文档库 最新最全的文档下载
当前位置:文档库 › 常用的几种减速器失效形式比较

常用的几种减速器失效形式比较

常用的几种减速器失效形式比较
常用的几种减速器失效形式比较

常用的几种减速器失效形式比较

从经济性和生产专业化来考虑,我们还是主张有条件地尽可能选用标准减速器。以组合型真空挤出机为例,当上级搅拌挤出部分为单轴搅拌时直接联接一台标准减速器就能工作;当上级是双轴搅拌挤出部分是双轴搅拌时,二根搅拌轴通过一个对齿轮减速器与一个标准减速器联结,也是一种不错的选择。真空挤出机的下级传动系统也可以用一个大的标准减速器作为主传动,另外配置二个单独的减速器装置(如小行星齿轮减速器,摆线针轮减速器、减速电机等)设计可靠的安全控制系统,也可以很好地实现真空挤出机的工作要求。下面就常用的一些减速器进行分析比较,以便选用。

1、 ZQ型和ZL型渐开线圆柱齿轮减速器

真空挤出机上配置这种减速器已经有几十年的历史了,这是20年以前机械行业已经明令淘汰的落后产品,也是现在多数砖机制造厂家仍在大量采用的减速器。这种减速器的承载能力低,可靠性差,寿命短,完全不能适应硬塑(半硬塑)真空挤出机的工作要求,也是造成真空挤出机技术性能差的重要原因。可以说,不淘汰这种落后的减速器,真空挤出机就永远摆脱不了落后的状况。

软齿面齿轮是ZQ型,ZL型渐开线圆柱齿轮减速器的致命缺陷

ZQ型,ZL型减速器的小齿轮齿表面硬度低于240HB,大齿轮的齿表面硬度在200HB以下,这就决定了它的齿轮接触疲劳极限应力和弯曲疲劳极限都只有硬齿面齿轮的一半左右,有的减速器厂家的产品还更低。又由于材质和热处理工艺的差别,其它机械性能也很差,所

以很多种齿轮失效的形式,如齿面点蚀,剥落、齿面胶合、齿轮塑性变形、断裂都容易发生,尤其是由于齿面的接触疲劳强度太低,齿面产生破坏性点蚀的现象在这种减速器中很常见,严重的点蚀使齿面产生剥落,使轮齿严重损伤、动载、噪声、磨损增大,进而发生塑性变形甚至断齿(单齿或多齿折断)而无法运转,因而使减速器早期就发生各种严重故障,这就是软齿面减速器承载能力低,可靠性差的主要原因。

ZQ、ZL型减速器的大齿轮都采用铸钢材料,更增加了齿轮的不可靠性

国家机械行业的新减速器标准中明确规定,减速器中不准采用铸钢材质的齿轮。这是因为铸钢中有可能含有杂质,如齿根部分含有非金属夹杂物时将造成应力集中,严重降低齿轮的弯曲强度而发生断齿;轮齿内部如存在气孔,夹渣等铸造缺陷时将严重降低齿轮的强度,有的铸钢组织疏松,大齿轮甚至产生轮缘断裂幅板或筋板开裂等缺陷(见图10、图11)。这些故障产生前没有任何征兆,一旦发生,齿轮就不能使用,造成长时间停机修理的严重后果。ZQ型、ZL型减速器中使用了铸钢齿轮,不仅大幅度降低了齿轮的抗弯强度和齿面接触强度,更为减速器埋下了隐患,严重降低了这种减速器的可靠性。

图10大齿轮轮缘开裂

图 11 大齿轮幅板开裂

ZQ型、ZL型减速器的输入轴和输出轴结构均不适合真空挤出机的工作要求。

ZQ型、ZL型减速器的输入轴太细,难以承受气动离合器的工作

负荷。以中心距1000mm的减速器为例,其输入轴支承轴承位置的轴径仅为Φ90mm,完全不能承受减速器工作时扭转和弯曲作用的联合载荷,有的地方曾发生过高速轴突然断裂使装在输入轴上的气动离合器甩出去的严重事故。而ZQ型、ZL型减速器的输出轴结构也存在不能保证真空挤出机下级绞刀主轴和减速器的输出轴的同轴度在误差范围内。而对于高挤出压力的真空挤出机,几乎都在采用刚性联轴节(主要是夹壳联轴节,这项技术要求就更加显得重要了。另一个严重的问题是这种低速轴的结构往往会使真空挤出机绞刀轴巨大的轴向力有可能会传递到减速器,从而造成减速器或减速器输出轴轴承的损坏,即使是采用十字滑块联轴器也有可能发生这种减速器的结构上的缺陷严重影响真空挤出机的正常使用。

大量的不合格产品和不按设计规范选用也是ZQ型和ZL型减速器可靠性差的重要原因。

因为ZQ型和ZL型减速器已经是淘汰产品,基本上没有产品标准的要求和控制,其质量就难得到保证。全国各地生产这种减速器的厂家多如牛毛,其中有不少厂家的产品质量差,基本上属于劣质产品,这就使本来强度和可靠性都很低的这种减速器更是雪上加霜,在真空挤出机的使用过程中不堪重负而故障频发。而不少砖机制造厂家在选用与各种规格的挤出机配套的ZQ型和ZL型减速器时,往往片面强调成本低,往往会大打折扣,在配套时选用规格偏小的减速器。以50型真空挤出机在工作转速为23r/mm,速比为15.75时,下级配套160KW 的减速器电动机为例,很多砖机制造厂都是选用了ZQ—100—16—ⅠZ

减速器,而按照机械设计手册的数据,这种减速机的承载能力很低,根本不能满足使用要求的这也就造成了ZQ型、ZL型减速器更加不可靠的重要原因。

ZQH型和ZLH型园弧园柱齿轮减速器

在砖瓦行业,园弧园柱齿轮减速器曾经一度成为热销产品,甚至被吹得神乎其神,什么承载力大,强度高,一时园弧园柱齿轮减速器似乎成了减速器中的一张王牌,以为不管挤压力多高的挤出机,只要用了园弧园柱齿轮减速器就万无一失,可以高枕无忧了。然而宣传毕竟不能代替事实,在具有权威性的机械手册中就明确说明园弧园柱齿轮减速器和ZQ、ZL型园柱齿轮减速器除齿形不同外,其它均相同,各种尺寸和承载能力完全一样。同样也是20年以前就被明令淘汰的落后产品,多年来在砖瓦行业中ZQH型和ZLH型园弧齿轮减速器的使用效果和ZQ型、ZL型渐开线圆柱齿轮减速器几乎相差不多,而在某些方面甚至显现其适应性更差。当然,有些行业早已采用了先进的硬齿面园弧齿轮,那就另当别论了。

抗弯强度低是园弧齿轮的严重缺陷

对于砖瓦行业来说,挤出机工作时尤其是一些条件较差的砖瓦厂,过载和冲击几乎是经常发生的,因此对齿轮的抗弯强度有极高的要求。因为齿轮的抗弯强度不足就会使轮齿折断,很多时候是齿根的循环弯曲应力超过其疲劳极限时引起齿根的疲劳裂纹不断扩展而折断。(也有发生在其它部位上)而一旦齿轮发生折断,减速器将无法运转而停机,整个砖厂将面临因停机修复带来的停产损失,对于大型

