文档库 最新最全的文档下载
当前位置:文档库 › 材料力学课后习题第八章 应力应变状态分析

材料力学课后习题第八章 应力应变状态分析

材料力学课后习题第八章 应力应变状态分析
材料力学课后习题第八章 应力应变状态分析

应力-应变曲线

混凝土是一种复合建筑材料,内部组成结构非常复杂。它是由二相体所组成,即粗细骨料被水泥浆所包裹,靠水泥浆的粘接力,使骨料相互粘接成为整体。如果考虑到带气泡和毛细孔隙的存在,混凝土实际是一种三相体的混合物,不能认为是连续的整体。[2] 1. 普通高强度混凝土只能测出压应力-应变曲线的上升段,因为混凝土一旦出现出裂缝,承力系统在加压过程中积累的大量弹性能突然急剧释放,使得裂缝迅速扩展,试件即刻发生破坏,无法测得应力-应变曲线的下降段。[1] 2. 拟合本文的高强混凝土和纤维与混杂纤维增强高强混凝土的受压本构方程的参数结果 图3和图4为掺杂了纤维与混杂纤维的纤维增强高强混凝土的压缩应力一应变全曲线,由曲线可以看出,纤维与混杂纤维增强高强混凝土则能够准确地测出

完整的压应力.应变曲线.纤维增强高强混凝土和混杂纤维增强高强混凝土的这两种曲线具有相同的形状啪,都由三段组成:线性上升阶段、初裂点以后的非线性上升阶段、峰值点以后的缓慢下降阶段.[2] 3.[3]再生混凝土设计强度等级为C20,C25,C30,C40,再生骨料取代率100%。标准棱柱体试件150mm*150mm*300mm,28天强度测试结果。

“等应力循环加卸载试验方法”测定再生混凝土的应力-应变全曲线,即每次加载至预定应力后再卸载至零,再次进行加载,多次循环后达不到预定应力而自动转向包络线时,进行下一级预定应力的加载。 再生粗骨料来源的地域性和差异性使再生骨料及再生混凝土的力学性能有较大差别。 4.通过对普通混凝土和高强混凝土在单轴收压时的应力应变分析发现,混凝土的弹性模量随混凝土的强度的提高而提高,混凝土弹性段的范围随混凝土强度的提高而增大,混凝土应力应变曲线的下降段,随混凝土强度的提高而越来越陡,混凝土的峰值应变与混凝土的抗压强 度无正比关系。

11弹性力学试题及答案

2012年度弹性力学与有限元分析复习题及其答案 (绝密试题) 一、填空题 1、弹性力学研究弹性体由于受外力作用、边界约束或温度改变等原因而发生的应力、形变和位移。 2、在弹性力学中规定,线应变以伸长时为正,缩短时为负,与正应力的正负号规定相适应。 3、在弹性力学中规定,切应变以直角变小时为正,变大时为负,与切应力的正负号规定相适应。 4、物体受外力以后,其内部将发生内力,它的集度称为应力。与物体的形变和材料强度直接有关的,是应力在其作用截面的法线方向和切线方向的分量,也就是正应力和切应力。应力及其分量的量纲是L -1MT -2。 5、弹性力学的基本假定为连续性、完全弹性、均匀性、各向同性。 6、平面问题分为平面应力问题和平面应变问题。 7、已知一点处的应力分量100=x σMPa ,50=y σMPa ,5010=xy τ MPa ,则主应力 =1σ150MPa ,=2σ0MPa ,=1α6135'ο。 8、已知一点处的应力分量, 200=x σMPa ,0=y σMPa ,400-=xy τ MPa ,则主应力=1σ512 MPa ,=2σ-312 MPa ,=1α-37°57′。 9、已知一点处的应力分量,2000-=x σMPa ,1000=y σMPa ,400-=xy τ MPa ,则主应力 =1σ1052 MPa ,=2σ-2052 MPa ,=1α-82°32′。 10、在弹性力学里分析问题,要考虑静力学、几何学和物理学三方面条件,分别建立三套方程。 11、表示应力分量与体力分量之间关系的方程为平衡微分方程。 12、边界条件表示边界上位移与约束,或应力与面力之间的关系式。分为位移边界条件、应力边界条件和混合边界条件。 13、按应力求解平面问题时常采用逆解法和半逆解法。 14、有限单元法首先将连续体变换成为离散化结构,然后再用结构力学位移法进行求解。其具体步骤分为单元分析和整体分析两部分。 15、每个单元的位移一般总是包含着两部分:一部分是由本单元的形变引起的,另一部分是由于其他单元发生了形变而连带引起的。 16、每个单元的应变一般总是包含着两部分:一部分是与该单元中各点的位置坐标有关的,是各点不相同的,即所谓变量应变;另一部分是与位置坐标无关的,是各点相同的,即所谓常量应变。 17、为了能从有限单元法得出正确的解答,位移模式必须能反映单元的刚体位移和常量应变,还应当尽可能反映相邻单元的位移连续性。 18、为了使得单元内部的位移保持连续,必须把位移模式取为坐标的单值连续函数,为

