文档库 最新最全的文档下载
当前位置:文档库 › 高校教学楼设计(4 恒荷载内力计算)

高校教学楼设计(4 恒荷载内力计算)

高校教学楼设计(4 恒荷载内力计算)
高校教学楼设计(4 恒荷载内力计算)

四恒荷载内力计算

(一)恒荷载计算

1.屋面框架梁线荷载标准值

20厚水泥混凝土找平0.02×20=0.46kN/m2

40~120厚(1%找坡)膨胀珍珠岩(0.08+0.16)÷2×7=0.546kN/m2四层作法防水层0.36kN/m2

100mm厚钢筋混凝土楼板0.1×25=2.56kN/m2

20mm厚石灰砂浆抹底0.02×17=0.34kN/m2

屋面恒荷载4.08 kN/m2

边框架梁自重0.3×0.8×25=6kN/m

边框架梁粉刷2×(0.8-0.1)×0.02×17=0.48kN/m

中框架梁自重0.3×0.6×25=4.5kN/m2

边框架梁粉刷2×(0.6-0.1)×0.03×17=0.34kN/m

则作用于屋面框架梁上线荷载标准值为:

g5AB1=6.48kN/m

g5BC1=4.85kN/m

g5AB2=4.08×3.9=15.91kN/m

g5BC2=4.08×3=12.24kN/m

2.楼面框架梁线荷载标准值

20mm厚水泥砂浆找平0.02×20=0.46kN/m2

100mm厚钢筋混凝土楼板0.1×25=2.5kN/m2

20mm厚石灰砂浆抹底0.02×17=0.34kN/m2

水磨石面层0.65 kN/m2

楼面恒荷载3.89 kN/m2

边框架梁自重及粉刷 6.48kN/m

中框架梁自重及粉刷 4.85kN/m

边跨填充墙自重0.24×3.6×18=15.55kN/m

填充墙粉刷2×0.02×2×17=2.45kN/m

则作用于楼面框架梁上线荷载标准值为:

g AB1=6.48+15.55+2.45=24.48kN/m

g BC1=4.85kN/m

g AB2=3.89×3.9=15.17kN/m

g BC2=3.89×3=11.67kN/m

3.屋面框架节点集中荷载标准值

纵向框架梁自重0.3×0.8×7.8×25=46.8kN

纵向框架梁粉刷2×(0.8-0.1)×0.02×7.8×17=3.71kN

纵向框架梁传来的屋面恒荷载2×(3.9/2)2×4.08=31.02kN

次梁自重及粉刷0.6×0.2×25×7.2/2+2×0.02×(0.6-0.1)×7.2/2=10.87kN

次梁传来的屋面恒荷载(1-2×0.272+0.273)×4.08×3.9×7.2/2=50.06kN

1m高女儿墙自重及粉刷1×7.8×0.24×18+2×1×7.8×0.02×17=39kN

则顶层边节点集中荷载为:G5A=181.46kN

纵向框架梁自重及粉刷46.8+3.71=50.51kN

纵向框架梁传来的屋面恒荷载31.02+(1-2×0.192+0.193)×4.08×7.8×3/2=75.64kN 次梁自重、粉刷及传来的屋面恒荷载10.87+50.06=60.93kN

则顶层中节点集中荷载为:G5B=187.08kN

4.楼面框架节点集中荷载标准值

纵向框架梁自重及粉刷51.51kN

纵向框架梁传来的楼面恒荷载2×(3.9/2)2×3.89=29.44kN

次梁自重及粉刷10.87kN

次梁传来的楼面恒荷载(1-2×0.272+0.273)×3.89×3.9×7.2/2=47.73kN

钢窗自重2×2.3×1.8×0.4=3.31kN

墙体自重(3.6×7.8-2×2.3×1.8)×0.24×18=85.54kN

墙面粉刷2×(3.6×7.8-2×2.3×1.8)×0.02×1.7=13.46kN

框架柱自重0.602×3.6×25=32.4kN

柱面粉刷4×0.6×0.02×17=0.82kN

中间层边柱节点集中荷载为:G A=274.08kN

纵向框架梁自重及粉刷50.51kN

纵向框架梁传来的楼面恒荷载29.44+(1-2×0.192+0.1923)×3.89×7.8×3/2=71.98kN 次梁粉刷、自重及传来的楼面恒荷载10.87+47.73=58.6kN

木门自重2×1.0×2.6×0.2=1.04Kn

墙体自重(3.6×7.8-2×1.0×2.6)×0.24×18=98.84kN

墙面粉刷2×0.02×()×17=15.56kN

框架主自重及粉刷32.4+0.82=33.22kN

中间层中柱节点集中荷载为:G B=329.75kN

(二)恒荷载作用下内力计算

1.计算简图

计算简图

2.荷载等效

27.02

.729

.31=?=

α 顶层边跨 m /38kN .2048.691.15)27.027.021('g 325=+?+?-=边

顶层中跨 m /12.5kN 4.8512.248

5

'g 5=+?=中

中间层边跨 m /37.74kN 48.2417.15)27.027.021('g 32=+?+?-=边

中间层中跨 m /11.97kN 4.6867.118

5

'g =+?=中

荷载等效后的计算简图如下

G

D

3.固端弯矩计算

顶层边跨 m 88.04kN 2.738.20121

M 25AB ?=??=

顶层中跨 m 38kN .95.15.1231

M 25BC ?=??=

中间层边跨 m 04kN .1632.774.37121

M 2AB ?=??=

中间层中跨 m 98kN .85.197.113

1

M 25BC ?=??=

4.分层计算弯矩(取半结构计算) 1)顶层

分配系数计算如下

569.04

0.39.0456.34

56.312=??+??=μ

431.0569.0111214=-=-=μμ

442.02

3.640.39.0456.34

56.321=?+??+??=

μ

223.02

3.640.39.0456.32

6.323=?+??+??=μ

335.0223.0442.011232125=--=--=μμμ

内力计算过程如下(单位:kN ?m )

1-4 1-2 2-1 2-5 2-3 0.431 0.569 0.442 0.335 0.223 -88.04 88.04 -9.38 37.95 50.09 → 25.05 -22.92 ← -45.84 -34.74 -23.13 9.88 13.04 → 6.52 -1.44 ← -2.88 -2.19 -1.45 0.62 0.82 → 0.41 -0.18 -0.14 -0.09 48.45 -48.45

71.12

-37.07

-34.05

M 图见下页(单位:kN ?m )

2)中间层

分配系数计算如下

301.056

.3420.39.040

.39.043631=?+?????==μμ

398.0301.0301.011363134=--=--=μμμ

251.03.6

256.3420.39.040

.39.044742=?+?+?????=

=μμ

331.03.6

256.3420.39.0456

.3443=?+?+????=μ

167.0331.0251.0251.01143474234=---=---=μμμμ

内力计算过程如下(单位:kN ?m )