砖厂甚至会造成大隧道窑停产,将严重影响砖瓦厂的经济效益。有的园弧齿轮减速器甚至一年发生几次轮齿折断的事故。由于园弧齿轮需要专门的滚刀加工,配件的供应远不如通用性很强的渐开线园柱齿轮容易解决,使用户存在后顾之忧,这也是砖厂难以接受园弧齿轮减速器的原因。有些圆弧齿轮减速器的生产厂家为了解决圆弧齿轮的抗弯强度低的问题,采用了双园弧人字齿轮,虽然提高了承载能力和平衡了传动过程的轴向力但也加大了成本。因为采用了大螺旋角和人字齿以后,相对增大了中心距和齿宽而挤出机配套的减速器传动过程的轴向力是基本上可以自行消除的,这种做法却为此付出了较高的代价,从经济性来说是不可取的。

园弧齿轮对中心距及切齿偏差的敏感性大,对螺旋角的精度要求高

对于很多砖瓦行业配套的减速器制造厂,一般都不具备精良的制造设备和精湛的生产工艺,无论是减速器箱体和齿轮的加工都难以满足较高精度的要求,而热处理设备和技术就更为薄弱,所以,一些为砖瓦厂配套的园弧齿轮减速器运转时的噪声和振动都比一般ZQ型渐开线园柱齿轮减速器大。圆弧齿轮减速器的制造精度较低,将严重影响这些轮齿的抗弯曲能力和齿面承载能力以及减速器工作的平稳性。而且当其制造误差愈大时情况将更为不利,甚至严重影响园弧齿轮减速器的正常运转,这些情况在不少真空挤出机上的园弧齿轮减速器中也是颇为常见的。

渐开线园柱齿轮的损伤形式在园弧齿轮中都可能产生,而齿端崩角(又称崩齿见图12)则是圆弧齿轮容易发生的齿轮损伤形式。渐开线园柱齿轮的损伤形式很多如轮齿折断(见图13)。在园弧齿轮传动中,由于圆弧齿轮的材料或热处理缺陷,或是由于工作中瞬时过载和冲击等原因,由于圆弧齿轮的抗弯强度相对较低,往往会产生因为疲劳折断而失效。齿面疲劳点蚀(见图14)在跑合较好的圆弧齿轮中不易发生,但如果制造误差大,或者螺旋角有偏差,或是支承刚度差,变形大这些因素都有可能使齿面产生偏载,容易引起点蚀。

图12 齿端崩角示意图

图13轮齿折断示意图

图14 齿面点蚀示意图

齿面塑性变形(见图15)也是齿轮损伤的一种形式。当圆弧齿轮的材料屈服极限太低(如未经调质处理的45#铸钢材料)或者选用的齿轮模数过小或齿面过度磨损时在过载或冲击载荷的作用下,齿面会出现明显的压痕,甚至出现齿面整体向后倾斜;当齿面的润滑不良,也可能使齿面金属产生塑性流动,在齿顶形成飞边,从而导致减速器的强列振动和噪声。齿面胶合(见图16)圆弧齿轮也是齿轮常见的损伤形式。当园弧齿轮的制造质量差或者未经跑合就重载运转时,因为齿面局部接触应力很会很高,齿面油膜将遭到破坏,齿面发热增大,使齿面遭到严重损伤,还会产生很大的振动和噪声。齿端崩角(见图12)是圆弧齿轮容易产生的故障之一。这是因为当齿轮的平稳性较低或轴的刚度较差时,轮齿在啮合交替过程中产生冲击而造成齿端崩角,齿端崩角严重时将使园弧齿轮早期损坏,影响圆弧齿轮减速器的使用寿命。

图15 齿面塑性变形示意图

图16 齿面胶合示意图

ZLY型硬齿面园柱齿轮减速器

标准系列硬齿面园柱齿轮减速器是按国家标准JB/T8853—1999生产的外啮合渐开线斜齿园柱齿轮减速器,是具有国际20世纪八十年代水平的减速器。在真空挤出机上一般都是配置二级传动的ZLY系列减速器。这种减速器采用了优质合金钢经渗碳淬火的硬齿面齿轮,其齿面接触疲劳强度很高,齿根弯曲疲劳强度也较高,故其承载能力大体积小重量轻,使用寿命长,运行平稳,传动效率高,是得到推广

的节能产品。ZQ型ZL型软齿面园柱齿轮减速器的更新换代产品。然而,自从上世纪九十年代初在真空挤出机上使用以后确实存在不少问题,必须认真对待和解决。

一级直齿圆柱齿轮减速器输入轴组合结构设计计算说明书

一级直齿圆柱齿轮减速器输入轴组合 结构 设计计算说明书

2、设计步骤 (1)根据已知条件计算传动件的作用力。 ① 选择直齿圆柱齿轮的材料: 传动无特殊要求,为便于制造采用软齿面齿轮,由表5-1,大齿轮采用45#钢正火,162~217HBS ; ② 直齿轮所受转矩n P T 6 1055.9?==9.55×106×3.3/750=42020N.mm ; ③ 计算齿轮受力: 齿轮分度圆直径:d=mz 3=3×25=75mm 齿轮作用力:圆周力F t =2T/d=2×42020/75=1121N 径向力F r =F t tan α=1120.5×tan20°=408N ; (2)选择轴的材料,写出材料的机械性能: 选择轴的材料:该轴传递中小功率,转速较低,无特殊要求,故选择45优质碳素结构钢调制处理, 其机械性能由表8-1查得:σB =637MPa,σs =353MPa, σ-1=268MPa, τ-1=155MPa 由表1-5查得:轴主要承受弯曲应力、扭转应力、表面状态为车削状态,弯曲时: 34.0=σψ,扭转时: 34.0=τψ; (3)进行轴的结构设计: ① 按扭转强度条件计算轴的最小直径d min ,然后按机械设计手册圆整成 标准值: 由式(8-2)及表8-2[τT ]=30MPa ,A 0=118 得d min =A 0=118×=19.34mm, 圆整后取d min =20.0mm 计算所得为最小轴端处直径,由于该轴段需要开一个键槽,应将此处轴径增大3%~5%,即d min =(1+5%)d=21.0,圆整后取d min =25.0mm ; ② 以圆整后的轴径为基础,考虑轴上零件的固定、装拆及加工工艺性等 要求,设计其余各轴段的直径长度如下: 1) 大带轮开始左起第一段: 带轮尺寸为:d s =25mm ,宽度L=65mm 并取第一段轴端段长为l 1=63mm ; 2) 左起第二段,轴肩段: 轴肩段起定位作用,故取第二段轴径d 2=30mm 。由l 2=s-l/2-10=57.5mm ,取l 2=57.5mm ; 3) 左起第三段, 轴承段: 初步轴承型号选择,齿轮两侧安装一对6207 型(GB297-84)深沟球轴承。其宽度为17mm ,左轴承用轴套定位,右轴承用轴肩定位。 该段轴径d 3= 35mm ; 4) 左起第四段,齿轮轴段: 取轴径d 4=38mm ,齿轮宽度B=80mm ,则取l 4=78mm ; 5) 左起第五段,轴环段: 取轴径d 5=44mm ,l 5=10mm ; 6) 左起第六段,轴肩段: 取轴径d 6=40mm ;

