文档库 最新最全的文档下载
当前位置:文档库 › 高中物理第1章碰撞与动量守恒1.3动量守恒定律的案例分析学案选修

高中物理第1章碰撞与动量守恒1.3动量守恒定律的案例分析学案选修

高中物理第1章碰撞与动量守恒1.3动量守恒定律的案例分析学案选修
高中物理第1章碰撞与动量守恒1.3动量守恒定律的案例分析学案选修

1.3 动量守恒定律的案例分析

一、碰撞问题

1.碰撞问题的受力特点:碰撞过程中内力远远大于系统受到的合外力,此时合外力可以忽略不计。

2.研究方法:研究碰撞问题的理论依据是动量守恒定律。

预习交流1

碰撞是很常见的现象,如打保龄球、打台球等,你能结

合类似的碰撞实例,说出碰撞的1

~2个特点吗?

答案:碰撞的特点:(1)碰撞时间很短;(

2)碰撞时相互作用力很大。

二、反冲现象

1.反冲:物体系统的一部分向某方向运动,而其余部分向相反方向运动的现象。

2.受力特点:物体的不同部分在内力作用下向相反的方向运动,且内力很大。

3.研究方法:研究反冲运动的理论依据是动量守恒定律。

4.应用:喷气式飞机和火箭飞行是反冲运动的两个重要实例。

预习交流2

做一做:试通过火箭升空一例说明:在反冲现象中,相关的物体开始是静止的,但后来它们都有了一定的速度,有了一定的能量,这些能量是哪里来的?

答案:火箭升空,是火箭内部的燃料燃烧,向后喷出燃气,燃料的化学能转化为火箭的机械能。

一、碰撞及类碰撞过程的特点

保龄球运动中,10个保龄球摆放在一个三角形区域内,有经验的运动员可以一次用保龄球击倒全部保龄瓶,这其中除了运用好掷球技巧外,对碰撞规律的深刻理解也很关键。那么保龄球与保龄瓶之间的碰撞遵守什么规律?

答案:保龄球与保龄瓶之间的碰撞遵守动量守恒定律。

质量为3 kg 的小球A 在光滑水平面上以6 m/s 的速度向右运动,恰遇上质量为5 kg 的小球B 以4 m/s 的速度向左运动,碰撞后B 球恰好静止,求碰撞后A 球的速度。

答案:碰后A 球速度大小为0.67 m/s ,方向向左。

解析:两球都在光滑水平面上运动,碰撞过程中系统所受合外力为零,因此系统动量守恒。碰撞前两球动量已知,碰撞后B 球静止,取A 球初速度方向为正,由动量守恒定律有:m A v A +m B v B =m A v A ′

v A ′=m A v A +m B v B m A =3×6+5×(-4)3

m/s =-0.67 m/s 。

1.碰撞及类碰撞过程,相互作用时间很短,相互作用力很大,一般远

远大于物体受到的外力,故可以忽略掉外力,碰撞过程动量守恒。

2.碰撞过程的能量特点是,碰撞前的总动能E k 大于或等于碰撞后的总动能E k ′,即E k ≥E k ′。

3.爆炸过程因为有火药的化学能转化为动能,故爆炸过程,动能会增加。

二、反冲现象

春节期间儿童都喜欢燃放一种叫“钻天猴”的焰火,它在一根细细的竹竿上捆绑一个塑料壳,壳里面装有火药,上端封闭,下端有引线,当点燃下端的引线时,火药产生的烟火向下喷出,“钻天猴”就直钻青天。你知道其中的道理吗?

答案:“钻天猴”钻天,利用了反冲原理。

课外科技小组制作一支“水火箭”,用压缩空气压出水流使火箭运动。假如喷出的水流

流量保持为2×10-4 m 3/s ,喷出速度保持为对地10 m/s ,启动前火箭总质量为1.4 kg ,则

启动2 s 末火箭的速度可以达到多少?(已知火箭沿水平轨道运动,阻力不计,水的密度是103 kg/m 3)

答案:4 m/s

解析:“水火箭”喷出水流做反冲运动。设火箭原来总质量为M ,喷出水流的流量为Q ,水的密度为ρ,水流的喷出速度为v ,火箭的反冲速度为v ′。由动量守恒定律得(M -ρQt )v ′=ρQtv ,火箭启动后2 s 末的速度

v ′=ρQtv M -ρQt =103×2×10-4×2×101.4-103×2×10-4×2

m/s =4 m/s 。

分析火箭类问题注意以下几点:

1.火箭在运动过程中,随着燃料的燃烧,火箭本身的质量不断减小,故在应用动量守恒定律时,必须取在同一相互作用时间内的火箭和喷出的气体为研究对象。注意反冲前、后各物体质量的变化。

2.明确两部分物体初、末状态的速度的参考系是否是同一参考系,如果不是同一参考系要设法予以调整,一般情况要转换成对地球的速度。

3.列方程时要注意初、末状态动量的方向。反冲物体速度的方向与原物体的运动方向是相反的。

三、“人船模型”的分析

人开始静止站立在船头,当人缓慢地由船头走到船尾时,船也向后移动了一段位移,如图所示。若船的质量为m 1,人的质量为m 2,忽略水的阻力,那么人、船的质量与人、船的位移有什么关系?

答案:m 1s 1=m 2s 2

解析:人船看做一个系统,忽略水的阻力,受的合力为零,动量守恒,取船运动的方向为正方向,则m 1v 1-m 2v 2=0,m 1s 1t -m 2s 2t

=0,m 1s 1=m 2s 2。

长为l 、质量为M 的小船停在静水中,一个质量为m 的人站在船头,若不计水的阻力,当人从船头走到船尾的过程中,小船和人对地的位移各是多少?

答案:ml m +M Ml m +M 解析:此类题目中涉及的是总动量为零的系统。相互作用的两个物体原来都处于静止,作用后处于运动状态,而总动量始终为零。利用这一点我们可以解决不少涉及位移的问题,即由m 1v 1+m 2v 2=0,可以推出m 1s 1+m 2s 2=0。使用此式解题时,应注意式中的s 1、s 2应相对同一参考系。人船模型是这类问题中的典型,且不管人在船上怎样运动,匀速或加速,结果都是一样的。另外,解这类涉及位移的问题时,作出初、末状态的示意图是非常必要的。

人和小船组成的系统在水平方向不受外力,动量守恒。假设某一时刻小船和人对地的速度分别为v 1、v 2,由于原来处于静止状态,因此

0=Mv 1-mv 2,即mv 2=Mv 1

由于相对运动过程中的任意时刻,人和小船的速度都满足上述关系,故它们在这一过程中平均速率也满足这一关系,即m v 2=M v 1,等式两边同乘运动的时间t ,得m v 2t =M v 1t ,即ms 2=Ms 1

又因s 1+s 2=l ,因此有

s 1=ml m +M ,s 2=Ml m +M

“人船模型”是利用动量守恒求解的一类问题。人船速度虽然变化,但

总动量始终守恒,所以人的平均动量与船的平均动量的总动量也守恒。适用条件是:

①系统由两个物体组成且相互作用前静止,系统总动量守恒。

②在系统内发生相对运动的过程中至少有一个方向的动量守恒,注意两物体的位移是相对同一参考系的位移。

在解题时要画出各物体的位移关系草图,找出各长度间的关系。

这一模型,还可进一步推广到其他类似的现象中,解决大量的实际问题,例如人沿着静止在空中的热气球下面的软梯滑下或攀上,求气球上升或下降高度的问题;小球沿弧形槽滑

下,求弧形槽移动距离的问题等等。

1.手持铁球的跳远运动员起跳后,欲提高跳远成绩,可在运动到最高点时,将手中的铁球( )。

A .竖直向上抛出

B .向前方抛出

C .向后方抛出

D .向左方抛出

答案:C

解析:欲提高跳远成绩,则应增大水平速度,即增大水平方向的动量,所以可将铁球向后抛出,人和铁球的总动量守恒,因为铁球的动量向后,所以人向前的动量增加。

2.一个人静止于完全光滑的水平冰面上,现欲离开冰面,下列方法可行的是( )。

A .向后踢腿

B .向后甩手

C .脱下衣服或鞋子水平抛出

D .脱下衣服或鞋子竖直向上抛出

答案:C

解析:内力不能改变系统整体的运动状态,踢腿、甩手对系统来讲是内力。

3.人坐在船上,船静止在水面上,总质量为M ,水平向东抛出一个质量为m 的物体后,人、船向西运动。已知抛出的物体的动能为E 0,则人、船的动能为( )。

A .E 0

B .m M E 0

C .m

M -m E 0 D .Mm (M -m )2E 0 答案:C

解析:由动量守恒定律有(M -m )v =mv 0=p ,又E k =p 22(M -m ),E 0=p 22m ,可得E k =m M -m

E 0,选项C 对。

4.(2011·山东聊城模拟)静水中的两只船静止在一条直线上,质量都是M (不包括人),甲船上质量为m 的人跳到乙船上,又马上跳回甲船上,问甲、乙两船的速度之比是多少?

答案:M

M +m

解析:两只船与人组成的系统动量守恒,有0=(M +m )v 甲-Mv 乙,解得v 甲v 乙=M M +m

。 5.载人气球静止于高h 的空中,气球的质量为M ,人的质量为m ,若人沿绳梯滑至地面,则绳梯至少为多长?

答案:M +m M

h 解析:气球和人原来静止在空中,说明系统所受合外力为零,故系统在人下滑过程中动量守恒,人着地时绳梯至少应接触地面,设绳梯长为L ,人沿绳梯滑至地面人的位移为x 人,球的位移为x 球,它们的位移状态图如图所示。

由平均动量守恒有0=Mx 球-mx 人,又有x 球+x 人=L ,x 人=h ,故=

M m L h M 。

高中物理《动量守恒定律(2)》优质课教案、教学设计

【教材分析】 前一节已涉及动量守恒定律在物理学史上是如何被提出来的,本节 则以一维情况下两个相互作用的小球为例,根据牛顿第二定律和牛顿第三定律,导出具体的动量守恒定律的表达式。这样的处理,使学生对动量守恒定律的理解更深刻,同时也使学生对知识间的联系有了更深入的理解。 【教学目标】 (1)能运用牛顿第二定律和牛顿第三定律分析碰撞,导出动量守恒的 表达式。 (2)了解动量守恒定律的普遍适用性和牛顿运动定律适用范围的局限 性。 (3)加深对动量守恒定律的理解,进一步练习用动量守恒定律解决生产、生活中的问题。 (4)知道求初、末动量不在一条直线上的动量变化的方法。 【教学重点】掌握动量守恒定律的推导、表达式、适用范围和守恒条件【教学难点】动量守恒定律的理解及守恒条件的判定

【教学思路】首先通过演示实验使学生了解系统相互作用过程中动量守恒,再使学生清楚地理解动量守恒定律的推导过程、守恒 条件及适用范围,即用实验法、推理法、归纳法、举例讲授法。 【教学器材】多媒体、碰撞试验装置。 【教学过程】 新课导入 前面已经学习了动量定理,下面再来研究两个发生相互作用的物体所组成的物体系统,在不受外力的情况下,二者发生相互作用前后各自的动量发生什么变化,整个物体系统的动量又将如何? 这就是我们今天要介绍的动量守恒定律。它是自然界中最重要最普遍的定律之一。 新课展示 一、动量守恒定律 1.实验探究: 学生分组实验,探究碰撞前后系统的动量关系 2.理论探究:

课件展示:光滑的水平桌面上做匀速运动的两个小球,质量分别为m1 和m2。沿同一直线向相同的方向运动,速度分别是v l 和v2,且v l> v2,(1)两个小球的总动量为多少?一段时间后碰撞,碰后的速度为v1’ 和v2’,(2)则碰撞后的总动量为多少?(3)碰撞前后的总动量p 和p’有什么关系? 引导学生合作探究: 碰撞之前总动量:p=p1+p2 = m1 v l + m2 v2 碰撞之后总动量:p’=p1’+ p2’= m1 v1’+ m2 v2’ 根据牛顿第二定律,碰撞过程中两球的加速度分别是 a1=F1/m1 , a2= F2/m2 (1) 根据牛顿第三定律得F1=-F2 所以m1a1=-m2a2 (2) 又由加速度公式 a1= v1’- v l/t a2= v2’- v2/t (3) 由以上(1)(2)(3)得 m1 v l + m2 v2= m1 v1’+ m2 v2’即p= p’

动量守恒定律导学案含答案

动量守恒定律导学案答案 【学习目标】 1.了解系统、内力和外力的概念. 2.理解动量守恒定律的确切含义、表达式和守恒条件. 3.能用牛顿运动定律推导动量守恒定律的表达式,了解动量守恒定律的普遍意义. 4.会用动量守恒定律解释生活中的实际问题. 【自主预习】 一、系统、内力与外力 1.系统:相互作用的_________物体组成一个力学系统. 2.内力:___________物体间的相互作用力. 3.外力:系统_________的物体对系统内物体的作用力. 二、动量守恒定律 1.内容:如果一个系统___________,或者______________________,这个系统的总动量保持不变. 2.表达式: m1v1+m2v2=__________(作用前后总动量相等). 3.适用条件:系统____________或者所受外力的矢量和_________ 【自主预习答案】 一、1.两个或多个. 2.系统中. 3.外部. 二、1.不受外力,所受外力的矢量和为0. 2.m1v1′+m2v2′. 3.不受外力、为零.