3-6 3-1 3-4 4-3 4-2 4-7 4-5 0.301 0.301 0.398 0.331 0.251 0.251 0.167 -163.04 163.04 -8.98 49.08 49.08 64.88 → 32.44 -30.87 ← -61.73 -46.81 -46.81 -31.15 9.29 9.29 12.29 → 6.15 -1.02 ← -2.04 -1.54 -1.54 -1.03 0.31 0.31 0.40 → 0.20 -0.07 -0.05 -0.05 -0.03 58.68 58.68

-117.36

137.99

-48.4

-48.4

-41.19

M 图见下页(单位:kN ?m )

37.07

34.05

71.1212.3616.15

48.45

48.45(1)

(2)(3)

(4)(5)

结构阻尼比对单管塔风荷载计算的影响分析

结构阻尼比对单管塔风荷载计算的影响分析 结构阻尼比对单管塔风荷载计算的影响分析结构阻尼比对单管塔风荷载计算的影响分析屠海明1张帆2 (1.同济大学建筑设计研究院(集团)有限公司上海200092;2.中国铁塔股份有限公司北京100142)摘要:为了分析结构阻尼比对单管塔风荷载计算的影响,本文进行了阻尼比不同取值时风振系数的计算对比。结果表明风振系数随着结构阻尼比的增加而显著下降。然后根据上海某单管塔实测得到的阻尼比与规范规定的阻尼比取值,分别对该单管塔风荷载进行了计算对比。实测的阻尼比大于规范规定的取值,相应计算得到的风荷载也明显降低。这给单管塔的优化设计提供了参考依据。关键词:阻尼比单管塔风荷载引言近年来随着通信基站建设的发展,对通信塔的专业化、标准化提出了更高的要求。对于单管塔的设计和制作而言,起控制作用的荷载是风荷载,得到相对准确的风荷载设计值,对于每年数万座标准化生产的单管塔而言,具有很重要的经济意义。本文作者[1]根据2012年调整前后的荷载规范,对高耸结构的风荷载进行了分析与对比,并提出了《高耸结构设计规范》(GB 50135-2006)中风荷载部分条文的修改意见。但是以上分析没有专门涉及结构阻尼比对于风荷载计算的影响分析。同济大学何敏娟[2]等采用激振法对336m黑龙江电

视塔进行了模态参数的实测和分析,实测结构一阶阻尼比为0.028,大于规范规定值0.02。同济大学闫祥梅等[3]对位于河北的辛安-衡水500kV线路工程的几座直线输电塔转角塔进行了环境脉动下的动力测试。同济大学设计院梁峰[4]对上海新国际博览中心展馆两侧的30m高钢结构灯杆进行 了微风振动下的动力测试,得到了灯杆的自振频率和阻尼比。本文作者对上海移动两座单管塔进行了微风振动下的动力测试,并根据实测结果,与规范规定值对比,探讨结构阻尼比对单管塔风荷载计算的影响。 1 阻尼比对风荷载计算的影响结构阻尼比用于表达结构阻尼的大小,是描述结构在振动过程中能量耗散的术语。引起结构能量耗散的因素很多,主要有:材料阻尼,周围介质对振动的阻尼,节点、支座连接处的阻尼等。结构阻尼对结构效应的影响体现在结构的风致振动中,对于高耸结构的风振分析,比较准确的是采用频率域和时间域的动力分析方法。实际工程中,为了方便应用,按照荷载规范计算等效风荷载,用静力分析方法计算结构风效应。因此,结构阻尼比对风荷载计算的影响,主要体现在风振系数的计算上。《建筑结构荷载规范》(GB 50009-2012)中风振系数的表达式为:其中:g为峰值因子;I10为10m高名义湍流强度;Bz为背景分量因子;共振分量因子R表示与频率有关的积分项,可按下列公式计算:其中:ζ1为结构阻尼比;f1为结构第1阶自振频率;kw为

内力组合计算书

5.4 内力组合 《抗震规范》第5.4条规定如下。 5.4截面抗震验算 5.4.1 结构构件的地震作用效应和其他荷载效应的基本组合,应按下式计算: G GE Eh Ehk Ev Evk w w wk S S S S S γγγψγ=+++ (5.4.1) 式中: S ——结构构件内力组合的设计值,包括组合的弯矩、轴向力和剪力设计值; γG ——重力荷载分项系数,一般情况应采用1.2,当重力荷载效应对构件承载能 力有利时,不应大于1.0; γEh 、γEv ——分别为水平、竖向地震作用分项系数,应按表5.4.1 采用; γw ——风荷载分项系数,应采用1.4; s GE ——重力荷载代表值的效应,有吊车时尚应包括悬吊物重力标准值的效应; s Ehk ——水平地震作用标准值的效应,尚应乘以相应的增大系数或调整系数; s Evk ——竖向地震作用标准值的效应,尚应乘以相应的增大系数或调整系数; s wk ——风荷载标准值的效应 ; ψw ——风荷载组合值系数,一般结构取0.0,风荷载起控制作用的高层建筑应采 用0.2。 注:本规范一般略去表示水平方向的下标。 表5.4.1 地震作用分项系数 5.4.2 结构构件的截面抗震验算,应采用下列设计表达式: RE R S γ= 式中: γRE ——承载力抗震调整系数,除另有规定外,应按表5.4.2采用; R ——结构构件承载力设计值。

表5.4.2 承载力抗震调整系数 5.4.3 当仅计算竖向地震作用时,各类结构构件承载力抗震调整系数均宜采用1.0。 本次毕业设计,各截面不同内力的承载力抗震调整系数取值如下表 结构安全等级设为二级,故结构重要性系数为 0 1.0 γ= 根据《建筑结构荷载规范》和《建筑抗震设计规范》,组合三种工况:恒荷载控制下、活荷载控制下和有地震作用参加的组合。其具体组合方法如下: 恒荷载控制下:Gk Qk S 1.35S 1.40.7S =+? 活荷载控制下:Gk Qk S 1.2S 1.4S =+ 有地震作用参加的:Gk Qk Ehk S 1.2(S 0.5S ) 1.3S =+± Gk Qk Ehk S 1.0(S 0.5S ) 1.3S =+± 对柱进行非抗震内力组合时,根据规范,对活载布置计算的荷载进行折减,折减系数由上而下分别为1.0,0.85,0.85,0.7,0.7。偏安全,不考虑因楼面活载布置面积对梁设计内力的折减。 梁柱截面标号示意见图5.22。

多层钢筋混凝土框架设计(4 恒荷载内力计算)

