文档库 最新最全的文档下载
当前位置:文档库 › 阻燃拒水多功能

阻燃拒水多功能

阻燃拒水多功能
阻燃拒水多功能

Multifunctional silk fabrics by means of the plasma induced graft polymerization (PIGP)process

Kanchit Kamlangkla a ,c ,Satreerat K.Hodak b ,Jo?lle Levalois-Grützmacher c ,?

a Nanoscience and Nanotechnology Program,Center of Innovative Nanotechnology,Chulalongkorn University,Bangkok 10330,Thailand

b Department of Physics,Faculty of Science,Chulalongkorn University,Bangkok 10330,Thailand

c

Department of Chemistry and Applied Biosciences,ETH H?nggerberg,HCI H133,8093Zürich,Switzerland

a b s t r a c t

a r t i c l e i n f o Article history:

Received 17September 2010

Accepted in revised form 6January 2011Available online 14January 2011Keywords:

Plasma induced graft polymerization (PIGP)process

Multifunctional coating

Flame retardant silk water repellent silk Organophosphorus monomers DEAEPN DEAEP

An argon plasma induced graft polymerization (PIGP)process has been used to impart durable ?ame retardancy to silk fabrics.Phosphate and phosphoramidate monomers are known to be especially effective as ?ame retardants and have been used in this work for this application.Furthermore,water repellent ?nishing on silk fabrics could be achieved by means of SF 6plasma treatment.The grafting and the polymerization processes taking place on the surface of the textile were followed by weighing measurements,IR(ATR)spectroscopy,XPS and SEM.The ?ammability of the treated fabrics was investigated by thermogravimetric analyses,heat of combustion (THC and HRR)and LOI measurements.The fastness properties have been evaluated as well.

?2011Elsevier B.V.All rights reserved.

1.Introduction

Nowadays it is still very challenging to confer to textiles of natural origin wash resistant ?ame retardant properties [1].The main issue lies in the fact that only a surface treatment can be applied and this has to be performed without altering the bulk (tensile,tear strengths,abrasion resistance,etc.)and the surface properties (permeability,soft handle,outward appearance,etc.).This implies that the ?nish should be a thin,homogeneous transparent coating.In case of woven textiles it should allow as well the breathability of the fabric.Moreover,the ?nish should not exhibit any toxicity before or during burning.All these constraints explain why the researchers are still in search of a ?ame retardant that can meet all these requirements.In addition,it should be highly effective,i.e.active at low concentrations,and versatile,https://www.wendangku.net/doc/ef15905482.html,able on diverse textiles.

Flame retardancy of cotton fabrics has already been intensively investigated.However,relatively few papers relate attempts to confer ?ame resistant property to silk fabrics [2–4].This is surprising because silk is widely used in interior design,home furnishing,curtains,beddings and clothes (especially pyjamas).Although silk exhibits a low natural ?ammability (compared to cotton fabrics,its LOI is 5units higher on the average)due to its high nitrogen content (15–18%)it

still produces fuel for ?re [5].Therefore it is worth investigating new ?re retardant ?nishes for silk fabric in order to render it more dif ?cult to ignite or provide better self-extinguishing properties when removed from a ?ame.

Most of the treatments applied in order to confer a ?ame retardant behaviour to silk fabrics involved a pad-dry process of various formulations containing well-known organophosphorus compounds [6–10].This family of compounds is the most commonly used as ?ame retardant due to its ability to promote char formation.The char residue acts as barrier to protect the fabric from attack of oxygen and radiant heat of ?re and it can also reduce smoke emission [11–15].

Although ?ame retardation of the fabrics could be improved,these treatments exhibited poor wash-fastness properties.In order to increase their laundering durability,recently,Chaiwong et al .have tried to graft a non-durable phosphorus-based ?ame retardant agent (Pyrovatim?PBS)by means of an atmospheric Ar-plasma jet [16].These treated fabrics exhibited a good resistance towards washing which could be attributed to the presence of covalently linked phosphorus compounds.However the SEM micrograph showed a very inhomogeneous stacking of large PBS particles (about 10μm)mainly localized on the knot of the silk.This might affect dramatically the surface properties of the fabric.Phosphate derivatives such as DEMEP (diethyl 2-(methacryloyloxyethyl)phosphate),DMMEP,the di-methyl analogue were also successfully graft-polymerized onto silk fabrics with potassium persulfate in an acidic media.The treated silk fabric with DMMEP could still pass the ?ammability test after 30cycles of laundering.But the yield of the grafting (about 3%of

Surface &Coatings Technology 205(2011)3755–3762

?Corresponding author.Tel.:+41446334816;fax:+41446331032.E-mail addresses:k_kamlangkla@https://www.wendangku.net/doc/ef15905482.html, (K.Kamlangkla),Satreerat.H@chula.ac.th (S.K.Hodak),levalois@inorg.chem.ethz.ch (J.

Levalois-Grützmacher).

0257-8972/$–see front matter ?2011Elsevier B.V.All rights reserved.doi:

10.1016/j.surfcoat.2011.01.006

Contents lists available at ScienceDirect

Surface &Coatings Technology

j o u r n a l h om e p a g e :w w w.e l s ev i e r.c o m /l o c a t e /s u r fc o a t

weight gain for a DMMEP concentration of40%on the weight of the fabric)was very poor and is incompatible with industrial and environmental requirements[8,10].

Previously,we have successfully developed and applied in our laboratory the plasma induced graft polymerization(PIGP)process of various phosphorus monomers(phosphate,phosphonate and phos-phoramidate derivatives)onto cotton fabrics in order to reduce the ?ammability of these materials.In these cases,thin homogeneous ?ame resistant coatings with good fastness properties have been obtained.Among these compounds,the phosphoramidate derivative DEAEPN(diethyl2-(acryloyloxyethyl)phosphoramidate)gave the best results(i.e.highest LOI,highest grafting rate and best fastness properties)due to the presence of the nitrogen in the structure of the monomer and its“synergistic action”with the phosphorus[4]. Therefore it was interesting for us to investigate to which extent this process using the same monomer can be applied for silk fabrics.The grafting yield and the?ame retardant behaviour will be compared with those obtained with the phosphate analogue,the diethyl2-(acryloyloxyethyl)phosphate(DEAEP).

Furthermore,in order to respond to the customer needs,the textile industry seeks for more multifunctional fabrics combining multiple properties such as?ame retardancy with hydrophilicity/hydropho-bicity,antibacterial properties,UV-resistance,etc.

We have already demonstrated on cotton fabrics that the PIGP process is an excellent tool for that purpose[17].Tetra?uoromethane (CF4)plasma treatment has been applied on?ame retarded cotton fabrics with various phosphoramidate monomers and we observed an increase of the Schmerber pressure which is an indication for surface ?uorination.The fabrics which were originally absorbent became water-repellent.However,the water droplets did not roll on the surface,indicating a moderate decrease of the surface free energy of the fabrics.Besides CF4it is well known that plasmas containing ?uorinated compounds such as hexa?uoroethane(C2F6)[18],hexa-?uoropropylene(C3F6)[19]and sulphur hexa?uoride(SF6)[20,21] also enhance the hydrophobicity of fabrics.Especially,with sulphur hexa?uoride(SF6)as the?uorine source excellent results are obtained while undesired polymerization reactions in the plasma are sup-pressed.Therefore we applied a post-SF6plasma treatment onto the silk fabric in order to confer to the?re retarded samples an additional water repellent character.

In this paper we describe a two step protocol in order to produce multifunctional silk fabrics.In the?rst step we applied the PIGP process of two phosphorus containing monomers the diethylacryloy-loxyethyl-phosphate(DEAEP)and-phosphoramidate(DEAEPN)onto the fabrics(Scheme1).The surfaces of the untreated and most of the treated fabrics are rather hydrophilic.However,depending on their applications,fabrics with hydrophobic and?ame retarded surfaces could be useful.Therefore,the fabrics with a?ame retardant?nish were exposed to a SF6plasma in a second step.The grafting and the polymerization processes taking place on the surface of the textile were followed by weighing measurements,IR(ATR)spectroscopy, XPS and SEM.Heat release rate(HRR)and LOI measurements allowed us to evaluate the?ammability of the treated fabrics.The thermal decomposition behaviour was investigated by thermogravimetric analyses.The water repellent properties were evaluated by measuring their Schmerber pressures(P Sch).Moreover,because the durability of the treatment as well as the preservation of the bulk properties of the fabric was the main concern in this study,the fastness properties were measured as well.

2.Experimental

2.1.Materials and reagents

Degummed and bleached silk fabric(plain weave,75.4g/m2)was supplied by EMPA Test Materials Company,Zurich,Switzerland.The synthesis of the?ame retardant monomers used in this study diethyl2-(acryloyloxyethyl)phosphate DEAEP and diethyl2-(acryloyloxyethyl) phosphoramidate DEAEPN has been previously described[4,22].The cross linking agent EGDA(ethyleneglycoldimethacrylate)was pur-chased from Aldrich and used as received.The photoinitiator phenyl-bis (acyl)phosphanoxide(IRGACURE819)was kindly supplied by BASF Swiss(former CIBA Specialty Chemicals,Switzerland).Solvents were obtained from the usual suppliers(FLUKA,BAKER and MERCK)and were puri?ed prior to use,if necessary,by standard methods.Argon and SF6were provided by PANGAS.Argon was further puri?ed with an MBraun100HP gas puri?cation system.

2.2.Low pressure plasma process

The microwave plasma was generated by an Europlasma DC300PC system composed of three parts:(i)a microwave generator (2.46GHz)with a tunable power ranging from0to600W,generating the argon glow discharge,(ii)the vacuum chamber(27l)(aluminium based container)in which the process takes place and(iii)a pumping system composed of a primary pump(E2M28PFPE,Edwards).The gas ?ow was regulated by unit mass?ow controllers.

2.3.Graft-polymerization induced by Ar-plasma(step1)and SF6plasma treatment(step2)

Pieces(50mm×100mm)of silk fabric were cut in the warp direction and kept under the standard conditions(humidity 65%,20±2°C)for24h before the experiments.

Step1:The samples were weighed and then impregnated at room temperature with0.7ml of an ethanol solution containing10to30% by weight of fabric(w.o.f.)of monomer,10%by weight of monomer (w.o.m.)of cross-linking agent(EGDA)and5%w.o.m.of Irgacure819 as photoinitiator.They were padded with a glass roller in order to get a homogeneous spreading.After drying in air the fabrics were placed on a glass plate and exposed to a MW argon plasma treatment (F Ar=125sccm;P=100W;p=500mT;t=20min).Then the samples were washed using a Soxhlet apparatus with ethanol(4 times)and water(1time)and dried at room temperature.The dried samples were stored under standard conditions with a relative humidity of65%and a temperature20±2°C for at least24h before measurements.

Step2:The?ame retarded(FR)silk fabrics were then submitted under SF6plasma exposure(F SF6=25sccm;P=100W;p=500mT; t=5min).

2.4.Analytical techniques and evaluation of the?ame retardant effect and the water repellency of the fabrics

The degree of grafting was determined as follows:

Degree of grafting%eT=W g–W0

=W0×100

O

N

H P

O

O

O

O

DEAEPN

O

O

P

O

O

O

O

DEAEP

Scheme1.Diethyl2-(acryloyloxyethyl)phosphoramidate(DEAEPN)and diethyl2-

(acryloyloxyethyl)phosphate(DEAEP).

3756K.Kamlangkla et al./Surface&Coatings Technology205(2011)3755–3762

where,W0and W g are the weights of the fabric samples before and after grafting,respectively.