问题探究】 一、对动量守恒定律的理解 【自主探究一】 1.如图所示,公路上三辆汽车发生了追尾事故.如果将甲、乙两辆汽车看做一个系统,丙车对乙车的作用力是________(“内”或“外”)力;如果将三车看成一个系统,丙对乙的力是________(“内”或“外”)力. 【答案】外内 【解析】内力是系统内物体之间的作用力,外力是系统以外的物体对系统内的物体的作用力.一个力是内力还是外力关键是看选择的系统.如果将甲和乙看成一个系统,丙车对乙车的力是外力;如果将三车看成一个系统,丙车对乙车的力是内力. 2.如图所示,光滑水平桌面上质量分别为m1、m2的球A、B,沿着同一直线分别以v1和v2的速度同向运动,v2>v1.当B球追上A球时发生碰撞,碰撞后A、B两球的速度分别为v1′和v2′.试用动量定理和牛顿第三定律推导两球碰前总动量m1v1+m2v2与碰后总动量m1v1′+m2v2′的关系. 【答案】设碰撞过程中两球受到的作用力分别为F1、F2,相互作用时间为t.根据动量定理:F1t=m1(v1′-v1),F2t=m2(v2′-v2). 因为F1与F2是两球间的相互作用力,根据牛顿第三定律知,F1=-F2, 则有:m1v1′-m1v1=m2v2-m2v2′ 即m1v1+m2v2=m1v1′+m2v2′

动量守恒定律碰撞与反冲

动量守恒定律碰撞与反冲Last revision on 21 December 2020

碰撞与反冲 【自主预习】 1.如果碰撞过程中机械能守恒,这样的碰撞叫做________。 2.如果碰撞过程中机械能不守恒,这样的碰撞叫做________。 3.一个运动的球与一个静止的球碰撞,如果碰撞之前球的运动速度与两球心的连线在________,碰撞之后两球的速度________会沿着这条直线。这种碰撞称为正碰,也叫________碰撞。 4.一个运动的球与一个静止的球碰撞,如果之前球的运动速度与两球心的连线不在同一条直线上,碰撞之后两球的速度都会________原来两球心的连线。这种碰撞称为________碰撞。 5.微观粒子相互接近时并不发生直接接触,因此微观粒子的碰撞又叫做 ________。 6. 弹性碰撞和非弹性碰撞 从能量是否变化的角度,碰撞可分为两类: (1)弹性碰撞:碰撞过程中机械能守恒。 (2)非弹性碰撞:碰撞过程中机械能不守恒。 说明:碰撞后,若两物体以相同的速度运动,此时损失的机械能最大。 7.弹性碰撞的规律 质量为m1的物体,以速度v1与原来静止的物体m2发生完全弹性碰撞,设碰撞后它们的速度分别为v′1和v′2,碰撞前后的速度方向均在同一直线上。 由动量守恒定律得m1v1=m1v′1+m2v′2 由机械能守恒定律得1 2 m1v21= 1 2 m1v′21+ 1 2 m2v′22 联立两方程解得 v′1=m1-m2 m1+m2 v1,v′2= 2m1 m1+m2 v1。 (2)推论 ①若m1=m2,则v′1=0,v′2=v1,即质量相等的两物体发生弹性碰撞将交换速度。惠更斯早年的实验研究的就是这种情况。 ②若m1m2,则v′1=v1,v′2=2v1,即质量极大的物体与质量极小的静止物体发生弹性碰撞,前者速度不变,后者以前者速度的2倍被撞出去。 ③若m1m2,则v′1=-v1,v′2=0,即质量极小的物体与质量极大的静止物体发生弹性碰撞,前者以原速度大小被反弹回去,后者仍静止。乒乓球落地反弹、台球碰到桌壁后反弹、篮球飞向篮板后弹回,都近似为这种情况。 【典型例题】 【例1】在光滑水平面上有三个完全相同的小球,它们成一条直线,2、3小球静止,并靠在一起,1球以速度v0射向它们,如图16-4-2所示。设碰撞中不损失机械能,则碰后三个小球的速度可能是( )

高中物理《反冲运动火箭1》优质课教案、教学设计

探究二、火箭思考探究:分钟) 交流展示教师和学生 ①介绍我国古代的火箭?②现代的火箭与古代火箭有什么相同和不同之处? 一起分析、 ③现代火箭主要用途是什么?④现代火箭为什么要采用多级结构? 教师:指导学生看书,对照书上“三级火箭”图,介绍火箭的基本构造和工作原理。 小结: 1.火箭:是指一种靠喷射高温高压燃气获得反作用力向前推进的飞行器。 2.原理:反冲运动,满足动量守恒定律。 当火箭推进剂燃烧时,从尾部喷出的气体具有很大的动量,根据动量守恒定律,火箭获得大小相等,方向相反的动量,因而发生连续的反冲现象,随着推进剂的消耗, 火箭的质量逐渐减小,加速度不断增大,当推进剂燃尽时,火箭即以获得的速度沿着预定的空间轨道飞行 3.用途:运载工具 现代火箭主要用来发射探测仪器、常规弹头或核弹头,人造卫星或宇宙飞船,即利 用火箭作为运载工具。 思考与讨论:设火箭在Δt 时间内喷射燃气的质量是Δm,喷出燃气的速度是u,喷 出燃气后火箭的质量是m。设法算火箭在一次喷气后增加的速度Δv。 (忽略阻力和重力的影响) 火箭所获得的速度与哪些因素有关? 4.多级火箭 提高火箭速度的解决办法:要提高喷气速度,就要使用高质量的 燃料,目前常用的液体燃料是液氢,用液氧做氧化剂。目前的技术条 件下,要发射人造卫星,用一级火箭还不能达到所需的速度,必须用 多级火箭。 【例2】一火箭喷气发动机每次喷出m=200 g 的气体,喷出的气体相对地面的速度v=1 000 m/s。设此火箭初始质量M=300 kg,发动机每秒喷气20 次,在不考虑地球引力及空气阻力的情况下:(1)当第三次气体喷出后,火箭的速度多大? (2)火箭发动机1 s 末的速度是多大?归纳 规范解答思考回答 规范解答并板演 形成自己的思路 思考回答

动量守恒定律学案(新)

16.3 动量守恒定律课堂学案 一、合作探究 如图1所示,在水平桌面上做匀速运动的两个小球,质量分别是m1和m2,沿着同一直线向相同的方向运动,速度分别是v1和v2,v1>v2。当第二个小球追上第一个小球时两球碰撞。碰撞后的速度分别是v1’和v2’。碰撞过程中第一个小球受第二个小球对它的作用力是F1,第二个小球所受第一个小球对它的作用力是F2。两小球作用时间为Δt。 分别对两小球使用动量定理,探究碰撞前、后两小球总动量的关系。 问题1:用所给的字母分别表示出碰撞前、后两小球的动量之和? 问题2:碰撞过程中,两小球所受的平均作用力F1和F2有什么关系? 问题3:碰撞过程中,对小球m1,列出动量定理的表达式? 问题4:碰撞过程中,对小球m2,列出动量定理的表达式? 结合以上问题,分析两小球的总动量在碰撞前后的关系。 二、归纳总结 动量守恒定律: (1)内容: (2)表达式: (3)条件:

三、例题解析 例1:在列车编组站里,一辆m 1=1.8×104kg 的甲货车在平直轨道上以v 1=2m/s 的速度运动,碰上一辆m 2=1.2×104kg 的静止的乙货车,它们碰撞后结合在一起继续运动如图2。求货车碰撞后运动的速度。 思考:碰撞过程中动量是否守恒? 例2:如图3所示,一质量为M=4Kg 的小车在光滑的水平地面上以v=1m/s 的速度向左运动,现有一质量为m=1Kg 的小滑块以一定的初速度v 0=2m/s 从小车的左端开始向右端滑行,最终物块相对于小车静止,一起做匀速直线运动。则: (1)物块和小车组成的系统动量守恒吗? (2)最终他们的共同速度是多少? 例3:如图4所示,一枚在空中飞行的导弹,质量为m 。在某点速度大小为V ,方向向右,导弹在该地突然炸裂成两块,其中质量为m 1的一块沿着V 的反方向飞去,速度的大小为V 1,求炸裂后另一块的速度为V 2。 思考:爆炸过程中动量是否守恒? 图2 图4 图3

动量守恒定律,碰撞知识点总结

动量守恒定律,碰撞知识点总结 动量守恒定律 1.守恒条件 (1)系统不受外力或所受外力的合力为零,则系统动量守恒. (2)系统受到的合力不为零,但当内力远大于外力时,系统的动量可近似看成守恒. (3)当系统在某个方向上所受合力为零时,系统在该方向上动量守恒. 2.几种常见表述及表达式 (1)p=p′(系统相互作用前的总动量p等于相互作用后的总动量p′). (2)Δp=0(系统总动量不变). (3)Δp1=-Δp2(相互作用的两物体组成的系统,两物体动量的增量大小相等、方向相反). 其(1)的形式最常用,具体到实际应用时又有以下三种常见形式: ①m1v1+m2v2=m1v1′+m2v2′(适用于作用前后都运动的两个物体组成的系统). ②0=m1v1+m2v2(适用于原来静止的两个物体组成的系统,比如爆炸、反冲等,两者速率与 各自质量成反比).

③m1v1+m2v2=(m1+m2)v(适用于两物体作用后结合为一体或具有相同速度的情况,如完全非 弹性碰撞). 3.理解动量守恒定律:矢量性?瞬时性?相对性?普适性. 4.应用动量守恒定律解题的步骤: (1)明确研究对象,确定系统的组成(系统包括哪几个物体及研究的过程); (2)进行受力分析,判断系统动量是否守恒(或某一方向上动量是否守恒); (3)规定正方向,确定初、末状态动量; (4)由动量守恒定律列出方程; (5)代入数据,求出结果,必要时讨论说明. 碰撞现象 2.弹性碰撞的规律 两球发生弹性碰撞时满足动量守恒定律和机械能守恒定律. 在光滑的水平面上,有质量分别为m1、m2的钢球沿一条直线同向运动,m1、m2的速度分别是v1、v2,(v1、>v2)m1与

高中物理 16.2《动量守恒定律(一)》导学案 新人教版-选修3-5

16.2 动量守恒定律(一)学案导学 教学目标: 理解动量的概念,明确动量守恒定律的内容,理解守恒条件和矢量性。理解“总动量”就是系统内各个物体动量的矢量和。 1.动量(momentum)及其变化 (1)动量的定义:物体的质量与速度的乘积,称为(物体的)动量。记为p=mv. 单位:kg·m/s 读作“千克米每秒”。 理解要点: ①状态量:动量包含了“参与运动的物质”与“运动速度”两方面的信息,反映了由这两方面共同决定的物体的运动状态,具有瞬时性。 ②相对性:这是由于速度与参考系的选择有关,通常以地球(即地面)为参考系。 ③矢量性:动量的方向与速度方向一致。运算遵循矢量运算法则(平行四边形定则)。 【例1】关于动量的概念,下列说法正确的是;( ) A.动量大的物体惯性一定大 B.动量大的物体运动一定快 C.动量相同的物体运动方向一定相同 D.动量相同的物体速度小的惯性大 (2)动量的变化量: 定义:若运动物体在某一过程的始、末动量分别为p和p′,则称:△p= p′-p为物体在该过程中的动量变化。 强调指出:动量变化△p是矢量。方向与速度变化量△v相同。 一维情况下:Δp=mΔυ= mυ2- mυ1矢量差 【例2】一个质量是0.1kg的钢球,以6m/s的速度水平向右运动,碰到一个坚硬的障碍物后被弹回,沿着同一直线以6m/s的速度水平向左运动,碰撞前后钢球的动量有没有变化?变化了多少?

2.系统内力和外力 (1)系统:相互作用的物体组成系统。 (2)内力:系统内物体相互间的作用力 (3)外力:外物对系统内物体的作用力 分析上节课两球碰撞得出的结论的条件: 两球碰撞时除了它们相互间的作用力(系统的内力)外,还受到各自的重力和支持力的作用,使它们彼此平衡。气垫导轨与两滑块间的摩擦可以不计,所以说m1和m2系统不受外力,或说它们所受的合外力为零。 注意:内力和外力随系统的变化而变化。 3.动量守恒定律(law of conservation of momentum) (1)内容:一个系统不受外力或者所受外力的和为零,这个系统的总动量保持不变。这个结论叫做动量守恒定律。 (2)适用条件:系统不受外力或者所受外力的和为零 (3)公式:p1/+p2/=p1+p2即m1υ1+ m2υ2= m1υ1′+ m2υ2′ 或Δp1=-Δp2或Δp总=0 (4)注意点: ①研究对象:几个相互作用的物体组成的系统(如:碰撞)。 ②矢量性:以上表达式是矢量表达式,列式前应先规定正方向; ③同一性(即所用速度都是相对同一参考系、同一时刻而言的) ④条件:系统不受外力,或受合外力为0。要正确区分内力和外力; 条件的延伸:a.当F内>>F外时,系统动量可视为守恒;(如爆炸问题。) b.若系统受到的合外力不为零,但在某个方向上的合外力为零,则这个方向的动量守恒。 例如:如图所示,斜面体A的质量为M,把它置于光滑的水平面上, 一质量为m的滑块B从斜面体A的顶部由静止滑下,与斜面体分离后以速 度v在光滑的水平面上运动,在这一现象中,物块B沿斜面体A下滑时, A与B间的作用力(弹力和可能的摩擦力)都是内力,这些力不予考虑。但 物块B还受到重力作用,这个力是A、B系统以外的物体的作用,是外力;物体A也受到重力和水平面的支持力作用,这两个力也不平衡(A受到重力、水平面支持力和B对它的弹力在竖

《动量守恒定律》导学案2

16.3 动量守恒定律学案导学 教学目标: 能够系统内力和外力,明确动量守恒定律的内容,理解守恒条件和矢量性。理解“总动量”就是系统内各个物体动量的矢量和。 知识回顾: 1.动量(momentum)及其变化 (1)动量的定义:物体的质量与速度的乘积,称为(物体的)动量。记为p=mv. 单位:kg·m/s读作“千克米每秒”。 理解要点: ①状态量:动量包含了“参与运动的物质”与“运动速度”两方面的信息,反映了由这两方面共同决定的物体的运动状态,具有瞬时性。 ②相对性:这是由于速度与参考系的选择有关,通常以地球(即地面)为参考系。 ③矢量性:动量的方向与速度方向一致。运算遵循矢量运算法则(平行四边形定则)。 【例1】关于动量的概念,下列说法正确的是;( ) A.动量大的物体惯性一定大 B.动量大的物体运动一定快 C.动量相同的物体运动方向一定相同 D.动量相同的物体速度小的惯性大 (2)动量的变化量: 定义:若运动物体在某一过程的始、末动量分别为p和p′,则称:△p= p′-p为物体在该过程中的动量变化。 强调指出:动量变化△p是矢量。方向与速度变化量△v相同。 一维情况下:Δp=mΔυ= mυ2- mυ1矢量差 【例2】一个质量是0.1kg的钢球,以6m/s的速度水平向右运动,碰到一个坚硬的障碍物后被弹回,沿着同一直线以6m/s的速度水平向左运动,碰撞前后钢球的动量有没有变化?变化了多少?