四恒荷载内力计算 (一)恒荷载计算 1.屋面框架梁线荷载标准值 20厚水泥混凝土找平0.02×20=0.46kN/m2 40~120厚(1%找坡)膨胀珍珠岩(0.08+0.16)÷2×7=0.546kN/m2四层作法防水层0.36kN/m2 100mm厚钢筋混凝土楼板0.1×25=2.56kN/m2 20mm厚石灰砂浆抹底0.02×17=0.34kN/m2 屋面恒荷载 4.08 kN/m2 边框架梁自重0.3×0.8×25=6kN/m 边框架梁粉刷2×(0.8-0.1)×0.02×17=0.48kN/m 中框架梁自重0.3×0.6×25=4.5kN/m2 边框架梁粉刷2×(0.6-0.1)×0.03×17=0.34kN/m 则作用于屋面框架梁上线荷载标准值为: g5AB1=6.48kN/m g5BC1=4.85kN/m g5AB2=4.08×3.9=15.91kN/m g5BC2=4.08×3=12.24kN/m 2.楼面框架梁线荷载标准值 20mm厚水泥砂浆找平0.02×20=0.46kN/m2 100mm厚钢筋混凝土楼板0.1×25=2.5kN/m2 20mm厚石灰砂浆抹底0.02×17=0.34kN/m2 水磨石面层0.65 kN/m2 楼面恒荷载 3.89 kN/m2 边框架梁自重及粉刷 6.48kN/m 中框架梁自重及粉刷 4.85kN/m 边跨填充墙自重0.24×3.6×18=15.55kN/m 填充墙粉刷2×0.02×2×17=2.45kN/m 则作用于楼面框架梁上线荷载标准值为: g AB1=6.48+15.55+2.45=24.48kN/m g BC1=4.85kN/m g AB2=3.89×3.9=15.17kN/m g BC2=3.89×3=11.67kN/m

9、2.6风荷载标准值计算

2.6风荷载标准值计算 作用在屋面梁和楼面梁节点处的集中风荷载标准值: 为了简化计算起见,通常将计算单元范围内外墙面的分布风荷载,化为等量的作用于楼面集中风荷载,计算公式如下: 0)(/2k z z i j W w h h B βμ=+ 式中: 基本风压200.5/kN m w =;结构基本周期1(0.06~0.09)0.24~0.36n s s T ==,取 10.30.25s s T =>考虑风振影响。作用在屋面梁和楼面梁节点处的集中风荷载标准值 为:w=βz ·μs ·μz ·ωo ,对于矩形平面μs =1.3;μz 可査荷载规范底层柱高取h=4.3+0.45=4.75m 。计算过程如下表中所示W k =β z μ s μz 0ω. 。0ωT 12 =0.5 ×0.32 =0.045, 由于地面粗糙度为C 类,0ωT 12 应乘以0.62,得0.0279查表ξ=1.15 ;H/B=16.45 /82.5=0.20 查表V=0.40。 (1)各楼层位置处的zi β值计算结果zi β=1+ξVZ/H z μ 表2.6-1 (2)各楼层位置处的风荷载标准值Fi= Ai zi βμs z μωo 表2.6-2

水平风荷载作用下框架内力分析 1) 柱端弯矩 如图2.6-2 h y V M )(1上-= 图2.6-2柱端弯矩计算图 2)梁端弯矩:根据结点平衡求出 对于边柱如图2.6-3 下上i i i M M M += 3)对于中柱如图:2.4-3 Vyh M =下

按两端线刚度分配 右左左 下上左) (i i i M M M i i i ++= 图2.6-3 梁端弯矩计算 4)水平荷载引起的梁端剪力、柱轴力 如图2.6-4所示: 梁端剪力: l M M V i i 右 左+= 柱轴力:边柱 ∑==N i R R V N 1 中柱 ∑=-=N i R R R V V N )(21 图2.6-4 梁端剪力计算 1/1轴框架各柱的杆端弯矩、梁端弯矩计算过程见下表2.6-3表2.6-4 表2.6-3 表2.6-4 梁端弯矩剪力 右 左右 下上右) (i i i M M M i i i ++=

输电线路风荷载的全方位计算

输电线路风荷载的全方位计算 摘要:在高压架空送电线路设计中,最不利风向时的风荷载常决定着杆塔内力大小或基础作用力的大小。本文将通过几个工程实例详细说明在高压架空送电线路设计中,如何确定几种特殊情况下最不利风向时的风荷载计算,以确保高压架空送电线路的安全运行。 关键词:全方位;基础作用力;运行情况;不平衡张力;风荷载 Abstract: In the project design of overhead transmission lines, the most unfavorable wind direction, wind load often determines the internal force of tower or base force size. This article will through several engineering examples in detail in the overhead transmission line design, how to determine some special situations the most unfavorable wind direction wind load calculation, to ensure the high voltage overhead power transmission line safe operation. Key words: all-around; base forces; operation; unbalanced tension; wind load 1 引言 在高压架空送电线路设计中,杆塔荷载的计算应执行《110~750kV架空输电线路设计规范》(以下简称《规程》)中第10条“杆塔荷载及材料”。其中正常运行情况下,应计算的荷载组合是: 1 基本风速、无冰、未断线; 2 设计覆冰、相应风速及气温、未断线 3 最低气温、无冰、无风、未断线(适用于终端和转角杆塔) 本文主要针对上述第一种情况,在正常运行大风情况下计算铁塔内力或基础作用力时可能出现的漏洞。《电力工程高压送电线路设计手册》(第二版)第六章第二节也对这种组合也提出了更详细的规定,提出“在杆塔设计中,应取最不利的风向来计算杆塔的内力”。在一般情况下,按照这些规定计算杆塔荷载,能满足线路工程施工投产后的安全运行要求。但伴随着室温效应的影响,几年来极端气候更加频繁地出现,内地表现为超常量的下雪和降雨、沿海地区表现为强热带风暴风力的逐级增加和风球的更加飘忽不定。在这些情况下,有必要对杆塔荷载更加严谨的计算,以保证高压送电线路的安全运行。在线路设计中,不能主观臆测最不利的风向,应通过严谨的计算来确定。因此我们可利用计算机技术,模拟自然风对杆塔所有方向的冲击,全方位计算杆塔风荷载,才使计算结果正确可靠。下面就列举几个设计工程中常碰到的案例。

荷载内力计算和杆件截面选择计算

(1) 设计资料 昆明地区某工厂金工车间,屋架跨度为 24m ,屋架端部高度2m ,长 度90m ,柱距6m ,车间内设有两台30/5t 中级工作制桥式吊车,屋面采 用1.5 >6m 预应力钢筋混凝土大型屋面板。20mm 厚水泥砂浆找平层,三 毡四油防水层,屋面坡度i 1/10。屋架两端铰支于钢筋混凝土柱上,上 柱截面400X400mm ,混凝土 C20,屋面活荷载0.50 kN/m 2,屋面积灰荷 载 0.75 kN/m 2,保温层自重 0.4kN/m 2。 (2) 钢材和焊条的选用 屋架钢材选用Q235,焊条选用E43型,手工焊。 (3) 屋架形式,尺寸及支撑布置 采用无檩屋盖方案,屋面坡度i 1/10 ,由于采用1.5m 6m 预应力钢 筋混凝土大型屋面板和卷材屋面,故选用平坡型屋架,屋架尺寸如下: 屋架计算跨度: L 0 L 300 24000 300 23700 mm 屋架端部高度取: 为使屋架节点受荷,配合屋面板1.5m 宽,腹杆体系大部分采用下弦 节间为3m 的人字形式,仅在跨中考虑腹杆的适宜倾角,采用再分式杆系, 屋架跨中起拱48mm ,几何尺寸如图所示: 根据车间长度,跨度及荷载情况,设置三道上,下弦横向水平支撑,因车间 两端为山墙,故横向水平支撑设在第二柱间;在第一柱间的上弦平面设置刚性系 杆保证安装时上弦的稳定,下弦平面的第一柱间也设置刚性系杆传递山墙的风荷 载;在设置横向水平支撑的同一柱间, 设置竖向支撑三道,分别设在屋架的两端 跨中高度: 屋架高跨比: H o 2000mm 23700 1 H H o i 2000 3185 3190mm 2 2 10 H 3190 1 L 23700 7.4 u m J 启