The phosphorus content of the treated fabrics was determined by UV-spectroscopy with the vanadomolybdophosphoric acid colorimetric method using an Uvikon810.After perchloric acid–sulphuric acid digestion,carbon,hydrogen and nitrogen contents were determined using a LECO CHN-900.

Amino acid analysis was performed by using the UPLC Amino Acid Solution(Waters Corp.,Milford,MA,USA).A small piece of approximately the same size for each sample was hydrolyzed in6N HCl at110°C for24h under argon.The dried hydrolysate was dissolved in70μl derivatisation buffer and20μl was derivatised (Accq-Tag Ultra,Waters Corp.,Milford,MA,USA)according to the manufacturer's instructions.The relative amino acid content was calculated for each sample.Each experiment was performed twice and the results were averaged.

The attenuated total re?ection Fourier transform infrared spec-troscopy(ATR-FTIR)spectra were recorded on Nicolet6700FT-IR spectrometer in range4000–400cm?1,the ATR technique was applied.

The chemical composition of the silk surface has been investigated using X-ray photoelectron spectroscopy(XPS).Measurements were carried out on an ADES400photoelectron spectrometer using Mg Kαradiation(1253.6eV)and equipped with hemispherical electron energy analyzer.

The?ammability of the untreated and treated fabrics was assessed by the Limiting Oxygen Index(LOI)method according to ASTM Standard Method D2863-76,using an oxygen index test apparatus from Fire Instrumentation Research Equipment LTD with a digital readout of oxygen concentration to±0.1%.The LOI value corresponds to the minimum concentration of oxygen in an oxygen/nitrogen mixture necessary to burn the sample during3min over a length of 80mm.Thermogravimetric analysis(TGA)and derivative thermal gravimetry(DTG)were performed on a NETZSCH STA409C instrument by using continuous nitrogen?ow10°C/min and a heating?ow rate10°C/min at the temperature from30to700°C. The sample weights were about2–3mg.

Pyrolysis Combustion Flow Calorimetry(PCFC)measurements were performed on a PCFC instrument(Fire Testing Technology Instrument).PCFC is able to measure the following?ammability parameters for textile using milligram sample sizes:Heat release capacity(HRC),heat release rate(HRR),temperature at peak heat release rate(PHRR),total heat release(THR)and char yield.The silk fabrics(~5mg)were heated from ambient temperature to750°C in nitrogen?owing at80cm3/min at a linear heating rate of1°C/min. The gaseous pyrolysate mixture exiting the pyrolyser was mixed with a20cm3/min stream of oxygen prior combustion in a furnace at 900°C during10s.Each step was performed at least twice.

The surface morphology of the silk fabrics before and after grafting with monomer was observed by Scanning Electron Microscope(SEM), using a model JEOL JSM-6400.Silk fabrics were observed at15keV acceleration voltages.Photographs were taken with a TOSHIBA3CCD COLOR CAMERA“IK-TU48P”?tted with a Leica microscope MZ6.

Owing to the roughness and irregularity of the textile surfaces,the commonly used contact angle measurements were not reliable for the investigation of the wettability of the treated fabrics.Therefore,it was evaluated by Schmerber tests,according to DIN53886,using a Textest FX3000Water Impermeability II apparatus.The Schmerber value (P Sch)recorded at the end of the test corresponds to the water pressure(mb)reached when water has penetrated through the fabric at three different places.

2.5.Fastness properties

The wash-fastness was tested according to the accelerated laundering method proposed by McSherry et al.[23].The treated samples were boiled for4h in a solution of0.5%Na3PO4,12H2O and 0.1%Triton X-100at a liquor-to-goods-ratio of40:1and then dried at room temperature.

The tensile strength including elongation at break was measured by a Lloyd's tensile tester(Lloyd LR5K)on standardized samples (5×15cm2;25±2°C;65%humidity).Three measurements were taken in warp direction and averaged afterwards.

The degree of whiteness was evaluated with the grey scale for the assessment of staining(BS1006A03)(DIN54001).It is measured by a comparison to a scale of?ve pairs of grey and white coloured plates in which each pair of plate indicates a different degree of contrast.The contrast intensity between the untreated and treated fabric is related to one of the standard pairs to yield the grey scale rating.On these scales,5indicate no yellowing and1a heavy colour change.

3.Results and discussion

3.1.Evidence of the grafting of polyDEAEPN and polyDEAEP onto silk fabrics by the PIGP process

The weight gain and the phosphorus content of the DEAEPN and DEAEP treated silk fabrics,at different monomer concentrations,after washing in solvents in which the monomer and the polymer are well soluble are listed in Table1.

First of all,regardless the nature of the monomer,the grafting yield is over50%in each experiment and increases almost linearly with the initial concentration of the monomer.This result can be compared with other pad-dry-cure processes described in the literature using analogous monomers.For instance,in the experiment reported by Guan and Chen[10],less than5%of weight gain was obtained with an initial concentration of40%(w.o.f.)of DMMEP.This result demon-strates the ef?ciency of the PIGP process which allows to reduce signi?cantly the amount of chemicals.This is even more appreciable in the experiments with the phosphoramidate monomer.We explain this observation with the higher af?nity of this monomer for the polar silk protein surface due to the interaction with the N–H bonds.We have already observed this behaviour with cotton fabrics where we could reduce considerably the amount of cross-linking agent[4].

The grafting of a phosphorus containing polymer by the PIGP process was evidenced by several techniques.Among them,the evaluation of the phosphorus content indicates a non-negligible amount of remaining phosphorus containing polymer,up to2%by weight of the fabric,after washing(Table1).XPS surveys exhibit the P2s and P2p components respectively at189.0and130.6eV(Fig.6). Finally,the FT-IR spectra of the polyDEAEPN(curve a),the control silk fabric(curve b),and the treated silk fabrics with20%(w.o.f.)of DEAEPN(curve c)and20%(w.o.f.)of DEAEP(curve d)are presented in Fig.1.The treated fabrics,after washing,show the characteristic absorption bands at1250,1150,1024–1078and985cm?1 corresponding to the P O,P–O–C and P–O stretching vibrations also seen in polyDEAEPN.FT-IR spectra have been recorded for treated

Table1

Weight gain,measured phosphorus content before and after burning,LOI and char yield of the silk fabrics treated with DEAEPN and DEAEP at different monomer concentrations.

Sample FR monomer

%w.o.f.

Weight

gain[%]

%P

[%]

LOI

[%±0.1]

Char

yield[%]

%P of

char[%] Untreated silk–––25.09.38–DEAEPN treated

silk fabric

10 6.620.6629.018.95 4.56

2011.22 1.3830.529.98 5.21

3016.68 2.1031.032.50 6.69 DEAEP treated

silk fabric

10 5.370.6328.016.10 2.47

2010.12 1.3429.025.98 3.38

3013.47 1.6930.031.74 6.54

4020.10 2.1830.532.70 6.23

3757

K.Kamlangkla et al./Surface&Coatings Technology205(2011)3755–3762

fabrics with 10%and 30%(w.o.f.)of the monomer and they show a similar pattern of the absorption bands as in the polymers.As expected,the intensities increase with increasing concentrations.Furthermore in all spectra of the treated samples,the most intense absorption bands of the silk fabric are still visible,notably the strong N –H vibration at 1506cm ?1characteristic for the peptide bond of the silk protein.This indicates that the thickness of the deposited polymer is smaller than the thickness analysable either by XPS or FT-IR.

In order to determine whether the grafting of the polymer on the silk fabric occurred via reactions with some amino acid (AA),Amino Acid Analyses were performed on the treated silk fabrics (DEAEPN,20%w.o.f)and compared to the untreated one.The results are shown in Table 2.As observed by other authors [8],the content of some amino acid decreases after the treatment which indicates their contribution in the grafting process.In our case,only the relative content of glycine which together with alanine constitutes more than 70%of the AA of this silk fabric decreases slightly (by about 2%).This observation indicates that a covalent grafting in the plasma process may occur via a radical reaction involving the activated glycine CH 2-groups.On the contrary,Guan and Chen [8]observed that DEMEP has been graft-polymerized using potassium persulfate as initiator in an acidic media,whereby mainly the AA containing polar side chains or –CH 2S –SCH 2-bonds (cystine)were affected.

3.2.Flammability of the silk fabric samples

3.2.1.LOI of silk ?nished fabrics at different concentrations of monomers

The ?ammability of the samples has been investigated by taking LOI measurements which is a straightforward and reliable analysis to compare the behaviour of different polymers.The LOI,the amount of residual char and the phosphorus content before and after burning of the DEAEPN and DEAEP treated silk fabrics at different concentrations of the monomers (w.o.f.)are listed in Table 1.As can be seen,the indices measured for the untreated silk fabric (25)increase up to 6units in the fabrics which were treated either by the phosphate or the phosphoramidate monomers.The ?ame retardant ?nished silk fabrics became easily self-extinguished materials with only 5%of grafted polymer (LOI N 28).Interestingly,for an equal content of grafted phosphorus atom on the fabric,the oxygen indices measured for polyDEAEPN ?nished fabrics are higher (1unit)than the values obtained with polyDEAEP.We attribute this result to the presence of the nitrogen in the phosphoramidate which contributes to reduce the ?ammability of the fabric.Furthermore,the amount of the residual char,rich in phosphorus,increases quite rapidly with the amount of grafted polymers.

The remaining char presents interesting features that can be seen in the SEM pictures displayed in Fig.2.In each case unburned and burned fabrics are presented.Fig.2b shows that an untreated silk fabric melts while burning and the structure of ?laments of the unburned fabric (Fig.2a)is completely lost.The SEM photographs of both treated silk fabrics either with 20%(w.o.f.)of DEAEPN (Fig.2c)or DEAEP (Fig.2e)exhibit no stacking of polymer between the ?bres but a smooth entangling polymer ?lm on the surfaces of the ?laments.After burning,the structure of the treated fabrics can still be seen,but holes and channels are formed in place of ?broin ?laments.Moreover,these pictures reveal two very different burning behaviours for the polymers.While the ?rst one (Fig.2d)coated with polyDEAEPN produces an intumescent-like layer above the molten silk,of which the thickness increases with the amount of grafted polymer (pictures not presented),the second one (Fig.2f)presents a thin brittle covering.

All these results suggest the formation of a protective layer which insulates the fabric from the effect of the heat as major reason for decreasing the ?ammability of the fabric.From the characteristics of the remaining chars,DEAEPN seems to provide a more ef ?cient insulating coating than DEAEP.The remaining char is composed by degraded silk and ?ame retardant polymer,as con ?rmed by its high content of phosphorus (%P/g fabric)which was determined by elemental analyses (Table 1).

3.2.2.Pyrolysis Combustion Flow Calorimetry (PCFC)analyses

Pyrolysis Combustion Flow Calorimetry (PCFC)analysis is frequently applied nowadays in order to assess the ?ammability of polymeric materials and it is now recognized to be an effective bench scale method [24,25].The heat release rate has been found very effective to evaluate ?re hazards.The heat release rate versus temperature for untreated (curve a)and DEAEPN (20%w.o.f.)and DEAEP (20%w.o.f.)treated silk fabrics,respectively (curve b)and (curve c)is presented in Fig.3.The total heat release (THR)and the peak heat release rate (PHRR)obtained from Fig.3are listed in Table 3.