学习新知: 1.系统内力和外力 (1)系统:相互作用的物体组成系统。 (2)内力:系统内物体相互间的作用力 (3)外力:外物对系统内物体的作用力 分析上节课两球碰撞得出的结论的条件: 两球碰撞时除了它们相互间的作用力(系统的内力)外,还受到各自的重力和支持力的作用,使它们彼此平衡。气垫导轨与两滑块间的摩擦可以不计,所以说m1和m2系统不受外力,或说它们所受的合外力为零。 注意:内力和外力随系统的变化而变化。 2.动量守恒定律(law of conservation of momentum) (1)内容:一个系统不受外力或者所受外力的和为零,这个系统的总动量保持不变。这个结论叫做动量守恒定律。 (2)适用条件:系统不受外力或者所受外力的和为零 (3)公式:p1/+p2/=p1+p2即m1υ1+ m2υ2= m1υ1′+ m2υ2′ 或Δp1=-Δp2或Δp总=0 (4)注意点: ①研究对象:几个相互作用的物体组成的系统(如:碰撞)。 ②矢量性:以上表达式是矢量表达式,列式前应先规定正方向; ③同一性(即所用速度都是相对同一参考系、同一时刻而言的) ④条件:系统不受外力,或受合外力为0。要正确区分内力和外力; 条件的延伸:a.当F 内>>F 外 时,系统动量可视为守恒;(如爆炸问题。) b.若系统受到的合外力不为零,但在某个方向上的合外力为零,则这个方向的动量守恒。 例如:如图所示,斜面体A的质量为M,把它置于光滑的 水平面上,一质量为m的滑块B从斜面体A的顶部由静止滑下, 与斜面体分离后以速度v在光滑的水平面上运动,在这一现象中, 物块B沿斜面体A下滑时,A与B间的作用力(弹力和可能的摩 擦力)都是内力,这些力不予考虑。但物块B还受到重力作用,这个力是A、B

【2013真题汇编】第18专题 碰撞与动量守恒定律

第十七专题 碰撞与动量守恒定律 【 2013福建卷30 (2) 】将静置在地面上,质量为M (含燃料)的火箭模型点火升空,在及短时间内以相对地面的速度v 0竖直向下喷出质量为m 的炽热气体。忽略喷气过程重力和空气阻力的影响,则喷气结束时火箭模型获得的速度大小是 。(填选项前的事母) A.0m v M B. 0M v m C. 0M v M m - D. 0m v M m - 【答案】D 【解析】根据动量守恒定律得:0)(0=--mv v m M ,所以火箭模型获得的速度大小是m M m v v -=0,选项D 正确。 【2013山东 38(2)】如图所示,光滑水平轨道上放置长木板A (上表面粗糙)和滑块C ,滑块B 置于A 的左端,三者质量分别为kg 2=A m 、kg 1=B m 、kg 2=C m 。开始时C 静止,A 、B 一起以s /m 5=0v 的速度匀速向右运动,A 与C 发生碰撞(时间极短)后C 向右运动,经过一段时间,A 、B 再次达到共同速度一起向右运动,且恰好不再与C 碰撞。求A 与C 发生碰撞后瞬间A 的速度大小。 解析:因碰撞时间极短,A 与C 碰撞过程动量守恒,设碰后瞬间A 的速度为v A ,C 的速度为v C ,以向右为正方向,由动量守恒定律得 C C A A A v m v m v m +=0 A 与 B 在摩擦力作用下达到共同速度,设共同速度为v AB , 由动量守恒定律得 AB B A B A A v m m v m v m )+(=+0 A 与 B 达到共同速度后恰好不再与 C 碰撞,应满足C AB v v = 联立上式,代入数据得 s /m 2=A v 【2013江苏 12 C (3)】如图所示,进行太空行走的宇航员A 和B 的质量分别为80kg 和100kg ,他们携手远离空间站,相对空间站的速度为0。 1m/ s 。 A 将B 向空间站方向轻推后,A 的速度变为0。2m/ s ,求此时B 的速度大小和方向。

《动量守恒定律》复习导学案正式

高二物理 WL-10-02-142 第十六章第三节《动量守恒定律》复习导学案 编写人:路尔清 审核人:马涛 郑学城 郑光情 王雁飞 编写时间:2011-5-10 班级: 班 组别: 组名: 姓名: 【学习目标】 1、进一步理解动量守恒定律,利用守恒条件判系统动量是否守恒。(重点) 2、掌握用动量守恒定律建立方程的方法与技巧。(重点) 3、熟悉利用动量、能量、运动学公式解决综合性问题(重点、难点) 【学习方法:】练习、总结、归纳 【知识链接】 1、在位移-时间图象中,直线的斜率代表物体的 ,斜率的大小代表 大小,斜率的正负代表 。 2、物体动能定义式:K E = ;动量定义式: P ;动能K E 与动量大小P 关系式: 或 。 【学习过程】 知识点一:动量守恒定律及适用条件 问题一、动量守恒定律 1、内容: 。 2、动量守恒定律表达式: ; (两物体组成系统)。 3、动量守恒定律研究对象: 。 问题2:动量守恒定律的适用条件 1、理想守恒:系统 或 。 2、近似守恒:系统所受的合力不为零,但当 ,系统的动量近似看成守恒。 3、分方向守恒:系统在某一方向 ,系统在该方向上动量守恒。 例1、如图所示,A 、B 两物体的质量比m A ∶m B =3∶2,它们原来静止在平板车C 上,A 、B 间有一根被压缩了的弹簧,A 、B 与平板车上表面间动摩擦因数相同,地面光滑. ) (1)、若将A 、B 、弹簧看成一系统,该系统受哪些外 力?该系统动量是否守恒? (2)、若将A 、B 、弹簧、小车看成一系统,该系统受

