文档库 最新最全的文档下载
当前位置:文档库 › 2015-2016学年高中数学 2.4.2抛物线的简单几何性质课后习题 新人教A版选修2-1

2015-2016学年高中数学 2.4.2抛物线的简单几何性质课后习题 新人教A版选修2-1

2015-2016学年高中数学 2.4.2抛物线的简单几何性质课后习题 新人教A版选修2-1
2015-2016学年高中数学 2.4.2抛物线的简单几何性质课后习题 新人教A版选修2-1

2.4.2 抛物线的简单几何性质

课时演练2促提升

A组

1.已知抛物线关于x轴对称,它的顶点在坐标原点O,并且经过点M(2,y0).若点M到该抛物线焦点的距离为3,则|OM|=()

A.2

B.2

C.4

D.2

解析:由题意设抛物线方程为y2=2px(p>0),则点M到焦点的距离为x M+=2+=3,

∴p=2.∴抛物线方程为y2=4x.

∵点M(2,y0)在抛物线y2=4x上,

∴=432.∴y0=±2.

∴|OM|==2.

答案:B

2.设抛物线y2=8x的准线与x轴交于点Q,若过点Q的直线l与抛物线有公共点,则直线l的斜率的取值范围是()

A.B.[-2,2]

C.[-1,1]

D.[-4,4]

解析:设直线方程为y=k(x+2),与抛物线方程联立,得

消去x,得到关于y的方程ky2-8y+16k=0.

当k=0时,上述方程有解,所以直线与抛物线有公共点;

当k≠0时,应有Δ≥0,即64-64k2≥0,解得-1≤k≤1且k≠0.

综上可知,l斜率的取值范围是[-1,1].

答案:C

3.经过抛物线y2=2px(p>0)的焦点作一直线交抛物线于A(x1,y1),B(x2,y2)两点,则的值是()

A.4

B.-4

C.p2

D.-p2

解析:采用特例法,当直线与x轴垂直时,易得A,B,故=-4.

答案:B

4.已知抛物线y2=4x的焦点为F,过点F且倾斜角等于的直线与抛物线在x轴上方的曲线交于点A,则|AF|的长为()

A.2

B.4

C.6

D.8

解析:由已知得直线AF的方程为y=(x-1).

代入y2=4x,得3x2-10x+3=0,

解得x=3或x=.

当x=3时,y=2;

当x=时,y=-,

则A(3,2),故|AF|=3+1=4.

答案:B

5.过抛物线y2=2px的焦点F的直线与抛物线交于A,B两点,若A,B在准线上的射影为A1,B1,则∠

A1FB1等于()

A.45°

B.90°

C.60°

D.120°

解析:如图,由抛物线定义知

|AA1|=|AF|,|BB1|=|BF|,

所以∠AA1F=∠AFA1.

又因为∠AA1F=∠A1FO,

所以∠AFA1=∠A1FO,

同理∠BFB1=∠B1FO,

所以∠AFA1+∠BFB1=∠A1FO+∠B1FO=∠A1FB1.故∠A1FB1=90°.

答案:B

6.AB是过抛物线x2=4y焦点的弦,且|AB|=10,则AB的中点的纵坐标为.

解析:设A(x1,y1),B(x2,y2),则|AB|=y1+y2+p=y1+y2+2=10,即y1+y2=8,故AB的中点的纵坐标为4.

答案:4

7.以抛物线y2=8x上的任意一点为圆心作圆与直线x+2=0相切,则这些圆必过一定点,则这一定点的

坐标是.

解析:直线x+2=0即为抛物线的准线,依题意,圆心在抛物线上,圆心到准线的距离应等于它到定点

的距离,该定点必为抛物线的焦点(2,0).

答案:(2,0)

8.正三角形的一个顶点位于坐标原点,另外两个顶点在抛物线y2=2px(p>0)上,求这个正三角形的边长.

解:如图,设正三角形OAB的顶点A,B在抛物线上,且坐标分别为A(x1,y1),B(x2,y2),

则=2px1,=2px2.

∵OA=OB,∴,

即+2px1-2px2=0,

整理得(x1-x2)(x1+x2+2p)=0.

∵x1>0,x2>0,2p>0,

∴x1=x2.由此可得|y1|=|y2|,即线段AB关于x轴对称.由此得∠AOx=30°,

∴y1=x1.与=2px1联立,解得y1=2p,

∴AB=2y1=4p.

9.已知抛物线的顶点在原点,x轴为对称轴,经过焦点且倾斜角为的直线l,被抛物线所截得的弦长

为6,求抛物线的标准方程.

解:当抛物线焦点在x轴正半轴上时,

可设抛物线标准方程是y2=2px(p>0),

则焦点F,直线l为y=x-.

设直线l与抛物线的交点A(x1,y1),B(x2,y2),

过A,B分别向抛物线的准线作垂线AA1,BB1,垂足分别为A1,B1,

则|AB|=|AF|+|BF|=|AA1|+|BB1|==x1+x2+p=6,

故x1+x2=6-p.①

由消去y,得=2px,

即x2-3px+=0,则x1+x2=3p.

代入①式,得3p=6-p,解得p=.

故所求抛物线的标准方程是y2=3x.

当抛物线焦点在x轴负半轴上时,用同样的方法可求出抛物线的标准方程是y2=-3x.

B组

1.设抛物线C:y2=4x的焦点为F,过点F作直线交抛物线C于A,B两点,则△AOB的最小面积是()

A.B.2 C.4 D.1

解析:设AB的倾斜角为θ,由弦长公式得|AB|=.

∵原点O到直线AB的距离d=sin θ,

∴S△AOB=sin θ2.

∴当sin θ=1时,

(S△AOB)min=2,故选B.

答案:B

2.已知抛物线C:y2=8x的焦点为F,准线与x轴的交点为K,点A在C上且|AK|=|AF|,则△AFK的面积为.

解析:如图,y2=8x的焦点F(2,0),准线x=-2,K(-2,0).

作AH⊥KH交准线于点H,则|AH|=|AF|.

∵|AK|=|AF|,则|AK|=|AH|,

∴△AHK为等腰直角三角形,则△AFK为等腰直角三角形,|AF|=|KF|=4.

∴S△AFK=2|AF|2|KF|=8.

答案:8

3.在直角坐标系xOy中,已知抛物线y2=2px(p>0),过点(2p,0)作直线交抛物线于A(x1,y1),B(x2,y2)两点,给出下列结论:(1)OA⊥OB;(2)△AOB的最小面积为4p2;(3)x1x2=-4p2.其中正确的结论

是.

解析:设直线AB的方程为x=my+2p,代入y2=2px,

得y2-2pmy-4p2=0,

∴y1+y2=2pm,y1y2=-4p2.