Immediately,it can be seen from Fig.3and Table 3that PHRRs –which are the maximum speed at which the ?re of the fabric can generate heat –of the treated silk fabrics are considerably lower than for the control fabric.Indeed,they reached 90and 95W/g for the DEAEPN and DEAEP treated fabrics respectively compared to 147W/g for the untreated one.The same trend is re ?ected in the total heat release (THR)where a decrease of about 1.2to 1.5kJ/g is observed.The heat release capacity follows the same pattern.The char yield increases signi ?cantly for the treated samples with a neat advantage for polyDEAPN.All these data correlate with the LOI

measurements

Fig.1.The IR-ATR spectra:(a)polyDEAEPN;(b)untreated silk;(c)DEAEPN (20%w.o.f.)treated silk;and (d)DEAEP (20%w.o.f.)treated silk.

Table 2

The contents of amino acid of untreated silk and DEAEPN (20%w.o.f.)treated silk fabric.Amino acids Untreated silk fabric [%]DEAEPN treated silk fabric (20%w.o.f.)[%]Histidine 0.29±0.010.32±0.01Threonine 0.78±0.010.90±0.01Serine

9.48±0.0610.22±0.1Glutamic acid 0.31±0.00.32±0.0Glycine 53.71±0.3651.76±0.07Alanine 16.31±0.3115.48±0.48Valine

1.94±0.01 1.92±0.04Methionine 0.12±0.010.13±0.01Isoleucine 0.65±0.00.65±0.02Leucine 0.53±0.00.52±0.01Tyrosine

12.77±0.5014.34±0.31Phenylalanine 2.25±0.10 2.62±0.06Lysine

0.03±0.010.03±0.01Aspartic acid 0.37±0.00.36±0.02Arginine 0.00

0.00

Proline

0.46±0.01

0.43±0.01

3758K.Kamlangkla et al./Surface &Coatings Technology 205(2011)3755–3762

and suggest as well a condensed-phase mechanism leading to the production of char rather than ?ammable products.3.3.Thermal analysis

In order to have more insights into the ?ame resistance mechanism,thermogravimetric (TG)and derivative thermal gravim-etry (DTG)analyses have been performed on the untreated and the treated silk fabrics with various concentrations (w.o.f.)of DEAEPN or DEAEP.The TG and DTG curves for treated fabrics with 20%(w.o.f.)of the monomers are presented in Fig.4.

Although the pyrolysis mechanism of the silk ?bre is still unknown,several authors have reported the decomposition behav-iour of degummed silk fabrics of different origins.Our results are similar to those described in the literature [8].

Three main mass loss stages can be identi ?ed.The ?rst one (4.1%,30–214°C),is attributed to desorption of the adsorbed moisture of the silk fabric.In the second stage (48.2%,214–372°C)the silk fabric decomposes into CO 2,H 2O and ?ammable substances.The last stage (20.1%,372–700°C)is assigned to the decomposition of the char of the silk fabric.

The decomposition of the ?nished silk fabrics with the ?ame retardant polymers follows the same pattern with almost the same onset of decomposition temperatures,with an additional mass loss stage (10.1%,212–290°C for ?nished silk fabrics with DEAEPN 20%w.o.f.,11.4%,212–289for ?nished silk fabrics with DEAEP,20%w.o.f.),which corresponds to the degradation of the polymer.This is best visible in Fig.4b which exhibits for the treated fabrics two peaks in the DTG curve while only one is seen for the untreated fabric.These observations can be explained by the fact that the grafted polymers,like the pure polymers,decompose at lower temperatures than the silk fabric.Their decomposition into a stable phosphorus containing residue is almost complete before the silk starts to decompose.This will provide an insulating layer which will delay the decomposition of the silk,as indicated by the slightly higher decomposition temperature found in the treated

samples.

Fig.2.SEM micrograph of:untreated silk unburned (a)and burned (b);DEAEPN (20%w.o.f.)treated silk (c)unburned and (d)burned;DEAEP (20%w.o.f.)treated silk (e)unburned and (f)burned.

3759

K.Kamlangkla et al./Surface &Coatings Technology 205(2011)3755–3762

3.4.Multifunctional properties

Fire retarded silk fabrics could be used for various purposes which require different surface energies.Finished with polyDEAEPN or polyDEAEP,the fabrics obtained in step 1are hydrophilic.In order to obtain hydrophobic ones,the ?ame retarded (FR)silk fabrics were submitted in a second step (step 2)to a SF 6plasma treatment (F SF6=25sccm;P =100W;p =500mT;t =5min).The protocol is given in Fig.5and the results are displayed in Fig.6.

Fig.6shows the XPS survey spectrum of the untreated silk and the FR silk fabrics –with 20%(w.o.f.)of DEAEPN or DEAEP –exposed to a SF 6plasma.Apart from the P 2s and P 2p components due to the FR ?nishing,one can clearly detect the F 1s peak indicating a signi ?cant ?uorination of the surface.Consequently,the wettability of the fabric will be affected.In order to evaluate the extent of this modi ?cation,the Schmerber pressures were measured according to Norm DIN 53886.Before and after the plasma treatment,the Schmerber pressures P Sch1and P Sch2were measured respectively.The results obtained are given in Table 4.Before the SF 6plasma treatment,the FR silk fabrics are completely absorbent (P Sch1=0mbar).After the SF 6plasma treatment,the Schmerber values,P Sch2increase signi ?cantly from 0up to 23.5mbar.

This high value corresponds to an apparent contact angle with water of 134°.The droplets of water roll on the surface which emphasises the low surface energy achieved by this treatment.Interestingly,the LOI is not affected by this treatment;it even slightly increases for the FR samples.Moreover,after several weeks of outdoor exposure,only a slight drop of the Schmerber pressure was noticed (by about 1unit).The initial pressure P Sch2could be recovered after one hour of heating at 100°C.

3.5.Fastness properties

To investigate the effect of the argon plasma induced graft polymerization of DEAEPN and DEAEP before (step 1)and after (step 2)a SF 6plasma treatment on the mechanical properties of silk fabrics,the tensile strength and the elongation at break were measured and the results are presented in Tables 5and 6.The mechanical analyses revealed that an Ar-plasma treatment during 20min on the untreated fabric does not alter the tensile strength of the fabric (b 1%).The original value decreased slightly (b 2.5%)after the application of the PIGP process with 20%(w.o.f.)of each monomer.On the other hand,these ?nished textiles treated with a SF 6plasma are subjected to almost similar alteration of the mechanical properties after 5min of treatment.However a SF 6plasma treatment on the fabrics of more than 5min has a detrimental effect and more than 20%of the tensile strength is lost after the treatment.

This behaviour is re ?ected as well in the elongation at break measurements.The FR ?nishing by embedding the ?bres provides some elasticity to the fabric (the averaged values increase from 19.2to 21.2and 20.6for silk treated DEAEPN and DEAEP respectively)

Table 3

Thermal data calculated from Fig.3.Sample PHRR (W/g)THR (kJ/g)HRC (J/g K)Untreated

847.7149147DEAEPN 20%(w.o.f.)32 6.29190

DEAEP 20%(w.o.f.)

36(shoulder) 6.5

97

95

100

200

300

400

500

600

700

10

20

30

405060708090

100110R e s i d u a l w e i g h t [%]

poly DEAEP poly DEAEPN Control silk DEAEP

treated silk 20%

DEAEPN

treated silk 20%

100

200

300

400

500

600

700

-10

-8

-6

-4

-2

2

poly DEAEP poly DEAEPN Control silk DEAEP

treated silk 20%

DEAEPN

treated silk 20%

M a s s l o s s r a t e [d m /d t ]

b

a

Fig.4.The TG (a)and DTG (b)curves in nitrogen of the polyDEAEPN,polyDEAEP,untreated silk,DEAEPN (20%w.o.f.)treated silk;DEAEP (20%w.o.f.)treated silk.

H e a t R e l e a s e R a t e [W /g ]

Temperature [οC ]

Fig.3.Heat release rate of (a)untreated,(b)DEAEPN (20%w.o.f.)treated silk;and (c)DEAEP (20%w.o.f.)treated silk.

3760K.Kamlangkla et al./Surface &Coatings Technology 205(2011)3755–3762

whereas a post-SF 6plasma treatment led to the opposite effect.After 5min of treatment a slight decrease of the elongation at break value is observed for all samples,?nished or not.Interestingly though this decrease of the textile strength is more remarkable for the untreated silk fabrics than for the FR ?nished ones.The ?ame retardant coating provides a protective layer towards the abrasive action of the SF 6plasma treatment [26].Evidently,the same trend is observed for longer exposure time where cross-linking might occur as well.

With the aim to examine the effect of the PIGP process using phosphorus containing monomers followed up by a SF 6plasma treatment on the colour change of the fabrics,the degree of whiteness has been evaluated according to the grey scale colour testing.The results obtained by comparing our silk fabric samples treated with increasing amounts of DEAEPN to a set of ?ve pairs of grey/white coloured plates with different degrees of contrast are given in Table 7.A value of 4.5on the scale ranging from 1to 5has been estimated for

almost all silk fabrics ?nished with various amounts of the monomer.The fabric treated with an initial solution concentration of 30%(w.o.f.)corresponding to 16%of grafted polymer exhibits the lowest value of 4which indicates a slight change in colour.By comparing these results with the untreated silk fabric which is at 5,one can say that the PIGP process with this monomer impacts only slightly the colour properties of the fabric.It is interesting to notice that a post-SF 6plasma treatment of the FR silk fabrics does not affect their colour at all,the same degrees of whiteness as before the SF 6treatment were obtained.

The wash-fastness property of the coating has been evaluated by using the accelerated laundering protocol proposed by McSherry.In this procedure the samples are boiled for over 4h in a basic medium.This method is set up to mimic 50cycles of laundering and has been applied on the treated samples with 20%(w.o.f.)of the two monomers after the ?rst step (PIGP process)and after the second step (SF 6plasma treatment).LOIs and Schmerber pressures have been taken after each step and the results obtained are listed in Table 8.

For each ?ame retardant and water repellent ?nished fabric the LOI is only slightly altered by the washing process.The decrease of the oxygen index is less than 1.5%even after the fabrics have been subjected twice to the washing process.In contrast the water repellent character is not resistant towards this washing.The fabrics became again

absorbent.

Fig.5.Procedure of the two-step treatment.Step 1:PIGP process of FR monomers onto silk fabrics.Step 2:SF 6plasma on the FR fabrics.

1000800600400200

I n t e n s i t y (a r b i t a r y u n i t )

Binding energy (eV)

Fig.6.XPS survey spectra for untreated silk and SF 6plasma treated ?ame retarded silk fabrics with DEAEPN and DEAEP.

Table 4

LOI and Schmerber pressures (P Sch )measured for the FR silk fabrics with DEAEPN and DEAEP before (step 1)and after (step 2)SF 6plasma treatment.Sample

After step 1After step 2LOI 1

[%±0.1]

P Sch1[mbar]LOI 2

[%±0.1]P Sch2[mbar]Untreated

25.0025.023.5DEAEPN 20%(w.o.f.)30.5031.023.5DEAEP 20%(w.o.f.)

29.0

30.0

23.0

Table 5

Tensile strengths measured for untreated and FR silk fabrics with DEAEPN and DEAEP before (step 1)and after (step 2)SF 6plasma treatment.Sample

Tensile strength (N)Step 1

Step 2:plasma SF 65min

10min Untreated:551(±10)N 546(±9)535(±8)432(±8)DEAEPN 20%(w.o.f.)542(±6)533(±7)429(±8)DEAEP 20%(w.o.f.)538(±7)531(±8)

427(±8)

Table 6

Elongation at break measured for untreated and FR silk fabrics with DEAEPN and DEAEP before (step 1)and after (step 2)SF 6plasma treatment.Sample

Elongation at break (mm)and (%elongation)Step 1

Step 2:plasma SF 65min

10min

Untreated:

19.2(±11);100%19.0±9.7;(98.9)18.1±8.2;(94.3)17.7±8.6;(92.2)DEAEPN 20%(w.o.f.)21.2±7.6;(110.4)19.4±6.7;(101.0)18.3±7.3;(95.3)DEAEP 20%(w.o.f.)