哪些外力?该系统动量是否守恒? (3)将小车作为研究对象,小车受哪些外力?小车动量是否守恒?放手后小车将向什么方向运动? 例2、在光滑水平面上A 、B 两小车中间有一弹 簧,如图所示。用手抓住小车并将弹簧压缩后使小车处于静止状态。将两小车及弹簧看做一个系统,下列说法中正确的是( ) A .两手同时放开后,系统总动量始终为零 B .先放开左手,再放开右手后,动量不守恒 C .先放开左手,再放开右手后,总动量向左 D .无论何时放手,两手放开后,在弹簧恢复原长的过程中,系统总动量都保持不变,但系统的总动量不一定为零 知识点二:动量守恒定律的应用 例3、(两物体构成的系统) 质量为10g 的子弹,以300m/s 的速度射入质量是30g 静止在水平桌面上的木块,并留在木块中。子弹留在木块中以后,木块运动的速度是多大?如果子弹把木块打穿,子弹穿过后的速度为100m/s ,这时木块的速度又是多大? (请同学们先画出系统初、末两状态示意图) 例4、(多物体构成系统、多过程) 在水平光滑的冰面上,一小孩坐在静止的冰车中,小孩和冰车的总质量M =30 kg 。冰车上放有6枚质量均为m =0.25kg 的雪球,小孩先后将雪球沿同一方向水平掷出,出手时雪球相对地面的速度均为4.0 m/s 。求6枚雪球掷完后,冰车和小孩速度的大小。 例5、质量均为M 的两小车A 和B ,停在光滑的水平地面上,一质量为m 的人从A 车以水平速度v 跳上B 车,以v 的方向为正方向,则跳后A ,B 两车的速度分别为( )

动量守恒定律-碰撞问题试卷

动量守恒定律-碰撞问题试卷

考点23动量守恒定律碰撞问题考点名片 考点细研究:(1)动量守恒定律处理系统内物体的相互作用;(2)碰撞、打击、反冲等“瞬间作用”问题。其中考查到的如:2016年全国卷Ⅰ第35题(2)、2016年全国卷Ⅲ第35题(2)、2016年天津高考第9题(1)、2015年福建高考第30题(2)、2015年北京高考第17题、2015年山东高考第39题(2)、2014年重庆高考第4题、2014年福建高考第30题(2)、2014年江苏高考第12题C(3)、2014年安徽高考第24题、2013年天津高考第2题、2013年福建高考第30题等。高考对本考点的考查以识记、理解为主,试题难度不大。 备考正能量:预计今后高考仍以选择题和计算题为主要命题形式,以物理知识在生活中的应用为命题热点,灵活考查动量守恒定律及其应用,难度可能加大。 一、基础与经典 1. 如图所示,在光滑水平面上,用等大反向的力F1、F2分别同时作用于A、B两个静止的物体上。已知m A

答案 A 解析选取A、B两个物体组成的系统为研究对象,根据动量定理,整个运动过程中,系统所受的合外力为零,所以动量改变量为零。初始时刻系统静止,总动量为零,最后粘合体的动量也为零,即粘合体静止,选项A正确。 2.关于系统动量守恒的条件,下列说法正确的是() A.只要系统内存在摩擦力,系统动量就不可能守恒 B.只要系统中有一个物体具有加速度,系统动量就不守恒 C.只要系统所受的合外力为零,系统动量就守恒 D.系统中所有物体的加速度为零时,系统的总动量一定守恒 答案 C 解析动量守恒的条件是系统不受外力或所受合外力为零,与系统内是否存在摩擦力无关,与系统中物体是否具有加速度无关,故A、B选项错误,C选项正确;所有物体加速度为零时,各物体速度恒定,动量恒定,总动量只能说不变,不能说守恒,D选项错误。 3. 质量为m的甲物块以3 m/s的速度在光滑水平面上运动,有一轻弹簧固定在甲物块上。另一质量也为m的乙物块以4 m/s的速度与甲相向运动,如图所示。则() A.甲、乙两物块在压缩弹簧过程中,由于弹力作用,系统动量不守恒 B.当两物块相距最近时,甲物块的速率为零 C.当甲物块的速率为1 m/s时,乙物块的速率可能为2 m/s,也可能为0

动量导学案

动量导学案 【学习目标】 1、理解动量和冲量的概念 2、掌握动量定理及其应用 3、动量守恒定律 4、动量守恒定律成立的条件 5、应用动量守恒定律分析、解题 【知识网络】 一、动量 1、定义: 2、表达式: 3、标失性: 4、动量变化表达式: 矢量性 方向 二、冲量 1、定义: 2、表达式: 适用条件 3、标失性 方向: 三、动量定理 1、内容:物体所受的合力的 等于物体的 变化 2、表达式: 3、应用:在某一方向上动量定理 四、动量守恒定律 1、内容:如果一个系统 , 或者 ,这个系统总动量保持不变。 2、动量守恒定律的适用条件 (1)系统不受 ,或系统所受外力之和 或系统所受外力之和虽不为零,但系统内力 , (2)系统某一方向上不受外力或所受的外力的矢量和为零,或外力远远小于内力,则系统在该方向上 (3)动量守恒的典型过程: 、 、 其对应守恒表达式: 、 、 【典型训练】 1、质量为m 的物体A 受如图所示F 的恒力作用,作用了ts ,物体始终保持静止,则在此过程中F 的冲量大小为 重力的冲量大小为 支持力的冲量大小为 合力的冲量为 摩擦力冲量大小为 2、如图,两个质量相等的物体在同一高度沿倾角不同的两个光滑斜面由静止自由滑下,到达斜面底端的过程中,两个物体的下列物理量中大小相等的是 ( ) A.重力的冲量 B.弹力的冲量 C.合力的冲量 D.刚到达底端时的动量 3、下列几种说法中,正确的是 ( ) A.不同的物体,动量越大,动能不一定大 B.跳高时,在沙坑里填沙,是为了减小冲量 C.在推车时推不动车,是因为外力冲量不够大 D.动量相同的两个物体受相同的阻力作用,质量小的先停下来 4、下列运动过程中,在任何相等的时间内,物体动量变化相等的是 ( ) A.自由落体运动 B.平抛运动 C.匀速圆周运动 D.匀减速直线运动 5、下列哪种说法是错误的( ) A .运动物体动量的方向总是与它的运动方向相同 B .如果运动物体的动量发生变化,作用在它上面的合外力的冲量必不为0 C .作用在物体上的合力冲量总是使物体的动能增大 D .合外力的冲量就是物体动量的变化 6.关于冲量、动量与动量变化的下述说法中正确的是( ) A .物体的动量等于物体所受的冲量 B .物体所受外力的冲量大小等于物体动量的变化大小 C .物体所受外力的冲量方向与物体动量的变化方向相同 D .物体的动量变化方向与物体的动量方向相同 7.A 、B 两个物体都静止在光滑水平面上,当分别受到大小相等的水平力作用,经过相等时间,则下述说法中正确的是( ) A .A 、B 所受的冲量相同 B .A 、B 的动量变化相同 C .A 、B 的末动量相同 D .A 、B 的末动量大小相同

