文档库 最新最全的文档下载
当前位置:文档库 › 重点高中数学圆的方程知识点题型归纳

重点高中数学圆的方程知识点题型归纳

重点高中数学圆的方程知识点题型归纳
重点高中数学圆的方程知识点题型归纳

重点高中数学圆的方程知识点题型归纳

————————————————————————————————作者:————————————————————————————————日期:

第一讲 圆的方程

一、知识清单

(一)圆的定义及方程

定义 平面内与定点的距离等于定长的点的集合(轨迹)

标准 方程 (x -a )2+(y -b )2=r 2(r >0) 圆心:(a ,b ),半径:r 一般 方程 x 2+y 2+Dx +Ey +F =0

(D 2+E 2-4F >0)

圆心:????-D 2,-E 2, 半径:1

2

D 2+

E 2-4F

1、圆的标准方程与一般方程的互化

(1)将圆的标准方程 (x -a )2+(y -b )2=r 2 展开并整理得x 2+y 2-2ax -2by +a 2+b 2-r 2=

0,取D =-2a ,E =-2b ,F =a 2+b 2-r 2,得x 2+y 2+Dx +Ey +F =0. (2)将圆的一般方程x 2+y 2+Dx +Ey +F =0通过配方后得到的方程为:

(x +D 2)2+(y +E 2)2=D 2+E 2-4F 4

①当D 2+E 2-4F >0时,该方程表示以(-D 2,-E 2)为圆心,1

2D 2+E 2-4F 为半径的圆;

②当D 2+E 2-4F =0时,方程只有实数解x =-D 2,y =-E 2,即只表示一个点(-D 2,-E

2);

③当D 2+E 2-4F <0时,方程没有实数解,因而它不表示任何图形. 2、圆的一般方程的特征是:x 2和y 2项的系数 都为1 ,没有 xy 的二次项.

3、圆的一般方程中有三个待定的系数D 、E 、F ,因此只要求出这三个系数,圆的方程就确定了.

(二)点与圆的位置关系

点M (x 0,y 0)与圆(x -a )2+(y -b )2=r 2的位置关系: (1)若M (x 0,y 0)在圆外,则(x 0-a )2+(y 0-b )2>r 2. (2)若M (x 0,y 0)在圆上,则(x 0-a )2+(y 0-b )2=r 2. (3)若M (x 0,y 0)在圆内,则(x 0-a )2+(y 0-b )2

(三)温馨提示

1、方程Ax 2+Bxy +Cy 2+Dx +Ey +F =0表示圆的条件是: (1)B =0; (2)A =C ≠0; (3)D 2+E 2-4AF >0.

2、求圆的方程时,要注意应用圆的几何性质简化运算. (1)圆心在过切点且与切线垂直的直线上. (2)圆心在任一弦的中垂线上.

(3)两圆内切或外切时,切点与两圆圆心三点共线.

3、中点坐标公式:已知平面直角坐标系中的两点A (x 1,y 1),B (x 2,y 2),点M (x ,y )是线段AB 的中点,则x =

122x x + ,y =12

2

y y + .

二、典例归纳

考点一:有关圆的标准方程的求法

【例1】 圆的圆心是 ,半径是 .

【例2】 点(1,1)在圆(x -a )2+(y +a )2=4内,则实数a 的取值范围是( )

A .(-1,1)

B .(0,1)

C .(-∞,-1)∪(1,+∞)

D .(1,+∞)

【例3】 圆心在y 轴上,半径为1,且过点(1,2)的圆的方程为( )

A .x 2+(y -2)2=1

B .x 2+(y +2)2=1

C .(x -1)2+(y -3)2=1

D .x 2+(y -3)2=1

【例4】 圆(x +2)2+y 2=5关于原点P (0,0)对称的圆的方程为( )

A .(x -2)2+y 2=5

B .x 2+(y -2)2=5

C .(x +2)2+(y +2)2=5

D .x 2+(y +2)2=5

【变式1】已知圆的方程为()()()()12240x x y y --+-+=,则圆心坐标为

【变式2】已知圆C 与圆()2

211x y -+=关于直线y x =- 对称,则圆C 的方程为

【变式3】 若圆C 的半径为1,圆心在第一象限,且与直线4x -3y =0和x 轴都相切,则该圆的标准方程是( )

A .(x -3)2+????y -7

32=1

B .(x -2)2+(y -1)2=1

C .(x -1)2+(y -3)2=1

D.???

?x -3

22+(y -1)2=1

【变式4】已知ABC ?的顶点坐标分别是()1,5A -,()5,5B ,()6,2C -,求ABC ?外接圆的方程.

方法总结:

1.利用待定系数法求圆的方程关键是建立关于a ,b ,r 的方程组.

2.利用圆的几何性质求方程可直接求出圆心坐标和半径,进而写出方程,体现了数形结合思想的运用.

考点二、有关圆的一般方程的求法

【例1】 若方程x 2+y 2+4mx -2y +5m =0表示圆,则m 的取值范围是( )

A .14<m <1

B .m <14或m >1

C .m <14

D .m >1

【例2】 将圆x 2+y 2-2x -4y +1=0平分的直线是( )

A .x +y -1=0

B .x +y +3=0

C .x -y +1=0

D .x -y +3=0

【例3】 圆x 2-2x +y 2-3=0的圆心到直线x +3y -3=0的距离为________.

【变式1】 已知点P 是圆2

2

:450C x y x ay +++-=上任意一点,P 点关于直线

210x y +-=的对称点也在圆C 上,则实数a =

【变式2】 已知一个圆经过点()3,1A 、()1,3B -,且圆心在320x y --=上,求圆的方程.

【变式3】 平面直角坐标系中有()()()()0,1,2,1,3,4,1,2A B C D -四点,这四点能否在同一个圆上?为什么?

【变式4】 如果三角形三个顶点分别是O (0,0),A (0,15),B (-8,0),则它的内切圆方程为________________.