20.6±7.7;(107.3)

19.2±7.9;(100.0)

18.0±7.5;(93.7)

3761

K.Kamlangkla et al./Surface &Coatings Technology 205(2011)3755–3762

In order to understand this phenomenon which we did not observe previously when we applied a similar CF4plasma treatment on cotton fabrics[17],the weight of the fabrics at each step has been taken and the weight loss calculated.It appears clearly that after step1more than10% of the grafted polymer is removed.This effect is repeated after step2 where an additional5to15%weight loss of matter occurs.While this affects poorly the LOI,it has dramatic consequences on the water repellent properties.Likely,while?uorination of the surface occurs during the SF6plasma treatment,a concomitant surface degradation (etching)takes place leading to a weakening of the polymer which loses readily its thin external?uorinated layer.

4.Conclusion

By means of a two steps process,i.e.argon induced graft polymerization of phosphorus containing monomers followed by a SF6plasma treatment,a thin colourless?ame retardant and water repellent polymer has been grafted on the surface of silk fabrics. Diethyl2-(acryloyloxyethyl)phosphate(DEAEP)and diethyl2-(acry-loyloxyethyl)phosphoramidate(DEAEPN)have been used for this purpose.The LOI of the treated fabrics reaches29and30.5for DEAEP and DEAEPN,respectively,with a reasonable amount of loading(ca. 11%).It can be noted that the?rst step occurred with a grafting yield above50%.It is clearly shown that the phosphoramidate monomer decreases more the?ammability of the silk fabrics than the phosphate analogue,which is consistent with a P–N synergistic effect.Further-more,SEM analyses of the residual char reveal two different morphologies.While textiles?nished with polyDEAEPN exhibit an intumescent like protective layer,those with DEAEP present a thin one.This suggests two different behaviours during the burning process although they both operate in the solid phase as con?rmed by the decrease of the heat of combustion and the increase of the residual char of the treated fabrics compared to the non-treated one.In a second step,the?ame retarded fabrics have been exposed to SF6 plasma.After5min of treatment,the fabrics which were originally absorbent became water repellent and exhibited an apparent contact angle of134°.This property remains even after several weeks of air exposure.This multifunctional silk fabric retains the original char-acteristics of the untreated fabric.Indeed,only a slight variation of the tensile strength and the colour fastness has been noticed.However, although a good?ame retardant behaviour remains after50cycles of laundering(McSherry method),the water repellent properties disappeared under these conditions.Our future research efforts will concentrate on the improvement of this second step in order to provide wash-resistant multifunctional silk fabrics. Acknowledgments

This work has been supported by the ETH Zürich and the Commission on Higher Education,Thailand.The authors acknowledge V.Salimova and J.Br?uer for the TGA,PCFC and SEM measurements and K.Prinz for the fastness properties.

References

[1] A.R.Horrocks,D.Price,Advances in Fire Retardant Materials,Woodh.Publ.Limit,

9781845692629,2008.

[2]S.Gaan,G.Sun,Polym.Degrad.Stab.92(2007)968.

[3]W.Wu,C.Q.Yang,Polym.Degrad.Stab.92(2007)363.

[4]M.J.Tsafack,J.Levalois-Grützmacher,Surf.Coat.Technol.201(2006)2599.

[5]H.-X.Li,J.-G.Wang,Jilin Eng.Coll.Acta12(1991)68.

[6]G.Kako,A.Katayama,J.Sericulture Sci.Jpn64(1995)124.

[7]J.-P.Guan,G.-Q.Chen,Fire Mater.30(2006)415.

[8]J.Guan,G.Chen,Fibers Polym.9(2008)438.

[9]J.Guan,C.Q.Yang,G.Chen,Polym.Degrad.Stab.94(2009)450.

[10]J.Guan,G.Chen,Fire Mater.(2009),doi:10.1002/fam.1023.

[11]G.-A.Wang,W.-M.Cheng,Y.-L.Tu,C.-C.Wang,C.-Y.Chen,Polym.Degrad.Stab.

91(2006)3344.

[12]S.Duquesne,J.Lefebvre,G.Seely,G.Camino,R.Delobel,M.Le Bras,Polym.Degrad.

Stab.85(2004)883.

[13] D.Price,K.Pyrah,T.R.Hull,https://www.wendangku.net/doc/ef15905482.html,nes,et al.,Polym.Int.69(2000)267.

[14]J.Green,in:A.F.Grand,C.A.Wilkie(Eds.),Fire Retardancy of Polymeric Materials,

Marcel Dekker,Inc,2000,p.148.

[15] A.Granzow,Flame retardation by phosphorus compounds,Acc.Chem.Res.11(1978)

177.

[16] C.Chaiwong,S.Tunma,W.Sangprasert,P.Nimmanpipug,D.Boonyawan,Surf.

Coat.Technol.204(2010)2991.

[17]M.J.Tsafack,J.Levalois-Grutzmacher,Surf.Coat.Technol.201(2007)5789.

[18]S.Sigurdsson,R.Shishoo,J.Appl.Polym.Sci.66(1997)1591.

[19] D.Sun,G.K.Stylios,J.Mater.Process.Technol.173(2006)172.

[20]S.Li,D.Jinjin,Appl.Surf.Sci.253(2007)5051.

[21]S.K.Hodak,T.Upasai,B.Paosawatyanyong,K.Kamlangkla,V.Pavarajarn,Appl.

Surf.Sci.254(2008)4744.

[22]M.J.Tsafack,J.Levalois-Grutzmacher,Surf.Coat.Technol.200(2006)3503.

[23]W.F.McSherry,G.L.Drake,A.B.Cooper,A.R.Markezich,Am Dyest.Report.63(1974)

52.

[24]R.E.Lyon,R.N.Walters,J.Anal.Appl.Pyrol.71(2004).

[25] C.Q.Yang,Q.He,R.E.Lyon,Y.Hu,Polym.Degrad.Stab.95(2010)108–115.

[26]K.Kamlangkla,B.Paosawatyanyong,V.Pavarajarn,J.H.Hodak,S.K.Hodak,Appl.

Surf.Sci.256(2010)5888.

Table7

Colour-fastness properties of the treated silk fabrics by the PIGP process with various amounts of DEAEPN monomer.

Sample Grey scale

Step1Step2

Untreated silk55 DEAEPN treated silk 6.624/54/5

11.224/54/5

16.6844

Table8

Wash-fastness properties of the FR silk fabrics with DEAEPN and DEAEP before(step1) and after(step2)SF6plasma treatment.

Monomer (w.o.f.)Before

washing a

After washing a—

step1

After washing a—

step2

%G1LOI1%G1a LOI1a P Sch1a%G2a LOI2a P Sch2a

Untreated025.0025.00025.00

DEAEPN(20%)11.2230.59.4529.208.9529.00

DEAEP(20%)10.1629.08.9928.007.6127.50

a Washing by the accelerated laundering method of McSherry.

3762K.Kamlangkla et al./Surface&Coatings Technology205(2011)3755–3762

多功能水利控制阀特性

产品名称: JD745X(760)BFDS101X多功能水泵控制阀 产品类别:多功能水力控制阀 产品规格: JD745X(760)BFDS101X 产品口径: 50-1000 产品压力: 0.6-2.5Mpa 浏览次数: 1850 录入时间: 2008-10-25 本页关键词:多功能水泵控制阀、多功能水力控制阀 产品详情 一、多功能水泵控制阀简介 多功能水泵控制阀是一种新型水力控制阀门,一阀可替代电动蝶(闸)阀、止回阀和水锤消除器三种装置。它能自动实现开泵时的缓开,停泵时的速闭与缓闭,无需任何电气控制与其它动力和人力,也无需油压装置。 二、多功能水泵控制阀的主要优点 (1)无需操作控制。利用水泵启停时阀门前后的水压差作为控制动力,具有随水泵的启闭而自动启闭的功能。 (2)阀门启闭动作过程能有效地因防止水锤压力波升高而产生的事故。据现场使用情况调查和实测,停泵水锤压力峰值均在工作压力的1.3倍以内。 (3)无需现场调试,适用工况范围广。 (4)基本无需维修。由于一阀替代三阀,维护维修工作量大大减少。 (5)阻力损失小。采用流线型、宽阀体设计,阻力损失比国外同类产品降低50%以上,如DN200产品在v=2m/s的经济流速工况时,多功能水泵控制阀损失为0.7m,而国外同类产品为1.5m。 三、多功能水泵控制阀结构及工作原理 1)、水泵启动前,阀门出口端压力作用在主阀板上,阀门处于关闭位置,同时膜片控制器的上腔连通压力水,下腔则与阀门进口端的低压相通。 2)、水泵启动后,阀门进口压力逐渐升高,同时压力水通过阀门进口端的连接管缓慢进入膜片控制器下腔,实现主阀板的缓慢开启,开启速度可通过控制阀进行调节。 3)、水泵停机,阀门进口的压力降低,当接近零流量时,主阀板在自身重力作用下迅速关闭。因阀门进口端压力降低,阀门出口端的压力水通过连接管进入膜片控制器上腔,下腔水通过阀门进口端的连接管压回至阀门进口端,缓闭阀板缓慢关闭,慢关时间可通过控制阀进行调节。主阀板的速闭和缓闭阀板的缓闭符合两阶段关闭规律,能有效地消除水锤。 三、多功能水泵控制阀在安全供水中的应用:(几个技术问题)

多功能水泵控制阀说明书

J745X-D 10 16 25 40 64 多功能水泵控制阀 使用说明书 多功能水泵控制阀细分为: A类:双进双出型(DN400口径以上) B类:深井泵型(DN200以下带排气阀,大于或等于DN200建议加装排气阀)C类:立式安装型(带弹簧) D类:流量调节型(带调节丝杆) E类:标志杆型(带行程开关) F类:全行程数显装置型(带数显装置)

一、用途 安装在市政、建筑、钢铁、冶金、石油、化工、煤气(天然气)、食品、医药、矿山、电站、核电、水利及灌溉等领域的取水、送水、加压、潜水、污水泵房及石油、化工流体的输送系统中,融电动阀、止回阀和水锤消除器三种设备的功能于一体,能有效地提高系统安全可靠性,满足系统自动化控制要求。 二、特点 1、安全可靠性高,具有速闭、缓闭以及吸能腔三种消除水锤措施,而且动作完全联锁,不会产生误动作。 2、无需操作控制,当水泵启停时,巧妙地利用阀门前后介质的压力变化来控制动力,使阀门自动按水泵操作规程的要求进行动作。 3、无需专业调试,阀门动作不受水泵扬程及流量变化的影响,适应范围广。 4、基本无需维修,寿命长。 5、节能效果明显,利用进口端的压力进入膜片下腔支撑膜片压板及阀杆的重量,阻力损失小。 三、技术参数 1、公称压力:1.0MPa、1.6MPa、2.5MPa、4.0MPa、6.4MPa、10.0MPa 2、最低动作压力:0.05MPa 3、适用介质:原水、海水、污水、油品 4、适用温度:0 ~ 80℃ 5、缓闭时间:3 ~ 120S(可调节) 6、水锤峰值:≤1.3倍水泵出口额定压力 7、水泵最高反转速度:≤1.2倍水泵额定转速 8、膜片疲劳弯曲:120万次无破损 四、结构(图一:结构示意图) 多功能水泵控制阀由主阀和外装附件组成,主阀由阀体、膜片、阀杆组件、阀盖、主阀板、缓闭阀板、膜片座等主要零件组成,外装附件主要有控制阀、过滤器、排气阀、微止回阀、其中微止回阀是特制配件,在其止回方向设有限流孔。