常用减速器的类型

常用减速器的类型及其应用范围 一、常用减速器的分类 (1)圆柱齿轮减速器(2)圆锥、圆锥——圆柱齿轮减速器(3)蜗杆、齿轮——蜗杆减速器(4)行星减速器(5)摆线轮减速器。 二、减速器的形式 1.按减速级数分:(1)单级减速(2)两级减速〔3〕三级减速 2.按装配形式分:(1)平行轴式(2)垂直轴式(3)同轴式 其中我刚蜗杆、齿轮——蜗杆减速器的装配形式有:蜗杆下置式、蜗杆上置式、蜗杆侧置式、蜗杆——蜗杆式和齿轮——蜗杆式。 SEW减速器的分类 根据承载能力分为:M系列(重型)和MC系列(紧凑型); M系列适用于重载设备选型设计,MC系列是考虑经济性和功能性选型设计; SEW减速器不同规格型号的含义: 1.M3PSF50减速器型号含义 2.MC2PLSF05减速器型号含义 减速器的装配形式 1.M..PSF..、M..PHF..、M..PHT..和MC..PL..02-09减速器的装配形式: 2. M..RSF..、M..RHF、M..RHT.. 和MC..RL..02-09减速器的装配形式: 3. M..PV..10-90和MC..PV..02-09减速器的装配形式: 4. M..RV..10-90和MC2RV..02-09减速器的装配形式: 减速器的选型 1.传动比通过(1)i=n1/n2计算,选择与公称比i N相近的减速器型号; 2.运行功率P k1、P k2和运行扭矩M k2;(2) P k1= P k2/η; (3) P k1= M k2*n2/9550*η;传动效率η,单极η=0.985, 二极η=0.97, 三极η=0.955, 四极η=0.94, 五极η

减速器的机械设计

减速器的机械设计 仅供参考 一、传动方案拟定 第二组第三个数据:设计带式输送机传动装置中的一级圆柱齿轮减速器 (1)工作条件:使用年限10年,每年按300天运算,两班制工作,载荷平稳。 (2)原始数据:滚筒圆周力F=1.7KN;带速V=1.4m/s; 滚筒直径D=220mm。 运动简图 二、电动机的选择 1、电动机类型和结构型式的选择:按已知的工作要求和条件,选用Y系列三相异步电动机。 2、确定电动机的功率: (1)传动装置的总效率: η总=η带×η2轴承×η齿轮×η联轴器×η滚筒 =0.96×0.992×0.97×0.99×0.95 =0.86 (2)电机所需的工作功率: Pd=FV/1000η总 =1700×1.4/1000×0.86 =2.76KW 3、确定电动机转速: 滚筒轴的工作转速: Nw=60×1000V/πD =60×1000×1.4/π×220 =121.5r/min

按照【2】表2.2中举荐的合理传动比范畴,取V带传动比Iv=2~4,单级圆柱齿轮传动比范畴Ic=3~5,则合理总传动比i的范畴为i=6~20,故电动机转速的可选范畴为nd=i×nw=(6~20)×121.5=729~2430r/min 符合这一范畴的同步转速有960 r/min和1420r/min。由【2】表8.1查出有三种适用的电动机型号、如下表 方案电动机型号额定功率电动机转速(r/min)传动装置的传动比KW 同转满转总传动比带齿轮 1 Y132s-6 3 1000 960 7.9 3 2.63 2 Y100l2-4 3 1500 1420 11.68 3 3.89 综合考虑电动机和传动装置尺寸、重量、价格和带传动、减速器的传动比,比较两种方案可知:方案1因电动机转速低,传动装置尺寸较大,价格较高。方案2适中。故选择电动机型号Y100l2-4。 4、确定电动机型号 按照以上选用的电动机类型,所需的额定功率及同步转速,选定电动机型号为 Y100l2-4。 其要紧性能:额定功率:3KW,满载转速1420r/min,额定转矩2.2。 三、运算总传动比及分配各级的传动比 1、总传动比:i总=n电动/n筒=1420/121.5=11.68 2、分配各级传动比 (1)取i带=3 (2)∵i总=i齿×i 带π ∴i齿=i总/i带=11.68/3=3.89 四、运动参数及动力参数运算 1、运算各轴转速(r/min) nI=nm/i带=1420/3=473.33(r/min) nII=nI/i齿=473.33/3.89=121.67(r/min)

减速机轴断裂分析

减速机轴断裂分析 董毅,李晓玲,刘臻祥,周玉英 (内蒙古北方重工业集团有限公司,包头014033) 摘要:某减速机使用30多小时后,齿轮减速机轴发生弯曲,该轴在进行冷校直时发生断裂。通过对断裂轴的断口宏微观分析、金相检验以及硬度测定,认为该轴是在应力集中条件下承受对称旋转弯曲载荷作用,产生早期疲劳断裂。造成疲劳断裂的原因是由于热处理工艺不合理,致使材料力学性能未达到设计要求,导致轴的疲劳抗力降低,加之圆角加工较差,工作时产生应力集中,加速了轴的疲劳断裂。 关键词:减速机;轴;疲劳断裂;退刀槽 某煤矿从国外购进的减速机,安装使用30h余后,齿轮减速机轴发生弯曲,无法正常使用,在对弯曲的减速机轴进行冷校直时,轴突然发生断裂。 查阅减速机轴的有关技术资料,该轴采用17CrNiMo6钢制造,轴整体经调质处理后,表面进行中频处理,使轴表面及退刀槽根部洛氏硬度达到59~62HRC。 1 理化检验 1.1 断轴宏观分析 断裂位于减速机轴表面退刀槽根部,见图1。

图1 轴断裂位置(mm) 图2 宏观断口形貌 宏观断口见图2,断口表面有较明显的贝壳状花样,属于典型的疲劳断裂。断口由疲劳裂源区、裂纹扩展区和瞬间断裂区三个区域组成。 仔细观察断口裂纹源区,其表面较平坦,尺寸在距表面5mm范围内(图2A处)。裂纹扩展区贝纹线比较扁平。瞬间断裂区在裂源的对面,呈椭圆形,断口形貌为纤维状,表明减速机轴主要受旋转弯曲应力。断口瞬断区域较小、较圆约占整个断口面积的1/6,说明轴整体受力较小,属典型的高周疲劳断裂。由疲劳区及贝纹线的形态可知,疲劳裂纹扩展过程中两侧较快,说明退刀槽根部有应力集中现象。 1.2 断口微观分析 用AMRAY21000B型扫描电镜观察样品断口,断裂起源于轴表面退刀槽根部,该处有机加工刀痕,见图3;裂纹扩展区可见疲劳条纹,见图4;瞬断区为细小韧窝。

减速器输出轴说明书

斜齿圆柱齿轮减速器结构设计说明 机械工程系机械工程及自动化专业 机械12-7班 设计者林键 指导教师王春华 2014年12月26日.