∴x1x2=(my1+2p)2(my2+2p)=m2y1y2+2pm2(y1+y2)+4p2.

∴y1y2+x1x2=-4p2+m2(-4p2)+2pm2(2pm)+4p2=0.

∴OA⊥OB.∴S△AOB=|2p|2|y1-y2|.

而|y1-y2|=

=,

显然,当m=0时,|y1-y2|min=4p,

∴=4p2.

故(1)(2)正确;

∵y1y2=-4p2,∴x1x2=4p2.故(3)不正确.

答案:(1)(2)

4.Rt△AOB的三个顶点都在抛物线y2=2px上,其中直角顶点O为原点,OA所在直线的方程为y=x,△AOB的面积为6,求该抛物线的方程.

解:因为OA⊥OB,且OA所在直线的方程为y=x,

所以OB所在直线的方程为y=-x.

由得点A坐标,

由得点B坐标为(6p,-2p).

|OA|=|p|,|OB|=4|p|,

S△OAB=|OA|2|OB|=p2=6,

所以p=±.

即该抛物线的方程为y2=3x或y2=-3x.

5.抛物线y=-与过点M(0,-1)的直线l相交于A,B两点,O为坐标原点,若直线OA和OB的斜率之和为1,求直线l的方程.

解:如图,设A(x1,y1),B(x2,y2),直线l的方程为y=kx-1.

则k=

=-.

由k OA+k OB==1,

且y1=-,y2=-,得-=1,

即-=1.

于是k=1,所以直线l的方程为y=x-1.

高中数学平面解析几何知识点总结

平面解析几何 一、直线与圆 1.斜率公式 2121 y y k x x -=-(111(,)P x y 、222(,)P x y ). 2.直线的五种方程 (1)点斜式 11()y y k x x -=- (直线l 过点111(,)P x y ,且斜率为k ). (2)斜截式 y kx b =+(b 为直线l 在y 轴上的截距). (3)两点式 112121 y y x x y y x x --=--(12y y ≠)(111(,)P x y 、222(,)P x y (12x x ≠)). < (4)截距式 1x y a b +=(a b 、分别为直线的横、纵截距,0a b ≠、). (5)一般式 0Ax By C ++=(其中A 、B 不同时为0). 3.两条直线的平行和垂直 (1)若111:l y k x b =+,222:l y k x b =+ ①121212||,l l k k b b ?=≠; ②12121l l k k ⊥?=-. (2)若1111:0l A x B y C ++=,2222:0l A x B y C ++=,且A 1、A 2、B 1、B 2都不为零, ①11112222 ||A B C l l A B C ? =≠; < ②1212120l l A A B B ⊥?+=; 4.点到直线的距离 d =(点00(,)P x y ,直线l :0Ax By C ++=). 5.圆的四种方程 (1)圆的标准方程 222()()x a y b r -+-=. (2)圆的一般方程 220x y Dx Ey F ++++=(224D E F +->0).圆心??? ??--2,2E D ,半径r=2 422F E D -+. 6.点与圆的位置关系 点00(,)P x y 与圆2 22)()(r b y a x =-+-的位置关系有三种: . 若d =d r >?点P 在圆外;d r =?点P 在圆上;d r 相离r d ; 0=???=相切r d ; 0>???<相交r d . 其中22B A C Bb Aa d +++=. 8.两圆位置关系的判定方法 # 设两圆圆心分别为O 1,O 2,半径分别为r 1,r 2,d O O =21 条公切线外离421??+>r r d ; 条公切线外切321??+=r r d ;

(完整)高二文科数学——抛物线练习题

高二文科数学——抛物线练习题 【知识回顾】 平面内与一个定点F 和一条定直线l 的距离相等的点的轨迹叫做抛物线。 定点F 叫做抛物线的焦点,定直线l 叫做抛物线的准线。 (1)设00(,)P x y 是抛物线上的一点,则当焦点F 在x 轴上时,02 p PF x = +;当焦点F 在y 轴上时,02 p PF y = +。此公式叫做焦半径公式。 (2)设AB 是过抛物线2 2y px =的焦点F 的一条弦,则12||AB x x p =++。 一、选择题(每小题4分,共40分。答案填在答题表里) 1.经过(1,2)点的抛物线的标准方程是( ) A .y 2=4x B .x 2= 21y C . y 2=4x 或x 2=2 1 y D . y 2=4x 或x 2=4y 2.抛物线y = -2x 2的准线方程是( ) A .x = - 21 B .x =21 C . y =81 D . y = -8 1 3.动圆M 经过点A (3,0)且与直线l :x = -3相切,则动圆圆心M 的轨迹方程是 A . x y 122= B . x y 62= C . x y 32= D .x y 242= 4.动点M 到定点(4,0)F 的距离比它到定直线x +5=0的距离小1,则点M 的轨迹是( ) A .y 2=4x B .y 2=16x C .x 2=4y D .x 2=16y 5.已知抛物线的焦点在直线240x y --=上,则此抛物线的标准方程是 A .x y 162= B .y x 82-= C . x y 162=或y x 82-= D . x y 162=或y x 82= 6.抛物线y 2+4x =0关于直线x +y =0对称的曲线的方程为( ) A .x 2= -4y B .x 2=4y C .y 2=4x D .y 2= -4x 7.已知抛物线的顶点为原点,焦点在y 轴上,抛物线上的点(,2)M m -到焦点P 的距离为4,则m 的值为 ( ) A .4± B .2- C . 2-或4- D .2± 8.设AB 是抛物线py x 22 =的焦点弦,B A 、在准线上的射影分别为11B A 、,则11FB A ∠等于( ) A . ?45 B . ?60 C . ?90 D .?120 9.抛物线y =x 2上的点到直线2x -y =4的距离最短的点的坐标是( ) A .(41, 21) B .(1,1) C .(4 9 ,23) D .(2,4) 10.设F 为抛物线y x 42 =的焦点,点P 在抛物线上运动,点)3,2(A 为定点,使||||PA PF +为最小值时点P 的坐标是 ( ) A .?? ? ??41,1 B .)1,2(- C .)1,2( D .)0,0( 二、填空题(每小题4分,共16分。答案填在试卷指定的横线上) 11.抛物线y 2= -8x 的焦点到准线的距离是 12.抛物线)0(12 <=m x m y 的焦点坐标是 13.过抛物线x y 42 =的焦点作直线交抛物线于),(),,(2211y x B y x A 两点,若621=+x x ,则 ||AB 的值是 14.设AB 是抛物线x y 22 -=的过焦点的弦,4=AB ,则线段AB 中点C 到直线1x =的距离为 【附加题】 (12广东文)(12分)在平面直角坐标系xoy 中,已知椭圆22 122:1(0)x y C a b a b +=>>的左焦 点1(10)F -,,且在(01)P ,在1C 上。 (1)求1C 的方程; (2)设直线l 同时与椭圆1C 和抛物线2 2:4C y x =相切,求直线l 的方程