1、恒荷载取值

3.1.1 恒载取值 恒载:又称永久荷载,在结构使用期间内,荷载的大小不随时间的推移而变化、或其变化与其平均值相比较可以忽略不计、或其变化是单调的并能趋于限值的荷载。如结构自重、构造层重、土压力等。 结构自重和构造层重的标准值计算,可按照施工图纸的设计尺寸和材料的单位体积、或面积、或长度的重力,经计算直接确定;土压力标准值的计算详有关基础设计资料。 3.1.1.1 楼面恒荷载 楼面恒荷载主要由三部分组成:建Array筑面层恒荷载、结构层恒荷载、顶棚恒 荷载,分布形式详图3.1.1所示。 (1)由建筑面层引起的楼面恒荷载 计算 建筑面层引起的楼面恒荷载计算, 必须根据建筑楼面面层的具体做法 确定,常用建筑楼面面层恒荷载取值可图3.1.1 楼面恒荷载组成示意图 参考表3.1.1。 (2)由结构层引起的楼面恒荷载计 算 结构层引起的楼面恒荷载 = 结构楼层楼板厚度×钢筋混凝土容重(一般取25kN/m3)程序计算时,只要输入结构楼层楼板厚度和混凝土容重,结构层恒荷载即会自行导算,详4.1所述。 表3.1.1 常用建筑楼面面层恒荷载取值参考表

(3)由顶棚引起的楼面恒荷载计算 顶棚引起的楼面恒荷载计算,必须根据建筑顶棚的具体做法确定,常用建筑顶棚恒荷载取值可参考表3.1.2。 表3.1.2 常用建筑顶棚恒荷载取值参考表 2

《结构程序PKPM 应用实训》开放性实验资料 3 3.1.1.2 屋面恒荷载 屋面恒荷载主要由三部分组成:建筑屋面面层恒荷载、结构层恒荷载、顶棚恒荷载,分布形式详图3.1.2所示。 图3.1.2 屋面恒荷载组成示意图 由结构层与顶棚引起的屋面恒荷载计算方法,同相应楼面恒荷载的计算方法,由建筑屋面面层引起的屋面恒荷载,必须根据建筑屋面面层的具体做法确定。 由于建筑屋面承担着保温、隔热和防水、排水的功能,因此建筑屋面面层的做法相对于建筑楼面面层的做法要复杂得多,加之各地气候、雨水情况不同,保温隔热材料和防水材料 的不断更新发展,使各地屋面面层的做法不完全相同,但基本构造层相差不多。 (1)平屋面面层恒荷载计算 平屋面,又称建筑找坡屋面,排水坡度为2%~3%,屋面面层的基本构造、荷重如下: ① 结构层(钢筋混凝土屋面板)上水泥砂浆找平层:厚度15~30mm ,容重20kN/m 3 ; ② 隔气层:以成品为主,重量较轻,可以忽略; ③ 保温层兼找坡层:一般采用憎水性能好、导热系数小和重量轻的保温材料,起坡处 厚度必须满足热工要求、由建筑专业计算决定,如膨胀珍珠岩系列(容重7~15 kN/m 3 ,现场拌制的砂浆取大值,成品取小值)、挤塑板系列(很轻,重量可以忽略)等; ④ 水泥砂浆找平层:厚度15~20mm ,容重20kN/m 3 ; ⑤ 防水层:如二毡三油系列、二布六胶系列等,重量2~8 kN/m 2 ; ⑥ 保护面层:对于不上人屋面,可以是涂料、反射膜、砂石粘料(常称绿豆砂)、蛭石云母粉、纤维纺织毯、水泥砂浆块材等;对于上人屋面,与楼面面层的做法相同,一般以水泥砂浆面层为主;也可以结合环境绿化,采用种植屋面、蓄水屋面等。 (2)坡屋面面层恒荷载计算

扣件式钢管脚手架风荷载标准值计算

扣件式钢管脚手架风荷载标准值计算 在编制扣件式钢管脚手架安全施工组织设计时,作用于脚手架的水平风荷载,往往是计算的难点之一。我们依据《建筑施工扣件式钢管脚手架安全技术规范》(JGJ130-2001)(以下简称《脚手架规范》)和国家现行《建筑结构荷载规范》(GBJ9-87)(以下简称《荷载规范》)的有关规定,对风荷载的计算参数进行分析,找出规律性的内涵,以便准确地计算,确保施工安全。 脚手架规范第4.2.3条规定:作用于脚手架的水平风荷载标准值,应按下式计算: ωk=0.7μzμsω0 式中ωk——风荷载标准值(kN/m2) μz——风压高度变化系数; μs——脚手架风荷载体型系数 ·ω0——基本风压(kN/m2)。 计算风荷载标准值除修正系数外,还有三个参数,现分析归纳如下: 一、基本风压ω0及修正系数 基本风压ω0应按荷载规范“全国基本风压分布图”的规定采用。 荷载规范规定:风荷载标准值ωk=βzμzμsω0,即风荷载标准值中还应乘以风振系数βz,以考虑风压脉动对高层建筑结构的影响。脚手架规范编制时,考虑到脚手架附着在主体结构上,故取βz=1。

荷载规范规定的基本风压是根据重现期为30年确定的,而脚手架使用期较短,遇到强劲风的概率相对要小得多,基本风压ω0乘以0.7修正系数是参考英国脚手架标准计算确定的。 二、风压高度变化系数μz 荷载规范规定:风压高度变化系数,应根据地面粗糙度类别按《荷载规范》采用。 地面粗糙度可分为A、B、C三类 A类指近海海面、海岛、海岸、湖岸及沙漠地区; B类指田野、乡村、丛林、丘陵及房屋比较烯疏的中、小城镇和大城市郊区 C类指有密集建筑群的在城市市区。 选用风压高度变化系数,应注意以下两种情况: 1.立杆稳定计算,应取离地面5m高度计算风压高度变化系数。经计算,风荷载虽然在脚手架顶部最大,但此处脚手架结构所产生的轴压力很小,综合计算值最小;5m高度处组合风荷载产生计算值虽较小,但脚手架自重产生的轴压力接近最大,综合计算值最大。根据以上分析,立杆稳定性计算部位为底部。 2.连墙件计算,应取脚手架上部计算风压高度变化系数。连墙件的轴向力设计值与风压高度变化系数成正比函数关系,即架体升高,风压高度变化系数增大,连墙作轴向力设计值随之增大,架体顶部达到最大。连墙件稳定承载力及扣件抗滑承载力验算,应取连墙件最大轴向力设计值。 三、风荷载体型系数μs 风荷载体型系数按《脚手架规范》4.2.4规定计算。