高中物理-动量守恒定律及其应用(实验)教案

高中物理-动量守恒定律及其应用(实验)教案 【学习目标】 1.知道动量与冲量的概念,理解动量定理与动量守恒定律. 2.会用动量定理与动量守恒定律解决实际应用问题. 3.明确探究碰撞中的不变量的基本思路. 【要点导学】 1.冲量与动量的概念理解. 2.运用动量定理研究对象与过程的选择. 3.动量守恒定律的适用条件、表达式及解题步骤. 4.弹性碰撞和非弹性碰撞 (1)弹性碰撞:___________________________________ (2)非弹性碰撞:____________________________________ (3)在光滑水平面上,质量为m 1的小球以速度v 1与质量为m 2的静止小球发生弹性正碰,根据动量 守恒和机械能守恒,碰后两个小球的速度分别为: v 1’=_____________v 2’=_____________。 【典型例题】 类型一 冲量与动量定理 【例1】质量为m 的小球,从沙坑上方自由下落,经过时间1t 到达沙坑表面,又经过时间2t 停在沙坑里。 求: (1)沙对小球的平均阻力F ; (2)小球在沙坑里下落过程所受的总冲量I 的大小. 类型二 动量守恒定律及守恒条件判断 【例2】 把一支枪水平固定在小车上,小车放在光滑的水平面上,枪发射出一颗子弹时,关于枪、 弹、 车,下列说法正确的是( ) A .枪和弹组成的系统,动量守恒 B .枪和车组成的系统,动量守恒 C .三者组成的系统,因为枪弹和枪筒之间的摩擦力很小,使系统的动量变化很小,可以忽略不计,故系 统动量近似守恒 D .三者组成的系统,动量守恒,因为系统只受重力和地面支持力这两个外力作用,这两个外力的合 力为零 【变式训练1】如图A 、B 两物体的质量之比m A ∶m B =3∶2,原来静止在平板小车C 上,A 、B 间有 一根被压缩了的弹簧,A 、B 与平板车上表面间的滚动摩擦系数相同,地面光滑,当弹簧突然释放后, 则( ) A .A 、B 组成的系统动量守恒 B .A 、B 、 C 组成的系统动量守恒 C .小车向左运动 D .小车向右运动 类型三 动量守恒与能量守恒的综合应用 【例3】在静止的湖面上有一质量为M=100kg 的小船,船上站一个质量为m=50kg 的人。船长6米, A B C

(完整word版)动量守恒定律导学案.docx

动量守恒定律导学案 鄂州市鄂州高中裴金翠 一、学生课前自学完成以下题目: 1.动量守恒定律内容:如果一个系统或__________时,这个系统的总动量就保持不变,这就是动量守恒定律. 2.表达式 (1)__________________(系统相互作用前总动量p 等于相互作用后的总动量p′) (2)( 相互作用的两个物体组成的系统,作用前的动量和等于作用后 的动量和 ) (3)_____________________(相互作用的两个物体动量的增量等大反向) (4)__________________(系统总动量的增量为零) 3.动量守恒定律的特点: 系统性 : 选择的对象是两个或两个以上的物体组成的系统,不是其中一个物体。 矢量性 : 动量守恒方程为矢量方程,一定要先规定正方向。 同时性:动量是一个瞬时量,动量守恒指的是系统在任一瞬间的动量都相等。 相对性:各物体的速度必须是相对同一参考系的速度。 4.动量守恒的条件 (1)不受 ________或外力的合力 ________.不是系统内每个物体所受的合外力为零. (2)近似守恒条件:系统内各物体间相互作用的内力 ___________它所受到的外力.如碰撞问 题中的摩擦力,爆炸过程中的重力等外力比起相互作用的内力小得多,外力可 以忽略不计 (3)系统所受外力的合力虽不为零,但在 _____________ 所受外力的合力为零,则在这一方 向上动量守恒. 课前自测(动量是否守恒的判断) 第一类:不受外力或者合外力为零 1、位于光滑水平面的小车上放置一螺旋线管,一条形磁铁沿着螺线管的轴线水平地穿 过,如图所示。在此过程中() A.磁铁做匀速运动 B.磁铁和螺线管系统的动量和动能都守恒 C.磁铁和螺线管系统的动量守恒,动能不守恒 D.磁铁和螺线管系统的动量和动能都不守恒

动量守恒定律学案

江西省鄱阳中学高二物理学案 选修3-5第十六章第三节:动量守恒定律 命制人:吴洵审稿人:康旭生2017年10月 一、学习目标 1.掌握系统、内力和外力的概念; 2.掌握动量守恒定律的确切含义和表达式,知道动量守恒定律的适用条件; 3.了解动量守恒定律的普遍适用性; 4.能用动量守恒定律解决一些生活和生产中的实际问题。 二、重难点 1、动量守恒定律的含义、表达式及应用条件; 2、动量守恒定律的矢量性、相对性、同时性; 3、动量守恒定律的应用。 三、学生自主学习 一、系统、内力与外力 1.系统:相互作用的两个或多个物体组成一个力学系统. 2.内力:系统中,物体间的相互作用力. 3.外力:系统外部物体对系统内物体的作用力. 二、动量守恒定律 1.内容:如果一个系统不受外力,或者所受外力的矢量和为零,这个系统的总动量保持不变. 2.表达式:对两个物体组成的系统,常写成: p1+p2=p1′+p2′或m1v1+m2v2=m1v1′+m2v2′. 3.成立条件 (1)系统不受外力或所受外力的合力为零; (2)系统的内力远大于外力,如碰撞、爆炸等; (3)系统在某一方向上不受外力或所受外力的合力为零。 三、动量守恒定律的普适性 动量守恒定律是一个独立的实验规律,它适用于目前为止物理学研究的一切领域。四、讨论探究 一、动量守恒定律应用条件 1、如图所示,甲木块的质量为m1,以v的速度沿光滑水平地面向前运动,正前方有一 静止的、质量为m2的乙木块,乙上连有一轻质弹簧.甲木块与弹簧接触后(C) A.甲木块的动量守恒 B.乙木块的动量守恒 C.甲、乙两木块所组成系统的动量守恒 D.甲、乙两木块所组成系统的动能守恒 2、如图所示,光滑水平面上A、B两小车间有一弹簧,用手抓住小车并将弹簧压缩后 使两小车均处于静止状态.将两小车及弹簧看做一个系统,下列说法正确的是 (ACD) A.两手同时放开后,系统总动量始终为零 B.先放开左手,再放开右手后,动量不守恒 C.先放开左手,后放开右手,总动量向左 D.无论何时放手,两手放开后,在弹簧恢复原长的过程中,系统总动量都保持不变,但系统的总动量不一定为零 3、木块a和b用一根轻弹簧连接起来,放在光滑水平面上,a紧靠在墙壁上。在b上

