文档库 最新最全的文档下载
当前位置:文档库 › 多维高斯分布讲解

多维高斯分布讲解

多维高斯分布讲解
多维高斯分布讲解

多维高斯分布讲解

高斯分布

高斯分布:1维高斯分布公式:

多维高斯分布公式:

对于1维的来说是期望,是方差;对于多维来说D表示X的维数,表示D*D的协方差矩阵,定义为

,为该协方差的行列式的值。

代码如下:

m=[0 1]'; S=eye(2);

x1=[0.2 1.3]'; x2=[2.2 -1.3]';

pg1=comp_gauss_dens_val(m,S,x1)

pg2=comp_gauss_dens_val(m,S,x2)

其中comp_gauss_dens_val函数文件的代码如下:

function [z]=comp_gauss_dens_val(m,S,x)

[l,c]=size(m);

z=(1/( (2*pi)^(l/2)*det(S)^0.5) )*exp(-0.5*(x-m)'*inv(S)*(x-m));

题目大致意思就是判断x是属于w1还是w2?

代码如下:

P1=0.5;

P2=0.5;

m1=[1 1]';

m2=[3 3]';

S=eye(2);

x=[1.8 1.8]';

p1=P1*comp_gauss_dens_val(m1,S,x)

p2=P2*comp_gauss_dens_val(m2,S,x)

题目大致意思就是给出正态分布的期望和方差构造出一些服从这个分布的数据点代码如下:

% Generate the first dataset (case #1)

randn('seed',0);

m=[0 0]';

S=[1 0;0 1];

N=500;

X = mvnrnd(m,S,N)';

% Plot the first dataset

figure(1), plot(X(1,:),X(2,:),'.');

figure(1), axis equal

figure(1), axis([-7 7 -7 7])

% Generate and plot the second dataset (case #2) m=[0 0]';

S=[0.2 0;0 0.2];

N=500;

X = mvnrnd(m,S,N)';

figure(2), plot(X(1,:),X(2,:),'.');

figure(2), axis equal

figure(2), axis([-7 7 -7 7])

% Generate and plot the third dataset (case #3) m=[0 0]';

S=[2 0;0 2];

N=500;

X = mvnrnd(m,S,N)';

figure(3), plot(X(1,:),X(2,:),'.');

figure(3), axis equal

figure(3), axis([-7 7 -7 7])

% Generate and plot the fourth dataset (case #4) m=[0 0]';

S=[0.2 0;0 2];

N=500;

X = mvnrnd(m,S,N)';

figure(4), plot(X(1,:),X(2,:),'.');

figure(4), axis equal

figure(4), axis([-7 7 -7 7])

% Generate and plot the fifth dataset (case #5) m=[0 0]';

S=[2 0;0 0.2];

N=500;

X = mvnrnd(m,S,N)';

figure(5), plot(X(1,:),X(2,:),'.');

figure(5), axis equal

figure(5), axis([-7 7 -7 7])

% Generate and plot the sixth dataset (case #6) m=[0 0]';

S=[1 0.5;0.5 1];

N=500;

X = mvnrnd(m,S,N)';

figure(6), plot(X(1,:),X(2,:),'.');

figure(6), axis equal

figure(6), axis([-7 7 -7 7])

% Generate and plot the seventh dataset (case #7) m=[0 0]';

S=[.3 0.5;0.5 2];

N=500;

X = mvnrnd(m,S,N)';

figure(7), plot(X(1,:),X(2,:),'.');

figure(7), axis equal

figure(7), axis([-7 7 -7 7])

% Generate and plot the eighth dataset (case #8) m=[0 0]';

S=[.3 -0.5;-0.5 2];

N=500;

X = mvnrnd(m,S,N)';

figure(8), plot(X(1,:),X(2,:),'.');

figure(8), axis equal

figure(8), axis([-7 7 -7 7])