输电塔风荷载计算

输电塔架风荷载计算 1.输电塔基本信息 本输电塔架的塔身为干字型方形塔架,总高53.5m,地处B类地区,离地10m高处的风速为33m/s,整个塔身沿高度方向分为11个风荷载计算段。 图1 塔身立面图

2.风荷载计算 2.1投影面积的计算 不考虑塔身迎风面的倾斜度,将塔身分段投影到迎风面计算净面积,根据所给角钢以及圆钢管的尺寸,计算投影面积,并计算出塔身轮廓所围的面积,以便计算每一段的挡风系数。 2.2基本风压 基本风压是以当地比较空旷平坦的地面上离地 10m 高统计所得的50年一遇 10min 平均最大风速为标准,近似计算如下: 22 2 00330.68/16001600v w kN m === 2.3 体形系数的计算 塔架体型系数s μ如下计算 ?? ? ??+++=角钢、钢管混合 钢管 角钢)1(1.1) 1(8.0)1(3.1s ηηημ η——背风面风荷载降低系数。 故各塔架段的体形系数按上式计算可得表1 表1 体型系数的计算 2.4 顺风向风振系数 由于塔形为干字型,而且高度小于75m ,故干字型塔架一阶自振周期: 10.0390.657T s ===

故塔架的第一阶自振频率1f 为: 11 1 1.52f Hz T == 塔架一阶振型系数如下计算: 44 3221346)(H z H z H z z +-= φ 对于一般竖向悬臂型结构,例如高层建筑和构架、塔架、烟囱等高耸结构,均可仅考虑结构第一振型的影响。z 高度处的风振系数z β可按下式计算 210121R B gI z z ++=β 式中g 为峰值因子,可取2.5;10I 为10m 高名义湍流强度,对应B 类地面粗糙度,可取0.14;R 为脉动风荷载的共振分量因子;z B 为脉动风荷载的背景分量因子。 R = 11305 f x x = > w k 地面粗糙度对B 类地面粗糙度分别取1.0;1ζ结构阻尼比,对钢结构可取0.01。 11()()x z a z z H z B k z ρρφμ= z ρ——脉动风荷载竖直方向相关系数; 0.795z ρ== x ρ——脉动风荷载水平方向相关系数,本算例此相关系数可取1x ρ=。 其中k=0.910,a1=0.218。

高层建筑混凝土内力组合建筑结构设计计算书

高层建筑混凝土力组合建筑结构设计计算 书 7 力组合 7.1 选取荷载组合 “《高层建筑混凝土结构技术规程》”规定,抗震设计时要同时考虑无地震作用效应时的组合和有地震作用效应时的组合: 无地震作用效应组合时,荷载效应组合的设计值应按下式确定: d G GK L Q Q Qk w w wK S S S S γγψγψγ=++ d S ——荷载效应组合的设计值; G γ——永久荷载分项系数; Q γ——楼面活荷载分项系数; w γ——风荷载分项系数; L γ——考虑结构设计使用年限的荷载调整系数,设计使用年限为50年时取1.0,设计使用年限为100年时取1.1 GK S ——永久荷载效应标准值; GK S ——永久荷载效应标准值; QK S ——楼面活荷载效应标准值; wK S ——风荷载效应标准值; ,Q w ψψ——楼面活荷载组合值系数和风荷载组合值系数,当永久荷载效应起控制作用时分别取0.7和0.0;当可变荷载效应起控制作用时应分别取1.0和0.6或0.7和1.0。 结合本工程情况作出如下基本组合: 1.由永久荷载效应起控制的组合: 1.35G γ=, 1.4Q γ=, 1.4w γ=,0.7Q ψ=,0.0w ψ= 选用组合为: 1.350.7 1.4GK Qk S S S =+? 2.由可变荷载(只考虑可变荷载)效应起控制的组合: 1.20G γ=, 1.4Q γ=, 1.0Q ψ= 选用组合为: 1.20 1.0 1.4GK Qk S S S =+?

有地震作用效应组合时,荷载效应和地震作用效应组合的设计值应按下式确定: wK w w Evk Ev Ehk Eh GE G S S S S S γψγγγ+++= S ——荷载效应和地震作用效应组合的设计值; GE S ——重力荷载代表值的效应; Ehk S ——水平地震作用标准值的效应,尚应乘上相应的增大系数或调整系数; Evk S ——竖向地震作用标准值的效应,尚应乘上相应的增大系数或调整系数; wK S ——风荷载效应标准值; G γ——重力荷载分项系数; w γ——风荷载分项系数; Eh γ——水平地震作用分项系数; Ev γ——竖向地震作用分项系数; w ψ——风荷载组合值系数,一般取0.0,对60米以上的高层建筑取0.2。承载 力计算时,7度抗震设计,60m 以下的高层建筑,分项系数取如下: 1.2G γ=, 1.3Eh γ=,不考虑Ev γ,w γ。 选用组合为: 1.2 1.3GE Ehk S S S =+ 7.2 构件的承载力能力验算 根据“GB50010-2010《混凝土结构设计规》第11.1.6条和表11.1.6规定”对结构抗震承载力进行调整。 无地震作用效应: 0S R γ≤ 有地震作用效应: RE R S γ≤ 式中0γ——结构重要性系数,对安全等级为一级或设计使用年限为100年以上的结构构件,不应小于1.1;对安全等级为二级或设计使用年限为50年的结构构件 ,不应小于1.0; S ——作用效应组合的设计值; R ——构件承载力设计值; 1.1c η= RE γ——构件承载力抗震调整系数,按照下表选取:

桥梁工程恒载内力计算例题

一、 设 计 资 料 (一) 桥面净空 16m (行车道)+2*0.75(人行道)+ 2* 0.25 (栏杆)。 (二)主梁跨径和全长 标准跨径 m l b 00.20=(墩中心距离) 计算跨径 m l 50.19=(支座中心距离) 主梁全长 96m .19=全l (主梁预制长度) (三)设计荷载 根据该桥所在道路的等级确定荷载等级为: 公路-Ⅱ级,人群荷载3.5kN/m 2 (四)材料 混凝土:主梁用40 号(C40),人行道、栏杆及桥面铺装用25 号(C25) 钢筋:直径〉=12mm 时采用Ⅱ级钢筋,直径<12 mm 时采用Ⅰ级热轧光面钢筋。 每侧的栏杆和人行道构件重量的作用力为5KN/m 。 (五)计算方法

1.恒载内力 (1)恒载:假定桥面构造各部分重量平均分配给各主梁承担,计算下表

构件名 构件简图及尺寸(cm) 单元构件体积及算式(m 3) 容重 (KN /m 3) 每延米重量(kN/m) 主 梁 434 .0)2 14 .008.030.1(91.0230.100.2=+-? ?-? 25 85.1025434.0=? 横 隔 梁 中 梁 089.05.19591.02216.018.0)214.008.000.1(=÷???+?+- 25 228.225089.0=? 114.12/228.2= 边 梁 桥 面 铺 装 沥青混凝土: 64.01604.0=? 混凝土垫层(取平均厚12cm ): 92.11612.0=? 223 224 72.142364.0=? 08.462492.1=? ∑=+=76 .69/)08.4672.14(人 行 道 部 分 11.19/25=?