周建方版材料力学习题解答[第八章01-30]分解

8-1 图8-34所示结构,杆AB 为5号槽钢,许用应力MPa ][1601=σ,杆BC 为矩形截面, mm b 50=,mm h 100=,许用应力MPa ][82=σ,承受载荷kN F 128=,试校核该结 构的强度。 题8-1图 解:由平衡条件解得, kN F F BC 642/==kN F F AB 9.1102 3 = 293.6cm A AB = 2 3105mm A BC ?= []1 2 31601093.6109.110σσ==??==MPa A F AB AB AB []MPa MPa A F BC BC BC 88.12105106423 3=>=??==σσ 8-2 在图8-35所示结构中,钢索BC 由一组直径mm d 2=的钢丝组成。若钢丝的许用应力 MPa ][160=σ,AC 梁受有均布载荷m /kN q 30=,试求所需钢丝的根数。又若将BC 杆 改为由两个等边角钢焊成的组合截面,试确定所需等边角钢的型号。角钢的 MPa ][160=σ。 题8-1图 解:BC 的内力计算:

kN F F C BC 10053 /60sin /===α []23625160 10100mm F A BC BC =?==σ 采用钢丝数:根)(19924 625 4 2 2 =?== π π d A n BC 采用两等边角钢,则型号为 () 2172.62086.3440cm A L BC =?=? 8-3 图8-36为一托架,AC 是圆钢杆,许用应力MPa ][160=钢σ;BC 杆是方木杆,许用应力kN F MPa ][604==- ,木σ 。试选择钢杆圆截面的直径d 及木杆方截面的边长b 。 题8-3图 解:AB 和BC 的内力计算: kN F F BC 2.1081330sin /===α kN tg F F AC 903 2 /60/===α AC 杆:[]MPa d A F AC AC AC 1604 109023=≤?==钢σπσ d ≥27mm BC 杆:[]MPa b A F BC BC BC 4102.1082 3=≤?==木σσ b ≥165mm 8-4 结构受力如图8-37所示,各杆的材料和横截面面积均相等:2200mm A =, MPa ,MPa ,GPa E b s 460280200===σσ。安全系数取51.n =,试确定结构的许可载 荷。当F 为多大时,结构发生断裂破坏?

弹性力学教材习题及解答

1-1. 选择题 a. 下列材料中,D属于各向同性材料。 A. 竹材; B. 纤维增强复合材料; C. 玻璃钢; D. 沥青。 b. 关于弹性力学的正确认识是A。 A. 计算力学在工程结构设计的中作用日益重要; B. 弹性力学从微分单元体入手分析弹性体,因此与材料力学不同,不需要对问题作假设; C. 任何弹性变形材料都是弹性力学的研究对象; D. 弹性力学理论像材料力学一样,可以没有困难的应用于工程结构分析。 c. 弹性力学与材料力学的主要不同之处在于B。 A. 任务; B. 研究对象; C. 研究方法; D. 基本假设。 d. 所谓“完全弹性体”是指B。 A. 材料应力应变关系满足胡克定律; B. 材料的应力应变关系与加载时间历史无关; C. 本构关系为非线性弹性关系; D. 应力应变关系满足线性弹性关系。 2-1. 选择题 a. 所谓“应力状态”是指B。 A. 斜截面应力矢量与横截面应力矢量不同; B. 一点不同截面的应力随着截面方位变化而改变; C. 3个主应力作用平面相互垂直; D. 不同截面的应力不同,因此应力矢量是不可确定的。 2-2. 梯形横截面墙体完全置于水中,如图所示。已知水的比重为 ,试写出墙体横截面边界AA',AB,BB’的面力边界条件。 2-3. 作用均匀分布载荷q的矩形横截面简支梁,如图所示。根据材料力学分析结果,该梁 横截面的应力分量为 试检验上述分析结果是否满足平衡微分方程和面力边界条件。