即生成了8副图像

混合高斯模型的简要介绍

混合高斯模型跟高斯变量之和看起来有一点像, 注意不要把它们弄混淆了. 混合高斯模型给出的概率密度函数实际上是几个高斯概率密度函数的加权和: 计算均值和方差的公式不仅适用于几个(多维)高斯分布混合的情况, 还适用于非高斯分布的情况. 高斯变量之和就没什么好说的了, 几个高斯变量之和是一个新的高斯变量. 原理: 高斯模型就是用高斯概率密度函数(正态分布曲线)精确地量化事物,将一个事物分解为若干的基于高斯概率密度函数(正态分布曲线)形成的模型。 对图像背景建立高斯模型的原理及过程:图像灰度直方图反映的是图像中某个灰度值出现的频次,也可以认为是图像灰度概率密度的估计。如果图像所包含的目标区域和背景区域相比比较大,且背景区域和目标区域在灰度上有一定的差异,那么该图像的灰度直方图呈现双峰-谷形状,其中一个峰对应于目标,另一个峰对应于背景的中心灰度。对于复杂的图像,尤其是医学图像,一般是多峰的。通过将直方图的多峰特性看作是多个高斯分布的叠加,可以解决图像的分割问题。 在智能监控系统中,对于运动目标的检测是中心内容,而在运动目标检测提取中,背景目标对于目标的识别和跟踪至关重要。而建模正是背景目标提取的一个重要环节。 我们首先要提起背景和前景的概念,前景是指在假设背景为静止的情况下,任何有意义的运动物体即为前景。建模的基本思想是从当前帧中提取前景,其目的是使背景更接近当前视频帧的背景。即利用当前帧和视频序列中的当前背景帧进行加权平均来更新背景,但是由于光照突变以及其他外界环境的影响,一般的建模后的背景并非十分干净清晰,而高斯混合模型是是建模最为成功的方法之一。 混合高斯模型使用K(基本为3到5个)个高斯模型来表征图像中各个像素点的特征,在新一帧图像获得后更新混合高斯模型, 用当前图像中的每个像素点与混合高斯模型匹配,如果成功则判定该点为背景点, 否则为前景点。通观整个高斯模型,主要是有方差和均值两个参数决定,对均值和方差的学习,采取不同的学习机制,将直接影响到模型的稳定性、精确性和收敛性。由于我们是对运动目标的背景提取建模,因此需要对高斯模型中方差和均值两个参数实时更新。为提高模型的学习能力,改进方法对均值和方差的更新采用不同的学习率;为提高在繁忙的场景下,大而慢的运动目标的检测效果,引入权值均值的概念,建立背景图像并实时更新,然后结合权值、权值均值和背景图像对像素点进行前景和背景的分类。 到这里为止,混合高斯模型的建模基本完成,我在归纳一下其中的流程,首先初始化预先定义的几个高斯模型,对高斯模型中的参数进行初始化,并求出之后将要用到的参数。其次,对于每一帧中的每一个像素进行处理,看其是否匹配某个模型,若匹配,则将其归入该模型中,并对该模型根据新的像素值进行更新,若不匹配,则以该像素建立一个高斯模型,初始化参数,代理原有模型中最不可能的模型。最后选择前面几个最有可能的模型作为背景模型,为背景目标提取做铺垫。 目前,运动物体检测的问题主要分为两类,摄像机固定和摄像机运动。对于摄像机运动的运动物体检测问题,比较著名的解决方案是光流法,通过求解偏微分方程求的图像序列的光流场,从而预测摄像机的运动状态。对于摄像机固定的情形,当然也可以用光流法,但是由于光流法的复杂性,往往难以实时的计算,所以我采用高斯背景模型。因为,在摄像机固定的情况下,背景的变化是缓慢的,而且大都是光照,风等等的影响,通过对背景建模,对一幅给定图像分离前景和背景,一般来说,前景就是运动物体,从而达到运动物体检测的目的。 单分布高斯背景模型单分布高斯背景模型认为,对一个背景图像,特定像素亮度的分布满足高斯分布,即对背景图像B,(x,y)点的亮度满足: IB (x,y) ~ N(u,d)

高斯烟羽模型

模型假设: 1、 坐标系 高斯模型的坐标系如图2.1所示,原点为排放点(若为高架源,原点为排放点在地面的投影),x 轴正向为风速方向,y 轴在水平面上垂直于x 轴,正向在x 轴的左侧,z 轴垂直于水平面xoy ,向上为正向。在此坐标系下烟流中心线或烟流中心线在xoy 面的投影与x 轴重合。 2、模型假设 (1)污染物的浓度在y 、z 轴上的分布是高斯分布(正态分布)的; (2)污染源的源强是连续且均匀的,初始时刻云团内部的浓度、温度呈均匀分布; (3)扩散过程中不考虑云团内部温度的变化,忽略热传递、热对流及热辐射; (4)泄漏气体是理想气体,遵守理想气体状态方程; (5)在水平方向,大气扩散系数呈各向同性; (6)取x 轴为平均风速方向,整个扩散过程中风速的大小、方向保持不变,不随地点、时间变化而变化; (7)地面对泄漏气体起全反射作用,不发生吸收或吸附作用; (8)整个过程中,泄漏气体不发生沉降、分解,不发生任何化学反应等。 3、模型公式推导 由正态分布假设可以导出下风向任意一点X (x,y,z )处泄漏气体浓度的函数为: 2 2)(),,(bz ay e e x A z y x X --= (1) 由概率统计理论可以写出方差的表达式为:

???? ?????==????∞∞∞∞00220022Xdz Xdz z Xdy Xdy y z y σσ (2) 由假设可以写出源强的积分公式: ??∞∞-∞∞-=uXdydz Q (3) 式中:y σ、z σ为泄漏气体在y 、z 方向分布的标准差,单位为 m ;X (x,y,z )为任一点处泄漏气体的浓度,单位为 kg/m 3;u 为平均风速,单位为 m/s ;Q 为源强(即泄漏速度),单位为 kg/s ; 将(1)式代入(2)式,积分可得: ??? ????==2221 21z y b a σσ (4) 将(1)式和(4)式代入(3)式,积分可得: z y u Q x A σσπ2=)( (5) 再将(4)式和(5)式代入(1)式,可得: ???????????? ??+-=222222exp 2,,z y z y z y u Q z y x X σσσσπ)( (6) 上式为无界空间连续点源扩散的高斯模型公式,然而在实际中,由于地面的存在,烟羽的扩散是有界的。根据假设可以把地面看做一镜面,对泄漏气体起全反射作用,并采用像源法处理,原理如图2.2所示。可以把任一点p 处的浓度看做两部分的贡献之和:一部分是不存在地面时所造成的泄漏物浓度;一部分是由于地面反射作用增加的泄漏物浓度。该处的泄漏物浓度即相当于不存在地面时由位于(0,0,H )的实源和位于(0,0,-H )的像源在P 点处所造成的泄漏物浓度之和。