辽宁工程技术大学 题目二:二级展开式斜齿圆柱齿轮减速器输出轴结构简图及原始数据 b2 a ls l 轴系结构简图 项目设计方案 名称字母表示及单位4 输入功率P/kW6.1 轴转速n/(r/min)150 齿轮齿数z2107 齿轮模数m n/mm4 齿轮宽度b2/mm80 齿轮螺旋角β8°6’34” a/mm80 l/mm215 s/mm100 链节距p/mm25.4 链轮齿数z29 轴承旁螺栓直径d/mm16 二、根据已知条件计算传动件的作用力 1.计算齿轮处转矩T、圆周力F t、径向力F r、轴向力F a及链传动轴压力Q。 已知:轴输入功率P=6.1kW,转速n=150r/(min)。 转矩计算: 66 m m T9.55010P/n9.550106.1/150388366.7N 分度圆直径计算: dm n z/cos4107/cos8634432.3mm 12 圆周力计算: F t2T/d1*******.7/432.31796.7N 径向力计算: F r F t tan n/cos1796.7tan20/cos8634660.6N 轴向力计算: F a F t tan1796.7tan8634256N 轴压力计算:

.

. 计算公式为: Q 1000KP Q v npz 1000KP Q /(601000) 由于转速小,冲击不大,因此 取K Q=1.2,带入数值得 : 10001.26.1 Q3975N 15025.429/(601000) R1z R1y R r R2z Q R a R t R2y 轴受力分析 简 图 2.计算支座反力 (1)计算垂直面(X OZ)支反力 Q(ls)R(la)3975(215100)660.6(21580) Rr N y6238.62 l215 R1y R2y QR r6238.63975660.61603N (2)计算垂直面(X OY)支反力 R(la)1796.7(21580) t R z1128.2N 2 l215 R z R t R z1796.71128.2668.5N 12 三、初选轴的材料,确定材料机械性能 初选材料及机械性能 材料牌号45号 热处理调 质 毛坯直径/mm≤200 硬度/HBS217~255 σB/MPa637 σs/MPa353 σ-1/MPa268 τ-1/MPa155 [σ+1]/MPa216 [σ0]/MPa98 [σ-1]/MPa59 四、进行轴的结构设计 1.确定最小直径 按照扭转强度条件计算轴的最小值dmin。

减速机高速齿轮轴断裂失效分析 靳璇

减速机高速齿轮轴断裂失效分析靳璇 摘要:随着社会科学技术的不断发展,减速机在工业生产当中具有较为广泛的 应用,但是减速机在使用过程当中高速齿轮轴经常发生断轴现象,甚至带来一定 的安全隐患。为了解决减速机高速齿轮轴断轴问题,首先从材料、装配工艺以及 运行维护四个方面对导致减速机高速齿轮轴断裂的因素进行了分析,最后从选择 合适的产品、进一步完善减速机的装配工艺以及加强日常管理与维护三个方面论 述了具体的解决对策。 关键词:减速机;高速齿轮轴;断裂失效 引言 某生产企业所用减速机高速轴突然产生早期断裂现象,通过现场查看可知, 电机和减速机间的联轴器已完全脱离,且壳体破碎,其它和这一高速轴一同参与 运转的齿轮轴,均在事故产生之后发生不同程度的弯曲变形。此高速轴属于典型 的齿轮轴,发生断裂后齿面依然保持完好,未发生变形与断齿。现围绕这一减速 机高速轴实际情况,对其断裂失效作如下深入分析。 1减速机轴失效概况 某公司生产的矿用带式输送机在运行90天后,其配套使用的减速机高速轴发生断裂,如图1所示。该减速机齿轮轴发生断裂属于早期失效事故,远低于设计 寿命;为了分析事故原因,避免类似事故再次发生,从材料成分、力学性能、硬度、金相组织、断口形貌等多个方面对断裂轴进行了分析,找到了疲劳源,得出 了失效原因,这对类似工况的断裂轴类的分析提供了有益的借鉴。 图1断裂的减速机齿轮轴 2减速机高速齿轮轴断裂检测 2.1基础资料收集 基础资料的收集是进行减速机高速齿轮轴断裂检测工作的重要基础,对后续 检测工作的正常开展,以及得到准确的检测结果均有重要作用和意义,应引起相 关人员的重视。此次研究的主要对象为3C710NE型减速机,其速比、输入功率和 输入转速分别为2.034、710kW和741r/min。根据生产单位提交的相关工艺图纸,其硬度需要达到59-62HRC的要求。 2.2主要成分检测 对于该减速机,其高速齿轮轴材料为17CrNiMo6,在取样后,用光谱测定仪 与碳硫仪进行成分含量测定,测定结果为:碳含量0.18%、锰含量0.57%、硅含 量0.27%、磷含量0.011%、硫含量0.003%、铬含量1.73%、镍含量1.55%、钼含 量0.28%。通过对相关资料的查证可知,该原材料为德国牌号,成分方面的技术 要求为:碳含量在0.15~0.19%范围内、锰含量在0.50-0.60%范围内、硅含量在不 大于0.4%范围内、磷含量不得大于0.012%、硫含量不得大于0.006%、铬含量在1.50~1.80%范围内、镍含量在1.40~1.70%范围内、钼含量在0.25~0.35%范围内。 通过对比可知,该件硫、磷等元素含量满足技术要求。 2.3主要力学性能检测 为对该件原材料各项力学性能进行检测,通过线切割制得拉伸试样与冲击试样。其中,拉伸试样属于非标准形式的板状试样,其截面面积为4mm×10mm; 而冲击试样则属于U型缺口形式的试样。1#拉伸试样的σs为575.6MPa,σb为1072.5MPa,δ为24%,ψK为46.089%;2#拉伸试样的σs为427.2MPa,σb为

机械制造技术基础(课程设计)减速器传动轴设计

机械制造技术基础 课程设计 设计题目: 减速器传动轴 学校: 陕西科技大学 学院: 机电学院 专业类别: 机械设计制造及其自动化班级: 机械046 姓名: 杨孟博 学号: 51404627 指导教师: 张斌 起始日期: 2007年1月9 日 完成日期: 2007年1月25 日 成绩:

传动轴零件的加工工艺规程 1 机械制造课程设计 题目:设计“减速器传动轴”零件的机械加工工艺规程(年产量为5000件) 内容:(1)零件图 1张(A3) (2)毛坯图 1张(A3) (3)工序简图 1张(A2) (4)工序卡片 2张 (5)课程设计说明书 1份 班级:机械046 学生:杨孟博 指导教师:张斌 学号: 51404627 2007年 1月25日

陕西科技大学课程设计说明书 2 目录 1 设计说明 (4) 1.1题目所给的零件是传动轴 (4) 1.2 零件的工艺分析 (4) 1.3 其主要加工表面位置要求 (4) 1.4零件的材料 (4) 2 工艺规程的设计 (5) 2.1 零件表面加工方法的选择 (5) 2.2制定工艺路线 (6) 3 机械加工余量﹑工序尺寸及毛坯尺寸的确定 (6) 3.1 确定加工余量 (6) 3.2 确定毛坯尺寸 (7) 4 确定切削用量及基本工时 (8) 4.1 车两端面 (9) 4.2 计算切削用量 (9) 5: 选择量具 (15) 5.1 选择刀具 (15) 5.2 选择量具 (15) 6:总结 (16) 7:参考文献 (17)