风荷载标准值计算方法

按老版本规范风荷载标准值计算方法: 1.1风荷载标准值的计算方法 幕墙属于外围护构件,按建筑结构荷载规范(GB50009-2001 2006年版)计算: w k =β gz μ z μ s1 w ……7.1.1-2[GB50009-2001 2006年版] 上式中: w k :作用在幕墙上的风荷载标准值(MPa); Z:计算点标高:15.6m; β gz :瞬时风压的阵风系数; 根据不同场地类型,按以下公式计算(高度不足5m按5m计算): β gz =K(1+2μ f ) 其中K为地面粗糙度调整系数,μ f 为脉动系数 A类场地:β gz =0.92×(1+2μ f ) 其中:μ f =0.387×(Z/10)-0.12 B类场地:β gz =0.89×(1+2μ f ) 其中:μ f =0.5(Z/10)-0.16 C类场地:β gz =0.85×(1+2μ f ) 其中:μ f =0.734(Z/10)-0.22 D类场地:β gz =0.80×(1+2μ f ) 其中:μ f =1.2248(Z/10)-0.3 对于B类地形,15.6m高度处瞬时风压的阵风系数: β gz =0.89×(1+2×(0.5(Z/10)-0.16))=1.7189 μ z :风压高度变化系数; 根据不同场地类型,按以下公式计算: A类场地:μ z =1.379×(Z/10)0.24 当Z>300m时,取Z=300m,当Z<5m时,取Z=5m; B类场地:μ z =(Z/10)0.32 当Z>350m时,取Z=350m,当Z<10m时,取Z=10m; C类场地:μ z =0.616×(Z/10)0.44 当Z>400m时,取Z=400m,当Z<15m时,取Z=15m; D类场地:μ z =0.318×(Z/10)0.60 当Z>450m时,取Z=450m,当Z<30m时,取Z=30m; 对于B类地形,15.6m高度处风压高度变化系数: μ z =1.000×(Z/10)0.32=1.1529 μ s1 :局部风压体型系数; 按《建筑结构荷载规范》GB50009-2001(2006年版)第7.3.3条:验算围护 构件及其连接的强度时,可按下列规定采用局部风压体型系数μ s1 : 一、外表面 1. 正压区按表7.3.1采用; 2. 负压区 -对墙面,取-1.0 -对墙角边,取-1.8 二、内表面 对封闭式建筑物,按表面风压的正负情况取-0.2或0.2。 本计算点为大面位置。 按JGJ102-2003第5.3.2条文说明:风荷载在建筑物表面分布是不均匀的,在檐口附近、边角部位较大。根据风洞试验结果和国外的有关资料,在上述区域风吸力系数可取-1.8,其余墙面可考虑-1.0,由于围护结构有开启的可能,所以

25m单管塔风荷载计算

25m灯管塔计算书 概况: 本计算书为云南联通25m灯管塔标准塔,设1个平台,分别在23m高度处,平台设计板状天线6付(迎风面积按0.45m2/付计);塔体采用圆形杆体,连接方式采用法兰连接,塔底用Q235预埋锚栓进行连接。 设计依据: 1. 设计依据: (1) 钢结构设计规范(GB 50017-2003) (2) 高耸结构设计规范(GBJ135-2006) (3) 建筑结构荷载规范(GB 5009-2001)(2006年版) (4) 移动通信工程钢塔桅结构设计规范(YD/T 5131-2005) 2. 设计荷载: 根据建设单位提出的要求确定设计荷载。 塔架设计基本风压0.45kN/m2,设计地震烈度6度。 荷载计算: 按《移动通信工程钢塔桅结构设计规范》第3.2.5条第3点,钢塔桅结构的抗震设防烈度为8度及以下时可不进行截面抗震验算,因此只验算风荷载作用下截面承载力。 华信设计建筑设计研究院(https://www.wendangku.net/doc/d19815825.html,) 第1 页共6 页

以下统计风荷载: 按搬运条件、制作工艺等要求,将塔段从下至上分为8000,8000,11000共3段,每段厚度分别为10mm、8mm、6mm. 对杆体,移动通信工程钢塔桅结构设计规范(YD/T 5131-2005),本塔体为折边型,体型系数取Us=1.0; 华信设计建筑设计研究院(https://www.wendangku.net/doc/d19815825.html,) 第2 页共6 页

内力计算: 内力计算采用ANSYS通用有限元程序,选用Beam44变截面梁单元,荷载作用简图及计算结果(位移、弯矩、剪力)如下: 华信设计建筑设计研究院(https://www.wendangku.net/doc/d19815825.html,) 第3 页共6 页

内力组合计算书

内力组合 《抗震规范》第条规定如下。 截面抗震验算 结构构件的地震作用效应和其他荷载效应的基本组合,应按下式计算: G GE Eh Ehk Ev Evk w w wk S S S S S γγγψγ=+++ () 式中: S ——结构构件内力组合的设计值,包括组合的弯矩、轴向力和剪力设计值; γG ——重力荷载分项系数,一般情况应采用,当重力荷载效应对构件承载能力有 利时,不应大于; γEh 、γEv ——分别为水平、竖向地震作用分项系数,应按表 采用; γw ——风荷载分项系数,应采用; s GE ——重力荷载代表值的效应,有吊车时尚应包括悬吊物重力标准值的效应; s Ehk ——水平地震作用标准值的效应,尚应乘以相应的增大系数或调整系数; s Evk ——竖向地震作用标准值的效应,尚应乘以相应的增大系数或调整系数; s wk ——风荷载标准值的效应 ; ψw ——风荷载组合值系数,一般结构取,风荷载起控制作用的高层建筑应采用。 注:本规范一般略去表示水平方向的下标。 表 地震作用分项系数 结构构件的截面抗震验算,应采用下列设计表达式: RE R S γ= 式中: γRE ——承载力抗震调整系数,除另有规定外,应按表采用; R ——结构构件承载力设计值。 表 承载力抗震调整系数