抛物线的简单几何性质教案 (1)

抛物线的简单几何性质; ●教学目标 1.掌握抛物线的几何性质; 2.能根据几何性质确定抛物线的标准方程; 3.能利用工具作出抛物线的图形. ●教学重点 抛物线的几何性质 ●教学难点 几何性质的应用 ●教学方法 学导式 ●教具准备 三角板 ●教学过程 Ⅰ.复习回顾 简要回顾抛物线定义及标准方程的四种形式(要求学生回答) 师:这一节,我们根据抛物线的标准方程)0(22 p px y = ①来研究它的几何性质 Ⅱ.讲授新课 1. 范围 当x 的值增大时,y 也增大,这说明抛物线向右上方和右下方无限延伸.(但应让学生注意与双曲线一支 的区别,无渐近线). 2.对称性 抛物线关于x 轴对称. 我们把抛物线的对称轴叫抛物线的轴. 3.顶点 抛物线和它的轴的交点叫抛物线的顶点.即坐标原点. 4.离心率 抛物线上的点M 与焦点的距离和它到准线的距离的比,叫抛物线的离心率,用e 表示.由抛物线定义可知,e =1. 说明:对于其余三种形式的抛物线方程,要求自己得出它们的几何性质,这样,有助于学生掌握抛物线四种标准方程. 师:下面,大家通过问题来进一步熟悉抛物线的几何性质. 例1.已知抛物线关于x 轴对称,它的顶点在原点,并且经过点M (2,-22),求它的标准方程,并用描点法画出图形. 师:由已知条件求抛物线的标准方程时,首先要根据已知条件确定抛物线标准方程的类型,再求出方程中的参数P . 解:因为抛物线关于x 轴对称,它的顶点在原点,并且经过点M (2,-22),所以可设它的标准方程为: )0(22 p px y =

因为点M 在抛物线上,所以22)22(2?=-p ,即2=p 因此所求方程是.42x y = 下面列表、描点、作图: 说明:①利用抛物线的对称性可以简化作图步骤; ②抛物线没有渐近线; ③抛物线的标准方程)0(22 p px y =中p 2的几何意义:抛物线的通 径,即连结通过焦点而垂直于x 轴直线与抛物线两交点的线段. 师:下面我们通过练习进一步熟悉并掌握抛物线的标准方程. Ⅲ.课堂练习 课本P 122练习1,2. ●课堂小结 师:通过本节学习,要求大家掌握抛物线的几何性质,并在具体应用时注意区分抛物线标准方程的四种形式. ●课后作业 习题8.6 1,2,5. ●板书设计 ●教学后记

高一数学立体几何练习题及部分标准答案汇编

立体几何试题 一.选择题(每题4分,共40分) 1.已知AB//PQ,BC//QR,则∠PQP等于() A 030 B 030 C 0 150 D 以上结论都不对 2.在空间,下列命题正确的个数为() (1)有两组对边相等的四边形是平行四边形,(2)四边相等的四边形是菱形 (3)平行于同一条直线的两条直线平行;(4)有两边及其夹角对应相等的两个三角形全等 A 1 B 2 C 3 D 4 3.如果一条直线与两个平行平面中的一个平行,那么这条直线与另一个平面的位置关系是() A 平行 B 相交 C 在平面内 D 平行或在平面内 4.已知直线m//平面α,直线n在α内,则m与n的关系为() A 平行 B 相交 C 平行或异面 D 相交或异面 5.经过平面α外一点,作与α平行的平面,则这样的平面可作() A 1个或2个 B 0个或1个 C 1个 D 0个 6.如图,如果MC⊥菱形ABCD所在平面,那么MA与BD的位置关系是( ) A 平行 B 垂直相交 C 异面 D 相交但不垂直 7.经过平面α外一点和平面α内一点与平面α垂直的平面有()

8.下列条件中,能判断两个平面平行的是( ) A 一个平面内的一条直线平行于另一个平面; B 一个平面内的两条直线平行于另一个平面 C 一个平面内有无数条直线平行于另一个平面 D 一个平面内任何一条直线都平行于另一个平面 9.对于直线m ,n 和平面,αβ,使αβ⊥成立的一个条件是( ) A //,,m n n m βα⊥? B //,,m n n m βα⊥⊥ C ,,m n m n αβα⊥=?I D ,//,//m n m n αβ⊥ 10 .已知四棱锥,则中,直角三角形最多可以有( ) A 1个 B 2个 C 3个 D 4个 二.填空题(每题4分,共16分) 11.已知?ABC 的两边AC,BC 分别交平面α于点M,N ,设直线AB 与平面α交于点O ,则点O 与直线MN 的位置关系为_________ 12.过直线外一点与该直线平行的平面有___________个,过平面外一点与该平面平行的直线有 _____________条 13.一块西瓜切3刀最多能切_________块 14.将边长是a 的正方形ABCD 沿对角线AC 折起,使得折起后BD 得长为a,则三棱锥D-ABC 的体积为___________ 三、解答题 15(10分)如图,已知E,F 分别是正方形ABCD A B C D -的棱AA 和棱CC 上的点,且