方法总结:

1.利用待定系数法求圆的方程关键是建立关于D ,E ,F 的方程组. 2.熟练掌握圆的一般方程向标准方程的转化

考点三、与圆有关的轨迹问题

【例1】 动点P 到点A (8,0)的距离是到点B (2,0)的距离的2倍,则动点P 的轨迹方程为( )

A .x 2+y 2=32

B .x 2+y 2=16

C .(x -1)2+y 2=16

D .x 2+(y -1)2=16

【例2】 方程225y x =--表示的曲线是( )

A. 一条射线

B. 一个圆

C. 两条射线

D. 半个圆

【例3】 在ABC ?中,若点,C B 的坐标分别是(-2,0)和(2,0),中线AD 的长度是3,则点A 的轨迹方程是( )

A. 223x y +=

B. 22

4x y +=

C. ()2

2

90x y y +=≠ D. ()22

90x y x +=≠

【例4】 已知一曲线是与两个定点O (0,0),A (3,0)距离的比为1

2的点的轨迹.求这个曲线的

方程,并画出曲线.

【变式1】 方程()2

111x y -=--所表示的曲线是( )

A. 一个圆

B. 两个圆

C. 一个半圆

D. 两个半圆

【变式2】 动点P 到点A (8,0)的距离是到点B (2,0)的距离的2倍,则动点P 的轨迹方程为( )

A .x 2+y 2=32

B .x 2+y 2=16

C .(x -1)2+y 2=16

D .x 2+(y -1)2=16

【变式3】 如右图,过点M (-6,0)作圆C :x 2+y 2-6x -4y +9=0的割线,交圆C 于A 、B 两点,求线段AB 的中点P 的轨迹.

【变式4】如图,已知点A(-1,0)与点B(1,0),C是圆x2+y2=1上的动点,连接BC并延长至D,使得|CD|=|BC|,求AC与OD的交点P的轨迹方程.

方法总结:求与圆有关的轨迹问题时,根据题设条件的不同常采用以下方法:

(1)直接法:根据题目条件,建立坐标系,设出动点坐标,找出动点满足的条件,然后化简.

(2)定义法:根据直线、圆等定义列方程.

(3)几何法:利用圆与圆的几何性质列方程.

(4)代入法:找到要求点与已知点的关系,代入已知点满足的关系式等.

考点四:与圆有关的最值问题

【例1】已知圆x2+y2+2x-4y+a=0关于直线y=2x+b成轴对称,则a-b的取值范围是________

【例2】 已知x ,y 满足x 2+y 2=1,则y -2

x -1

的最小值为________.

【例3】 已知点M 是直线3x +4y -2=0上的动点,点N 为圆(x +1)2+(y +1)2=1上的动点,则|MN |的最小值是( )

A.9

5 B .1 C.4

5

D.135

【例4】已知实数x ,y 满足(x -2)2+(y +1)2=1则2x -y 的最大值为________,最小值为________.

【变式1】 P (x ,y )在圆C :(x -1)2+(y -1)2=1上移动,则x 2+y 2的最小值为________.

【变式2】 由直线y =x +2上的点P 向圆C :(x -4)2+(y +2)2=1引切线PT (T 为切点),当|PT |最小时,点P 的坐标是( )

A .(-1,1)

B .(0,2)

C .(-2,0)

D .(1,3)

【变式3】 已知两点A (-2,0),B (0,2),点C 是圆x 2+y 2-2x =0上任意一点,则△ABC 面积的最小值是________.

【变式4】已知圆M 过两点C (1,-1),D (-1,1),且圆心M 在x +y -2=0上.

(1)求圆M 的方程;

(2)设P 是直线3x +4y +8=0上的动点,P A 、PB 是圆M 的两条切线,A ,B 为切点,求四边形P AMB 面积的最小值.

方法总结:解决与圆有关的最值问题的常用方法

高三总复习直线与圆的方程知识点总结及典型例题.

直线与圆的方程 、直线的方程 已知 L 上两点 P 1( x 1,y 1) P 2( x 2,y 2 ) 当 x 1 = x 2 时, =900 , 不存在。当 0 时, =arctank , <0 时, = ②任何一个关于 x 、y 的二元一次方程都表示一条直线。 5、直线系:(1)共点直线系方程: p 0(x 0,y 0)为定值, k 为参数 y-y 0=k (x-x 0) 特别: y=kx+b ,表示过( 0、 b )的直线系(不含 y 轴) ( 2)平行直线系:① y=kx+b ,k 为定值, b 为参数。 ② AX+BY+ 入=0 表示与 Ax+By+C=0 平行的直线系 ③ BX-AY+ 入 =0 表示与 AX+BY+C 垂直的直线系 ( 3)过 L 1,L 2交点的直线系 A 1x+B 1y+C 1+入( A 2X+B 2Y+C 2)=0(不含 L2) 6、三点共线的判定:① AB BC AC ,②K AB =K BC , ③写出过其中两点的方程,再验证第三点在直线上。 、两直线的位置关系 k= y 2 y 1 x 2 x 1 20 2 已知 方程 说明 斜截式 K 、b Y=kx+b 不含 y 轴和行平 于 y 轴的直点斜式 P 1=(x 1,y 1) k y-y 1=k(x-x 1) 不含 y 轴和平 行 于 y 轴的直线 两点式 P 1(x 1,y 1) P 2(x 2,y 2) y y 1 x x 1 不含坐标辆和 平行于坐标轴 的直线 y 2 y 1 x 2 x 1 截距式 a 、b xy 1 ab 不含坐标轴、平 行于坐标轴和 过原点的直线 一般式 Ax+by+c=0 A 、 B 不同时为 0 3、截距(略)曲线过原点 横纵截距都为 0。 4、直线方程的几种形式 几种特殊位置的直 线 ①x 轴: y=0 ② y 轴: x=0 ③平行于 x 轴: y=b ④平行于 y 轴: x=a ⑤过原点: y=kx y 的二元一 次方程。 1、倾斜角: 0< < k 0 2 = 不存在 2 +arctank 2、斜