高斯分布背景模型原理

高斯分布背景模型原理 背景差分法的关键是背景图像的描述模型即背景模型,它是背景差分法分割运动前景的基础。背景模型主要有单模态和多模态两种,前者在每个背景像素点上的颜色分布比较集中,可以用单分布概率模型来描述,后者的分布则比较分散,需要用多分布概率模型来共同描述。在许多应用场景,如水面的波纹、摇摆的树枝,飘扬的红旗、监视器屏幕等,像素点的值都呈现出多模态特性。最常用的描述场景背景点颜色分布的概率密度模型(概率密度分布)是高斯分布(正态分布)。 1 单高斯分布背景模型 单高斯分布背景模型适用于单模态背景情形, 它为每个图象点的颜色建立了用单个高斯分布表示的模型) ,(,t t x N σμ其中下标t 表示时间。设图象点的当前颜色度量为t X ,若(,,)ttt p N X T μσ ≤ (这里p T 为概率阈值) , 则该点被判定为前景点, 否则为背景点(这时又称t X 与) ,(,t t x N σμ相匹配)。 在常见的一维情形中, 以t σ表示均方差, 则常根据/t t d σ的取值 设置前景检测阈值:若/t t d T σ>,则该点被判定为前景点, 否则为背 景点。 单高斯分布背景模型的更新即指各图象点高斯分布参数的更新。引入表示更新快慢的常数——更新率α, 则该点高斯分布参数的更新可表示为 1(1)t t t d μαμα+=-?+? (1)

21(1)t t t d σασα+=-?+? (2) 单高斯背景模型能处理有微小变化与慢慢变化的简单场景,当较复杂场景背景变化很大或发生突变,或者背景像素值为多峰分布(如微小重复运动)时,背景像素值的变化较快,并不是由一个相对稳定的单峰分布渐渐过度到另一个单峰分布,这时单高斯背景模型就无能为力,不能准确地描述背景了。]1[ 2 混合高斯分布背景模型 与单高斯背景模型不同,混合高斯背景模型对每个像素点用多个高斯模型混合表示。设用来描述每个像素的高斯分布共K 个(K 通常取 3—5个),象素uv Z 的概率函数: ,,,1()(,,)K u v j u v u v j u v j u v j P Z N Z ωμ ==∑∑ 其中,j uv ω是第j 个高斯分布的权值, 背景建模和更新过程(仅针对单个像素): 1.初始化:第一个高斯分布用第一帧图像该点的像素值作为均值或前N 帧图像该点的像素值的平均值作为均值,并对该高斯分布的权值取较大值(比其它几个高斯分布大)。其余的高斯分布的均值均为0,权重相等,所有高斯函数的方差取相等的较大值。 2.权值归一化 3.选取背景

混合高斯模型(Mixtures of Gaussians)和EM算法

混合高斯模型(Mixtures of Gaussians)和EM算法 这篇讨论使用期望最大化算法(Expectation-Maximization)来进行密度估计(density estimation)。 与k-means一样,给定的训练样本是,我们将隐含类别标签用表示。与 k-means的硬指定不同,我们首先认为是满足一定的概率分布的,这里我们认为满足多项 式分布,,其中,有k个值{1,…,k} 可以选取。而且我们认为在给定后,满足多值高斯分布,即。由 此可以得到联合分布。 整个模型简单描述为对于每个样例,我们先从k个类别中按多项式分布抽取一个, 然后根据所对应的k个多值高斯分布中的一个生成样例,。整个过程称作混合高斯模型。 注意的是这里的仍然是隐含随机变量。模型中还有三个变量和。最大似然估计为 。对数化后如下: 这个式子的最大值是不能通过前面使用的求导数为0的方法解决的,因为求的结果不是 close form。但是假设我们知道了每个样例的,那么上式可以简化为: 这时候我们再来对和进行求导得到:

就是样本类别中的比率。是类别为j的样本特征均值,是类别为j的样例的特征的协方差矩阵。 实际上,当知道后,最大似然估计就近似于高斯判别分析模型(Gaussian discriminant analysis model)了。所不同的是GDA中类别y是伯努利分布,而这里的z是多项式分布,还有这里的每个样例都有不同的协方差矩阵,而GDA中认为只有一个。 之前我们是假设给定了,实际上是不知道的。那么怎么办呢?考虑之前提到的EM 的思想,第一步是猜测隐含类别变量z,第二步是更新其他参数,以获得最大的最大似然估计。用到这里就是:

高斯光束的matlab仿真

题目:根据高斯光束数学模型,模拟仿真高斯光束在谐振腔中某一位置处的归一化强度分布并给出其二维、三维强度分布仿真图;用Matlab读取实际激光光斑照片中所记录的强度数据(读取照片中光斑的一个直径所记录的强度数据即可,Matlab读取照片数据命令为imread),用该数据画出图片中激光光斑的强度二维分布图,与之前数学模型仿真图对比。(如同时考虑高斯光束光斑有效截面半径和等相位面特点,仿真高斯光束光强、光斑有效截面半径以及等相位面同时随传播距离z的变化并给出整体仿真图可酌情加分。) 原始光斑如图1所示,用imread命令读入matlab后直接用imshow命令读取即可, CCD采集的高斯光束光强分布 图1 CCD采集的高斯光束强度分布 读入的数据是一个224 X 244的矩阵,矩阵中的数值代表光强分布。用读入的数据取中间一行(122行)画出强度分布如图2所示。

50 100150200 020406080100120140160180实验测量高斯曲线 图2 实验测量高斯曲线 用理论上的高斯曲线公式画出理论高斯曲线如图3所示。 -40 -30-20-10010203040 00.2 0.4 0.6 0.8 1 理论高斯曲线 图3 理论高斯曲线

M文件如下: A=imread('D:\documents\作业\激光原理与应用\高斯.bmp'); A1=A(:,122); x1=1:1:224; x2=-100:1:100; a2=exp(-x2.^2/10); figure imshow(A); axis off title('\fontsize{12}CCD采集的高斯光束光强分布'); figure plot(x2,a2,'linewidth',1,'color','b'); axis([-40 40 0 1.2]) title('\fontsize{12}实验测量高斯曲线') figure plot(x1,A1,'linewidth',1,'color','r') title('\fontsize{12}理论高斯曲线') axis([50 200 0 180]) 画三维强度分布。取图片矩阵的中间层,用mesh命令画出三维图如图4所示。 图4 三维强度分布 由于读入的图片有一行白边,需要手动去除掉,否则三维图会有一边整体竖起来,影响观察。最终的M文件如下。 A=imread('D:\documents\作业\激光原理与应用\高斯.bmp'); [high, width, color] = size(A); x=1:width; y=1:high-1; mesh(x', y', double(A(2:224,:,1))); grid on xlabel('x'),ylabel('y'),zlabel('z'); title('三维强度分布');

混合高斯模型算法原理

混合高斯模型算法原理 混合高斯模型是一种经典的背景建模算法,用于背景相对稳定情况下的运动目标检测。它由单高斯模型发展而来,对于多模态的背景有一定的鲁棒性,如:树叶晃动、水纹波动等。在介绍混合高斯模型前,首先介绍单高斯模型。 1. 单高斯背景模型: 单高斯模型将图像中每一个像素点的颜色值看成是一个随机过程,并假设该点的像素值出现的概率服从高斯分布。该算法的基本原理就是对每一个像素位置建立一个高斯模型,模型中保存该处像素的均值和方差。如,可设),(y x 处像素的均值为),(y x u ,方差为),(2y x σ,标准差为),(y x σ。由于随着视频图像序列的输入,模型参数不断更新,所以不同时刻模型参数有不同的值,故可将模型参数表示为三个变量t y x ,,的函数:均值),,(t y x u 、方差),,(2t y x σ、标准差),,(t y x σ。用单高斯模型进行运动检测的基本过程包括:模型的初始化、更新参数并检测两个步骤。 1)模型初始化 模型的初始化即对每个像素位置上对应的高斯模型参数进行初始化,初始化采用如下公式完成: ?? ???===init std y x init std y x y x I y x u _)0,,(_)0,,()0,,()0,,(22σσ (1) 其中,)0,,(y x I 表示视频图像序列中的第一张图像),(y x 位置处的像素值,init std _为一个自己设的常数,如可设20_=init std 。 2)更新参数并检测 每读入一张新的图片,判断新图片中对应点像素是否在高斯模型描述的范围中,如是,则判断该点处为背景,否则,判断该点处为前景。假设前景检测的结 果图为out put ,其中在t 时刻),(y x 位置处的像素值表示为),,(t y x output ,),,(t y x output 的计算公式如下: ???-?<--=otherwise t y x t y x u t y x I t y x output ,1)1,,()1,,(),,(,0),,(σλ (2) 其中,λ是自己设的一个常数,如可设5.2=λ。以上公式表示的含义是:若新的图片中相应位置的像素值与对应模型中像素的均值的距离小于标准差的λ倍,则该点为背景,否则为前景。 模型的更新采用如下公式: ?? ???=-?+-?-=?+-?-=),,(),,()],,(),,(I [)1,,()1(),,(),,()1,,()1(),,(2222t y x t y x t y x u t y x t y x t y x t y x u t y x u t y x u σσασασαα (3) 其中,参数α表示更新率,也是自己设的一个常数,该常数的存在可以使得模型在背景的缓慢变化时具有一定的鲁棒性,如光照的缓慢变亮或变暗等。