高中数学平面解析几何的知识点梳理

平面解析几何 1.直线的倾斜角与斜率: (1)直线的倾斜角:在平面直角坐标系中,对于一条与x 轴相交的直线,如果把x 轴绕着交点按逆时针 方向旋转到和直线重合时所转的最小正角记为α叫做直线的倾斜角. 倾斜角)180,0[?∈α,?=90α斜率不存在. (2)直线的斜率:αtan ),(211 212=≠--=k x x x x y y k .(111(,)P x y 、222(,)P x y ). 2.直线方程的五种形式: (1)点斜式:)(11x x k y y -=- (直线l 过点),(111y x P ,且斜率为k ). 注:当直线斜率不存在时,不能用点斜式表示,此时方程为0x x =. (2)斜截式:b kx y += (b 为直线l 在y 轴上的截距). (3)两点式:1 21121x x x x y y y y --=-- (12y y ≠,12x x ≠). 注:① 不能表示与x 轴和y 轴垂直的直线; ② 方程形式为:0))(())((112112=-----x x y y y y x x 时,方程可以表示任意直线. (4)截距式:1=+b y a x (b a ,分别为x 轴y 轴上的截距,且0,0≠≠b a ). 注:不能表示与x 轴垂直的直线,也不能表示与y 轴垂直的直线,特别是不能表示过原点的直线. (5)一般式:0=++C By Ax (其中A 、B 不同时为0). 一般式化为斜截式:B C x B A y -- =,即,直线的斜率:B A k -=. 注:(1)已知直线纵截距b ,常设其方程为y kx b =+或0x =. 已知直线横截距0x ,常设其方程为0x my x =+(直线斜率k 存在时,m 为k 的倒数)或0y =. 已知直线过点00(,)x y ,常设其方程为00()y k x x y =-+或0x x =. (2)解析几何中研究两条直线位置关系时,两条直线有可能重合;立体几何中两条直线一般不重合. 3.直线在坐标轴上的截矩可正,可负,也可为0. (1)直线在两坐标轴上的截距相等....?直线的斜率为1-或直线过原点. (2)直线两截距互为相反数.......?直线的斜率为1或直线过原点. (3)直线两截距绝对值相等.......?直线的斜率为1±或直线过原点. 4.两条直线的平行和垂直: (1)若111:l y k x b =+,222:l y k x b =+ ① 212121,//b b k k l l ≠=?; ② 12121l l k k ⊥?=-. (2)若0:1111=++C y B x A l ,0:2222=++C y B x A l ,有 ① 1221122121//C A C A B A B A l l ≠=?且.② 0212121=+?⊥B B A A l l . 5.平面两点距离公式: (111(,)P x y 、222(,)P x y ),22122121)()(y y x x P P -+-=.x 轴上两点间距离:A B x x AB -=. 线段21P P 的中点是),(00y x M ,则??? ????+=+=2221 0210y y y x x x .

高二数学抛物线练习题

高二(2)部数学《抛物线》同步训练一 班级____姓名_____ (A)x= -4a (B)x=4a (C)x= -4|a | (D)x=4 |a | 坐标是 ( ) (A)(0,-1) (B)(0,1) (C)(0,-2) (D)(0,2) ( ) (A)y 2=16x (B)y 2=12x (C)y 2= -16x (D)y 2= -12x 4.抛物线2y 2+x 的焦点坐标是 ( ) 0) (B)(0, 0) (D)(0,5.过点(0,1)且与抛物线y 2=x 只有一个公共点的直线有 ( ) (A)一条 (B)两条 (C)三条 (D)无数条 6.若直线3x +4y +24=0和点F (1,-1)分别是抛物线的准线和焦点,则此抛物线的顶点坐标是 ( ) (A)(1,2) (B)(4,3) (C))25 71,5019(-- (D)(-2,-5) 7.过抛物线y 2=4x 的焦点F A 、B 两点,则AB 的长是 ( ) 8.根据下列条件写出抛物线的标准方程 (1)焦点是F (-2,0)

(2)准线方程是31=y (3)焦点到准线的距离是4,焦点在y 轴上 (4)经过点A (6,-2) 9.抛物线x2=4y 上的点p 到焦点的距离是10,求p 点坐标 高二(2)部数学《抛物线》同步训练二 班级____姓名_____ 1.已知抛物线方程为y =ax 2 (a >0),则其准线方程为( ) (A) 2a x - = (B) 4a x = (C) a y 21-= (D) a y 41-= 2.抛物线21x m y =(m ≠0)的焦点坐标是( )(A) (0,4m )或(0,4 m -) (B) (0,4m )(C) (0,m 41)或(0,m 41-)(D) (0,m 41) 3.焦点在直线3x -4y -12=0上的抛物线标准方程是( ) (A) y 2=16x 或x 2=16y (B) y 2=16x 或x 2=12y (C) x 2=-12y 或y 2=16x (D) x 2=16y 或y 2=-12x 4.抛物线y =2x 2的焦点坐标是( ) (A) (0,41) (B) (0,81) (C) (21,0) (D) (4 1,0) 5.以椭圆19 252 2=+y x 的中心为顶点,左准线为准线的抛物线标准方程( ) (A) y 2=25x (B) x y 2252= (C) x y 3252= (D) x y 4 252= 3.顶点在原点,焦点在y 轴上,且过点P (4,2)的抛物线方程是 4.平面上的动点P 到点A (0,-2)的距离比到直线l :y =4的距离小2,则动点P 的轨迹方程是 5.已知抛物线y 2=x 上的点M 到准线的距离等于它到顶点的距离,求P 点的坐标. 6.根据下列条件写出抛物线的标准方程 (1)过点(-3,4) (2)过焦点且与x 轴垂直的弦长是16

抛物线的几何性质教案

抛物线的几何性质教学设计 1. 教学目标: ⑴掌握抛物线的范围、对称性、顶点、离心率等几何性质; (2) 能根据抛物线的几何性质对抛物线方程进行讨论; (3) 在对抛物线几何性质的讨论中,注意数与形的结合与转化。 2. 过程与方法 学会用类比的思想分析解决问题。 3■情态与价值观 学生通过和椭圆,双曲线和抛物线之间的简单几何性质类比, 了解到事物之间的普遍联系性。 教学重点:抛物线的几何性质及其运用 教学难点:抛物线几何性质的运用 授课类型:新授课 教学方法:学导式,启发式 教学过程设计: 教学环节 教学内容 设计意图 2. 新课探讨 以抛物线 2 1. 温故知新, 引入新课 图形 标准方程 焦点坐标 准线方程 l Y i 2 Y =2px (P>0) 任,0】 B 丿 P X =— 2 O 0) U l 2,丿 X=卫 2 X ?y FZ l 2 C X =2py ? (p>0) X 匚P l l <0' 2 丿 Y —卫 2 Y / k 2 C X =-2py (p>0) k X OT J 2丿 P Y u 通过图表的方 式把前面学习 的内容复习一 遍,这样不但让 学生温习了旧 知识,而 且将对 新知识的掌握 起到承上启下 的作用 数形结合,讲解 新课,通俗易懂 形因数而精准, 数因形而形象。

y =2px(p>0)为例

例1:已知抛物线关于 X 轴对称,它的顶点在坐标原点,并且经过点 M ¢,-2耳2),求它的标准方程。 解: 因为抛物线关于X 轴对称,它的顶点在坐标原点,并且经过点 M<2,-2^2》所以设方程为:y 2 = 2px (p>0),又因为点M 在抛物线 上:(一2√? 2 =2px2 ,p = 2。因此所求抛物线标准方程为: y 2 =4x 当焦点在x(y)轴上,开口方向不定时,设为y2=2mx(m ≠ 0) (x2=2my (m ≠ O)),可避免讨论 2 例2.斜率为1的直线 经过抛物线 y = 4x 的焦点F ,且与抛物线 相交于A ,B 两点,求线段 AB 的长。 分析:法一、直线和抛物线联立为方程组,求出两个交点 A 、B ,然 后用两点间的距离公式求 AB 的长。 法二、设而不求,利用弦长公式来求 AB 的长。 法三、设而不求,数形结合,利用定义来求 AB 的长。 本题重在考试第三种方法。 解由题意可知,p =2, P =1, 2 焦点F 1,0 ,准线I : X =T . 3. 三种圆锥曲 线的简单几 何性质比较 学习新知识不 忘老知识,比较 着学习,总结归 纳更容 易让学 生掌握本课内 容。 4.经典例题