人教版高中数学总复习[知识点整理及重点题型梳理]推理与证明、数学归纳法

推理与证明、数学归纳法 编稿:辛文升 审稿:孙永钊 【考纲要求】 1.了解合情推理的含义,能利用归纳和类比等进行简单的推理,了解合情推理在数学发现中的作用. 2.了解演绎推理的重要性,掌握演绎推理的基本模式,并能运用它们进行一些简单推理. 3.了解合情推理和演绎推理之间的联系和差异. 4.了解直接证明的两种基本方法——分析法和综合法;了解分析法和综合法的思考过程、特点. 5.了解间接证明的一种基本方法——反证法;了解反证法的思考过程、特点. 6.了解数学归纳法的原理,能用数学归纳法证明一些简单的数学命题. 【知识网络】 【考点梳理】 【推理与证明、数学归纳法407426 知识要点】 考点一:合情推理与演绎推理 1.推理的概念 根据一个或几个已知事实(或假设)得出一个判断,这种思维方式叫做推理.从结构上说,推理一般由两部分组成,一部分是已知的事实(或假设)叫做前提,一部分是由已知推出的判断,叫做结论. 2.合情推理 根据已有的事实,经过观察、分析、比较、联想,再进行归纳、类比,然后提出猜想的推理称为合情推理. 合情推理又具体分为归纳推理和类比推理两类: (1)归纳推理:由某类事物的部分对象具有某些特征,推出该类事物的全部对象具有这 推 理 与 证 明 归纳 推 理 证 明 合情推理 演绎推理 数学归纳法 综合法 分析法 直接证明 类比 间接证明 反证法

些特征的推理,或者由个别事实概括出一般结论的推理.简言之,归纳推理是由部分到整体、个别到一般的推理,归纳推理简称归纳. (2)类比推理:由两类对象具有某些类似特征和其中一类对象的某些已知特征,推出另一类对象也具有这些特征的推理,简言之,类比推理是由特殊到特殊的推理,类比推理简称类比. 3.演绎推理 从一般性的原理出发,推出某个特殊情况下的结论.简言之,演绎推理是由一般到特殊的推理. 三段论是演绎推理的一般模式,它包括: (1)大前提——已知的一般原理; (2)小前提——所研究的特殊情况; (3)结论——根据一般原理,对特殊情况作出的判断. 要点诠释: 合情推理与演绎推理的区别与联系 (1)从推理模式看: ①归纳推理是由特殊到一般的推理. ②类比推理是由特殊到特殊的推理. ③演绎推理是由一般到特殊的推理. (2)从推理的结论看: ①合情推理所得的结论不一定正确,有待证明。 ②演绎推理所得的结论一定正确。 (3)总体来说,从推理的形式和推理的正确性上讲,二者有差异;从二者在认识事物的过程中所发挥的作用的角度考虑,它们又是紧密联系,相辅相成的。合情推理的结论需要演绎推理的验证,而演绎推理的内容一般是通过合情推理获得的;演绎推理可以验证合情推理的正确性,合情推理可以为演绎推理提供方向和思路. 考点二:直接证明与间接证明 1.综合法 (1)定义:综合法是中学数学证明中最常用的方法,它是从已知到未知,从题设到结论的逻辑推理方法,即从题设中的已知条件或已证的真实判断出发,经过一系列的中间推理,最后导出所要求证的命题.综合法是一种由因索果的证明方法,又叫顺推法. (2)综合法的思维框图: 用P 表示已知条件,1i Q i =(,2,3,...,n )为定义、定理、公理等,Q 表示所要证明的结论,则综合法可用框图表示为: 1P Q ?()→12Q Q ?()→23Q Q ?()→.........n Q Q ?() 2.分析法 (1) 定义:一般地,从要证明的结论出发,逐步寻求使它成立的充分条件,直至最后,把要证明的结论归结为判断一个明显成立的条件(已知条件,定理,定义,公理)为止.这种证明方法叫做分析法.分析法又叫逆推法或执果索因法. (2)分析法的思维框图: 1Q P ?()→12P P ?()→23P P ?() →.........得到一个明显成立的条件. 3.反证法

圆与方程知识点小结

圆与方程 2、1圆的标准方程:以点),(b a C 为圆心,r 为半径的圆的标准方程是222)()(r b y a x =-+-. 特例:圆心在坐标原点,半径为r 的圆的方程是:222r y x =+. 2、2点与圆的位置关系: 1. 设点到圆心的距离为d ,圆半径为r : (1)点在圆上 d=r ; (2)点在圆外 d >r ; (3)点在圆内 d <r . 2.给定点),(00y x M 及圆222)()(:r b y a x C =-+-. ①M 在圆C 内22020)()(r b y a x <-+-? ②M 在圆C 上22020)()r b y a x =-+-?( ③M 在圆C 外22020)()(r b y a x >-+-? 2、3 圆的一般方程:022=++++F Ey Dx y x . 当042 2 >-+F E D 时,方程表示一个圆,其中圆心? ?? ??--2,2 E D C ,半径2 42 2F E D r -+= . 当0422=-+F E D 时,方程表示一个点?? ? ? ?- - 2,2 E D . 当0422<-+ F E D 时,方程无图形(称虚圆). 注:(1)方程022=+++++F Ey Dx Cy Bxy Ax 表示圆的充要条件是:0 =B 且 ≠=C A 且 042 2 AF E D -+. 圆的直径或方程:已知0))(())((),(),(21212211=--+--?y y y y x x x x y x B y x A 2、4 直线与圆的位置关系: 直线0=++C By Ax 与圆222)()(r b y a x =-+-的位置关系有三种 (1)若2 2 B A C Bb Aa d +++= ,0相离r d ; (2)0=???=相切r d ; (3)0>???<相交r d 。 还可以利用直线方程与圆的方程联立方程组???=++++=++0 2 2 F Ey Dx y x C By Ax 求解,通过解 的个数来判断: (1)当方程组有2个公共解时(直线与圆有2个交点),直线与圆相交;

高中数学直线与圆的方程知识点总结

高中数学直线与圆的方 程知识点总结 WTD standardization office【WTD 5AB- WTDK 08- WTD 2C】

高中数学之直线与圆的方程 一、概念理解: 1、倾斜角:①找α:直线向上方向、x 轴正方向; ②平行:α=0°; ③范围:0°≤α<180° 。 2、斜率:①找k :k=tan α (α≠90°); ②垂直:斜率k 不存在; ③范围: 斜率 k ∈ R 。 3、斜率与坐标:1 21 22121tan x x y y x x y y k --=--= =α ①构造直角三角形(数形结合); ②斜率k 值于两点先后顺序无关; ③注意下标的位置对应。 4、直线与直线的位置关系:222111:,:b x k y l b x k y l +=+= ①相交:斜率21k k ≠(前提是斜率都存在) 特例----垂直时:<1> 0211=⊥k k x l 不存在,则轴,即; <2> 斜率都存在时:121-=?k k 。 ②平行:<1> 斜率都存在时:2121,b b k k ≠=; <2> 斜率都不存在时:两直线都与x 轴垂直。 ③重合: 斜率都存在时:2121,b b k k ==; 二、方程与公式: 1、直线的五个方程:

①点斜式:)(00x x k y y -=- 将已知点k y x 与斜率),(00直接带入即可; ②斜截式:b kx y += 将已知截距k b 与斜率),0(直接带入即可; ③两点式:),(21211 21 121y y x x x x x x y y y y ≠≠--=--其中, 将已知两点),(),,(2211y x y x 直接带入即可; ④截距式: 1=+b y a x 将已知截距坐标),0(),0,( b a 直接带入即可; ⑤一般式:0=++C By Ax ,其中A 、B 不同时为0 用得比较多的是点斜式、斜截式与一般式。 2、求两条直线的交点坐标:直接将两直线方程联立,解方程组即可 3、距离公式: ①两点间距离:2 2122121)()(y y x x P P -+-= ②点到直线距离:2 2 00B A C By Ax d +++= ③平行直线间距离:2 2 21B A C C d +-= 4、中点、三分点坐标公式:已知两点),(),,(2211y x B y x A ①AB 中点),(00y x :)2 ,2( 2 121y y x x ++ ②AB 三分点),(),,(2211t s t s :)3 2,32(2 1 21y y x x ++ 靠近A 的三分点坐标 )3 2,32(2 121 y y x x ++ 靠近B 的三分点坐标 中点坐标公式,在求对称点、第四章圆与方程中,经常用到。 三分点坐标公式,用得较少,多见于大题难题。 5.直线的对称性问题

数学归纳法.知识点梳理

课题:数学归纳法 备课教师:沈良宏参与教师:郭晓芳、龙新荣审定教师:刘德清 1、教学重点:能用数学归纳法证明一些简单的数学命题 2、教学难点:学归纳法中递推思想的理解. 3、学生必须掌握的内容: 1.数学归纳法的定义 一般地,当要证明一个命题对于不小于某正整数n0的所有正整数n都成立时,可以用以下两个步骤: (1)证明当n=n0时命题成立. (2)假设当n=k(k∈N+且k≥n0)时命题成立,证明当n=k+1时命题也成立. 在完成了这两个步骤后,就可以断定命题对于不小于n0的所有正整数都成立,这种证明方法称为数学归纳法. 2.数学归纳法的适用范围 适用于证明一个与无限多个正整数有关的命题. 3.数学归纳法的步骤 (1)(归纳奠基)验证当n=n0(n0为命题成立的起始自然数)时命题成立; (2)(归纳递推)假设当n=k(k∈N+,且k≥n0)时命题成立,推导n=k+1时命题也成立. (3)结论:由(1)(2)可知,命题对一切n≥n0的自然数都成立. 注意:用数学归纳法证明,关键在于两个步骤要做到“递推基础不可少,归纳假设要用到,结论写明莫忘掉”,因此必须注意以下三点: (1)验证是基础.数学归纳法的原理表明:第一个步骤是要找一个数n0,这个n0就是我们要证明的命题对象的最小自然数,这个自然数并不一定就是“1”,因此“找准起点,奠基要稳”是正确运用数学归纳法要注意的第一个问题. (2)递推是关键.数学归纳法的实质在于递推,所以从“k”到“k+1”的过程,必须把归纳假设“n=k”时命题成立作为条件来导出“n=k+1”时命题成立,在推导过程中,要把归纳假设用上一次或几次,没有用上归纳假设的证明不是数学归纳法. (3)正确寻求递推关系.数学归纳法的第二步递推是至关重要的,那么如何寻找递推关系呢?①在第一步验证时,不妨多计算几项,并正确写出来,这样对发现递推关系是有帮助的;②探求数列的通项公式时,要善于观察式子或命题的变化规律,观察n处在哪个位置;③在书写f(k+1)时,一定要把包含f(k)的式子写出来,尤其是f(k)中的最后一项.除此之外,多了哪些项,少了哪些项都要分析清楚. 4、容易出现的问题: (1)混淆数学归纳法与归纳法; (2)忽视第一步的归纳基础,数学归纳法的解题步骤有两步,第一步是归纳基础,第二步是归纳假设,在证明命题成立时,归纳假设这部分是一个难点,学生往往比较重视第二步的证明,却对忽视了归纳基础。常见的错误有: ①没有写第一步,而是直接假设成立,进行第二步归纳假设的证明; ②有写第一步,但是只是形式上写一下归纳基础,并没有进行验证是否成立,容易发生第一步是不成立的情况。因为第一步往往是正确的,而且是比较显然的,所以学生容易忽视它,但是就像玩多米诺骨牌游戏一样,如果第一块骨牌没有办法倒下,那么就算后面的骨牌排得多么整齐都不会倒下. 5、解决方法: 针对数学归纳法的特殊证明思路和特点,讲解清楚数学归纳法的概念及它的特征和相关要点,并结合学生的课堂反应,课堂多注重基础,多找出有代表性的典例适时强化学生理解

数学归纳法知识总结

数学归纳法知识总结 1、运用数学归纳法证明命题要分两步,第一步是归纳奠基(或递推基础),第二步是归纳递推(或归纳假设),两步缺一不可二易错点 1、归纳起点易错(1)n未必是从n=1开始例用数学归纳法证明:凸n边形的对角线条数为点拔:本题的归纳起点n=3(2)n=1时的表达式例用数学归纳法证明,在验证n=1时,左边计算所得的式子是() A、1 B、 C、 D、点拨 n=1时,左边的最高次数为1,即最后一项为,左边是,故选B 2、没有运用归纳假设的证明不是数学归纳法例1 用数学归纳法证明:错证:(1)当n=1时,左=右=1,等式成立(2)假设当n=k时等式成立,则当n=k+1时,综合(1)(2),等式对所有正整数都成立点拨:错误原因在于只有数学归纳法的形式,没有数学归纳法的“实质”即在归纳递推中,没有运用归纳假设3 从 n=k到n=k+1增加项错误例1 已知n是正偶数,用数学归纳法证明时,若已假设n=k(且为偶数)时命题为真,,则还需证明()