传动轴零件的加工工艺规程 3 机械制造基础课程设计说明书 本次设计是在基本学完大学基础课,技术基础课以及大部分专业课后进行的。是在毕业设计之前做的较全面较深入地对所学各课程进行的综合性复习及应用。为我提供了一次理论联合实际训练的机会,在我的大学生涯中占有非常重要的地位。 我希望通过本次课程设计对自己的综合性训练,从中锻炼自己的独立思考问题,解决问题的能力,为今后的自己未来生活及工作打下一个良好的基础。 但由于能力有限,此设计难免有不宜之处。恳请各位老师及同学给予指教。

减速机分类及介绍

减速机分类及介绍 减速机概述: 减速机是一种动力传达机构,利用齿轮的速度转换器,将电机(马达)的回转数减速到所要的回转数,并得到较大转矩的机构。作用: 1)降速同时提高输出扭矩,扭矩输出比例按电机输出乘减速比,但要注意不能超出减速机额定扭矩。 2)减速同时降低了负载的惯量,惯量的减少为减速比的平方。大家可以看一下一般电机都有一个惯量数值。 减速机和变频器区别:减速机是通过机械传动装置来降低电机(马达)转速,而变频器是通过改变交流电频率以达到电机(马达)速度调节的目的。通过变频器降低电机转速时,可以达到节能的目的。国内比较有名气的变频器生产企业有三晶、英威腾等等。 分类:减速机是一种相对精密的机械,使用它的目的是降低转速,增加转矩。它的种类繁多,型号各异,不同种类有不同的用途。减速器的种类繁多,按照传动类型可分为齿轮减速器、蜗杆减速器和行星齿轮减速器;按照传动级数不同可分为单级和多级减速器;按照齿轮形状可分为圆柱齿轮减速器、圆锥齿轮减速器和圆锥,圆柱齿轮减速器;按照传动的布置形式又可分为展开式、分流式和同轴式减速器。以下是常用的减速机分类: {市面上常用的齿轮减速机,蜗轮减速机,精密行星减速机,摆线针轮减速机及特殊开发用减速机}。 行星摆线针轮减速机蜗轮蜗杆减速机齿轮减速机行星齿轮减速机减速电机无级变速减速机特种专用减速机谐波减速机三环减速机带传动减速机企业标准减速机(器) 减速机配件精密减速机组合减速机台湾国外减速机凿井减速机平行轴减速电机微型直流减速电机正齿轮箱减速电机交流减速电机型号选择:尽量选用接近理想减速比:减速比=伺服马达转速/减速机出力轴转速

减速电机:是指减速机和电机(马达)直联的集成体。这种集成体通常也可称为齿轮马达或齿轮电机。通常由专业的减速机生产厂进行集成组装好后成套供货。使用的优点是简化设计、节省空间、延长使用寿命、降低噪音、提高扭矩和负载能力。减速电机的电机接线盒经过一定设计改造,可以直接连接变频器,适用于分布式控制应用,不仅可以完成简单驱动,还能够实现复杂定位控制。 1 减速机与变频器的区别:减速机是通过机械传动装置来降低电机(马达)转速,而变频器是通过改变交流电频率以达到电机(马达)速度调节的目的。通过变频器降低电机转速时,可以达到节能的目的。减速机国内比较有名气的变频器生产企业有三晶、英威腾等等 蜗轮蜗杆减速机特点:蜗轮蜗杆减速机的主要特点是具有反向自锁功能,可以有较大的减速比,输入轴和输出轴不在同一轴线上,也不在同一平面上。但是一般体积较大,传动效率不高,精度不高。 蜗轮减速机和蜗轮蜗杆减速机的区别 蜗杆减速机和蜗轮蜗杆减速机其实没多大的区别,都是由蜗轮和蜗杆组成,不过蜗杆减速机比较粗造,没蜗轮蜗杆减速机的精密度好,同规格的蜗杆减速机的扭力就比蜗轮蜗杆减速机的大;蜗轮蜗杆减速机主要的是铝合金比较多,但蜗杆减速机就只有铸铁,更大的区别是蜗杆减速机的价格比蜗轮蜗杆减速机的价格便多了。 摆线针轮减速机特点: 1、高速比和高效率单级传动,就能达到1:87的减速比,效率在90%以上,如果采用多级传动,减速比更大。

减速机轴断裂分析

减速机轴断裂分析 摘要:本文较客观地分析了在日常设备维修工作中常见的轴断裂原因,从根本上解决处理轴断裂问题,确保设备安全,经济、稳定运行,创造较好的经济效益。 关键词:轴;断裂;原因;分析 Abstract: This paper objectively analyzed the causes of shaft fracture is common in daily equipment repair work, handle shaft fracture problem fundamentally, ensure the equipment safety, economy, stability, and create good economic benefit. Keywords: shaft; fracture; reason analysis 中国分类号:TGll5.2文献标识码:A文章编号: 在水泥生产工作中,经常会遇到轴的断裂情况:如减速机齿轮轴、大型风机轴、斗式提升机轴等。能正确地分析断轴的原因,对新轴的加工制作、材质选择、热处理方法及轴的安装、调整、使用、日常维护至关重要。现对一例断轴原因进行分析。 亚泰水泥公司制成车间2#水泥磨于1999年12月投人使用,于2007年5月29日发现二段轴轴向串动严重,后经修复进行使用,使用效果不理想,只能少投料,影响生产。决定更换新轴后运行十余天该轴与齿轮配合处断裂。 经过分析判断,这次故障的原因主要是生产厂家在生产过程中加工装配及热处理方法上存在一定的问题,主要表现在:1、加工出现误差,齿轮轴及齿轮配合不达标,而导致装配过松,经过长时间运行,齿轮轴及齿轮配合出现松动。使齿轮磨损后产生轴向推力,造成高速齿轴向串动。2、热处理不当是造成齿轮轴断裂的主要原因。 查阅减速机轴的有关技术资料为:该轴采用17CrNiMo6钢制造,轴整体经调质处理后,表面进行中频处理,使轴表面及根部洛氏硬度达到59~62HRC。1理化检验1.1断轴宏观分析断裂位于减速机轴表面退刀槽根部,见图1。 图1轴断裂位置(mm) 宏观断口见图2,断口表面有较明显的贝壳状花样,属于典型的疲劳断裂。断口由疲劳裂源区、裂纹扩展区和瞬间断裂区三个区域组成。

减速器低速轴设计及加工工艺

J20型减速器低速轴的设计及加工工艺 1 设计要求 原始资料:根据成都卡帕特科技有限公司要求,设计一减速器低速轴,传递的功率P=3.42kW,主动轮转速n=60r/min,载荷平稳,单向运转,预期寿命10年(每天按300天计),单班制工作,原动机为电动机。 设计应完成的任务:设计出一个符合上述要求的轴,画出零件图,根据轴的工作条件及性能要求确定轴的加工步骤,并写出轴的加工工艺。 2 轴的结构设计 2.1最小轴径的设计 按扭矩初算最小轴径本轴是属于中、小轴,在减数器重工作时要承受各种负荷和冲击载荷并且要具有较高的耐疲劳性能和较好的耐磨性能,因此该轴材料选用45钢即可满足其要求。所以选用45#调质,硬度217-255HBS.根据文献P26514.4表,取c=118, 又因为设计要求P=3.42,n=60 所以, d≥(P/N)1/3118 =(3.42/60)1/3mm=46mm考虑有键槽,将直径增大5%,则d=46(1+5%)mm=48.3 mm∴选d=50mm 2.2 轴的结构设计 2.2.1轴上零件的定位,固定和装配 单级减速器中可将齿轮安排在箱体中央,相对两轴承对称分布,齿轮左面由轴肩定位,右面用套筒轴向固定,联接以平键作过渡配合固定,两轴承分别以轴肩和套筒定位,则采用过渡配合固定。 2.2.2 确定轴各段直径和长度 为了使计算方便、易懂,现画草图如下(图上的阶梯轴从左到右依次是I段、II段、III段、Ⅳ段、Ⅴ段、Ⅵ段)