不同国家阻燃面料的相关阻燃标准

书山有路勤为径;学海无涯苦作舟 不同国家阻燃面料的相关阻燃标准 由于不同的国家对阻燃面料的阻燃标准要求不同,因此做国外贸易的 生产厂家要严格按照购买商的国家标准来生产阻燃面料,以下列举几个国 家阻燃面料的阻燃标准: 中国阻燃标准GB8624-1997家具装饰布美国FMVSS302汽车装饰织物 NFPA701窗帘FAR25-853飞机装饰织物CS191-51防护服澳大利亚 AS1249.2(AS2755)儿童睡衣AS1441.13涂层织物AS2390.2毯子 AS1530.2(AS2755)窗帘AS3744.2家具覆盖织物英国BS5722(BS5438)儿童 睡衣BS5815.3(BS5438)床上用品BS5867.3(BS5438)窗帘 BS6249.1B(BS5438)防护服BS6341(BS5438)床单及枕头BS7175(BS5852)家具覆盖织物BS7177(BS5807)床垫床基等法国NFG07-184防护服NFG92- 501-505装饰织物德国DIN23320(DIN53906)防护服DIN66083(DIN54336-80)防护服DIN66084(DIN4102)装饰织物日本JISL1091防护服TCL1008-69飞机 装饰织物JISD1201=FMVSS302汽车装饰织物 英国阻燃标准BS7177(BS5807)适用于英国公共场所的家具及床垫等织 物。特别要求防火性能,测试方式严格。火种分为0~7级八个火源,分别 对于应低度、中度、高度和极高度危险四个防火等级。BS7175适用于酒店 宾馆、娱乐场所及其他人员密集场所的永久性防火标准。测试要求通过Schedule4Part1及Schedule5Part1两种或更多的测试火种。BS7176适用 于家具覆盖织物,要求防火和耐水洗,测试时要求织物和填充物同时达Schedule4Part1、Schedule5Part1和烟密度、毒性等测试指标。是比 专注下一代成长,为了孩子

多功能水泵控制阀标准

多功能水泵控制阀标准(CJ/T167-2002) 建设部于2002年6月3日批准发布了 《多功能水泵控制阀》(CJ/T167-2002) 城镇建设行业标准,并要求于2002年10 月1日起实施。 该标准适用于公称压力为PN1.0MPa -PN4.0MPa,公称通径为DN50mm-DN120 0mm的多功能水泵控制阀。 现将标准技术要求介绍如下: 1 压力——温度度级 多功能水泵控制阀的压力——温度等级由壳体、内件及控制管系统材料的压力——温度等级确定。多功能水泵控制阀在某一温度下的最大允许工作压力取壳体、内件及控制管系统材料在该温度下最大允许工作压力值中的小值。 1.1 铁制壳体的压力——温度等级应符合GB/T17241.7的规定。 1.2 钢制壳体的压力——温度等级应符合GB/T9124的规定。 1.3 对于GB/T17241.7、GB/T9124未规定压力——温度等级的材料,可按有关标准或设计的规定。 2 阀体 2.1 阀体法兰 法兰应与阀体整体铸成。铁制法兰的型式和尺寸应符合GB/T17241.6的规定,技术条件应符合GB/ T17241.7的规定;钢制法兰的型式和尺寸应符合GB/T9113.1的规定,技术条件应符合GB/T9124的规定。 2.2 阀体结构长度见表1。 2.3 阀体的最小壁厚 铸铁件阀体的最小壁厚应符合GB/T13932-1992中表3的规定,铸钢件阀体的最小壁厚应符合JB/ T8937-1999中表1的规定。 3 阀盖膜片座 3.1 阀盖与膜片座、膜片座与阀体的连接型式应采用法兰式。 3.2 膜片座与阀体的连接螺栓数量不得少于4个。 3.3 阀盖与膜片座的最小壁厚按2.3的要求。 3.4 阀盖与膜片座的法兰应为圆形。法兰密封面的型式可采用平面式、突面式或凹凸式。 4 阀杆、缓闭阀板、主阀板 4.1 缓闭阀板与阀杆应连接紧固、可靠。 4.2 缓闭阀板与主阀板的密封型式应采用金属密封的型式。 4.3 主阀板与阀杆必须滑动灵活、可靠。 4.4 主阀板与主阀板座的密封可采用金属密封和非金属密封两种型式。 5 膜片

棉织物的阻燃整理综述

棉织物的阻燃整理综述 火灾严重威胁人类生命和财产安全。美国雅宝公司 Harry Patient 先生说,全球每年约有 16、5万人因火灾而丧生。火灾事故调查表明:50%左右的火灾由纺织品及室内装饰品引起[1]。在所有的纺织品中,棉织物因具有优异的吸湿透气性、良好的染色性和生态相关性而被广泛使用。但是棉纤维属于易燃纤维,而且燃烧速度快,具有很大的助燃性由棉织物引发的火灾已严重影响人们的生命财产安全。因此,如何提高棉织物的阻燃能力,减少因纺织品引起的火灾,研究纺织阻燃技术,就成了当前的重要课题[2]。棉织物的燃烧实质是纤维素的燃烧,所谓的燃烧通常是指物质氧化产生热量并引起发光的现象,它是一个封闭的链式循环过程。纤维素纤维是一种天然高分子碳水化合物,受热时不熔融,遇火后燃烧较快,热烈解部分产物又会再次燃烧,进一步促进燃烧过程[3]。我国在20世纪50年代开始了纺织品阻燃技术的研究,其中以棉织物作为起步,经过60余年的发展,已经拥有了多种阻燃技术,棉织物阻燃整理技术取得了重大进展[4]。通过研读大量关于棉织物阻燃的文献,本文对棉织物阻燃技术的概况与最新进展进行了归纳总结。首先对阻燃剂的种类与发展进行简要总结,并重点介绍了新型的微胶囊阻燃剂与膨胀阻燃剂,然后对阻燃方法进行简要介绍,并详细介绍了自阻燃纤维接结法、层层自组装阻燃涂层法、电子束

辐照接枝法三种较新的阻燃方法。2、阻燃剂阻燃剂是一种用来改善材料抗燃性的物质,它是可以阻止材料被引燃及抑制火焰传播的化学助剂。阻燃剂种类繁多,主要是以硼、氮、磷、锑、硫、氟、氯、溴等元素为基础的化合物。目前常用的阻燃剂有卤系阻燃剂、磷系阻燃剂、氮系阻燃剂、硼系阻燃剂、硅系阻燃剂以及新型阻燃剂等等[5]。卤系阻燃剂是最早应用的阻燃剂类型,由于其价格低廉、添加量少以及与合成材料的相容性和稳定性好,能保持阻燃剂制品原有的物化性能等特点,使其一度成为最受欢迎的阻燃剂。但是卤系阻燃剂发烟量大,且释放出的卤化氢气体具有强腐烛性,添加在合成材料中的卤系阻燃剂在热裂解过程中会产生有毒物质,潜藏着二次危害[6]。随着人们对环境保护的重视,卤系阻燃剂的使用受到了不同程度的限制,各类阻燃剂的无卤化正成为阻燃剂开发应用的主要趋势。无卤阻燃剂中目前最受欢迎的是有机磷系阻燃剂,它在抑制火焰从与减缓火焰蔓延的作用比卤系大,效果更明显,并且比无机磷系阻燃剂对织物的颜色损害较小,环境危害更小。新开发出来的无机阻燃剂,如硅系阻燃剂、硼系阻燃剂,都是有效的阻燃剂,更重要的是它们在制备过程中不产生甲醛等有害物质,转化率高,属于环境友好型,越来越赢得人们的青睐[6]。2、1 微胶囊阻燃剂微胶囊技术是用天然或人工合成的成膜物质将微量固体或液体物质包覆成为细小颗粒的技术。将阻燃阻燃剂经微胶囊化后,作为芯材的阻燃剂完全与外界隔绝,避免了与人体直接接触只有在遇明火、壁材破裂时

普鲁苯阻燃面料与CP阻燃的异同点

普鲁苯阻燃面料采用在国际上享誉盛名的“普鲁苯(PROBAN)”生产工艺加工而成。所使用的阻燃剂是一种用于棉及其混纺织物,安全环保无毒无味且完全符合OEKO-TEX STANDARD 100 环保认证要求的耐久性阻燃剂。这种水溶性阻燃剂极易渗入纤维内部,经过氨熏化学反应后变成高分子聚合物,形成永久性交联,使其具有耐久性的阻燃性能,且此阻燃性能并不随着洗涤次数的增多而降低。同时这种阻燃整理并不改变织物纤维的原有特性,从而保持了织物的原有性能。这种阻燃布具有遇火炭化、离火自熄、有效防止火焰蔓延的特点,由其制成的防护服可以避免火焰对人体造成伤害,对人体提供有效的安全防护。同时这种阻燃防护服具有优良的耐洗涤性能,无毒无味无刺激,透气透湿,穿着舒适。其环保性能经TESTEX认证符合OEKO-TEX STANDARD 100要求。其阻燃性能、热防护性能经SGS、TUV、MTL、BTTG等机构检 测可达到EN11611(EN470-1)、EN11612(EN531)、ASTMD6413、NFPA2112、BS5852、ASTMF1506、EN50354 等标准。 1、PROBAN?:罗地亚的品牌Proban? 纯棉阻燃处理技术,是法国Rhodia公司的专利。原理是利用聚磷酸化学助剂和独特的整理工艺对棉纤维织物进行处理,使织物遇热碳化加速,形成隔离层,织物就回立即停止燃烧,达到自熄,使燃和阴燃的时间极短而具有阻燃性能。Proban阻燃处理技术处理的布料具有良好的耐洗性能,如果保养得当,衣服使用寿命有多长阻燃性能就有多长,一般来说,清洗50次其阻燃指标仍在标准要求值以内。另外, Proban处理的布料手感没CP的柔软,无异味。 优点:阻燃性能好,强力损伤小(10%以内),成本低。 缺点:甲醛含量>100ppm,不环保,手感粗糙,阻燃后对原布某些色牢度影响大,对染料必须选择。 2、PYROVATEX?:亨斯迈的品牌Pyrovatex? CP New 纯棉阻燃处理技术,是瑞士汽巴精细化工公司的专利。原理是利用Pyrovatex CP New的专利阻燃化学助剂和其工艺技术对棉纤维织物进行处理,大大缩短续燃和阴燃的时间而很快自熄,而具有阻燃性能。Pyrovatex CP New阻燃处理技术处理的布料具有良好的耐洗性能,一般来说,清洗50次其阻燃指标仍在标准要求值以内。另外,Pyrovatex CP New处理的布料手感柔软,无异味,而且达到欧洲的Oeko-Tex Standard 100环保标准,系绿色阻燃产品而对人体无害。技术还可以与抗油拒水,防皱处理等技术结合,生产出多功能的阻燃布料。 优点: 阻燃性能好甲醛含量≤80ppm环保指标符合要求,手感柔软,阻燃后对原布各项色牢度影响小。 缺点:强力损伤大(15-20%),对染料有一定得选择要求,成本太高。