当仅计算竖向地震作用时,各类结构构件承载力抗震调整系数均宜采用。 本次毕业设计,各截面不同内力的承载力抗震调整系数取值如下表 结构安全等级设为二级,故结构重要性系数为 0 1.0 γ= 根据《建筑结构荷载规范》和《建筑抗震设计规范》,组合三种工况:恒荷载控制下、活荷载控制下和有地震作用参加的组合。其具体组合方法如下: 恒荷载控制下:Gk Qk S 1.35S 1.40.7S =+? 活荷载控制下:Gk Qk S 1.2S 1.4S =+ 有地震作用参加的:Gk Qk Ehk S 1.2(S 0.5S ) 1.3S =+± Gk Qk Ehk S 1.0(S 0.5S ) 1.3S =+± 对柱进行非抗震内力组合时,根据规范,对活载布置计算的荷载进行折减,折减系数由上而下分别为,,,,。偏安全,不考虑因楼面活载布置面积对梁设计内力的折减。 梁柱截面标号示意见图。 图 梁截面标号示意图

风荷载标准值

风荷载标准值 关于风荷载计算 风荷载是高层建筑主要侧向荷载之一,结构抗风分析(包括荷载,力,位移,加速度等)是高层建筑设计 计算的重要因素。 脉动风和稳定风 风荷载在建筑物表面是不均匀的,它具有静力作用(长周期哦部分)和动力作用(短周期部分)的双重特 点,静力作用成为稳定风,动力部分就是我们经常接触的脉动风。脉动风的作用就是引起高层建筑的振动 (简称风振)。 以顺风向这一单一角度来分析风载,我们又常常称静力稳定风为平均风,称动力脉动风为阵风。平均风对 结构的作用相当于静力,只要知道平均风的数值,就可以按结构力学的方法来计算构件力。阵风对结构的 作用是动力的,结构在脉动风的作用下将产生风振。 注意:不管在何种风向下,只要是在结构计算风荷载的理论当中,脉动风一定是一种随机荷载,所以分析 脉动风对结构的动力作用,不能采用一般确定性的结构动力分析方法,而应以随机振动理论和概率统计法 为依据。 从风振的性质看顺风向和横风向风力 顺风向风力分为平均风和阵风。平均风相当于静力,不引起振动。阵风相当于动力,引起振动但是引 起的是一种随机振动。也就是说顺风向风力除了静风就是脉动风,根本就没有周期性风力会引起周期性风 振,绝对没有,起码从结构计算风载的理论上顺风向的风力不存在周期性风力。 横风向,既有周期性振动又有随机振动。换句话说就是既有周期性风力又有脉动风。反映在荷载上,它可能是周期性荷载,也可能是随机性荷载,随着雷诺数的大小而定。 有的计算方法 根据现有的研究成果,风对结构作用的计算,分为以下三个不同的方面: (1)对于顺风向的平均风,采用静力计算方法 (2)对于顺风向的脉动风,或横风向脉动风,则应按随机振动理论计算 (3)对于横风向的周期性风力,或引起扭转振动的外扭矩,通常作为稳定性荷载,对结构进行动力计算 风荷载标准值的表达可有两种形式,其一为平均风压加上由脉 动风引起导致结构风振的等效风压;另一种为平均风压乘以风振系数。由于在结构的风振计算中,一般往往是第1振型起主要作

恒荷载取值

3.1.1 恒载 恒载:又称永久荷载,在结构使用期间内,荷载的大小不随时间的推移而变化、或其变化与其平均值相比较可以忽略不计、或其变化是单调的并能趋于限值的荷载。如结构自重、构造层重、土压力等。 结构自重和构造层重的标准值计算,可按照施工图纸的设计尺寸和材料的单位体积、或面积、或长度的重力,经计算直接确定;土压力标准值的计算详有关基础设计资料。 3.1.1.1 楼面恒荷载 筑面层恒荷载、结构层恒荷载、顶棚恒 荷载,分布形式详图3.1.1所示。 (1)由建筑面层引起的楼面恒荷载 计算 建筑面层引起的楼面恒荷载计算, 必须根据建筑楼面面层的具体做法 确定,常用建筑楼面面层恒荷载取值可图3.1.1 楼面恒荷载组成示意图 参考表3.1.1。 (2)由结构层引起的楼面恒荷载计 算 结构层引起的楼面恒荷载 = 结构楼层楼板厚度×钢筋混凝土容重(一般取25kN/m3)程序计算时,只要输入结构楼层楼板厚度和混凝土容重,结构层恒荷载即会自行导算,详4.1所述。 表3.1.1 常用建筑楼面面层恒荷载取值参考表

(3)由顶棚引起的楼面恒荷载计算 顶棚引起的楼面恒荷载计算,必须根据建筑顶棚的具体做法确定,常用建筑顶棚恒荷载取值可参考表3.1.2。 表3.1.2 常用建筑顶棚恒荷载取值参考表

3.1.1.2 屋面恒荷载 屋面恒荷载主要由三部分组成:建筑屋面面层恒荷载、结构层恒荷载、顶棚恒荷载,分布形式详图3.1.2所示。 图3.1.2 屋面恒荷载组成示意图 由结构层与顶棚引起的屋面恒荷载计算方法,同相应楼面恒荷载的计算方法,由建筑屋面面层引起的屋面恒荷载,必须根据建筑屋面面层的具体做法确定。 由于建筑屋面承担着保温、隔热和防水、排水的功能,因此建筑屋面面层的做法相对于建筑楼面面层的做法要复杂得多,加之各地气候、雨水情况不同,保温隔热材料和防水材料 的不断更新发展,使各地屋面面层的做法不完全相同,但基本构造层相差不多。 (1)平屋面面层恒荷载计算 平屋面,又称建筑找坡屋面,排水坡度为2%~3%,屋面面层的基本构造、荷重如下: ① 结构层(钢筋混凝土屋面板)上水泥砂浆找平层:厚度15~30mm ,容重20kN/m 3 ; ② 隔气层:以成品为主,重量较轻,可以忽略; ③ 保温层兼找坡层:一般采用憎水性能好、导热系数小和重量轻的保温材料,起坡处 厚度必须满足热工要求、由建筑专业计算决定,如膨胀珍珠岩系列(容重7~15 kN/m 3 ,现场拌制的砂浆取大值,成品取小值)、挤塑板系列(很轻,重量可以忽略)等; ④ 水泥砂浆找平层:厚度15~20mm ,容重20kN/m 3 ; ⑤ 防水层:如二毡三油系列、二布六胶系列等,重量2~8 kN/m 2 ; ⑥ 保护面层:对于不上人屋面,可以是涂料、反射膜、砂石粘料(常称绿豆砂)、蛭石云母粉、纤维纺织毯、水泥砂浆块材等;对于上人屋面,与楼面面层的做法相同,一般以水泥砂浆面层为主;也可以结合环境绿化,采用种植屋面、蓄水屋面等。 (2)坡屋面面层恒荷载计算

风荷载标准值

风荷载标准值 文件编码(008-TTIG-UTITD-GKBTT-PUUTI-WYTUI-8256)