2.1 轴的草图 I段:d 1=50mm 长度取L 1 =47mm∵h=2c c=1.5mm II段:取轴肩高3.5mm,作定位用,∴d 2 =57mm 初选用一对6213型角滚动轴承,其内径为65mm,宽度为23mm. 考虑齿轮端面和箱体内壁,轴承端面和箱体内壁应有一定距离。取套筒长为50mm,通过密封盖轴段长应根据密封盖的宽度,并考虑联轴器和箱体外壁应有一定矩离而定,为此,取该段长为55mm,安装齿轮段长度应比轮毂宽度小2mm, 故II段长:L 2 =85mm III段直径d 3=65mm, L 3 =55mm 根据轴承安装要求,轴肩高h=2.5 mm Ⅳ段直径d 4=70mm, L 4 =80mm Ⅴ段直径d 5=82mm. 长度L 5 =9mm Ⅵ段直径d 6=65 mm,长度L 6 =23 mm 由上述轴各段长度可算得轴支承跨距L=299mm 2.2.3 按弯矩复合强度计算 1.求分度圆直径:已知d=3×Z 1 =27mm 2.求转矩:已知T 1 =544350N·mm 3.求圆周力:Ft 根据参考文献P267得 Ft=2T 1/d 1 =2×544350/324=3360N 4.求径向力Fr 根据参考文献P267得Fr=Ft·tanα=3360×tan200=1220N

RV减速器参数计算

RV减速器具有齿隙小,扭转刚性大,减速比大,振动小以及在一定条件下具有自锁功能的传动机械,是最常用的减速机之一而且传动效率高,磨耗小,使用寿命长。RV减速器明显的优点,已广泛用于机械手和其它机电一体化机械设备中。本设计的底座旋转采用RV减速器传动。 一般的RV减速器为二级减速机构: 一级减速机构为行星齿轮减速机构,通过输入轴的旋转将动力从输入齿轮传递到行星齿轮,按齿数比进行减速,为第一级减速; 二级减速机构为摆线级减速机构,由行星轮带动旋转的偏心轴驱动两个摆线盘进行偏心运动,摆线盘成180°对称安装,使其受力均衡。偏心运动促使摆线盘与放置在针齿壳上的针齿销进行啮合。偏心轴旋转一周,摆线盘在相反方向上移动一个针齿位。 在RV减速器的实际应用中,不同的输入和输出方式可以得到不同的减速比,其主要有三种输入输出固定方式: 1.固定:针齿壳 输入:输入轴 输出:输出盘 减速比:i=1/R,R----速比值。 2. 固定:输出盘 输入:输入轴 输出:针齿壳 减速比:i=-1/(R-1),R----速比值。 3. 固定:输入轴 输入:针齿壳 输出:输出盘 减速比:i=(R-1)/R,R----速比值。 其中速比值R可以按以下公式进行计算:

式中:——行星轮齿数; ——输入齿轮齿数; ——针齿销数; R——速比值。 本设计采用是最为常见的第一种输入输出固定方式,针齿壳通过连接盘固定于机器人的基座上,底座旋转驱动电机通过平键传动作为动力来源的输入端,而输出盘作为整个RV减速器的输出端,将输出盘与底座通过螺钉连接固定。 本设计中速比值R=100;根据行星齿轮减速机构的工作环境选择不同的输入齿轮齿数,闭式齿轮传动一般转速较高,为了提高传动的稳定性,减小冲击振动,通常选择齿数多一点的齿轮,输入齿轮的齿数可取为Z1=20~40,而开式(半开式)齿轮传动,由于轮齿的磨损失效为主要因素,因此输入齿轮的齿数通常选用不多,一般可以输入齿轮的齿数Z1=17—20,且为了防止齿轮啮合时发生根切,应取Z1≥17。本设计中的RV减速器的工作环境为封闭的减速箱内,且齿轮传动的转速较高,因此选定输入齿轮的齿数Z1为20。 设计本RV减速器的针齿销数Z4=33,计算可得行星轮齿数Z2=60。 这里我们将底座旋转的运动参数和力矩参数,时间参数等归纳起来: 1.启动时负载转矩:T1= 2.稳定时负载转矩:T2= 3.停止时负载转矩:T3=瞬时最大转矩:Tem= 5.启动时平均转速:N1=2500r/min 6.稳定时转速:N2=3750 r/min 7.停止时平均转速:N3=2500r/min

减速器输出轴的机械加工工艺设计

课程设计说明书 设计题目:减速箱输出轴机械加工工艺规程设计 班级 设计者 学号 指导教师 机械制造工艺学课程设计任务书

题目:减速箱输出轴机械加工工艺规程设计 生产纲领: 20000件 生产类型:大批量生产 内容: 1.产品零件图 1张 2.产品毛坯图 1张 3.夹具图 1张 4.零件装配图 1张 5.机械加工工艺过程卡片 1套 6.机械加工工序卡片 1套 7.课程设计说明书 1份 机械加工工艺规程设计 图1、2 分别为输出轴的零件图。已知零件的材料为45号刚,年产量4000件/年。试为该输出轴零件编制工艺规程。 图1-1 输出轴零件图 第一节减速器输出轴的工艺分析及生产类型的确定1.减速器输出轴的用途和工作原理

此轴用于输出转矩、传递动力。 轴安装在单列圆锥磙子轴承上,轴承盖凸缘挡住轴承外圈,因此轴得到轴向定位。齿轮和半联轴器用轴肩、轴套和挡圈轴向定位,用平键作周向定位,以传递运动和转距。该轴套上两个齿轮,一端置于减速箱内,一端置于输出终端。作用是输出转矩、传递动力。 全部技术要求列于表1-1中 加工表面尺寸及偏差公差/mm及精表面粗糙度形位公差/mm A0.017,IT7Ra0.8 L0.017,IT7Ra12.5无 BΦ48无Ra12.5无 GΦ48无Ra1.6 HΦ48无Ra3.2无 C0.016,IT6Ra1.6无 D0.017,IT7Ra0.8 E0.16,IT11Ra3.2无 J0.16,IT11Ra2.3无 F0.013,IT6Ra1.6无 K0.013,IT6Ra12.5无 键槽 12P90.036Ra1.6 12P9侧