高中数学必修2立体几何专题线面角典型例题求法总结

线面角的求法 1.直接法 :平面的斜线与斜线在平面内的射影所成的角即为直线与平面所成的角。通常是解由斜线段,垂线段,斜线在平面内的射影所组成的直角三角形,垂线段是其中最重要的元素,它可以起到联系各线段的作用。 例1 ( 如图1 )四面体ABCS 中,SA,SB,SC 两两垂直,∠SBA=45°, ∠SBC=60°, M 为 AB 的中点,求(1)BC 与平面SAB 所成的角。(2)SC 与平面ABC 所成的角。 B M H S C A 解:(1) ∵SC ⊥SB,SC ⊥SA, 图1 ∴SC ⊥平面SAB 故 SB 是斜线BC 在平面SAB 上的射影, ∴∠SBC 是直线BC 与平面SAB 所成的角为60°。 (2) 连结SM,CM ,则SM ⊥AB, 又∵SC ⊥AB,∴AB ⊥平面SCM, ∴面ABC ⊥面SCM 过S 作SH ⊥CM 于H, 则SH ⊥平面ABC ∴CH 即为 SC 在面ABC 内的射影。 ∠SCH 为SC 与平面ABC 所成的角。 sin ∠SCH=SH /SC ∴SC 与平面ABC 所成的角的正弦值为√7/7 (“垂线”是相对的,SC 是面 SAB 的垂线,又是面 ABC 的斜线. 作面的垂线常根据面面垂直的性质定理,其思路是:先找出与已知平面垂直的平面,然后一面内找出或作出交线的垂线,则得面的垂线。) 2. 利用公式sin θ=h /ι 其中θ是斜线与平面所成的角, h 是 垂线段的长,ι是斜线段的长,其中求出垂线段的长(即斜线上的点到面的距离)既是关键又是难点,为此可用三棱锥的体积自等来求垂线段的长。 例2 ( 如图2) 长方体ABCD-A 1B 1C 1D 1 , AB=3 ,BC=2, A 1A= 4 ,求AB 与面 AB 1C 1D 所成的角。 A 1 C 1 D 1 H 4 C B 1 23 B A D 解:设点 B 到AB 1C 1D 的距离为h ,∵V B ﹣AB 1C 1 =V A ﹣BB 1C 1 ∴1/3 S △AB 1C 1 ·h= 1/3 S △BB 1C 1 ·AB,易得h=12/5 ,

高中数学抛物线的简单几何性质教案

《抛物线的简单几何性质》教案 《抛物线的简单几何性质》教案及教材分析 教材:《全日制高级中学课本(必修)数学》第二册(上) 一. 教学理念 “数学教师不能充当数学知识的施舍者,没有人能教会学生,数学素质是学生在数学活动中自己获得的。”因此,教师的责任关键在于在教学过程中创设一个”数学活动”环境,让学生通过这个环境的相互作用,利用自身的知识和经验构建自己的理解,获得知识,从而培养自己的数学素质,培养自己的能力。 数学源于生活,高于生活,学习数学的最终目的是应用于生活(回归生活),通过平时教学,注意这方面的渗透,培养学生解决实际问题的能力。 二. 教材分析 1、本节教材的地位 本节通过类比椭圆、双曲线的几何性质,结合抛物线的标准方程讨论研究抛物线的几 何性质,让学生再一次体会用曲线的方程研究曲线性质的方法,学生不难掌握抛物线的范围、对称性、顶点、离心率等性质,对于抛物线几何性质的应用是学生学习的难点,教学中应强调几何模型与数学问题的转换。例1的设计,在于让学生通过作图感知p 的大小对抛物线开口的影响,引出通径的定义。例2的设计旨在利用抛物线的几何性质数学地解决实际问题即作抛物线的草图。 本节是第一课时,在数学思想和方法上可与椭圆、双曲线的性质对比进行,着重指出它 们的联系和区别,从而培养学生分析、归纳、推理等能力。 2、教学目标 (1) 知识目标: ⅰ 抛物线的几何性质、范围、对称性、定点、离心率。. ⅱ 抛物线的通径及画法。 (2) 能力目标:. ⅰ 使学生掌握抛物线的几何性质,根据给出条件求抛物线的标准方程。 ⅱ 掌握抛物线的画法。 (3) 情感目标: ⅰ 培养学生数形结合及方程的思想。 ) 0(22>=p px y

高中数学抛物线习题精选(带答案)

抛物线习题精选 一、选择题 1.过抛物线焦点的直线与抛物线相交于,两点,若,在抛物线准线上的射影分别是,,则为(). A.45°B.60°C.90°D.120° 2.过已知点且与抛物线只有一个公共点的直线有(). A.1条B.2条C.3条D.4条 3.已知,是抛物线上两点,为坐标原点,若 ,且的垂心恰好是此抛物线的焦点,则直线的方程是(). A.B.C.D. 4.若抛物线()的弦PQ中点为(),则弦的斜率为() A.B.C.D. 5.已知是抛物线的焦点弦,其坐标,满足,则直线的斜率是() A.B.C.D. 6.已知抛物线()的焦点弦的两端点坐标分别为,,则的值一定等于() A.4 B.-4 C.D.

7.已知⊙的圆心在抛物线上,且⊙与轴及的准线相切,则⊙的方程是() A.B. C.D. 8.当时,关于的方程的实根的个数是() A.0个B.1个C.2个D.3个 9.将直线左移1个单位,再下移2个单位后,它与抛物线仅有一个公共点,则实数的值等于() A.-1 B.1 C.7 D.9 10.以抛物线()的焦半径为直径的圆与轴位置关系为() A.相交 B.相离 C.相切 D.不确定 11.过抛物线的焦点作直线交抛物线于,两点,如果,那么长是() A.10 B.8 C.6 D.4 12.过抛物线()的焦点且垂直于轴的弦为,为抛物线顶点,则大小() A.小于B.等于C.大于D.不能确定 13.抛物线关于直线对称的曲线的顶点坐标是()A.(0,0)B.(-2,-2)C.(2,2)D.(2,0) 14.已知抛物线()上有一点,它到焦点的距离为5,则的面积(为原点)为() A.1 B.C.2 D.