多功能水泵控制阀作用

多功能水泵控制阀作用 何谓多功能水泵控制阀?水泵有什么运行特性需要阀门来控制?水泵控制阀能否实现这些控制?以及它与传统的闸阀、蝶阀、止回阀以及匀速、双速缓闭的水力控制止回阀在原理、功能等方面有什么质的不同。 在本文中以活塞式多功能水泵控制阀(下称控制阀)为例,通过对其结构、主要功能、工作原理的剖析,提出对上述问题的看法,供读者参阅。 一、结构 控制阀结构的主要特点是取消了阀座中间的定位机构和阀瓣上侧的弹簧,而且在阀瓣的下侧设计了导流板,最大限度减少了介质过流时的机械损失和阀瓣下侧穹腔内的旋涡损失。以缸体内的活塞作驱动元件,在介质自身压力作用下带动阀瓣作上下运动,实现阀的开启或关闭。活塞、启闭件、连同缸体配置在阀体上,流线形、宽阀腔的阀体,不但水头损失可以比同类产品减少30%以上,而且具有良好的抗气蚀性能。 以电磁阀换向机构(下称电磁阀)和压力管路组成伺服系统,取控制阀两端的压力水为驱动源,通过电信号指令,任意一端的压力水都能实现水泵控制阀在设定的时刻和速度执行泵的开启或关闭。 二、泵的运行特性与控制阀的功能特点、工作原理 1、泵的启动特性及其控制

a)离心泵的零流量启动特性及其控制(即关阀启动) 离心泵在零流量工况时轴功率最小,为额定轴功率的30%-90%,所以离心泵的启动特性是零流量启动(即关阀启动)。待泵至额定转速之后控制阀按设定的速度缓慢开启。 工作原理:泵启动时(前)压力水经过设有延时的电磁阀流向缸体内活塞上腔,而活塞下腔通过缸体下端经电磁阀通向大气,此时控制阀处于关闭状态。 电动机补偿启动结束,泵正常运转,电磁阀即执行换向指令,切断活塞上腔压力水源、关闭缸体下端通向大气的回路,同时将压力水经电磁阀注入缸内活塞下腔、打开活塞上腔通向大气的回路,活塞上腔的水经电磁阀排出阀外,控制阀按设定的速度缓慢开启,完成并满足了离心泵在零流量时轴功率最小的启动特性,保证泵机组的安全运转。 b)轴流泵的大流量启动特性及其控制(即全开阀启动) 轴流泵在零流量工况时轴功率最大,为额定轴功率的140%~200%,所以轴流泵的启动特性应是大流量启动(即全开阀启动)。 工作原理:控制阀满足轴流泵全开阀启动的工作原理是离心泵关阀启动的逆运行,即电磁阀先工作,将阀全开后,泵再启动。参阅a)条,不赘述。 轴流泵启动前,这时阀的进口压力为零,控制阀利用阀出水端的介质压力将阀开启,而离心泵启动时是利用阀进水端的介质压力将阀开启。无论阀的哪一端介质都能实现控制阀的开或启,这是水泵控制阀功能的重要特征之一。

多功能水泵控制阀的基本构造及工作原理与安装调试

多功能水泵控制阀的基本构造及工作原理与安装调试 (文章来源阳光泵业https://www.wendangku.net/doc/ef15905482.html,) 装设在离心泵出水管上的新型多功能水泵控制阀同时具有闸阀、逆止阀、水锤消除器三种功能。本文介绍了多功能水泵控制阀的构造、性能参数、工作原理、安装调试、注意事项。 一、多重功能水泵控制阀功能要求 离心泵是给排水工程中最常用的一种水泵,通常为了保证水泵的正常运行,在水泵的出水管上根据需要装设有闸阀、逆止阀以及水锤消除器三种阀件,这三种阀件在水泵的运行过程中分别起着不同的作用:闸阀平时是处于关闭状态,水泵启动时闸阀慢慢打开,水泵停机时,闸阀先慢慢关闭。水泵的闭闸启动和闭闸停车,可以有效的防止开泵水锤和停泵水锤,同时,减少了水泵启动时的电机负荷,水泵在零流量时的轴功率最小,一般仅为设计轴功率的30%。闸阀的另一个功能是,当闸阀关闭时,可以为安装在闸阀与水泵之间的逆止阀等阀件和水泵提供安全的检修条件,防止压水管的水回流;逆止阀能防止突然断电时所造成的水流的流向改变,防止倒流;但是,逆止阀的突然关闭易产生水锤现象。在水泵的几何扬水高度较大时,严重的水锤瞬间高压会导致管道破裂,发生严重的生产事故。防止水锤对输水管道的破坏方法,往往在水泵的压水管上安装水锤消除器。为了实现水泵运行的自动化,简化管理,减轻劳动,提高可靠性,人们用水力阀门和电动阀门取代手动阀门,对单体阀门进行多项技术改进,出现了缓开缓闭逆止阀、缓动启闭水力阀门、自动缓闭闸阀、双速自闭阀等新型阀门。 以上措施在应用实践中取得了一定的效果,但仍不尽人意,使用压力传感和电气传动控制复杂故障较多,单一阀门的改进不能解决自动运行的主要问题。所以,人们一直致力于研制一种同时具有闸阀、逆止阀和水锤消除器三种阀件功能的阀门,在减少占地的同时满足上述综合要求。JD745X型多功能水泵控制阀是其中较好的一种,它具有一阀多能、运行可靠、简化操作、便于维护,能按水泵的操作要求自动运行的优点,很受到用户的欢迎。 该型多功能控制水泵阀的工作压力分1.0MPa和1.6MPa、2.5MPa三种,动作压力大于或等于O.1MPa,介质温度在0--80℃,缓闭时间可在3-90s内调节,管道流速2m/s时的压力损失小于0.01MPa,水锤峰值小于1.5倍的工作压力,公称口径DN50-DNl0000。 二、基本构造 阀门的总体尺寸与普通逆止阀相当,由主阀和外装附件组成。其中,主阀包括

各国纺织面料的阻燃标准汇总

各国纺织面料的阻燃标准汇总 美国面料阻燃标准: 1. CA-117在美国是一种广泛使用的一次性防火标准,并不要求经过水后测试,适用多数出口美国的纺织品。 2. CS-191是美国通用的防护服防火标准,强调长期防火性能和穿着舒适性。加工工艺通常是两步合成法或多步合成法,有较高的技术含量和利润附加值。 3. NFPA-701、703是美国消防协会公布的一项防火标准,适用于公共场所的窗帘等不要求耐水的悬挂织物。测试中同时要求吸附干量、手感等理化指标。 4. TB-603全称BHFTI CTB-603 2005年01月01日起在全美实施。主要用于床垫、床褥等床具用品。测试方法为:完整的一张床垫(床褥)用大室燃烧法测试放热数值。 5. NFPA261.94适用于家具覆盖强物,包括沙发等。 6. FAR25-83飞机内装饰织物所要求的防火标准。 英国面料阻燃标准: 1. BS7177(BS5807)适用于英国公共场所的家具及床垫等织物。特别要求防火性能,测试方式严格。火种分为0~7级八个火源,分别对应于低度、中度、高度和极高度危险四个防火等级。 2. BS7175适用于酒店宾馆、娱乐场所及其他人员密集场所的永久性防火标准。测试要求通过Schedule 4 Part 1及Schedule 5 Part 1两种或更多的测试火种。

3. BS7176适用于家具覆盖织物,要求防火和耐水洗,测试时要求织物和填充物同时达Schedule 4 Part 1、Schedule 5 Part 1和烟密度、毒性等测试指标。是比BS7175(BS5852)更为严格的一项衬垫座椅防火标准。 4. BS5452适用于英国公共场所及所有进口家具中的床单及枕头类纺织品,要求经过50次水洗或干洗后仍然能够有效防火。 5.BS5438系列:英国BS5722儿童睡衣;英国BS5815.3床上用品;英国BS6249.1B窗帘。 德国面料阻燃标准: 1. DIN-4102(DIN66084)装饰织物防火标准; 2. DIN23320及DIN54336-80(DIN66083)防护服防火标准; 日本面料阻燃标准: 1. JISL1008-69飞机装饰织物防火标准; 2. JISL1091防护服标准; 3. JIS1201=FMVSS302汽车装饰织物防火标准; 法国面料阻燃标准: 1. NFG07-184防护服面料; 2. NFG92-501-505装饰织物防火标准;

控制阀在水处理中的发展方向

控制阀在水处理中的发展方向 10910030129 肖瑶 摘要:控制阀又称调节阀,是工业过程控制中的主要执行单元仪表,通过接受调节控制单元阀是自控系统中的执行器,它的应用质量直接反应在系统的调节品质上。作为过程控制中的终端元件,人们对它的重要性较过去有了更新的认识。调节阀应用的好坏,除产品自身质量、用户是否正确安装、使用、维护外、正确地计算、选型十分重要。 关键字:控制阀,水处理,流量,发展。 1、控制阀在水处理中的发展方向的目的和意义 控制阀广泛应用于制造业领域,实现优化生产和降低成本的目的。长远来看,控制阀市场会保持适度的增长。水处理中一般采用流量控制阀,流量控制阀是一种采用高精度先导方式控制流量的多功能阀门。适用于配水管需控制流量和压力的管路中,保持预定流量不变,将过大流量限制在一个预定值,并将上游高压适当减低,即使主阀上游的压力发生变化,也不会影响主阀下游的流量。在调节器的低能量级和执行流动流体控制所需的高能级功能之间,最终控制元件完成了必要的功率放大作用,控制阀是最终控制元件的最广泛使用的型式。 2、控制阀在水处理中的发展方向在国内外的现状 从控制阀应用看,发展方向如下:(1)小型执行机构:可降低成本,提高流通能力。(2)套筒导向:采用套筒导向,有利于降低摩擦,有利于降噪,有利于流量特性的互换(3)平衡式阀芯:为降低执行机构推力或推力矩,采用平衡式阀芯是重要的,它对系统的动态性能也有改善(4)一体化阀芯和阀座:为克服双座阀密封性差的缺点,采用相同材质的一体化阀芯和阀座组成阀内件,将泄漏量和不平衡力同时减到最小. 3、控制阀在水处理中的发展方向采用的路线和原理 3.1 原理 控制阀用于调节介质的流量、压力和液位。根据调节部位信号,自动控制阀门的开度,

中国十大循环泵厂家十大厂家

中国十大循环泵厂家十大厂家 1.上海阳光泵业制造有限公司 上海阳光泵业是集设计/生产/销售泵、给水设备及泵用控制设备于一体的大型综合性泵业集团,是中国泵行业的龙头企业。总资产达38亿元,在上海、浙江、河北、辽宁、安徽等省市拥有7家企业,5个工业园区,占地面积67万平方米,建筑面积35万平方米。上海阳光获得了“上海市质量金奖”、“上海市科技百强企业”、“上海市名牌产品”、“中国质量信用AAA 级”、“全国合同信用等级AAA级”、“质量、信誉、服务三优企业”、“中国最具竞争力的商品商标”、“五星级服务认证”等荣誉,连续多年入选全国机械500强。高端人才和高素质的员工队伍是阳光发展的动力。集团现有员工4500余人,其中工程技术人员500多名,主要由国内知名水泵专家教授、博士硕士、中高级工程师、高级工艺师组成,形成了具有创新思维的梯队型人才结构。科技创新,是阳光基业长青的生命之源。集团是上海市高新技术企业、上海市知识产权示范企业和上海市专利示范企业。上海市级的“企业技术中心”,每年以销售总额的5%,用于技术创新和新产品研发。 2.山东大洋矿用设备有限公司