表1-1 3. 审查减速器输出轴的工艺性 分析零件图可知,传动轴的所有表面都要求切屑加工,并在轴向方向上产生台阶表面, 并且粗糙程度都不同 ,这样有利于主轴高速旋转时的各表面的应力条件,主要工作表面虽然加工精度要求相对较高,但也可以在正常的生产条件下,采用较经济的方法保质保量地加工出来。所以该零件的工艺性好。 (1)45号钢具有良好的可锻性。 (2)结构力求简单、对称、横截面尺寸不应有突然变化。 (3)为了装卸轴承和齿轮方便、去除毛刺,轴两端应该有倒角。 (4)为了减少应力集中,各轴肩过渡处应有合理的圆角。 (5)轴上有两个键槽,可用铣刀加工,而且效率高。 一. 确定输出轴的生产类型 依设计题目知:Q=2000件/年,结合生产实际,备品率a%和废品率 键 槽12P9底 无 无 Ra3.2 无 键槽8P6 侧面 8P6 0.043 Ra1.6 键槽8P6 底面 无 无 Ra3.2 无

减速机标准

各类型减速机标准 双圆弧圆柱齿轮基本齿廓(GB/T12759-1991) ZSY、ZSZ硬齿面中硬齿面圆柱齿轮减速机(JB/T8853-2001) LZ型弹性柱销齿式联轴器(GB/T5015-2003) LZZ型带制动轮弹性柱销齿式联轴器(GB/T5015-2003) LZJ型接中间轴弹性柱销齿式联轴器(GB/T5015-2003) LZD型锥形轴孔弹性柱销齿式联轴器(GB/T5015-2003) LX型弹性柱销联轴器(GB5014-2003) LXZ型带制动轮弹性柱销联轴器(GB5014-2003) YK系列圆锥—圆柱齿轮减速机(YB/T050-93) QJ-D型起重机底座式减速机(JB/T8905.2-1999) QJ型起重机减速机(JB/T89051-1999) QJ-T型起重机套装式减速机(JB/T8905.4-1999) QJ-L型起重机立式减速机(JB/T8905.3-1999) JPT型渐开线圆柱齿轮减速器(JB/T10244-2001) KPTH型渐开线圆柱齿轮减速器(JB/T10243-2001) GS系列高速渐开线圆柱齿轮箱(JB/T7514-94) S系列斜齿-蜗杆减速器(Q/ZTB04-2000) PGB型立式行星齿轮减速器(GB/T11870-1989) 谐波齿轮减速器(SJ2604-85) 滚柱活齿减速器(JB/T6137-92) ZY、ZZ系列圆柱齿轮减速器(JB/T8853-1999) ZQ、ZQH型圆柱齿轮减速器(JB1585-75) TP型平面包络环面蜗轮减速器(JB/T9051-1999) 圆柱齿轮减速器标准中心距(GB/T10090-1988) ZLY、ZLZ硬齿面中硬齿面圆柱齿轮减速机(JB/T8853-2001) ZDY、ZDZ硬齿面中硬齿面圆柱齿轮减速机(JB/T8853-2001) CW系列圆弧圆柱蜗杆减速器(JB/T7935-1999) ZC1型双级蜗杆及齿轮-蜗杆减速器(JB/T7008-1993) SCW轴装式圆弧圆柱蜗杆减速机(JB/T6387-1992) WD型圆柱蜗杆减速机(JB/ZQ4390-79) CW系列圆弧圆柱蜗杆减速器(GB9147-88) WH系列圆弧圆柱蜗杆减速机(JB2318-79) SB系列双摆线针轮减速机(JB/T5561-1991) Z系列行星摆线针轮减速机(JB/T2982-1994) 带轮的材质、表面粗糙度及平衡(GB11357-89) 普通V带(GB1171-89) V带传动额定功率的计算(GB11355-89) 锥齿轮胶合承载能力计算方法(GB11367-89) 船用立式行星减速器(GB11870-89) NGW型行星齿轮减速器(JB1799-76) 平面包络环面蜗杆减速器(ZBJ19021-89)

减速器参数表格

B.4 Gear reducer data sheet 加速器数据表 Manufacturers are recommended to use this form below when providing gear reducer information. 在提供减速器信息的时候,推荐制造商采用如下的表格 Manufactured by制造商: Date submitted提交日期 Nominal reducer size额定减速器尺寸 Calculated Values 计算值 Pitting resistance torque抗孔蚀性扭Units单位: Static torque矩静态扭矩Units: First reduction一级减速First reduction:一级减速 Second reduction二级减速Gear大齿轮Pinion小齿轮 Third reduction三级减速Second reduction: 二级减速 Bending strength torque弯曲强度扭矩Units: Gear Pinion First reduction一级减速: Third reduction:三级减速 Gear Pinion Gear Pinion Second reduction: Gear Pinion Third reduction: Gear Pinion Notes: 1. First reduction is high-speed reduction. 一级减速时高速减速 2. Second reduction is slow-speed reduction on double reduction gear reducers and the intermediate reduction on triple reduction gear reducers. 二级减速时双级减速器的低速和三级减速器的中级减速。 3. Third reduction is the slow-speed reduction on triple reduction reducers and is not applicable on double reduction reducers. 三级减速是指三级减速器的低速减速,不适用于双级减速。 Construction Features 结构数据 Type of reducer (Cross out if not applicable)减速器的类型(不接受交叉式) (Single) 单级(Double) 双级(Triple) Reduction 三级(Single) (Double) Helical gearing 螺线 Teeth齿轮齿 Number of teeth and normal diametral pitch or transverse diametral pitch: 齿轮齿数量和额定径节或是横向径节距 First reduction一级减速N p N g P nd P d Second reduction 二级减速N p N g P nd P d Third reduction 三级减速N p N g P nd P d Center distance and net face width:中心距和净面宽度 First reduction C s, W f Second reduction C s, W f Third reduction C s, W f Figure B.3 - Manufacturer’s gear reducer data sheet