3.3.2 抛物线的简单几何性质

3.3.2抛物线的简单几何性质 基础过关练 题组一抛物线的几何性质及其运用 1.已知抛物线x2=2py(p>0)的准线经过点(-1,-1),则抛物线的焦点坐标为() A.(-1,0) B.(0,-1) C.(1,0) D.(0,1) 2.已知点P(6,y)在抛物线y2=2px(p>0)上,若点P到抛物线焦点F的距离等于8,则焦点F到抛物线准线的距离等于() A.2 B.1 C.4 D.8 3.已知抛物线y2=2px(p>0)的准线与圆(x-3)2+y2=16相切,则p的值为() B.1 C.2 D.4 A.1 2 4.已知点A是抛物线y2=2px(p>0)上一点,F为抛物线的焦点,O为坐标原点,当 |AF|=4时,∠OFA=120°,则抛物线的准线方程是() A.x=-1 B.y=-1 C.x=-2 D.y=-2 5.抛物线y2=4x的焦点为F,点P为抛物线上的动点,点M为其准线上的动点,当 △FPM为等边三角形时,其面积为() A.2√3 B.4 C.6 D.4√3 6.一条光线从抛物线y2=2px(p>0)的焦点F射出,经抛物线上一点B反射后,反射光线经过点A(5,4),若|AB|+|FB|=6,则抛物线的标准方程为.

题组二直线与抛物线的位置关系 7.已知直线l:y=x-1与抛物线C:y2=4x相交于A、B两点,则|AB|为() A.5 B.6 C.7 D.8 8.已知直线y=kx-k及抛物线y2=2px(p>0),则() A.直线与抛物线有一个公共点 B.直线与抛物线有两个公共点 C.直线与抛物线有一个或两个公共点 D.直线与抛物线可能没有公共点 9.过点(0,1)且与抛物线y2=4x只有一个公共点的直线有() A.1条 B.2条 C.3条 D.0条 10.(2020山东菏泽高二上期末)已知斜率为k的直线l与抛物线C:y2=4x交于A、B 两点,线段AB的中点为M(2,1),则直线l的方程为() A.2x-y-3=0 B.2x-y-5=0 C.x-2y=0 D.x-y-1=0 11.已知抛物线C:y2=4x的焦点为F,直线l:y=x-2与抛物线C交于A,B两点. (1)求弦AB的长; (2)求△FAB的面积.

全国高中数学联赛平面几何题

全国高中数学联赛平面几何题 1.(2000) 如图,在锐角三角形ABC 的BC 边上有两点E 、F ,满足∠BAE =∠CAF ,作FM ⊥AB ,FN ⊥AC (M 、N 是垂足),延长AE 交三角形ABC 的外接圆于D .证明:四边形AMDN 与三角形ABC 的面积相等. 2. (2001) 如图,△ABC 中,O 为外心,三条高AD 、BE 、CF 交于点H ,直线ED 和AB 交于点M ,FD 和AC 交于点N . 求证:(1) OB ⊥DF ,OC ⊥DE ; (2) OH ⊥MN . 3.(2002) 4.(2003) 过圆外一点P 作圆的两条切线和一条割线,切点为A ,B 所作割线交圆于C ,D 两点,C 在P ,D 之间,在弦CD 上取一点Q ,使∠DAQ =∠PBC .求证:∠DBQ =∠PAC . A B C D E F M N

5.(2004)在锐角三角形ABC 中,AB 上的高CE 与AC 上的高BD 相交于点H ,以DE 为直径的圆分别交AB 、AC 于F 、G 两点,FG 与AH 相交于点K 。已知BC=25,BD=20,BE=7,求AK 的长。 6.(2005) 7.(2006)以B 0和B 1为焦点的椭圆与△AB 0B 1的边AB i 交于点 C i (i =0,1). 在AB 0的延长线上任取点P 0,以B 0为圆心,B 0P 0 为半径作圆弧P 0Q 0⌒ 交C 1B 0的延长线于Q 0;以C 1为圆心,C 1Q 0 为半径作圆弧Q 0P 1⌒ 交B 1A 的延长线于点P 1;以B 1为圆心,B 1P 1 为半径作圆弧P 1Q 1⌒ 交B 1C 0的延长线于Q 1;以C 0为圆心,C 0Q 1 为半径作圆弧Q 1P 0'⌒ ,交AB 0的延长线于P 0'. 试证: ⑴ 点P 0'与点P 0重合,且圆弧P 0Q 0⌒与P 0Q 1⌒ 相切于点P 0; ⑵ 四点P 0,Q 0,Q 1,P 1共圆. P B 1 B 0 C 1P 1 P 0 Q 1Q 0 A C 0

抛物线的简单几何性质练习题

课时作业(十三) [学业水平层次] 一、选择题 1.已知点P (6,y )在抛物线y 2=2px (p >0)上,若点P 到抛物线焦点F 的距离等于8,则焦点F 到抛物线准线的距离等于( ) A .2 B .1 C .4 D .8 【解析】 抛物线y 2=2px (p >0)的准线为x =-p 2,因为P (6,y ) 为抛物线上的点,所以点P 到焦点F 的距离等于它到准线的距离,所 以6+p 2=8,所以p =4,即焦点F 到抛物线的距离等于4,故选C. 【答案】 C 2.(2014·成都高二检测)抛物线y 2=4x 的焦点为F ,点P 为抛物线上的动点,点M 为其准线上的动点,当△FPM 为等边三角形时,其面积为( ) A .2 3 B .4 C .6 D .43 【解析】 据题意知,△FPM 为等边三角形,|PF |=|PM |=|FM |, ∴PM ⊥抛物线的准线.设P ? ?? ??m 24,m ,则M (-1,m ),等边三角形边长为1+m 24,又由F (1,0),|PM |=|FM |,得1+m 24=1+12+m 2,得m =23,∴等边三角形的边长为4,其面积为43,故选D. 【答案】 D 3.已知抛物线y 2=2px (p >0),过其焦点且斜率为1的直线交抛物线于A 、B 两点,若线段AB 的中点的纵坐标为2,则该抛物线的准