数学建模高斯扩散模型培训资料

数学建模高斯扩散模 型

§4-2高斯扩散模式 ū —平均风速; Q—源强是指污染物排放速率。与空气中污染物质的浓度成正比,它是研究空气污染问题的基础数据。通常: (ⅰ)瞬时点源的源强以一次释放的总量表示; (ⅱ)连续点源以单位时间的释放量表示; (ⅲ)连续线源以单位时间单位长度的排放量表示; (ⅳ)连续面源以单位时间单位面积的排放量表示。 δy—侧向扩散参数,污染物在y方向分布的标准偏差,是距离y的函数,m; δz—竖向扩散参数,污染物在z方向分布的标准偏差,是距离z的函数,m; 未知量—浓度c、待定函数A(x)、待定系数a、b; 式①、②、③、④组成一方程组,四个方程式有四个未知数,故方程式可解。 二、高斯扩散模式 (一)连续点源的扩散 连续点源一般指排放大量污染物的烟囱、放散管、通风口等。排放口安置在地面的称为地面点源,处于高空位置的称为高架点源。 1. 大空间点源扩散 高斯扩散公式的建立有如下假设:①风的平均流场稳定,风速均匀,风向平直;②污染物的浓度在y、z轴方向符合正态分布;③污染物在输送扩散中质量守恒; ④污染源的源强均匀、连续。 图5-9所示为点源的高斯扩散模式示意图。有效源位于坐标原点o处,平均风向与x轴平行,并与x轴正向同向。假设点源在没有任何障碍物的自由空间扩散,不考虑下垫面的存在。大气中的扩散是具有y与z两个坐标方向的二维正态分布,当两坐

标方向的随机变量独立时,分布密度为每个坐标方向的一维正态分布密度函数的乘积。由正态分布的假设条件②,参照正态分布函数的基本形式式(5-15),取μ=0,则在点源下风向任一点的浓度分布函数为: (5-16)式中 C—空间点(x,y,z)的污染物的浓度,mg/m3; A(x)—待定函数; σy、σz—分别为水平、垂直方向的标准差,即y、x方向的扩散参数,m。 由守恒和连续假设条件③和④,在任一垂直于x轴的烟流截面上有: (5-17) 式中 q—源强,即单位时间内排放的污染物,μg/s; u—平均风速,m/s。 将式(5-16)代入式(5-17), 由风速稳定假设条件①,A与y、z无关,考虑到③和④,积分可得待定函数A(x): (5-18) 将式(5-18)代入式(5-16),得大空间连续点源的高斯扩散模式 (5-19) 式中,扩散系数σy、σz与大气稳定度和水平距离x有关,并随x的增大而增加。当y=0,z=0时,A(x)=C(x,0,0),即A(x)为x轴上的浓度,也是垂直于x轴截面上污染物的最大浓度点C max。当x→∞,σy及σz→∞,则C→0,表明污染物以在大气中得以完全扩散。 2.高架点源扩散

高斯烟羽模型

高斯烟羽模型 Prepared on 22 November 2020

模型假设: 1、坐标系 高斯模型的坐标系如图所示,原点为排放点(若为高架源,原点为排放点在地面的投影),x轴正向为风速方向,y轴在水平面上垂直于x轴,正向在x轴的左侧,z 轴垂直于水平面xoy,向上为正向。在此坐标系下烟流中心线或烟流中心线在xoy面的投影与x轴重合。 2、模型假设 (1)污染物的浓度在y、z轴上的分布是高斯分布(正态分布)的; (2)污染源的源强是连续且均匀的,初始时刻云团内部的浓度、温度呈均匀分布; (3)扩散过程中不考虑云团内部温度的变化,忽略热传递、热对流及热辐射; (4)泄漏气体是理想气体,遵守理想气体状态方程; (5)在水平方向,大气扩散系数呈各向同性; (6)取x轴为平均风速方向,整个扩散过程中风速的大小、方向保持不变,不随地点、时间变化而变化; (7)地面对泄漏气体起全反射作用,不发生吸收或吸附作用; (8)整个过程中,泄漏气体不发生沉降、分解,不发生任何化学反应等。 3、模型公式推导 由正态分布假设可以导出下风向任意一点X(x,y,z)处泄漏气体浓度的函数为:

2 2 )(),,(bz ay e e x A z y x X --= (1) 由概率统计理论可以写出方差的表达式为: ???? ????? ==? ? ? ?∞ ∞∞ ∞ 220 22Xdz Xdz z Xdy Xdy y z y σσ (2) 由假设可以写出源强的积分公式: ? ? ∞ ∞ -∞ ∞-=uXdydz Q (3) 式中:y σ、z σ为泄漏气体在y 、z 方向分布的标准差,单位为 m ;X (x,y,z )为任一点处泄漏气体的浓度,单位为 kg/m 3;u 为平均风速,单位为 m/s ;Q 为源强(即泄漏速度),单位为 kg/s ; 将(1)式代入(2)式,积分可得: ??? ??? ? ==2 221 21z y b a σσ (4) 将(1)式和(4)式代入(3)式,积分可得: z y u Q x A σσπ2= )( (5) 再将(4)式和(5)式代入(1)式,可得:

正态分布和寿命问题的建模

误差问题的建模 ---正态分布的建立 正态分布模型最初是由高斯(Gauss )在研究误差理论时建立的。 对随机变量的高斯假定 设X 是可由物理手段测量的随机变量,μ是X 的稳定值(理想化的取值),则 εμ+=X , 并称με-=X 为测量误差. 对测量误差ε的统计建模 记误差ε的概率密度函数为)(εf ,求)(εf 的解析表示. 设对X 进行n 次独立观测,可得误差ε的样本 ,με-=i i x n i ,,2,1Λ=, 显然)()(με-=i i x f f 中含未知分布参数μ. 讨论未知分布参数μ应满足的条件. 由于n i εεε,,,2Λ的联合概率密度为 )() ; ,,,(1 21μμεεε-= ∏=n i i n x f L Λ. 根据最大似然法的思想,μ的值使L 最大,以最有利于样本n x x x ,,,21Λ的出现,故μ应满足 0=μ d dL , 进而 0) ()(log =--'-=∑μμμi i x f x f d L d ①

记)()()(εεελf f '=,则 ) () ()()(μμμλελ--'= -=i i i i x f x f x . 下面分析)(ελ的性质. 将未知常数μ的测量值的平均值用∑==n i i x n x 1 1替代,令 )()(),,,(1 1 21∑∑===-=n i i n i i n x x G ελλεεεΛ, 由①, 0),,,(21=n G εεεΛ. ② 又因为 01 1 =-=∑∑==x n x n i i n i i ε ,故n 个变量n εεε,,,21Λ的自由度为1-n ,令 )(121-+++-=n n εεεεΛ ③ 对②式微分,并注意③式的影响,得 0=?????+??=??i n n i i y G G G εεεε, 亦即 n i ελ ελ??=??,n i ,,2,1Λ=, 表明 c i i =??εελ) ((常数), 从而 b c +=εελ)((b 为常数), 进而 nb c G n i i n +=∑=1 21),,,(εεεεΛ, 由 01 =∑=n i i ε 可知0=b ,于是

数学建模高斯扩散模型

§4-2高斯扩散模式 ū —平均风速; Q—源强就是指污染物排放速率。与空气中污染物质的浓度成正比,它就是研究空气污染问题的基础数据。通常: (ⅰ)瞬时点源的源强以一次释放的总量表示; (ⅱ)连续点源以单位时间的释放量表示; (ⅲ)连续线源以单位时间单位长度的排放量表示; (ⅳ)连续面源以单位时间单位面积的排放量表示。 δy—侧向扩散参数,污染物在y方向分布的标准偏差,就是距离y的函数,m; δz—竖向扩散参数,污染物在z方向分布的标准偏差,就是距离z的函数,m; 未知量—浓度c、待定函数A(x)、待定系数a、b; 式①、②、③、④组成一方程组,四个方程式有四个未知数,故方程式可解。 二、高斯扩散模式 (一)连续点源的扩散 连续点源一般指排放大量污染物的烟囱、放散管、通风口等。排放口安置在地面的称为地面点源,处于高空位置的称为高架点源。 1、大空间点源扩散 高斯扩散公式的建立有如下假设:①风的平均流场稳定,风速均匀,风向平直;②污染物的浓度在y、z轴方向符合正态分布;③污染物在输送扩散中质量守恒;④污染源的源强均匀、连续。 图5-9所示为点源的高斯扩散模式示意图。有效源位于坐标原点o处,平均风向与x轴平行,并与x轴正向同向。假设点源在没有任何障碍物的自由空间扩散,不考虑下垫面的存在。大气中的扩散就是具有y与z两个坐标方向的二维正态分布,当两坐标方向的随机变量独立时,分布密度为每个坐标方向的一维正态分布密度函数的乘积。由正态分布的假设条件②,参照正态分布函数的基本形式式(5-15),取μ=0,则在点源下风向任一点的浓度分布函数为: (5-16) 式中 C—空间点(x,y,z)的污染物的浓度,mg/m3; A(x)—待定函数;

正态分布模型解题

2.4.1正态分布 关于正态曲线性质的叙述: ①曲线关于直线x=μ对称,这个曲线在x 轴上方; ②曲线关于直线x=σ对称,这个曲线只有当x ∈(-3σ,3σ)时才在x 轴上方; ③曲线关于y 轴对称,因为曲线对应的正态密度函数是一个偶函数; ④曲线在x=μ时处于最高点,由这一点向左右两边延伸时,曲线逐渐降低; ⑤曲线的对称轴由μ确定,曲线的形状由σ确定; ⑥σ越大,曲线越“矮胖”,σ越小,曲线越“瘦高”; 上述说法正确的是 一、 知识梳理 1.正态分布的重要性 正态分布是概率统计中最重要的一种分布,其重要性我们可以从以下两方面来理解:一方面,正态分布是自然界最常见的一种分布。一般说来,若影响某一数量指标的随机因素很多,而每个因素所起的作用都不太大,则这个指标服从正态分布。 2.正态曲线及其性质 正态分布函数:22 ()21 ()2x f x e μσπσ -- = ,x ∈(-∞,+∞)其中实数(0) μσσ>和为参数,我们称,()x μσ?的图像为正态分布密度曲线,简称正态曲线。 3.标准正态曲线 标准正态曲线N (0,1)是一种特殊的正态分布曲线,00()1()x x Φ-=-Φ,以及标准正态总体在任一区间(a ,b)内取值概率)()(a b P Φ-Φ=。 4.一般正态分布与标准正态分布的转化 由于一般的正态总体),(2σμN 其图像不一定关于y 轴对称,对于任一正态总体),(2σμN , 其取值小于x 的概率)()(σ μ -Φ=x x F 。只要会用它求正态总体),(2σμN 在某 个特定区间的概率即可。 一般地,如果对于任何实数a b <,随机变量X 满足 ,(