山东大洋矿用设备有限公司主要产品有矿用隔爆潜水泵、矿用排沙泵、矿用潜水泵、矿用排污排沙泵、防爆潜水泵、风动潜水泵、矿用气动隔膜泵等10余个系列140余个品种规格。产品经国家煤矿防爆安全产品质量监督检验中心检验合格,并颁发了“防爆合格证”和安标国家矿用产品安全标志中心发放的“矿用产品安全标志证书”,现公司拥有固定资产净值5000万元,2014年实现销售收入6000万元。公司技术力量雄厚,生产设备及工艺装备齐全,检验手段完善,产品门类齐全。公司建立了健全可靠的质量保证体系,产品实行“三包”,公司被评为市产品质量信得过企业、市高新技术企业、连续三年被评为优秀生产企业。现产品已销往全国十多个省市的各大矿区及各种行业工厂,使用情况反映良好。山东大洋矿用设备有限公司有效的吸收了部分企业先进的管理理念、管理方法和生产技术,不断利用技术和零配件制造上的优势开发出品质优良、性价比高的产品。同时始终坚持“产品求卓越、服务求满意”的方针,本着质量优质、信誉至上、服务优先为原则,进一步提高用户满意度为宗旨,竭诚为广大用户服务。公司经营理念:诚信立商、务实求新、兼取众长、追求卓越!我们愿与中外新老朋友真诚合作,携手共创辉煌! {变量3} 4.青岛硕为自动化设备有限公司 青岛硕为自动化设备有限公司位于山东省青岛市,风景优美,交通便利,地理位置优越。公司集多年研发、生产、施工经验,是一家集自动化系统设计施工、自动化设备生产制造、环保设备生产制造、流体设备代理及制造、防水防腐施工于一体的综合性服务企业。其产品涉及食品、啤酒、饮料、医药、环保、船舶、化工等诸多行业。

纺织品阻燃整理技术的应用及发展

浅析纺织品阻燃整理技术的应用及发展 孙文华 (河南省濮阳市中原油田消防支队,濮阳457001) 提要:阻燃理论的研究是整个阻燃技术的基础,目前国内研究人员已开始重视。一方面要研究各类纤维、织物的燃烧理论,还要研究阻燃剂在纤维上的阻燃机理。随着测试技术手段的发展,这方面的工作已成为可能。燃烧及阻燃理论研究可为寻找新型阻燃剂、确定阻燃方法、提高阻燃水平提供理论依据,具有重要的现实意义。 关键词:阻燃机理阻燃整理技术发展 近年来,世界各国因纺织品引起的火灾不断增加。我国这十几年来,平均每年发生的火灾次数为3—4万起,死亡人数2—3千人,火灾损失折款2—3亿人民币。1985年,哈尔滨天鹅饭店大火死亡十人,受伤七人,直接经济损失24.9万元;1994年,克拉玛依大火,死伤300多人,都是因纺织品燃烧引起的。 阻燃纤维的研究开发——我国阻燃纤维的研究开发起步于70年代;80年代至今,上海、吉林、山东、广东、天津、四川、北京、江苏等省市的一些科研单位、院校及工厂相继对阻燃纤维进行了小试研究,涤纶和丙纶已形成批量生产能力,但总体说来,阻燃纤维产品仍处在研究和试阶段。 一、织物阻燃剂

目前所用的阻燃剂大多是磷、卤素的有机物或有机物加无机物,个别的用高分子物,如环状芳香族磷酸酯、羟乙基四溴双酚A(涤纶);氯化聚两烯、六溴环癸烷、乙二酸(五溴苯)酯、磷酸三溴苯酯-氯化石蜡、六氯环戊二烯的二聚物等(丙纶);含增效剂的卤化物体系、有机磷化物(锦纶);氯乙烯、偏二氯乙烯、溴乙烯、五氧化二锑等(腈纶)及苯氧基磷腈、噻嗡磷酸酯(粘胶)等。 1、阻燃机理: 阻燃剂与燃烧有着密切的关系。最新的观点认为燃烧应有四要素――燃料、热源、氧、链反应。而通常织物燃烧又分为三个阶段,即热分解、热引燃(自燃)、热点燃(燃烧传播),对不同的燃烧阶段的四要素彩相应的阻燃剂加以抵制,就形成了各种各样的阻燃机理及中断相阻燃机理。 对于不同的阻燃机理就产生出不同类型的阻燃剂。而不论何种阻燃剂它的阻燃机理总要设法使织物纤维制品经阻燃处理之后,可能提高其氧指数才是目的。换言之,就是使织物燃烧的临界条件不易达到而实现阻燃的效果。其中,氧指数是一个重要的参数,显然,氧指数越高,阻燃效果越好。通常,氧指数不应小于28,天津消防科研所已经研制出氧指数达到90的阻燃剂。 2、阻燃剂的分类: 针对不同的阻燃机理,就产生了不同的阻燃剂。如无机阻燃剂主要

阻燃面料知识汇总

阻燃面料知识汇总 关键词:面料,阻燃,知识,汇总 阻燃产品包括阻燃剂、阻燃涤纶切片、阻燃涤纶纤维和各种阻燃面料对织物阻燃性,在人们日常生活中,各种火险隐患无所不在。为了减少由于纺织品易燃引起的火灾事故,减少由此造成的对人生命和财产安全的危害,纺织品燃烧性能 的测试受到了世界各国的高度关注。我国在关于阻燃性纺织品的立法和标准化 工作方面也作出了很大的。 一、评判依据:评判织物的阻燃性能通常采用两种依据:一是从织物的燃烧速率来进行评判。即经过阻燃整理的面料按规定的方法与火焰接触一定的时间,然 后移去火焰,测定面料继续有焰燃烧和无焰燃烧的时间,以及面料被损毁的程度。有焰燃烧的时间和无焰燃烧的时间越短,被损毁的程度越低,则表示面料 的阻燃性能越好;反之,则表示面料的阻燃性能不佳。另一种是通过测定 样品的极限氧指数来进行评判。极限氧指数(LOI)是指样品燃烧所需氧气量的表述,故通过测定氧指数即可判定面料的阻燃性能。氧指数越高则说明维持燃 烧所需的氧气浓度越高,即表示越难燃烧。该指数可用样品在氮、氧混合气体 中保持烛状燃烧所需氧气的最小体积百分数来表示。从理论上讲,纺织材料的 氧指数只要大于21%(自然界空气中氧气的体积浓度),其在空气中就有自熄性。根据氧指数的大小,通常将纺织品分为易燃(LOI<20%)、可燃(LOI=20%~26%)、难燃(LOI=26%~34%)和不燃(LOI>35%)四个等级。对纺织品的可燃性表征,可用极限氧指数(LOI)表示,即维持已燃材料继续燃烧所需要的最低含氧体积的百分率。按极限氧指数(LOI)将纺织原料分为4类:不燃(LOI≥35%)纺织品,如多数金属纤维、碳纤维、石棉、硼纤维、玻璃纤维、PBO纤维、PBI(聚 苯并咪唑)纤维、聚酰亚胺纤维等;难燃(LOI="26-34%)纺织品,如芳纶、 氟纶、氯纶、改性腈纶、改性涤纶、改性丙纶、改性维纶、改性粘胶、PPS(聚苯硫醚)、海藻纤维等;" 可燃(LOI≥26%≤34%)纺织品,如涤纶、锦纶、维纶、羊毛、蚕丝、醋酯纤维等;易燃(LOI≤20)纺织品,如丙纶、腈纶、棉、麻、粘胶纤维、竹浆纤维、大豆蛋白纤维、牛奶蛋白纤维等。不燃纤维虽然阻 燃效果好,但多数不适宜穿着或家用,而多数人们常用的天然或化学纤维都是 可燃或易燃的,只有对这类纺织品进行改性或后整理才能提高他们的阻燃性能,也就是将具有阻燃功能的阻燃剂通过各种途径加入到纺织品中才能达到阻燃效果。纤维阻燃的途径是阻止或减少纤维热分解,隔绝或稀释氧气,快速降温使 用其终止燃烧。为实现上述目的,一般是将有阻燃功能的阻燃剂通过聚合物聚合、共混、共聚、复合纺丝、接技改性等加入到化纤中去或用后整理方法将阻 燃剂涂层在纤维表面或渗入纤维内部。在实际应用中,往往采用多种阻燃剂, 以两种以上方式协同效应达到阻燃效果。阻燃纺织品以美国杜邦公司上世纪60 年代生产的Nomex最为著名。其本身具有永久阻燃性以及优良的热稳定性。美 军的防护服装便使用了这种纤维。随着该纤维的广泛应用,杜邦公司又相继开

管力阀技术说明和安装尺寸

管力阀湖南泵阀 管力阀技术说明 一)、产品介绍和用途 管力阀是我公司历时五年研发的最新水泵出口控制阀,是继老式手动控制阀、液控蝶阀、水力控制阀后的第三代新型蝶式多功能水泵控制阀。阀门采用先进的流体设计,能耗低、运行稳,密封效果好,它兼具电动闸阀、电动蝶阀以及止回阀的功能,敏捷的快关速度和可调的泄压时间,能有效消除水锤危害,保护水泵及管网系统安全。该阀适用于自动化给排水泵站的离心泵、混流泵和轴流泵出水管道,设计有膜片式与活塞式两种控制装置,可分别适用于清水、原水类介质和污水、渣浆水类介质。产品类型上,开发有普通型、回水低压型、污水型等五种规格,以满足不同工况需求。 该阀结构紧凑,体积小,重量轻,特别适用于大口径管网系统,可广泛应用于电力、环保、冶金、石化、水司、市政、食品等行业供、排水系统、污水泵房、化工流体等输送系统。 二)、主要技术性能

管力阀湖南泵阀 三)、主要设计制造标准 1.压力试验标准: GB/T13927-92; 法兰标准: 钢制法兰GB9113.1-9113.4;2. 结构长度标准:GB12221-89双法兰系列;3.设计标准: GB/T12236-1989 蝶式止回阀、 4. 使用材料标准:GB/T12229-1989 碳素钢铸件技术条件;5. GB/T12230-1989 奥式体钢铸件技术条件; 6.阀门零部件设计和加工均采用相关国家标准、行业标准; 阀门所用原材料及外购件采用相应国家标准、行业标准和企业标准;. 7四)、 五)、工作原理(如下图示) 1、开阀:初始状态如(1)示,当水泵启动,水压通过进口带微孔止回阀的旁通管,进入控制腔下腔,大阀板在进口端水力作用下,连同小阀板一同缓慢开启,如图(2)示。开阀速度可根据工况要求,调节旁通球阀,以达到最佳效果。 2、关阀:停泵瞬间,阀门进口流量及压力突然降低,大阀板在重力作用下迅速关闭(与密封面接触前,有缓冲保护装置)截断大部分水流,小阀板在控制杆作用下保持)示;同时,一部分回流水通过旁通3压力水,削减水锤峰值,如图(开启泄除回流. 管力阀湖南泵阀