线方程为( ) A .x =1 B .x =-1 C .x =2 D .x =-2 【解析】 设A (x 1,y 1),B (x 2,y 2),代入抛物线方程得:????? y 21=2px 1, ①y 22=2px 2, ② ①-②得, (y 1+y 2)(y 1-y 2)=2p (x 1-x 2). 又∵y 1+y 2=4,∴y 1-y 2x 1-x 2=2p 4=p 2 =k =1,∴p =2. ∴所求抛物线的准线方程为x =-1. 【答案】 B 4.(2014·课标Ⅱ)设F 为抛物线C :y 2=3x 的焦点,过F 且倾斜角为30°的直线交C 于A ,B 两点,则|AB |=( ) B .6 C .12 D .73 【解析】 焦点F 的坐标为? ?? ??34,0,直线AB 的斜率为33,所以直线AB 的方程为y =33? ?? ??x -34, 即y =33x -34,代入y 2=3x , 得13x 2-72x +316=0,

高中数学 抛物线知识点归纳总结与经典习题

抛物线经典结论和例题

方程 1. 直线与抛物线的位置关系 直线 ,抛物线 , ,消y 得: (1)当k=0时,直线l 与抛物线的对称轴平行,有一个交点; (2)当k ≠0时, Δ>0,直线l 与抛物线相交,两个不同交点; Δ=0, 直线l 与抛物线相切,一个切点; Δ<0,直线l 与抛物线相离,无公共点。 (3)若直线与抛物线只有一个公共点,则直线与抛物线必相切吗?(不一定) 2. 关于直线与抛物线的位置关系问题常用处理方法 直线l :b kx y += 抛物线 ,)0(φp ① 联立方程法: ???=+=px y b kx y 22 ?0)(2222=+-+b x p kb x k 设交点坐标为),(11y x A ,),(22y x B ,则有0φ?,以及2121,x x x x +,还可进一步求出 b x x k b kx b kx y y 2)(212121++=+++=+,

2212122121)())((b x x kb x x k b kx b kx y y +++=++= 在涉及弦长,中点,对称,面积等问题时,常用此法,比如 a. 相交弦AB 的弦长 2122122124)(11x x x x k x x k AB -++=-+=a k ?+=2 1 或 2122122124)(1111y y y y k y y k AB -++=-+ =a k ?+=2 1 b. 中点),(00y x M , 2210x x x += , 2 2 10y y y += ② 点差法: 设交点坐标为),(11y x A ,),(22y x B ,代入抛物线方程,得 1212px y = 22 22px y = 将两式相减,可得 )(2))((212121x x p y y y y -=+-所以 2 121212y y p x x y y += -- a. 在涉及斜率问题时,2 12y y p k AB += b. 在涉及中点轨迹问题时,设线段AB 的中点为),(00y x M , 021*******y p y p y y p x x y y ==+=--,即0y p k AB =, 同理,对于抛物线)0(22≠=p py x ,若直线l 与抛物线相交于B A 、两点,点 ),(00y x M 是弦AB 的中点,则有p x p x p x x k AB 0 021222==+= (注意能用这个公式的条件:1)直线与抛物线有两个不同的交点,2)直线的斜率存在,且不等于零) 一、抛物线的定义及其应用

高中数学立体几何知识点及练习题

点、直线、平面之间的关系 ㈠平面的基本性质 公理一:如果一条直线上有两点在一个平面内,那么直线在平面内。 公理二:不共线的三点确定一个平面。 推论一:直线与直线外一点确定一个平面。 推论二:两条相交直线确定一个平面。 推论三:两条平行直线确定一个平面。 公理三:如果两个平面有一个公共点,那么它们还有公共点,这些公共点的集合是一条直线(两个平面的交线)。 ㈡空间图形的位置关系 1 直线与直线的位置关系(相交、平行、异面) 1.1 平行线的传递公理:平行于同一直线的两条直线相互平行。 即:a∥b,b∥c a∥c 1.2 异面直线 定义:不在任何一个平面内的两条直线称为异面直线。 1.3 异面直线所成的角 ⑴异面直线成角的范围:(0°,90°]. ⑵作异面直线成角的方法:平移法。 注意:找异面直线所成角时,经常把一条异面直线平移到另一条异面直线的特殊点(如中点、端点等),形成异面直线所成的角。 2 直线与平面的位置关系(直线在平面内、相交、平行) 3 平面与平面的位置关系(平行、斜交、垂直) ㈢平行关系(包括线面平行和面面平行) 1 线面平行 1.1 线面平行的定义:平面外的直线与平面无公共点,则称为直线和平面平行。 1.2 判定定理: 1.3 性质定理:

2 线面角: 2.1 直线与平面所成的角(简称线面角):若直线与平面斜 交,则平面的斜线与该斜线在平面内射影的夹角θ。 2.2 线面角的范围:θ∈[0°,90°] 3 面面平行 3.1 面面平行的定义:空间两个平面没有公共点,则称为两平面平行。 3.2 面面平行的判定定理: ⑴ 判定定理1:如果一个平面内的两条相交直线都平行于另一个平面,那么两个平面相互平行。 即: 推论:一个平面内的两条相交直线分别平行于另一个 平面的两条线段,那么这两个平面平行。即: ⑵ 判定定理2:垂直于同一条直线的两平面互相平 行。即: 3.3 面面平行的性质定理 ⑴ (面面平行 线面平行) ⑵ ⑶ 夹在两个平行平面间的平行线段相等。 ㈣ 垂直关系(包括线面垂直和面面垂直) 1 线面垂直 1.1 线面垂直的定义:若一条直线垂直于平面内的任意一条直线,则这条直线垂直于平面。 1.2 线面垂直的判定定理: 图2-3 线面角 图2-5 判定1推论 图2-6 判定2

高中数学抛物线经典性质的总结

抛物线

焦点弦长 AB 12()x x p ++ 12()x x p -++ 12()y y p ++ 12()y y p -++ 焦点弦 AB 的几条性质 11(,) A x y 22(,) B x y 以AB 为直径的圆必与准线l 相切 若AB 的倾斜角为α,则22sin p AB α= 若AB 的倾斜角为α ,则22cos p AB α = 2 124 p x x = 212y y p =- 112AF BF AB AF BF AF BF AF BF p ++===?? 切线 方程 00()y y p x x =+ 00()y y p x x =-+ 00()x x p y y =+ 00()x x p y y =-+ 直线 ,抛物线 , ,消y 得: (1)当k=0时,直线l 与抛物线的对称轴平行,有一个交点; (2)当k ≠0时, Δ>0,直线l 与抛物线相交,两个不同交点; Δ=0, 直线l 与抛物线相切,一个切点; Δ<0,直线l 与抛物线相离,无公共点。 (3)若直线与抛物线只有一个公共点,则直线与抛物线必相切吗?(不一定) (4) 2. 关于直线与抛物线的位置关系问题常用处理方法 直线l :b kx y += 抛物线 ,)0(φp ① 联立方程法: o x ()22,B x y F y ()11,A x y