高斯扩散模型

大气污染扩散 第一节大气结构与气象 有效地防止大气污染的途径,除了采用除尘及废气净化装置等各种工程技术手段外,还需充分利用大气的湍流混合作用对污染物的扩散稀释能力,即大气的自净能力。污染物从污染源排放到大气中的扩散过程及其危害程度,主要决定于气象因素,此外还与污染物的特征和排放特性,以及排放区的地形地貌状况有关。下面简要介绍大气结构以及气象条件的一些基本概念。 一、大气的结构 气象学中的大气是指地球引力作用下包围地球的空气层,其最外层的界限难以确定。通常把自地面至1200 km左右范围内的空气层称做大气圈或大气层,而空气总质量的98.2%集中在距离地球表面30 km以下。超过1200 km的范围,由于空气极其稀薄,一般视为宇宙空间。 自然状态的大气由多种气体的混合物、水蒸气和悬浮微粒组成。其中,纯净干空气中的氧气、氮气和氩气三种主要成分的总和占空气体积的99.97%,它们之间的比例从地面直到90km高空基本不变,为大气的恒定的组分;二氧化碳由于燃料燃烧和动物的呼吸,陆地的含量比海上多,臭氧主要集中在55~60km高空,水蒸气含量在4%以下,在极地或沙漠区的体积分数接近于零,这些为大气的可变的组分;而来源于人类社会生产和火山爆发、森林火灾、海啸、地震等暂时性的灾害排放的煤烟、粉尘、氯化氢、硫化氢、硫氧化物、氮氧化物、碳氧化物为大气的不定的组分。 大气的结构是指垂直(即竖直)方向上大气的 密度、温度及其组成的分布状况。根据大气温度在 垂直方向上的分布规律,可将大气划分为四层:对 流层、平流层、中间层和暖层,如图5-1所示。 1. 对流层 对流层是大气圈最靠近地面的一层,集中了大 气质量的75%和几乎全部的水蒸气、微尘杂质。受 太阳辐射与大气环流的影响,对流层中空气的湍流 运动和垂直方向混合比较强烈,主要的天气现象云 雨风雪等都发生在这一层,有可能形成污染物易于 扩散的气象条件,也可能生成对环境产生有危害的 逆温气象条件。因此,该层对大气污染物的扩散、输送和转化影响最大。 大气对流层的厚度不恒定,随地球纬度增高而降低,且与季节的变化有关,赤道附近约

高斯模型

高斯模型介绍 高斯模式是一种应用较为广泛的气体扩散模型,适用于均一的大气条件,以及地面开阔平坦的地区、点源的扩散模式。排放大量污染物的烟囱、放散管、通风口等,虽然其大小不一,但是只要不是讨论例如烟囱底部很近距离的污染问题,均可视其为点源。本附录A 介绍高斯模型坐标系、模型假设及模型公式等内容。 F.1坐标系 高斯模型的坐标系如图A-1所示,原点为排放点(若为高架源,原点为排放点在地面的投影),x 轴正向为风速力一向,y 轴在水平面上垂直于x 轴,正向在x 轴左侧,z 轴垂直于水平面xoy ,向上为正向。在此坐标下烟流中心线或烟流中心线在xoy 面的投影与x 轴重合。 图A-1 高斯模型坐标系 F.2 模型假设 高斯模型有如下假设条件: (1)污染物的浓度在y 、z 轴上的分布是高斯分布(正态分布)的; (2)污染源的源强是连续且均匀的,初始时刻云团内部的浓度、温度呈均匀分布; (3)扩散过程中不考虑云团内部温度的变化,忽略热传递、热对流及热辐射; (4)泄漏气体是理想气体,遵守理想气体状态方程; (5)在水平方向,大气扩散系数呈各向同性; (6)取x 轴为平均风速方向,整个扩散过程中风速的大小、方向保持不变,不随地点、时间变化而变化; (7)地面对泄漏气体起全反射作用,不发生吸收或吸附作用; (8)整个过程中,泄漏气体不发生沉降、分解,不发生任何化学反应等。 F.3 模型公式 距地面一定高度连续点源烟羽扩散模式的高斯修正模型为: ()()()()??? ????????? ??+-+???? ??--???? ??-=22222221exp 21exp 21exp 2,,,z z y z y H z H z y k x Q H z y x C σασσσσπ(A-1) 式(A-1)中:

高斯混合模型GMM实现matlab

高斯混合模型GMM实现matlab (1 )以下matlab代码实现了高斯混合模型: function [Alpha, Mu, Sigma] = GMM_EM(Data, Alpha0, Mu0, Sigma0) %%EM 迭代停止条件 loglik_threshold = 1e-10; %%初始化参数 [dim, N] = size(Data); M = size(Mu0,2); loglik_old = -realmax; nbStep = 0; Mu = Mu0; Sigma = Sigma0; Alpha = Alpha0; Epsilon = 0.0001; while (nbStep < 1200) nbStep = nbStep+1; %%E-步骤 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% for i=1:M % PDF of each point Pxi(:,i) = GaussPDF(Data, Mu(:,i), Sigma(:,:,i)); end % 计算后验概率 beta(i|x) Pix_tmp = repmat(Alpha,[N 1]).*Pxi; Pix = Pix_tmp ./ (repmat(sum(Pix_tmp,2),[1 M])+realmin); Beta = sum(Pix); %%M- 步骤 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% for i=1:M % 更新权值 Alpha(i) = Beta(i) / N; %更新均值 Mu(:,i) = Data*Pix(:,i) / Beta(i); %更新方差 Data_tmp1 = Data - repmat(Mu(:,i),1,N);

数学建模高斯扩散模型

§4-2高斯扩散模式 ū —平均风速; Q—源强是指污染物排放速率。与空气中污染物质的浓度成正比,它是研究空气污染问题的基础数据。通常: (ⅰ)瞬时点源的源强以一次释放的总量表示; (ⅱ)连续点源以单位时间的释放量表示; (ⅲ)连续线源以单位时间单位长度的排放量表示; (ⅳ)连续面源以单位时间单位面积的排放量表示。 δy—侧向扩散参数,污染物在y方向分布的标准偏差,是距离y的函数,m;δz—竖向扩散参数,污染物在z方向分布的标准偏差,是距离z的函数,m;未知量—浓度c、待定函数A(x)、待定系数a、b; 式①、②、③、④组成一方程组,四个方程式有四个未知数,故方程式可解。 二、高斯扩散模式 (一)连续点源的扩散 连续点源一般指排放大量污染物的烟囱、放散管、通风口等。排放口安置在地面的称为地面点源,处于高空位置的称为高架点源。 1. 大空间点源扩散 高斯扩散公式的建立有如下假设:①风的平均流场稳定,风速均匀,风向平直; ②污染物的浓度在y、z轴方向符合正态分布;③污染物在输送扩散中质量守恒;④污染源的源强均匀、连续。 图5-9所示为点源的高斯扩散模式示意图。有效源位于坐标原点o处,平均风向与x轴平行,并与x轴正向同向。假设点源在没有任何障碍物的自由空间扩散,不考虑下垫面的存在。大气中的扩散是具有y与z两个坐标方向的二维正态分布,当两坐标方向的随机变量独立时,分布密度为每个坐标方向的一维正态分布密度函数的乘积。由正态分布的假设条件②,参照正态分布函数的基本形式式(5-15),取μ=0,则在点源下风向任一点的浓度分布函数为: (5-16)式中 C—空间点(x,y,z)的污染物的浓度,mg/m3; A(x)—待定函数;

高斯烟羽模型

模型假设: 1、坐标系 高斯模型的坐标系如图2.1所示,原点为排放点(若为高架源,原点为排放 点在地面的投影),x 轴正向为风速方向,y 轴在水平面上垂直于x 轴,正向在 x 轴的左侧,z 轴垂直于水平面xoy ,向上为正向。在此坐标系下烟流中心线或 烟流中心线在xoy 面的投影与x 轴重合。 2、 模型假设 (1) 污染物的浓度在y 、z 轴上的分布是高斯分布(正态分布)的; (2) 污染源的源强是连续且均匀的,初始时刻云团内部的浓度、温度呈均匀 分布; (3) 扩散过程中不考虑云团内部温度的变化, 忽略热传递、热对流及热辐射; (4) 泄漏气体是理想气体,遵守理想气体状态方程; (5) 在水平方向,大气扩散系数呈各向同性; (6) 取x 轴为平均风速方向,整个扩散过程中风速的大小、方向保持不变, 不随 地点、时间变化而变化; (7) 地面对泄漏气体起全反射作用,不发生吸收或吸附作用; (8) 整个过程中,泄漏气体不发生沉降、分解,不发生任何化学反应等。 3、 模型公式推导 由正态分布假设可以导出下风向任意一点 X (x,y,z )处泄漏气体浓度的函 数为: X (x, y, z) = A(x)e_ ay e_bz (i) 由概率统计理论可以写出方差的表达式为: ::2 y Xdy Xdy °° 2 z Xdz Xdz 由假设可以写出源强的积分公式: Q Q Q Q Q = _ _uXdydz 式中:cr y 、a z 为泄漏气体在y 、z 方向分布的标准差,单位为m ; X(x,y,z ) 为任一点处泄漏气体的浓度,单位为 kg/m 3 ; u 为平均风速,单位为m/s ; Q 为 源 强(即泄漏速度),单位为kg/s ; (2) (3)

相关文档