2-4. 单位厚度的楔形体,材料比重为γ,楔形体左侧作用比重为γ1的液体,如图所示。试写出楔形体的边界条件。 2-5. 已知球体的半径为r,材料的密度为ρ1,球体在密度为ρ1(ρ1>ρ1)的液体中漂浮,如图所示。试写出球体的面力边界条件。

材料力学第二版范钦珊高教版答案 第八章

习题9-38图 1-6 CABBBC 9-38 加固后的吊车主梁如图所示。梁的跨度l = 8m ,许用应力][σ= 100MPa 。试分析当小车行走到什么位置时,梁内弯矩最大,并计算许可载荷(小车对梁的作用可视为集中力)。 解:1.小车行至梁中间时,梁内弯矩最大。 P P 1242F F M =?= 823 81103467.1)16367512 675(21010755.1?=??+?+?=z I mm 4 4351 110113.8mm 10113.8166 -?=?== z z I W m 3 ][11σ≤z W M ,即 6 4 P 1010010113.82?≤?-F 56.40P ≤F kN (1) 2.小车行至离两端1.4 m 处 P P 2155.14.18) 4.18(F F M =?-= 4110922.6-?=z W m 3 ][22 σ≤z W M ,即64 P 1010010 922.6155.1+-?≤?F 9.59P ≤F kN (2) 比较(1)、(2),得 [F P ] = 40.56 kN 9-42 简支梁受力如图所示。采用普通热轧工字型钢,且已知][σ= 160MPa 。试确定工字型钢型号,并按最大切应力准则对梁的强度作全面校核。 解:1.F R A = F R B = 180kN (↑) 75.885.0102 1 5.01802=??-?==D C M M kN ·m 1002102 1 5.116021802max =??-?-?==M M E kN ·m 175105.0180Q =?-=C F kN ][max max σσ≤= W M 46 3max 10 25.61016010100][-?=??=≥σM W m 3 查型钢表,选工字钢No.32a : W = 692.2 cm 2,I z = 11075.5 cm 4 46.27=z z S I cm E 截面: 5.144max max == W M σMPa 180 175) kN (Q F A C 15 15 B D 175E A C E D B 88.7588.75 100 M m -kN (a)

《材料力学》第8章 组合变形及连接部分的计算 习题解

第八章 组合变形及连接部分的计算 习题解 [习题8-1] 14号工字钢悬臂梁受力情况如图所示。已知m l 8.0=,kN F 5.21=, kN F 0.12=,试求危险截面上的最大正应力。 解:危险截面在固定端,拉断的危险点在前上角点,压断的危险点在后下角,因钢材的拉压 性能相同,故只计算最大拉应力: 式中,z W ,y W 由14号工字钢,查型钢表得到3 102cm W z =,3 1.16cm W y =。故 MPa Pa m m N m m N 1.79101.79101.168.0100.11010228.0105.2363 63363max =?=???+?????=--σ [习题8-2] 受集度为 q 的均布荷载作用的矩形截面简支梁,其荷载作用面与梁的纵向对称面间的夹角为 030=α,如图所示。已知该梁材料的弹性模量 GPa E 10=;梁的尺寸为 m l 4=,mm h 160=,mm b 120=;许用应力MPa 12][=σ;许用挠度150/][l w =。试校核梁的强度和刚度。

解:(1)强度校核 )/(732.1866.0230cos 0m kN q q y =?== (正y 方向↓) )/(15.0230sin 0m kN q q z =?== (负z 方向←) )(464.34732.181 8122m kN l q M y zmaz ?=??== 出现在跨中截面 )(24181 8122m kN l q M z ymaz ?=??== 出现在跨中截面 )(51200016012061 61322mm bh W z =??== )(3840001201606 1 61322mm hb W y =??== 最大拉应力出现在左下角点上: y y z z W M W M max max max + = σ MPa mm mm N mm mm N 974.1138400010251200010464.33 636max =??+??=σ 因为 MPa 974.11max =σ,MPa 12][=σ,即:][max σσ< 所以 满足正应力强度条件,即不会拉断或压断,亦即强度上是安全的。 (2)刚度校核 =

