A06B-6079-H201~H208等规格,常用的三轴型有A06B-6079/6080-H301~H307等规格,多与FANUC 0C、15A/B、16A/B、18A、20、21系统配套使用。 ②电源与驱动器一体化(SVU型)的结构形式,各驱动器单元可以独立安装,有单轴型、双轴型两种结构,常用的单轴型有A06B-6089-H10l~H106等规格,常用的双轴型有A06B-6089-H201~H210等规格,多与FANUC 0C、0D、15A/B、16A/B、18A、20、21系统配套使用。 4)与FANUC β系列伺服电动机配套的FANUC β系列数字式交流伺服驱动器,它亦是FANUC当前常用的AC伺服产品,采用电源与驱动器一体化(SVU型)的结构,驱动器带有IPM智能电源模块,采用全数字正弦波PWM控制,IGBT驱动。可以使用PWM接口、I/OLink接口,亦可以采用光缆接口。型号为 A06B-6093-H101~H104/H151~H154//H111-H114,多与FANUC 0TD、PM01等经济型数控系统配套使用。 5)与FANUC αi系列伺服电动机配套的FANUCα i系列伺服驱动器是FANUC公司的最新产品,它在FANUC α系列的基础上作了性能改进。产品通过特殊的磁路设计与精密的电流控制以及精密的编码器速度反馈,使转矩波动极小,加速性能优异,可靠性极高。电动机内装有脉冲/转极高精度的编码器,作为速度、位置检测器件,使系统的速度、位置控制达到了极高的精度。 α i系列驱动器由电源模块(PSM)、伺服驱动器(SVM)、主轴驱动器(SPM)等组成,伺服驱动与主轴驱动共用电源模块,组成伺服/主轴一体化的结构。伺服驱动模块有单轴型、双轴型、三轴型三种基本规格。标准型(FANUC αi系列)为200VAC输入,常用的单轴型有A06B-6114-H103~H109等,双轴型有 A06B-6114-H201-H211等,三轴型有A06B-6114-H301~H304等。高电压输入型(FANUC α i(HV)系列)为400VAC 输入,常用的单轴型有A06B--6124-H102~H109等,双轴型有A06B-6124-H201-H211等,目前尚无三轴型结构。FANUC αi系列交流数字伺服配套的数控系统主要有FANUC 0i、FANUC 15i/150i、 FANUC16i/18i/l60i/180i/20i/21i等。

C401 驱动器使能时

C401 驱动器使能时,不允许切换C402 只允许在没有上位控制时C500 复位1类诊断,错误复位C600 驱动器控制的回零过程指令C601 只在驱动器使能时才能够回零C602 距离回零开关-参考标记错误C604 绝对编码器不能回零C606 未探测出参考标记C700 基本参数装载C702 默认参数不可用C703 默认参数无效C704 参数不可拷贝C800 调入默认参数C801 参数默认值错误(->S-0-0021)C802 密码锁定D300 指令调整换算D301 驱动器未做好换算指令准备D302 电机转矩/力太小,无法运动D303 指令启动时驱动器处于控制状态D304 偏置计算错误D305 驱动器使能被拒绝D306 系统断电D307 驱动器不运动D308 无法调整异步电机D309 进入阶段4 D310 输入主密码D311 不能确定换算偏置D312 在换算过程中超过运动范围D500 指令获取标志位置D501 要求增量编码器D600 取消回参考点过程指令D700 轴禁止指令D701 仅可在驱动器无使能时使用轴禁止指令D800 测量轮模式指令D801 测量轮不能运行D900 自动控制环调整指令D901 启动要求驱动器使能D902 电机反馈数据无效D903 惯量检测失败D904 增益调整失败D905 位移范围无效,P-0-0166和P-0-0167 D906 位移范围超出2.2 状态诊断信息A A000 通讯阶段0 A001 通讯阶段1 A002 通讯阶段2 A003 通讯阶段3 A009 SERCOS接口的自动波特率检测A010 驱动停止A012 控制和功率部分运行准备就绪A013 接通电源准备就绪A100 驱动器处于转矩控制模式下A101 驱动器处于速度控制模式下A102 使用编码器1的位置模式A103 使用编码器2的位置模式A104 位置模式,无滞后,编码器1 A105 位置模式,无滞后,反馈2 A106 驱动器控制的插补,编码器1 A107 驱动器控制的插补,编码器2 A108 驱动器控制的插补,无滞后,编码器1 A109 驱动器控制的初步,无滞后,编码器2 A110 速度同步,虚拟主驱动器A111 速度同步,真实主驱动器A112 相位同步,编码器1, 虚拟主驱动器A113 相位同步,编码器2. 虚拟主驱动器A114 相位同步,编码器1. 真实主驱动器A116 相位同步,无滞后,编码器1, 虚拟主驱动器A117 相位同步,无滞后,编码器2, 虚拟主驱动器A118 相位同步,无滞后,编码器1, 真实主驱动器A128 凸轮轴,编码器1, 虚拟主驱动器A129 凸轮轴,编码器2, 虚拟主驱动器A130 凸轮轴,编码器1, 真实主驱动器A132 凸轮轴,无滞后,编码器1, 虚拟主驱动器A133 凸轮轴,无滞后,编码器2, 虚拟主驱动器A134 凸轮轴,无滞后,编码器1, 真实主驱动器A150 驱动器控制的定位,编码器1 A151 驱动器控制的定位,编码器1,无滞后A152 驱动器控制的定位,编码器2 A153 驱动器控制的定位,编码器2,无滞后A154 编码器1,驱动器受控的位置模式A155 编码器1,无滞后,驱动器受控的位置模式A156 编码器2,驱动器受控的位置模式A157 编码器2,无滞后,驱动器受控的位置模式A206 数据处理块模式,编码器1 A207 数据处理块模式,无滞后,编码器1 A208 正向点动模式A210 数据处理块模式,编码器2 A211 数据处理块模式,无滞后,编码器2 A218 负向点动模式A400 自动的驱动器检查和调整A401 驱动器减速至自动模式A402 驱动器处于自动模式A800 不明运行模式 力士乐伺服驱动器故障代码 故障代码故障描述对策C0270 电机编码器数据读取错误电机编码器回路故障,检查可能出现的三个地方:电机编码器,反馈线及CSB的编码器反馈口。C0285 电机的型号参数P-0-4014有误。确认电机型号及编码器的型号(P-0-4014)。检查可能出现的三个地方:电机编码器,反馈线及CSB的编码器反馈口。E2074 F2076 C0210 C0220 C0271 一些相关的编码器故障报警C0201 无效的参数,当切换到操作模式P4时,内部的参数被检测,有参数超出它定义的范围时就出现该报警。(1)查看S-0-0022参数,该参数包含所有的无效参数,再更改无效参数(02,03版固化软件);(2)查看S-0-0423参数,该

相关文档