A、n=k+1时命题成立 B、 n=k+2时命题成立 C、 n=2k+2时命题成立 D、 n=2(k+2)时命题成立点拨:因n是正偶数,故只需证等式对所有偶数都成立,因k的下一个偶数是k+2,故选例2 用数学归纳法证明不等式的过程中,由k推导到k+1时,不等式左边增加的式子是点拨:求即可当 n=k时,左边,n=k+1时,左边,故左边增加的式子是,即三 知识应用用数学归纳法可以证明许多与自然数有关的数学命题,其中包括恒等式、不等式、数列通项公式、整除性问题、几何问题等1 用数学归纳法证明等式例1 用数学归纳法证明等式:例2 用数学归纳法证明:2 用数学归纳法证明不等式例3用数学归纳法证明不等式例 4、证明不等式(n∈N)、3 用数学归纳法证明整除问题例5 求证:能被6 整除、例6 证明:能被整除4 用“归纳猜想证明”解决数列问题例7在数列中,,(1)写出;(2)求数列的通项公式例8 在数列中,,其中,求数列的通项公式5用“归纳猜想证明”解决几何问题例 9、n个半圆的圆心在同一条直线l上,这n个半圆每两个都相交,且都在直线l的同侧,问这些半圆被所有的交点最多分成多少段圆弧?四 练习巩固

圆方程知识点总结典型例题

圆与方程 1. 圆的标准方程:以点),(b a C 为圆心,r 为半径的圆的标准方程是222)()(r b y a x =-+-. 特例:圆心在坐标原点,半径为r 的圆的方程是:222r y x =+. 2. 点与圆的位置关系: (1). 设点到圆心的距离为d ,圆半径为r : a.点在圆内 d <r ; b.点在圆上 d=r ; c.点在圆外 d >r (2). 给定点),(00y x M 及圆222)()(:r b y a x C =-+-. ①M 在圆C 内22020)()(r b y a x <-+-? ②M 在圆C 上22020)()r b y a x =-+-? ( ③M 在圆C 外22020)()(r b y a x >-+-? (3)涉及最值: ① 圆外一点B ,圆上一动点P ,讨论PB 的最值 min PB BN BC r ==- max PB BM BC r ==+ ② 圆内一点A ,圆上一动点P ,讨论PA 的最值 min PA AN r AC ==- max PA AM r AC ==+ 思考:过此A 点作最短的弦(此弦垂直AC ) 3. 圆的一般方程:022=++++F Ey Dx y x .

(1) 当042 2 >-+F E D 时,方程表示一个圆,其中圆心??? ??--2,2 E D C ,半径2 422F E D r -+= . (2) 当0422=-+F E D 时,方程表示一个点??? ??-- 2,2 E D . (3) 当0422<-+ F E D 时,方程不表示任何图形. 注:方程022=+++++F Ey Dx Cy Bxy Ax 表示圆的充要条件是:0=B 且0≠=C A 且 0422φAF E D -+. 4. 直线与圆的位置关系: 直线0=++C By Ax 与圆222)()(r b y a x =-+- 圆心到直线的距离2 2 B A C Bb Aa d +++= 1)无交点直线与圆相离??>r d ; 2)只有一个交点直线与圆相切??=r d ; 3)有两个交点直线与圆相交???时,直线与圆有2个交点,,直线与圆相交; (2)当0=?时,直线与圆只有1个交点,直线与圆相切; (3)当0

高三总复习直线与圆的方程知识点总结

直线与圆的方程 一、直线的方程 1、倾斜角: ,围0≤α<π, x l //轴或与x 轴重合时,α=00 。 2、斜率: k=tan α α与κ的关系:α=0?κ=0 已知L 上两点P 1(x 1,y 1) 0<α< 02 >?k π P 2(x 2,y 2) α= κπ ?2 不存在 ?k= 1 212x x y y -- 022

二、两直线的位置关系 (说明:当直线平行于坐标轴时,要单独考虑) 2、L 1 到L 2的角为0,则1 21 21tan k k k k ?+-= θ(121-≠k k ) 3、夹角:1 21 21tan k k k k +-= θ 4、点到直线距离:2 2 00B A c By Ax d +++= (已知点(p 0(x 0,y 0),L :AX+BY+C=0) ①两行平线间距离:L 1=AX+BY+C 1=0 L 2:AX+BY+C 2=0?2 221B A c c d +-= ②与AX+BY+C=0平行且距离为d 的直线方程为Ax+By+C ±022 =+B A d ③与AX+BY+C 1=0和AX+BY+C 2=0平行且距离相等的直线方程是 02 2 1=++ +C C BY AX 5、对称:(1)点关于点对称:p(x 1,y 1)关于M (x 0,y 0)的对称)2,2(1010Y Y X X P --'

数学归纳法知识点大全(综合)

数学归纳法 数学归纳法是用于证明与正整数n 有关的数学命题的正确性的一种严格的推理方法.在数学竞赛中占有很重要的地位. (1)第一数学归纳法 设)(n P 是一个与正整数有关的命题,如果 0n n =(N n ∈01.数学归纳法的基本形式)时,)(n P 成立; ②假设),(0N k n k k n ∈≥=成立,由此推得1+=k n 时,)(n P 也成立,那么,根据①②对一切正整数0n n ≥时,)(n P 成立. (2)第二数学归纳法 设)(n P 是一个与正整数有关的命题,如果 ①当0n n =(N n ∈0)时,)(n P 成立; ②假设),(0N k n k k n ∈≥≤成立,由此推得1+=k n 时,)(n P 也成立,那么,根据①②对一切正整数0n n ≥时,)(n P 成立. 2.数学归纳法的其他形式 (1)跳跃数学归纳法 ①当l n ,,3,2,1Λ=时,)(,),3(),2(),1(l P P P P Λ成立,

②假设k n =时)(k P 成立,由此推得l k n +=时,)(n P 也成立,那么,根据①②对一切正整数1≥n 时,)(n P 成立. (2)反向数学归纳法 设)(n P 是一个与正整数有关的命题,如果 )(n P 对无限多个正整数n 成立; ②假设k n =时,命题)(k P 成立,则当1-=k n 时命题)1(-k P 也成立,那么根据①②对一切正整数1≥n 时,)(n P 成立. 例如,用数学归纳法证明: 为非负实数,有 在证明中,由 真,不易证出 真;然而却很容易证出 真,又容易证明不等式对无穷多个 (只要 型的自然数)为真;从而证明 ,不等式成立. (3)螺旋式归纳法 P (n ),Q (n )为两个与自然数 有关的命题,假如 ①P(n0)成立; ②假设 P(k) (k>n0)成立,能推出Q(k)成立,假设 Q(k)成立,能推出 P(k+1)成立; 综合(1)(2),对于一切自然数n (>n0),P(n),Q(n)都成立;