???=+=px y b kx y 22 ?0)(2222=+-+b x p kb x k 设交点坐标为),(11y x A ,),(22y x B ,则有0φ?,以及2121,x x x x +,还可进一步求出 b x x k b kx b kx y y 2)(212121++=+++=+, 2212122121)())((b x x kb x x k b kx b kx y y +++=++= 在涉及弦长,中点,对称,面积等问题时,常用此法,比如 a. 相交弦AB 的弦长 2122122124)(11x x x x k x x k AB -++=-+=a k ?+=2 1 或 2122122124)(1111y y y y k y y k AB -++=-+ =a k ?+=2 1 b. 中点),(00y x M , 2210x x x += , 2 2 10y y y += ② 点差法: 设交点坐标为),(11y x A ,),(22y x B ,代入抛物线方程,得 12 12px y = 22 22px y = 将两式相减,可得 )(2))((212121x x p y y y y -=+- 2 121212y y p x x y y += -- a. 在涉及斜率问题时,2 12y y p k AB += b. 在涉及中点轨迹问题时,设线段AB 的中点为),(00y x M , 021*******y p y p y y p x x y y ==+=--, 即0 y p k AB = , 同理,对于抛物线)0(22≠=p py x ,若直线l 与抛物线相交于B A 、两点,点

高中数学必修2立体几何专题二面角典型例题解法总结

二面角的求法 一、 定义法: 从一条直线出发的两个半平面所组成的图形叫做二面角, 这条直线叫做二面角的棱, 这两个半平面叫做二面角的面,在棱上取点,分别在两面内引两条射线与棱垂直,这两条垂线所成的角的大小就是二面角的平面角。 本定义为解题提供了添辅助线的一种规律。如例1中从二面角S —AM —B 中半平面ABM 上的一已知点(B )向棱AM 作垂线,得垂足(F );在另一半平面ASM 内过该垂足(F )作棱AM 的垂线(如GF ),这两条垂线(BF 、GF )便形成该二面角的一个平面角,再在该平面角内建立一个可解三角形,然后借助直角三角函数、正弦定理与余弦定理解题。 例1 如图,四棱锥S ABCD -中,底面ABCD 为矩形,SD ⊥底面ABCD ,2AD = 2DC SD ==,点M 在侧棱SC 上,ABM ∠=60° (I )证明:M 在侧棱SC 的中点 (II )求二面角S AM B --的大小。 ? 证(I )略 解(II ):利用二面角的定义。在等边三角形ABM 中过点B 作BF AM ⊥交AM 于点F ,则点F 为AM 的中点,过F 点在平面ASM 内作GF AM ⊥,GF 交AS 于G , 连结AC ,∵△ADC ≌△ADS ,∴AS-AC ,且M 是SC 的中点, · ∴AM ⊥SC , GF ⊥AM ,∴GF ∥AS ,又∵F 为AM 的中点, ∴GF 是△AMS 的中位线,点G 是AS 的中点。 则GFB ∠即为所求二面角. ∵2= SM ,则2 2 = GF , 又∵6= =AC SA ,∴2=AM ,∵2==AB AM ,060=∠ABM ∴△ABM 是等边三角形,∴ 3=BF 。在△GAB 中,26= AG ,2=AB ,0 90=∠GAB ,∴2 11423=+=BG 366 23 2 22211 32 12cos 2 2 2 -=-=??- +=?-+=∠FB GF BG FB GF BFG F G F G

高中数学平面解析几何初步经典例题(供参考)

直线和圆的方程 一、知识导学 1.两点间的距离公式:不论A(x 1,y 1),B(x 2,y 2)在坐标平面上什么位置,都有d=|AB|=221221)()(y y x x -+-,特别地,与坐标轴平行的线段的长|AB|=|x 2-x 1|或|AB|=|y 2-y 1|. 2.定比分点公式:定比分点公式是解决共线三点A(x 1,y 1),B(x 2,y 2),P(x ,y )之间数量关系的一个公式,其中λ的值是起点到分点与分点到终点的有向线段的数量之比.这里起点、分点、终点的位置是可以任意选择的,一旦选定后λ的值也就随之确定了.若以 A 为起点, B 为终点,P 为分点,则定比分点公式是???? ?? ?++=++=λ λλλ11212 1y y y x x x .当P 点为AB 的中点时,λ=1,此时中点坐标公式是??? ???? +=+=222121y y y x x x . 3.直线的倾斜角和斜率的关系 (1)每一条直线都有倾斜角,但不一定有斜率. (2)斜率存在的直线,其斜率k 与倾斜角α之间的关系是k =tan α. 4.确定直线方程需要有两个互相独立的条件。直线方程的形式很多,但必须注意各种 5.两条直线的夹角。当两直线的斜率1k ,2k 都存在且1k ·2k ≠ -1时,tan θ= 2 11 21k k k k +-, 当直线的斜率不存在时,可结合图形判断.另外还应注意到:“到角”公式与“夹角”公式的

区别. 6.怎么判断两直线是否平行或垂直?判断两直线是否平行或垂直时,若两直线的斜率都存在,可以用斜率的关系来判断;若直线的斜率不存在,则必须用一般式的平行垂直条件来判断. (1)斜率存在且不重合的两条直线l 1∶11b x k y +=, l 2∶22b x k y +=,有以下结论: ①l 1∥l 2?1k =2k ,且b1=b2 ②l 1⊥l 2?1k ·2k = -1 (2)对于直线l 1∶0111=++C y B x A ,l 2 ∶0222=++C y B x A ,当A 1,A 2,B 1, B 2都不为零时,有以下结论: ①l 1∥l 2? 21A A =21B B ≠2 1C C ②l 1⊥l 2?A 1A 2+B 1B 2 = 0 ③l 1与l 2相交? 21A A ≠21B B ④l 1与l 2重合? 21A A =21B B =2 1 C C 7.点到直线的距离公式. (1)已知一点P (00,y x )及一条直线l :0=++C By Ax ,则点P 到直线l 的距离 d = 2 2 00| |B A C By Ax +++; (2)两平行直线l 1: 01=++C By Ax , l 2: 02=++C By Ax 之间的距离 d= 2 2 21||B A C C +-. 8.确定圆方程需要有三个互相独立的条件。圆的方程有两种形式,要知道两种形式之间的相互转化及相互联系 (1)圆的标准方程:222)()(r b y a x =-+-,其中(a ,b )是圆心坐标,r 是圆的半径; (2)圆的一般方程:022=++++F Ey Dx y x (F E D 42 2-+>0),圆心坐标 为(-2D ,-2 E ),半径为r =2422 F E D -+.

相关文档
相关文档 最新文档