高中物理选修3-5碰撞与动量守恒经典题型计算题练习有答案

动量守恒定律 1、(16分)如图所示,水平光滑地面上停放着一辆小车,左侧靠在竖直墙壁上,小车的四分之一圆弧轨道AB 是光滑的,在最低点B 与水平轨道BC 相切,BC 的长度是圆弧半径的10倍,整个轨道处于同一竖直平面内。可视为质点的物块从A 点正上方某处无初速度下落,恰好落入小车圆弧轨道滑动,然后沿水平轨道沿街至轨道末端C 处恰好没有滑出。已知物块到达圆弧轨道最低点B 时对轨道的压力是物块重力的9倍,小车的质量是物块的3倍,不考虑空气阻力和物块落入圆弧轨道时的能量损失。求 (1)物块开始下落的位置距水平轨道BC 的竖直高度是圆弧半径的几倍; (2)物块与水平轨道BC 间的动摩擦因数μ。 答案:(1)设物块的质量为m ,其开始下落处的位置距BC 的竖直高度为h ,到达B 点时的速度为v ,小车圆弧轨道半径为R 。由机械能守恒定律,有 22 1mv mgh = ① 根据牛顿第二定律,有R v m mg mg 2 9=- ② 解得h =4R ③ 即物块开始下落的位置距水平轨道BC 的竖直高度是圆弧半径的4倍。 (2)设物块与BC 间的滑动摩擦力的大小为F ,物块滑到C 点时与小车的共同速度为 v ′,物块在小车上由B 运动到C 的过程中小车对地面的位移大小为s 。依题意,小车的质量为3m ,BC 长度为10R 。由滑动摩擦定律,有 mg F μ= ④ 由动量守恒定律,有'+=v m m mv )3( ⑤ 对物块、小车分别应用动能定理,有 222 1 21)10(mv mv s R F -'=+- ⑥ 0)3(2 1 2-'= v m Fs ⑦ 解得3.0=μ ⑧ 2、(16分)如图所示,质量m 1=0.3 kg 的小车静止在光滑的水平面上,车长L=15 m,现有质量m 2=0.2 kg 可视为质点的物块,以水平向右的速度v 0=2 m/s 从左端滑上小车,最后在车面上某处与小车保持相对静止。物块与车面间的动摩擦因数μ=0.5,取g=10 m/s 2,求 (1) 物块在车面上滑行的时间t; (2) 要使物块不从小车右端滑出,物块滑上小车左端的速度v′0不超过多少。

第二节《动量动量守恒定律》导学案(公开课)

第二节《动量 动量守恒定律》导学案 【学习目标】 (一)知识与技能 理解动量守恒定律的确切含义和表达式,知道定律的适用条件和适用范围 (二)过程与方法 在理解动量守恒定律的确切含义的基础上正确区分内力和外力 (三)情感、态度与价值观 培养逻辑思维能力,会应用动量守恒定律分析计算有关问题 【学习重点】 动量的概念和动量守恒定律 【学习难点】 动量的变化和动量守恒的条件. 【新课探究】 一.引入新课 1.一片树叶和一个小石头分别从头顶下落你会作出如何反应呢?为什么? 2.上节课的探究使我们看到,不论哪一种形式的碰撞,碰撞前后m υ的矢量和保持不变,因此m υ很可能具有特别的物理意义。 二.进行新课 【自主学习】 (一)动量及其改变 1.动量 (1)定义:运动物体的_____和它的_____的乘积. (2)定义式:p =______. (3)单位:在国际单位制中,动量的单位是千克米每秒,符号为_____________. (4)方向:动量是矢量,其方向与物体的__________方向相同. 思考讨论一: 1.同一物体动能不变,则动量是否变化?反之动量不变,动能是否变化? 2.质量不同的物体动能相等,动量的大小是否相等?动能与动量有什么关系? 我的结论一:_______________________________________________________ 练习1BC A.动能相等时,动量必然相等 B.动量相等时,动能必然相等 C.动能发生变化时,动量必有变化 D.动量发生变化时,动能必有变化 练习2.甲、乙两物体的质量之比为m 甲:m 乙=1:4,若它们在运动过程中的动能相等, 则它们动量大小之比p 甲:p 乙是( B ) A.1:1 B.1:2 C.1:4 D.2:1

动量守恒定律---教案

《动量守恒定律》 ——教案刘希乾 三维目标: (一)知识与技能 1、理解动量守恒定律的确切含义和表达式 2、知道定律的适用条件和适用范围; 3、掌握运用动量守恒定律的一般步骤 (二)过程与方法 知道运用动量守恒定律解决问题应注意的问题,并知道运用动量守恒定律解决有关问题的优点。 (三)情感、态度与价值观 学会用动量守恒定律分析解决碰撞、爆炸等物体相互作用的问题,培养思维能力。教学重点: 1、动量的概念和动量守恒定律。 2、运用动量守恒定律的一般步骤。 教学难点:动量的变化和动量守恒的条件、应用。 引入新课: 通过以前的学习,我们已经会描述一些简单的典型的运动。知道速度、位移、加速度都是用来描述物体运动的物理量,而通过上一节课的学习,我们又认识到动量也可以描述物体的运动状态,而且我们通过动能定理也建立起了力与动量的联系,知道动量是力对时间积累的效果。正如力在空间中的积累存在着自然普遍定则一样,力对时间的积累是否也存在着某种守恒的普适关系? 进行新课: 【小组讨论交流】 一、牛顿第一定律的内容及实质 内容:一切物体总有保持静止或匀速直线运动状态的性质,除非有外力迫使它改变这一状态。 实质:力不是维持物体运动状态的原因,而是改变物体运动状态的原因。 二、牛顿第二定律的内容及实质 内容:物体的加速度与作用力成正比,与物体的质量成反比。 实质:力是产生加速度的原因,加速度改变了物体的运动状态。 三、牛顿第三定律的内容及实质 内容:物体间的作用力和反作用力总是大小相等、方向相反、作用在同一条

直线上。 实质:物体间的相互作用总是等大反向。 四、如果是两个物体,如何区分它们之间的相互作用和其它物体对它们的作用力 呢? 系统:可以把两个或两个以上物体看做一个力学系统。 内力:系统内物体间作用力称为内力。 外力:外界物体对系统内物体的作用力称为外力。 教师总结: 我们把两个物体看作一个系统,那么两个物体间的相互作用就属于系统的内力,外界其它物体对系统中任何一物体的作用就是系统所受的外力。根据牛顿运动定律可知:不论外力还是内力都会改变物体的运动状态,而内力起的作用就像人民内部矛盾,外力起的作用则为外在矛盾。前者可以相互抵消达到和谐,但是后者必然破坏这种和谐关系。而现实生活中诸如此类的守恒随处可见。 比如:甲乙各有500元现金,相互交换甲乙两者共有财富值不变。但甲又别处得到500元,这必然使两者共有财富值增加。相反,丙强行从甲手中拿走500元,两者共有财富值较少。 再有:一个绝热系统中两个物体相互吸热放热,系统温度必然升高;而外界对系统加热,系统温度必然升高。 与我们所学更近的例子:比如机械能守恒定律。系统中仅有保守力做功,机械能守恒。但是若有外力对系统内任何物体做功,这种守恒必然打破。 【创设情境,理论推理】 现实生活中,这种守恒随处可见。为此我们创设一个物理情境: 光滑水平桌面上有一质量为m1的物体以速度v1向右运动,质量为m2的物体以速度v2向右运动。且v1>v2,那么经过一定时间后,必然追上m1且发生碰撞。设碰撞后m1的速度为v1’,m2速度为v2’ 碰撞过程中m2对m1的作用力为F1,m1对m2 的作用力为F2 【教师引导,学生自主推理:】 两物体各自所受重力和支持力虽为外力,但是合力为零,不改变物体的的运动状态。F1和F2是两物体组成的系统内力。 推导1:根据牛顿第二定律,碰撞过程中两球的加速度分别为:

相关文档
相关文档 最新文档