最新直线与方程和圆与方程-知识点总结

第三章 直线与方程 (1)直线的倾斜角 定义:x 轴正向与直线向上方向之间所成的角叫直线的倾斜角。特别地,当直线与x 轴平行或重合时,我们规定它的倾斜角为0°.因此,倾斜角的取值范围是0180α?≤

数学归纳法案例分析

数学归纳法案例分析 一、内容提要 数学归纳法是高中数学中的一个重点和难点内容,也是一种重要的数学方法,数学归纳法这一方法,贯通了高中数学的几大知识点:不等式,数列,三角函数,平面几何等。通过对它的学习,能起到以下几方面的作用:提高学生的逻辑思维、推理能力;培养学生辩证思维素质,全面提高学生数学能力;培养学生科学探索的创新精神,提高学生综合素质。 二、教学设计 根据本节课的内容和学生的实际水平,我采用的引导发现法和感性体验法进行教学。 在引出的《数学归纳法》这个课题后,我通过一个盒子中的十个乒乓球和等差数列的通项公式,导出完全归纳法和不完全归纳法这两个概念,又通过的两个例子促进学生对“ 递推关系” 的理解,明了两个概念的必要性,为数学归纳法的应用前提和场合提供形象化的参照物。 同点做准备时抓住这两个问题的类似之处,由具体到抽象,引导学生掌握本堂课的重点,为进一步突出难。 三、设计理念 1 、初步掌握归纳与推理的能力;培养大胆猜想,小心求证的辩证思维素质。 2 、掌握了自主探索问题、自主学习的方法。 3 、培养学生对于数学内在美的感悟能力。 四、教学片断 师:问题1 :这个盒子里有十个乒乓球,如何证明里面的球全为白色? 问题2 :请大家回忆,课本是如何得出等差数列的通项公式的?

教师引导学生明了以上两个问题的异同点。由此,得出归纳法的概念,同时指明了完全归纳法与不完全归纳法的区别。 师:若盒子里的乒乓球有无数个,如何证明它们全是白色球呢? 生:①证明第一次拿出的乒乓球是白色的;②构造一个命题并证明,此命题的题设是:“ 若某一次拿出的球是白色的” ,结论是:“ 下次拿出的球也是白色的” 。以上两步都被证明,则盒子中的乒乓球全是白色的。 教师引导学生讨论:以上两个步骤如果都得到证明,是否能说明全部的乒乓球都是白色的?由此,得出数学归纳法的基本概念。 师:这种思考方法能不能用来证明第二个问题呢? 生:能,学生对比上一问题与此问题类似之处,进而得出数学归纳法的证题思路和步骤。 让学生用数学归纳法证明第二人个问题( 略) 。 师再强调数学归纳法的“ 奠基步骤” 和“ 递推步骤” 这“ 两个步骤” 以及“ 一个结论” 。 师引导学生总结: ①教学归纳法是一种完全归纳的证明方法,它适用于与自然数有关的问题。 ②两个步骤、一个结论缺一不可否则结论不能成立。 ③在证明递推步骤时,必须使用归纳假设,必须进行恒等变换。 五、课后反思 ? 通过一个生活事例和一个课本公式的比较,引导学生讨论,促使学生主动思维。? 通过本节课的教学也使学生掌握递推原理,提高学生的逻辑思维和推理能力。? 本节课的结构可以,对学生的学法指导不错,让学生清楚学习数学归纳法的用途,指明的方向。 对数学归纳法的解题步骤可再介绍具体一点

人教版数学必修二第四章 圆与方程 知识点总结

第四章圆与方程 4.1 圆得方程 4.1、1 圆得标准方程 1.以(3,-1)为圆心,4为半径得圆得方程为() A.(x+3)2+(y-1)2=4 B.(x-3)2+(y+1)2=4 C.(x-3)2+(y+1)2=16 D.(x+3)2+(y-1)2=16 2.一圆得标准方程为x2+(y+1)2=8,则此圆得圆心与半径分别为() A.(1,0),4 B.(-1,0),2 2 C.(0,1),4 D.(0,-1),2 2 3.圆(x+2)2+(y-2)2=m2得圆心为________,半径为________. 4.若点P(-3,4)在圆x2+y2=a2上,则a得值就是________. 5.以点(-2,1)为圆心且与直线x+y=1相切得圆得方程就是____________________. 6.圆心在y轴上,半径为1,且过点(1,2)得圆得方程为() A.x2+(y-2)2=1 B.x2+(y+2)2=1 C.(x-1)2+(y-3)2=1 D.x2+(y-3)2=1 7.一个圆经过点A(5,0)与B(-2,1),圆心在直线x-3y-10=0上,求此圆得方程. 8.点P(5a+1,12a)在圆(x-1)2+y2=1得内部,则a得取值范围就是() A.|a|<1 B.a<1 13 C.|a|<1 5 D.|a|<1 13 9.圆(x-1)2+y2=25上得点到点A(5,5)得最大距离就是__________. 10.设直线ax-y+3=0与圆(x-1)2+(y-2)2=4相交于A,B两点,且弦AB得长为 2 3,求a得值. 4、1、2 圆得一般方程 1.圆x2+y2-6x=0得圆心坐标就是________. 2.若方程x2+y2+Dx+Ey+F=0表示以(2,-4)为圆心,以4为半径得圆,则F=________、 3.若方程x2+y2-4x+2y+5k=0表示圆,则k得取值范围就是() A.k>1 B.k<1 C.k≥1 D.k≤1 4.已知圆得方程就是x2+y2-2x+4y+3=0,则下列直线中通过圆心得就是() A.3x+2y+1=0 B.3x+2y=0 C.3x-2y=0 D.3x-2y+1=0 5.圆x2+y2-6x+4y=0得周长就是________. 6.点(2a,2)在圆x2+y2-2y-4=0得内部,则a得取值范围就是()