风荷载标准值 关于风荷载计算 风荷载是高层建筑主要侧向荷载之一,结构抗风分析(包括荷载,内力,位移,加速度等)是高层建筑设计计算的重要因素。 脉动风和稳定风 风荷载在建筑物表面是不均匀的,它具有静力作用(长周期哦部分)和动力作用(短周期部分)的双重特点,静力作用成为稳定风,动力部分就是我们经常接触的脉动风。脉动风的作用就是引起高层建筑的振动(简称风振)。 以顺风向这一单一角度来分析风载,我们又常常称静力稳定风为平均风,称动力脉动风为阵风。平均风对结构的作用相当于静力,只要知道平均风的数值,就可以按结构力学的方法来计算构件内力。阵风对结构的作用是动力的,结构在脉动风的作用下将产生风振。 注意:不管在何种风向下,只要是在结构计算风荷载的理论当中,脉动风一定是一种随机荷载,所以分析脉动风对结构的动力作用,不能采用一般确定性的结构动力分析方法,而应以随机振动理论和概率统计法为依据。 从风振的性质看顺风向和横风向风力 顺风向风力分为平均风和阵风。平均风相当于静力,不引起振动。阵风相当于动力,引起振动但是引起的是一种随机振动。也就是说顺风向风力除了静风就是脉动风,根本就没有周期性风力会引起周期性风振,绝对没有,起码从结构计算风载的理论上顺风向的风力不存在周期性风力。

横风向,既有周期性振动又有随机振动。换句话说就是既有周期性风力又有脉动风。反映在荷载上,它可能是周期性荷载,也可能是随机性荷载,随着雷诺数的大小而定。 有的计算方法 根据现有的研究成果,风对结构作用的计算,分为以下三个不同的方面: (1)对于顺风向的平均风,采用静力计算方法 (2)对于顺风向的脉动风,或横风向脉动风,则应按随机振动理论计算(3)对于横风向的周期性风力,或引起扭转振动的外扭矩,通常作为稳定性荷 载,对结构进行动力计算 风荷载标准值的表达可有两种形式,其一为平均风压加上由脉动风引起导致结构风振的等效风压;另一种为平均风压乘以风振系数。由于在结构的风振计算中,一般往往是第1振型起主要作用,因而我国与大多数国家相同,采用后一种表达形式,即采用风振系数βz,它综合考虑了结构在风荷载作用下的动力响应,其中包括风速随时间、空间的变异性和结构的阻尼特性等因素。 WK=βzμsμZ W0 W0基本风压 WK 风荷载标准值 βz z高度处的风振系数 μs 风荷载体型系数

荷载内力计算和杆件截面选择计算

(1) 设计资料 昆明地区某工厂金工车间,屋架跨度为24m ,屋架端部高度2m ,长度90m ,柱距6m ,车间内设有两台30/5t 中级工作制桥式吊车,屋面采用×6m 预应力钢筋混凝土大型屋面板。20mm 厚水泥砂浆找平层,三毡四油防水层,屋面坡度=i 1/10。屋架两端铰支于钢筋混凝土柱上,上柱截面400×400mm,混凝土C20,屋面活荷载 kN/m 2,屋面积灰荷载 kN/m 2,保温层自重m 2。 (2)钢材和焊条的选用 屋架钢材选用Q235,焊条选用E43型,手工焊。 (3)屋架形式,尺寸及支撑布置 采用无檩屋盖方案,屋面坡度10/1=i ,由于采用?预应力钢筋混凝土大型屋面板和卷材屋面,故选用平坡型屋架,屋架尺寸如下: 屋架计算跨度: mm L L 23700300240003000=-=-= 屋架端部高度取: =o H 2000mm

跨中高度: mm i L H H 3190318510 12237002000200≈=?+=+ = 屋架高跨比: 4 .712370031900==L H 为使屋架节点受荷,配合屋面板宽,腹杆体系大部分采用下弦节间为3m 的人字形式,仅在跨中考虑腹杆的适宜倾角,采用再分式杆系,屋架跨中起拱48mm ,几何尺寸如图所示: 根据车间长度,跨度及荷载情况,设置三道上,下弦横向水平支撑,因车间两端为山墙,故横向水平支撑设在第二柱间;在第一柱间的上弦平面设置刚性系杆保证安装时上弦的稳定,下弦平面的第一柱间也设置刚性系杆传递山墙的风荷载;在设置横向水平支撑的同一柱间,设置竖向支撑三道,分别设在屋架的两端和跨中,屋脊节点及屋架支座处沿厂房设置通长刚性系杆,屋架下弦跨中设置一道通长柔性

风荷载计算方法与步骤

1风荷载 当空气的流动受到建筑物的阻碍时,会在建筑物表面形成压力或吸力,这些压力或吸力即为建筑物所受的风荷载。 1.1单位面积上的风荷载标准值 建筑结构所受风荷载的大小与建筑地点的地貌、离地面或海平面高度、风的性质、风速、风向以及高层建筑结构自振特性、体型、平面尺寸、表面状况等因素有关。 垂直作用于建筑物表面单位面积上的风荷载标准值ω(KN/m2)按下式计算: ω 风荷载标准值(kN/m2)=风振系数×风荷载体形系数×风压高度变化系数×基本风压 1.1.1基本风压 按当地空旷平坦地面上10米高度处10分钟平均的风速观测数据,经概率统计得出50年一遇的最大值确定的风速v0(m/s),再考虑相应的空气密度通过计算确定数值大小。 按公式确定数值大小,但不得小于0.3kN/m2,其中的单位为t/m3,单位为kN/m2。 也可以用公式计算基本风压的数值,也不得小于0.3kN/m2。 1.1.2风压高度变化系数 风压高度变化系数在同一高度,不同地面粗糙程度也是不一样的。规范以B类地面粗糙程度作为标准地貌,给出计算公式。 1.1.3风荷载体形系数 1)单体风压体形系数 (1)圆形平面;

(2)正多边形及截角三角平面,n为多边形边数; (3)高宽比的矩形、方形、十字形平面; (4)V形、Y形、L形、弧形、槽形、双十字形、井字形、高宽比的十字形、高宽比,长宽比的矩形、鼓形平面; (5)未述事项详见相应规范。 2)群体风压体形系数 详见规范规程。 3)局部风压体形系数 檐口、雨棚、遮阳板、阳台等水平构件计算局部上浮风荷载时,不宜小于2.0。未述事项详见相应规范规程。 1.1.4风振系数 对于高度H大于30米且高宽比的房屋,以及自振周期的各种高耸结构都应该考虑脉动风压对结构发生顺向风振的影响。(对于高度H大于30米、高宽比且可忽略扭转的 高层建筑,均可只考虑第一振型的影响。) 结构在Z高度处的风振系数可按下式计算: ○1g为峰值因子,去g=2.50;为10米高度名义湍流强度,取值如下: ○2R为脉动风荷载的共振分量因子,计算方法如下: 为结构阻尼比,对钢筋混凝土及砌体结构可取; 高层建筑的基本自振周期可以由结构动力学计算确定,对于较规则的高层建筑也可采用

相关文档
相关文档 最新文档