最新多功能水利控制阀

多功能水利控制阀

多功能水利控制阀 和82%。 延续去年的高增长我国风险投资行业迎来“牛市” 在近日召开的“中国创业投资中期论坛”上,创投研究和顾问机构清科公司发布的“2006年上半年创业投资和并购市场报告”认为,中国风险投资行业迎来“牛市”。 据《人民日报》海外版报道,今年上半年风险投资延续了去年的高增长,投资额达7.7亿美元,同比增幅达128%;同时共有20家风险投资机构完成资金募集,筹集资金高达18.49亿美元。从行业上看,IT业成为最大的赢家,吸引了5.62亿美元的风险投资,占上半年总投资额的73%。 清科报告显示,风险投资家开始走“个性化”道路,通过投资阶段、投资领域、投资地区的差异化规避风险。曾经远离风险投资机构视线的医疗、农业、畜牧、矿业和新材料等也逐渐受到青睐。四大银行年报出炉大型商行竞争力提升特色鲜明 近日,四大行年报相继出炉后,国内几大银行2005年的业绩状况也一一展现出来,并形成了对比:建行盈利能力突出,中行延续国际化经营的风格,工行资产规模优势尽显,交行净利润增长最快,招行向零售银行转型初显成效。 四大行的竞争力显著提升,在七月初揭晓的最新一期香港《亚洲周刊》发布的“亚洲银行300强排行榜”上,四大行跻身前十名。 而招商银行也荣获了2006年《亚洲银行家》零售金

水利控制阀>>水泵控制阀>>隔膜式多功能水泵控制阀 产品名 称: 隔膜式多功能水泵控制阀 产品型 号: JD745X(760X型) 产品口 径: DN50~DN450 产品压 力: 0.6~2.5MPa 产品材 质: 铸铁、铸钢、不锈钢等 产品概括:生产标准:国家标准GB、机械标准JB、化工标准HG、美标API、ANSI、德标DIN、日本JIS、JPI、英标BS生产。阀体材质:铜、铸铁、铸钢、碳钢、WCB、WC6、WC9、20#、25#、锻钢、A105、F11、F22、不锈钢、304、304L、316、316L、铬钼钢、低温钢、钛合金钢等。工作压力 1.0Mpa-50.0Mpa。工作温度:-196℃-650℃。连接方式:内螺纹、外螺纹、法兰、焊接、对焊、承插焊、卡套、卡箍。驱动方式:手动、气动、液动、电动。 产品详细信息 隔膜式多功能水泵控制阀产品介绍: 隔膜式多功能水泵控制阀是安装在高层建筑给水系统以及其他给水系统的水泵出口处、防止介质倒流、水锤以及水击现象的智能型阀门。隔膜式多功能水泵控制阀兼具电动阀、逆止阀和水锤消除器三种功能,可有效地提高供水系统的安全可靠性。隔膜式多功能水泵控制阀将缓开、速闭、缓闭消除水锤的技术原理一体化,防止开泵水锤和停泵水锤的产生。只需操作水泵电机启闭按钮,阀门即可按照水泵操作规程自动实现启闭,流量大、压力损失小、隔膜式适用于600口径以下的阀门。 设计制造标准: 结构长度标准:GB/T 12221-2005 连接法兰标准:GB/T 9113 压力温度等级:GB/T 12224-2005 试验检验标准:GB/T 13927-2008 多功能水泵控制阀主要尺寸及重量: D N 5 6 5 8 1 1 2 5 15 20 250 300 350 400 450 500 600

我国纺织品阻燃整理技术的现状及发展趋势

我国纺织品阻燃整理技术的现状及发展趋势 青岛大学纺织服装学院朱平隋淑英安平林王炳 中国纺织大学孙铠 摘要 近年来,世界各国因纺织品引起的火灾不断增加。我国这十几年来,平均每年发生的火灾次数为3—4万起,死亡人数2—3千人,火灾损失折款2—3亿人民币。1985年,哈尔滨天鹅饭店大火死亡十人,受伤七人,直接经济损失24.9万元;1994年,克拉玛依大火,死伤300多人,都是因纺织品燃烧引起的。 我国纺织品阻燃整理技术发展概况; 我国纺织品阻燃技术始于50年代,以研究棉织物暂时性阻燃整理起步,但发展缓慢。60年代才出现耐久性纯棉阻燃纺织品。70年代开发了PyrovatexCP型阻燃剂,并开始了对合成纤维及混纺织物阻燃技术研究阶段。80年代,我国阻燃织物进入了新的发展时期,许多单位开发了棉、涤及混纺织物的阻燃剂及整理技术和阻燃合成纤维。 阻燃纤维的研究开发——我国阻燃纤维的研究开发起步于70年代;80年代至今,上海、吉林、山东、广东、天津、四川、北京、江苏等省市的一些科研单位、院校及工厂相继对阻燃纤维进行了小试研究,涤纶和丙纶已形成批量生产能力,但总体说来,阻燃纤维产品仍处在研究和试阶段。所用的阻燃剂大多是磷、卤素的有机物或有机物加无机物,个别的用高分子物,如环状芳香族磷酸酯、羟乙基四溴双酚A(涤纶);氯化聚两烯、六溴环癸烷、乙二酸(五溴苯 )酯、磷酸三溴苯酯-氯化石蜡、六氯环戊二烯的二聚物等(丙纶);含增效剂的卤化物体系、有机磷化物(锦纶);氯乙烯、偏二氯乙烯、溴乙烯、五氧化二锑等(腈纶)及苯氧基磷腈、噻嗡磷酸酯(粘胶)等。 通过小试或中试鉴定的单位有:A.阻燃涤纶:吉林纺织设计院,青岛大学纺织服装学院(原山东纺织工学院)、上海化纤公司、天津化纤研究所、江苏纺研所等。B.阻燃丙纶:南京化工设计研究院、北京化纤研究所、江苏纺研所、天津合成材料研究所、山东化纤所、山海关化纤厂、广州化纤所等。C.阻燃锦纶:成都科大、四川维纶厂等。D.阻燃腈纶:上海合纤所、上海金山石化、山西煤化所、山东工业大学等。E.阻燃粘胶:上海纺研院、丹东化纤厂、南京化纤厂、上海第三化纤厂、福建南平化纤厂等。 1.绵织物的阻燃整理; 棉织物的阻燃整理发展很快,目前国内比较成熟,阻燃剂基本可以自给,可以工业化生产。 纯棉耐久性阻燃整理大体有下列三种方法: A.Proban/氨熏工艺,Proban法是英国Wilson公司首先用于工业化生产,传统的Proban法是阻燃剂THPC(四羟甲基氯化眆)浸轧后焙烘工艺,改良的方法是Proban/氨熏工艺,工艺流程为:浸轧阻燃整理→烘干→氨熏→氧化→水洗→烘干。国内计有北京光华、江阴印染厂、鞍山棉纺印染厂等引进国外的助剂和设备进行生产。这是目前公认的阻燃效果好、织物降强小、手感影响少的工艺。但由于设备问题限制了其推广。 B.PyrovatexCP整理工艺。国内已有上海农药厂、常州化工研究所、天津合材所、华东理工大学、青岛纺织服装学院等单位生产该助剂。产品的阻燃性能较好,耐久性好,可耐家庭洗涤50次甚至200次以上,手感良好,但强力降低稍大。国内使用该类阻燃剂的厂家二、三十家。 纯棉暂时性、半耐久性阻燃整理——电热毯、墙布、沙发布等织物的阻燃耐洗次数要求不是很高,这类产品做暂时性或半耐久性阻燃整理即可。即能耐1—15次温和洗涤,但不耐皂洗。主要有硼砂-硼酸工艺、磷酸氢二铵工艺、磷酰胺工艺、双氰胺工艺等。上述工艺应用在纯棉织物上工业化生产的不多。青岛大学纺织服装学院的SFR-203属半耐久性阻燃整理剂。 2.毛织物的阻燃整理; 羊毛具有较高的回潮率和含氨量,故有较好的天然阻燃性,但若要求更高的标准,则需进行阻燃整理。最早的羊毛阻燃整理是采用硼砂、硼酸溶液浸渍法,产品用于飞机上的装饰用布。这种方法阻燃效果良好,但不耐水洗。60年代后采用THPC处理,耐洗性较好,

新科阻燃面料欧洲EN45545-2标准

新科阻燃面料欧洲EN45545-2标准 EN45545-2标准为轨道车辆的防火保护-材料及构件的防火性能要求。地铁1号线列车车辆生产采购材料时采用采用不燃、阻燃材料作车身、车厢内部件,防火、防烟、防毒符合欧洲EN45545-2标准。 欧盟机车EN45545-2最新版本标准为EN45545-2:2013。EN45545-2要求用于用于轨道交通车辆上的材料具有阻燃防火、低烟雾释放量、低毒无毒的要求。EN45545-2:2013Railwayapplication-Fireprotectiononrailwayvehiclespart2:Requirementsforfirebe haviourofmaterialsandcomponents(https://www.wendangku.net/doc/ef15905482.html,)。与您分享地铁EN45545-2测试及电缆EN45545-2测试。: 1、地铁一般材料欧盟最新标准EN45545测试 ENISO5658-2:建筑产品垂直结构火焰的扩张 ENISO5660-1:产品热释放率的测试方法 ENISO4589:氧指数测试 ENISO5659-2:烟密度测试 ENISO5659-2:毒性测试 NFX70-100:毒性测试 2、地铁欧盟最新标准电缆EN45545-2测试 EN50266-2-4:电线电缆多根成束垂直燃烧测试(电缆直径≥12mm) EN50305.9.1.1:铁路用薄壁电缆的防火性能测试(6mm<电缆直径<12mm) EN50305.9.1.2:铁路用薄壁电缆的防火性能测试(电缆直径≤6mm)

EN61034-2:电线电缆烟雾浓度测试 EN60332-1-2:电线电缆单根垂直火焰燃烧EN50305.9.2:毒性测试JxkscAH2Vz

阻燃面料阻燃整理工艺介绍

阻燃面料阻燃整理工艺介绍 新科特种纺织在阻燃后整理工艺上一般会有三种方法,客户可以根据自己的需求来选择。这三种工艺分别是Proban阻燃工艺,Pyrovatex CP(汽巴)阻燃工艺和新科自有品牌FRECOTEX。 下面就这三种阻燃工艺的区别来说明一下,普鲁苯Proban是一种用于棉纤维及其混纺织物的耐久性后处理阻燃剂,是目前国际上先进的阻燃技术,经普鲁苯处理的织物既能有效地阻止火焰蔓延,又能保持织物原有性能。Proban 阻燃处理技术处理的面料具有良好的耐洗性能,清洗50次后阻燃指标仍在标准范围内。甲醛含量>300ppm Pyrovatex CP 阻燃处理技术处理的布料具有良好的耐洗性能,一般来说,清洗50次其阻燃指标仍在标准要求值以内。另外,Pyrovatex CP 处理的布料手感柔软,无异味,而且达到欧洲的Oeko-Tex Standard 100环保标准,甲醛含量≤75ppm, 是绿色阻燃产品而且对人体无害。 FRECOTEX生态阻燃面料是新乡市新科特种纺织有限公司自主研发的阻燃系列面料品牌。该面料体现了生态、环保这一主题,符合当今消费趋势。达到欧洲的Oeko-Tex Standard 100环保标准,甲醛含量≤20ppm,具有高强力,高耐晒,高环保等优点。 三种工艺的明显区别就是甲醛含量和环保性能,普鲁苯Proban阻燃性

能很好,但是不能达到Oeko-Tex Standard 100环保标准,成本较低。 Pyrovatex CP 阻燃性能优越,产品环保,但价位偏高。 FRECOTEX生态阻燃面料既可以达到Oeko-Tex Standard 100环保标准,价位又较CP阻燃低,是一款性价比较高的阻燃产品。 客户可以根据自己的不同需求来选择适合自己要求的阻燃面料。

相关文档
相关文档 最新文档