直线和圆的方程知识点总结讲课稿

直线和圆的方程知识 点总结

一、直线方程. 1. 直线的倾斜角 2. 直线方程的几种形式:点斜式、截距式、两点式、斜切式. 3. ⑴两条直线平行: 1l 推论:如果两条直线21,l l 的倾斜角为21,αα则1l ∥212αα=?l . ⑵两条直线垂直: 两条直线垂直的条件:①设两条直线1l 和2l 的斜率分别为1k 和2k ,则有12121-=?⊥k k l l 4. 直线的交角: 5. 过两直线? ??=++=++0:0:22221111C y B x A l C y B x A l 的交点的直线系方程λλ(0)(222111=+++++C y B x A C y B x A 为参数,0222=++C y B x A 不包括在内) 6. 点到直线的距离: ⑴点到直线的距离公式:设点),(00y x P ,直线P C By Ax l ,0:=++到l 的距离为d ,则有2200B A C By Ax d +++= . 注: 1. 两点P 1(x 1,y 1)、P 2(x 2,y 2)的距离公式:21221221)()(||y y x x P P -+-=. 2. 定比分点坐标分式。若点P(x,y)分有向线段1212 PP PP PP λλ=u u u r u u u r 所成的比为即,其中P 1(x 1,y 1),P 2(x 2,y 2).则 λλλλ++=++=1,121 21y y y x x x 特例,中点坐标公式;重要结论,三角形重心坐标公式。 3. 直线的倾斜角(0°≤α<180°)、斜率:αtan =k 4. 过两点1212222111),(),,(x x y y k y x P y x P --=的直线的斜率公式:. 12()x x ≠

浅谈数学归纳法在高考中的应用

1、数学归纳法的理论基础 数学归纳法,人类天才的思维、巧妙的方法、精致的工具,解决无限的问题。它体现的是利用有限解决无限问题的思想,这一思想凝结了数学家们无限的想象力和创造力,这无疑形成了数学证明中一道绚丽多彩的风景线。它的巧妙让人回味无穷,这一思想的发现为后来数学的发展开辟了道路,如用有限维空间代替无限维空间(多项式逼近连续函数)用有限过程代替无限过程(积分和无穷级数用有限项和答题,导数用差分代替)。 1.1数学归纳法的发展历史 自古以来,人们就会想到问题的推广,由特殊到一般、由有限到无限,可人类对无限的把握不顺利。在对无穷思考的过程中,古希腊出现了许多悖论,如芝诺悖论,在数列中为了确保结论的正确,则必须考虑无限。还有生活中一些现象,如烽火的传递,鞭炮的燃放等,触动了人类的思想。 安提丰用圆周内接正多边形无穷地逼近圆的方法解决化圆为方;刘徽、祖冲之用圆内接正多边形去无穷地逼迫圆,无穷的问题层出不穷,后来古希腊欧几里得对命题“素数的个数是无穷的”的证明,通过了有限去实现无限,体现了数学归纳法递推思想。但要形成数学归纳法中明确的递推,清晰的步骤确是一件不容易的事,作为自觉运用进行数学证明却是近代的事。 伊本海塞姆(10世纪末)、凯拉吉(11世纪上叶)、伊本穆思依姆(12世纪末)、伊本班纳(13世纪末)等都使用了归纳推理,这表明数学归纳法使用较普遍,尤其是凯拉吉利用数学归纳法证明 22 333 (1)124n n n +++??????+= 这是数学家对数学归纳法的最早证明。 接着,法国数学家莱维.本.热尔松(13世纪末)用"逐步的无限递进",即归纳推理证明有关整数命题和排列组合命题。他比伊斯兰数学家更清楚地体现数学归纳法证明的基础,递进归纳两个步骤。 到16世纪中叶,意大利数学家毛罗利科对与全体和全体自然数有关的命题的证明作了深入的考察在1575年,毛罗利科证明了 21n n a a n ++= 其中1231,2k a k =+++?????? =?????? 他利用了逐步推理铸就了“递归推理”的思路,成为了较早找到数学归纳中“递 归推理”的数学家,为无限的把握提供了思维。 17世纪法国数学家帕斯卡为数学归纳法的发明作了巨大贡献,他首先明确而清晰地阐述数学归纳法的运用程序,并完整地使用数学归纳法,证明了他所发

最新高三数学知识点总结

最新高三数学知识点总结 精品学习高中频道为各位同学整理了高三数学知识点总结,供大家参考学习。更多各科知识点请关注新查字典数学网高中频道。 1. 对于集合,一定要抓住集合的代表元素,及元素的确定性、互异性、无序性。 中元素各表示什么? 注重借助于数轴和文氏图解集合问题。 空集是一切集合的子集,是一切非空集合的真子集。 3. 注意下列性质: (3)德摩根定律: 4. 你会用补集思想解决问题吗?(排除法、间接法) 的取值范围。 6. 命题的四种形式及其相互关系是什么? (互为逆否关系的命题是等价命题。) 原命题与逆否命题同真、同假;逆命题与否命题同真同假。 7. 对映射的概念了解吗?映射f:AB,是否注意到A中元素的任意性和B中与之对应元素的唯一性,哪几种对应能构成映射? (一对一,多对一,允许B中有元素无原象。) 8. 函数的三要素是什么?如何比较两个函数是否相同? (定义域、对应法则、值域)

9. 求函数的定义域有哪些常见类型? 10. 如何求复合函数的定义域? 义域是_____________。 11. 求一个函数的解析式或一个函数的反函数时,注明函数的定义域了吗? 12. 反函数存在的条件是什么? (一一对应函数) 求反函数的步骤掌握了吗? (①反解x;②互换x、y;③注明定义域) 13. 反函数的性质有哪些? ①互为反函数的图象关于直线y=x对称; ②保存了原来函数的单调性、奇函数性; 14. 如何用定义证明函数的单调性? (取值、作差、判正负) 如何判断复合函数的单调性? 15. 如何利用导数判断函数的单调性? 值是( ) A. 0B. 1C. 2D. 3 a的最大值为3) 16. 函数f(x)具有奇偶性的必要(非充分)条件是什么? (f(x)定义域关于原点对称) 注意如下结论:

高中数学直线与圆的方程知识点总结

高中数学之直线与圆的方程 一、概念理解: 1、倾斜角:①找α:直线向上方向、x 轴正方向; ②平行:α=0°; ③范围:0°≤α<180° 。 2、斜率:①找k :k=tan α (α≠90°); ②垂直:斜率k 不存在; ③范围: 斜率 k ∈ R 。 3、斜率与坐标:1 21 22121tan x x y y x x y y k --=--= =α ①构造直角三角形(数形结合); ②斜率k 值于两点先后顺序无关; ③注意下标的位置对应。 4、直线与直线的位置关系:222111:,:b x k y l b x k y l +=+= ①相交:斜率21k k ≠(前提是斜率都存在) 特例----垂直时:<1> 0211=⊥k k x l 不存在,则轴,即; <2> 斜率都存在时:121-=?k k 。 ②平行:<1> 斜率都存在时:2121,b b k k ≠=; <2> 斜率都不存在时:两直线都与x 轴垂直。 ③重合: 斜率都存在时:2121,b b k k ==; 二、方程与公式: 1、直线的五个方程: ①点斜式:)(00x x k y y -=- 将已知点k y x 与斜率),(00直接带入即可; ②斜截式:b kx y += 将已知截距k b 与斜率),0(直接带入即可; ③两点式:),(21211 21 121y y x x x x x x y y y y ≠≠--=--其中, 将已知两点),(),,(2211y x y x 直接 带入即可; ④截距式: 1=+b y a x 将已知截距坐标),0(),0,( b a 直接带入即可; ⑤一般式:0=++C By Ax ,其中A 、B 不同时为0 用得比较多的是点斜式、斜截式与一般式。 2、求两条直线的交点坐标:直接将两直线方程联立,解方程组即可

数学归纳法经典练习及解答过程

数学归纳法经典练习及 解答过程 文稿归稿存档编号:[KKUY-KKIO69-OTM243-OLUI129-G00I-FDQS58-

第七节数学归纳法 知识点数学归纳法 证明一个与正整数n有关的命题,可按下列步骤进行: (1)(归纳奠基)证明当n取第一个值n0(n0∈N*)时命题成立. (2)(归纳递推)假设n=k(k≥n0,k∈N*)时命题成立,证明当n=k+1时命题也成立. 只要完成这两个步骤,就可以断定命题对从n0开始的所有正整数n都成立.易误提醒运用数学归纳法应注意: (1)第一步验证n=n0时,n0不一定为1,要根据题目要求选择合适的起始值. (2)由n=k时命题成立,证明n=k+1时命题成立的过程中,一定要用到归纳假设,否则就不是数学归纳法. [自测练习] 1.已知f(n)=1 n + 1 n+1 + 1 n+2 +…+ 1 n2 ,则( ) A.f(n)中共有n项,当n=2时,f(2)=1 2 + 1 3 B.f(n)中共有n+1项,当n=2时,f(2)=1 2 + 1 3 + 1 4 C.f(n)中共有n2-n项,当n=2时,f(2)=1 2 + 1 3 D.f(n)中共有n2-n+1项,当n=2时,f(2)=1 2 + 1 3 + 1 4 解析:从n到n2共有n2-n+1个数,所以f(n)中共有n2-n+1项,且f(2)=1 2 + 1 3 + 1 4 ,故选D. 答案:D

2.(2016·黄山质检)已知n 为正偶数,用数学归纳法证明1-12+13-14+…+1 n +1 = 2? ???? 1n +2+1n +4 +…+12n 时,若已假设n =k (k ≥2为偶数)时命题为真,则还需要用归纳假设再证n =( )时等式成立( ) A .k +1 B .k +2 C .2k +2 D .2(k +2) 解析:根据数学归纳法的步骤可知,则n =k (k ≥2为偶数)下一个偶数为k +2,故选B. 答案:B 考点一 用数学归纳法证明等式| 求证:(n +1)(n +2)·…·(n +n )=2n ·1·3·5·…·(2n -1)(n ∈N *). [证明] (1)当n =1时,等式左边=2,右边=21·1=2,∴等式成立. (2)假设当n =k (k ∈N *)时,等式成立,即(k +1)(k +2)·…·(k +k )=2k ·1·3·5·…·(2k -1). 当n =k +1时,左边=(k +2)(k +3)·…·2k ·(2k +1)(2k +2) =2·(k +1)(k +2)(k +3)·…·(k +k )·(2k +1) =2·2k ·1·3·5·…·(2k -1)·(2k +1) =2k +1·1·3·5·…·(2k -1)(2k +1). 这就是说当n =k +1时,等式成立. 根据(1),(2)知,对n ∈N *,原等式成立. 1.用数学归纳法证明下面的等式: 12-22+32-42+…+(-1)n -1·n 2=(-1)n -1n ?n +1? 2 . 证明:(1)当n =1时,左边=12=1, 右边=(-1)0 ·1×?1+1? 2 =1, ∴原等式成立. (2)假设n =k (k ∈N *,k ≥1)时,等式成立,

(完整版)高中数学不等式知识点总结

选修4--5知识点 1、不等式的基本性质 ①(对称性)a b b a >?> ②(传递性),a b b c a c >>?> ③(可加性)a b a c b c >?+>+ (同向可加性)d b c a d c b a +>+?>>, (异向可减性)d b c a d c b a ->-?<>, ④(可积性)bc ac c b a >?>>0, bc ac c b a 0, ⑤(同向正数可乘性)0,0a b c d ac bd >>>>?> (异向正数可除性)0,0a b a b c d c d >>< ⑥(平方法则) 0(,1)n n a b a b n N n >>?>∈>且 ⑦(开方法则)0,1)a b n N n >>∈>且 ⑧(倒数法则) b a b a b a b a 110;110>?<<> 2、几个重要不等式 ①()222a b ab a b R +≥∈,,(当且仅当a b =时取""=号). 变形公式:22 .2a b ab +≤ ②(基本不等式) 2a b +≥()a b R +∈,,(当且仅当a b =时取到等号). 变形公式: a b +≥ 2 .2a b ab +??≤ ??? 用基本不等式求最值时(积定和最小,和定积最大),要注意满足三个条件“一正、二定、三相等”. ③(三个正数的算术—几何平均不等式) 3a b c ++≥()a b c R +∈、、(当且仅当a b c ==时取到等号).

④()222a b c ab bc ca a b R ++≥++∈, (当且仅当a b c ==时取到等号). ⑤ 3333(0,0,0)a b c abc a b c ++≥>>> (当且仅当a b c ==时取到等号). ⑥0,2b a ab a b >+≥若则(当仅当a=b 时取等号) 0,2b a ab a b <+≤-若则(当仅当a=b 时取等号) ⑦b a n b n a m a m b a b <++<<++<1,(其中000)a b m n >>>>,, 规律:小于1同加则变大,大于1同加则变小. ⑧220;a x a x a x a x a >>?>?<->当时,或 22. x a x a a x a

相关文档
相关文档 最新文档