减速机分类大全

第1章齿轮减速机 JZQ、ZQ、ZQH、PM 型圆柱齿轮减速器JB1585-1975 ………1-1-1 PJ型圆柱齿轮减速器1-1-17 ZQ、ZQD型大速比圆柱齿轮减速器……………………………1-1-22 ZQA型圆柱齿轮减速器1-1-30 ZD、ZDH、ZDSH单级圆柱齿轮减速器JB 1130-1970 ………1-1-42 ZL、ZLH、ZLSH两级圆柱齿轮减速器JB 1130-1970 ………1-1-71 ZS、ZSH、ZSSH三级圆柱齿轮减速器JB 9130-1970 ………1-1-95 ZDY、ZDZ、ZL Y、ZLZ、ZSY、ZSZ系列圆柱齿轮减速器ZBJ19004-88 ………………………………1-1-123 ZDY、ZDZ、ZL Y、ZLZ、ZSY、ZSZ系列圆柱齿轮减速器JB/T8853-1999 ……………………………1-1-149 ZDY、ZL Y、ZSY 系列圆柱齿轮减速器JB/T 8853-2001 ……1-1-167 ZLYA、ZSYA、ZFYA(ZXY A)系列硬齿面圆柱齿轮减速器……1-1-201 ZFY、ZXY型硬齿面圆柱齿轮减速器…………………………1-1-207 QJ起重机用三支点减速器JB/T 8905.1-1999………………1-1-211 QJ-D起重机用底座式减速器JB/T 8905.2-1999……………1-1-239 QJ-L起重机用立式减速器JB/T 8905.3-1999………………1-1-265 QJ-T起重机用套装式减速器JB/T 8905.4-1999……………1-1-279 QS起重机三合一减速器JB/T 9003-1999……………………1-1-294 QS系列起重机用三合一减速器JB/T 9003-2004……………1-1-307 QY型起重机用硬齿面减速器…………………………………1-1-324 QJY型起重机用硬齿面减速器…………………………………1-1-349 QJ-L、QJ-T型起重机立式减速器(泰隆样本)……………1-1-371 QJG-T型起重机套装减速器……………………………………1-1-375 QJG-L型起重机立式减速器……………………………………1-1-378 DBY、DCY系列运输机械用减速器JB/T 9002-1999…………1-1-383 QSJ系列齿轮减速机…1-1-418 DQJ 点线啮合齿轮减速器JB/T10468-2004 …………………1-1-420 TZ 系列同轴式圆柱齿轮减速器JB/T 7000-1993……………1-1-449 JPT 型减速器JB/T 10244-2001………………………………1-1-485 KPTH 型减速器JB/T 10243-2001 ……………………………1-1-505 GH 滚柱活齿减速器JB/T6137-1992 …………………………1-1-521 GS 高速渐开线圆柱齿轮箱JB/T 7514-1994…………………1-1-525 RH 二环减速器JB/T 10299-2001 ……………………………1-1-547 PR 模块式齿轮减速器JB/T 10467-2004 ……………………1-1-563 PYZ系列硬齿面轴装式减速机…………………………………1-1-645 PF25、KZL545型圆柱齿轮减速机……………………………1-1-655 ZDS少齿数渐开线圆柱齿轮减速器JB/T 5560-1991 ………1-1-657 ZJ 型轴装式减速器JB/T 7337-1994…………………………1-1-677 ZJY 型轴装式圆柱齿轮减速器JB/T 7007-93 ………………1-1-685 ZSC、ZSC(A)系列圆柱齿轮减速器…………………………1-1-695 ZSC(D)型大速比减速器………………………………………1-1-701 ZHD型圆弧齿圆柱齿轮减速器…………………………………1-1-703

关于减速机高速轴断裂

关于减速机高速轴断裂 一、不同心出现的断轴问题 有的用户在设备运行一段时间后,驱动电机的输出轴断了。为什么驱动电机的输出轴会扭断?当我们仔细观查驱动电机折断的输出轴横断面,会发现横断面的外圈较明亮,而越向轴心处断面颜色越暗,最后到轴心处是折断的痕迹(点状痕)。这一现象大多是驱动电机与减速机装配时两者的不同心所致。 当驱动电机和减速机间装配同心度保证得较好时,驱动电机输出轴所承受的仅仅是转动力(扭矩),运转时也会很平顺,没有脉动感。而在不同心时,驱动电机输出轴还要承受来自于减速机输入端的径向力(弯矩)。这个径向力的作用将会使驱动电机输出轴被迫弯曲,而且弯曲的方向会随着输出轴转动不断变化。如果同心度的误差较大时,该径向力使电机输出轴局部温度升高,其金属结构不断被破坏,最终将导致驱动电机输出轴因局部疲劳而折断。两者同心度的误差越大时,驱动电机输出轴折断的时间越短。在驱动电机输出轴折断的同时,减速机输入端同样也会承受来自于驱动电机输出轴方面的径向力,如果这个径向力超出减速机输入端所能承受的最大径向负荷的话,其结果也将导致减速机输入端产生变形甚至断裂或输入端支撑轴承损坏。因此,在装配时保证同心度至关重要! 从装配工艺上分析,如果驱动电机轴和减速机输入端同心,那么驱动电机轴面和减速机输入端孔面间就会很吻合,它们的接触面紧紧相贴,没有径向力和变形空间。而装配时如果不同心,那么接触面之间就会不吻合或有间隙,就有径向力并给变形提供了空间。 同样,减速机的输出轴也有折断或弯曲现象发生,其原因与驱动电机的断轴原因相同。但减速机的出力是驱动电机出力和减速比之积,相对于电机来讲出力更大,故减速机输出轴更易被折断。因此,用户在使用减速机时,对其输出端装配时同心度的保证更应十分注意! 二、减速机出力太小出现的断轴问题 如果不是驱动电机轴断,而是减速机的输出轴折断,除了减速机输出端装配同心度不好的原因以外,还会有以下几点可能的原因。 首先,错误的选型致使所配减速机出力不够。有些用户在选型时,误认为只要所选减速机的额定输出扭矩满足工作要求就可以了,其实不然。一是所配驱动电机额定输出扭矩乘上速比,得到的数值原则上要小于减速机产品样本提供的相应额定输出扭矩;二是同时还要考虑其驱动电机的过载能力及实际应用中所需最大工作扭矩。理论上,用户所需最大工作扭矩一定要小于减速机额定输出扭矩的2倍。尤其是有些应用场合必须严格遵守这一准则,这不仅是对减速机内部齿轮和轴系的保护,更主要的是避免减速机的输出轴被扭断。如果没有考虑到这些因素,一旦设备安装有问题,减速机的输出轴被负载卡住,这时驱动电机的过载能力依然会使其不断加大出力,直到减速机的输出轴所承受的力超过其最大输出扭矩,轴就会扭断。如果减速机额定输出扭矩有一定的裕量,那么扭断输出轴的槽糕情况就会避免。 其次,在加速和减速的过程中,减速机输出轴所承受瞬间的冲击扭矩如果超过了其额定输出扭矩的2倍,并且这种加速和减速又过于频繁,那么最终也会使减速机断轴。如果有这种情况出现,应仔细计算考虑加大扭矩裕量。 三、减速机的正确安装 正确的安装、使用和维护减速机,是保证机械设备正常运行的重要环节。因此,在您安装行星减速机时,请务必严格按照下面的安装顺序,认真地装配。 第一步:安装前应确认电机和减速机是否完好无损,并且严格检查驱动电机与减速机相连接的各部位尺寸是否匹配。这里指的是驱动电机法兰的定位凸台和轴径与减速机法兰的定位凹槽和孔径间的尺寸及配合公差;擦拭处理配合表面的污物与毛刺。 第二步:旋下减速机法兰侧面的工艺孔上的螺堵,旋动减速机的输入端,使抱紧内六角螺钉帽与工艺孔对齐,插入内六角工具旋松抱紧内六角螺钉。 第三步:手持驱动电机,使其轴上之键槽与减速机输入端孔抱紧螺钉垂直,将驱动电机轴插入减速机输入端孔。插入时必须保证两者同心度一致和二侧法兰平行。如同心度不一致或二侧法兰不平行必须查明原因。另外,在安装时,严禁用锤击,即可以防止锤击的轴向力或径向力过大损坏两者轴承,又可以通过装配手感来判断两者配合是否合适。判断两者配合同心度和法兰平行的方法为:两者相互插入后,两者法兰基本贴紧,缝隙一致。 第四步:为保证两者法兰连接受力均匀,先将驱动电机紧固螺钉任意旋上,但不要旋紧;然后按对角位置逐渐旋紧四个紧固螺钉;最后旋紧减速机输入端孔抱紧螺钉。一定要先旋紧驱动电机紧固螺钉后再旋紧减速机输入端孔抱紧螺钉。 注意:减速机与机械设备间的正确安装类同于减速机与驱动电机间的正确安装。关键是要必须保证减速机输出轴与所驱动部分输入轴同心度的一致。

相关文档