应力-应变曲线

应力-应变曲线 MA 02139,剑桥 麻省理工学院 材料科学与工程系 David Roylance 2001年8月23日 引言 应力-应变曲线是描述材料力学性能的极其重要的图形。所有学习材料力学的学生将经 常接触这些曲线。这些曲线也有某些细微的差别,特别对试验时会产生显著的几何变形的塑 性材料。在本模块中,将对表明应力-应变曲线特征的几个点作简略讨论,使读者对材料力 学性能的某些方面有初步的总体了解。本模块中不准备纵述“现代工程材料的应力-应变曲 线”这一广阔的领域,相关内容可参阅参考文献中列出的博依(Boyer )编的图集。这里提 到的几个专题——特别是屈服和断裂——将在随后的模块中更详尽地叙述。 “工程”应力-应变曲线 在确定材料力学响应的各种试验中,最重要的恐怕就是拉伸试验1 了。进行拉伸试验时, 杆状或线状试样的一端被加载装置夹紧,另一端的位移δ是可以控制的,参见图1。传感器 与试样相串联,能显示与位移对应的载荷)(δP 的电子读数。若采用现代的伺服控制试验机, 则允许选择载荷而不是位移为控制变量,此时位移)(P δ是作为载荷的函数而被监控的。 图1 拉伸试验 在本模块中,应力和应变的工程测量值分别记作e σ和e ε, 它们由测得的载荷和位移值,及试样的原始横截面面积和原始长度按下式确定 0A 0L 1 应力-应变试验及材料力学中几乎所有的试验方法都由制定标准的组织,特别是美国试验和材料学会 (ASTM)作详尽的规定。金属材料的拉伸试验由ASTM 试验E8规定;塑料的拉伸试验由ASTM D638规定; 复合材料的拉伸试验由ASTM D3039规定。

材料力学精选练习题答案

材料力学精选练习题答案 一、是非题 1.1 材料力学主要研究杆件受力后变形与破坏的规律。 1.内力只能是力。 1.若物体各点均无位移,则该物体必定无变形。 1.截面法是分析应力的基本方法。二、选择题 1.构件的强度是指,刚度是指,稳定性是指。 A. 在外力作用下构件抵抗变形的能力 B. 在外力作用下构件保持其原有的平衡状态的能力 C. 在外力作用下构件抵抗破坏的能力 1.根据均匀性假设,可认为构件的在各点处相同。 A. 应力 B. 应变 C. 材料的弹性常数 D. 位移 1.下列结论中正确的是 A. 内力是应力的代数和 B. 应力是内力的平均值 C. 应力是内力的集度 D. 内力必大于应力 参考答案:1.1 √ 1.× 1.√ 1.× 1.C,A,B 1.C 1.C 轴向拉压 一、选择题 1. 等截面直杆CD位于两块夹板之间,如图示。杆件与夹板间的摩擦力与杆件自重保持平衡。设杆CD两侧的摩擦力沿轴线方向均匀分布,且两侧摩擦力的集度均为q,杆

CD的横截面面积为A,质量密度为?,试问下列结论中哪一个是正确的? q??gA; 杆内最大轴力FNmax?ql;杆内各横截面上的轴力FN? ?gAl 2 ; 杆内各横截面上的轴力FN?0。 2. 低碳钢试样拉伸时,横截面上的应力公式??FNA适用于以下哪一种情况? 只适用于?≤?p;只适用于?≤?e; 3. 在A和B 和点B的距离保持不变,绳索的许用拉应力为[? ]取何值时,绳索的用料最省? 0; 0; 5; 0。 4. 桁架如图示,载荷F可在横梁DE为A,许用应力均为[?]。求载荷F 的许用值。以下四种答案中哪一种是正确的? [?]A2[?]A ;; 32 [?]A; [?]A。 5. 一种是正确的? 外径和壁厚都增大;

工程力学--材料力学(北京科大、东北大学版)第4版第八章习题答案复习课程

工程力学--材料力学(北京科大、东北大学版)第 4 版第八章习 题答案

第八章 习题 8-1斜杆AB的截面为100X100mm2的正方形,若P=3kN,试求其最大拉应力和最大压应力 8-2水塔受水平风力的作用,风压的合力P=60kN.作用在离地面高 H=15m的位置,基础入土深h=3m设土的许用压应力[? =0.3MPa,基础的直径d=5m为使基础不受拉应力最大压应力又不超过[6],求水塔连同基础的总重G允许的范围。

题£-2图 8-3悬臂吊车如图所示起重量(包括电葫芦)G=30kN衡量BC为工字钢, 许用应力v ]=140MPa,试选择工字钢的型号(可近似按 e =,竖杆的矩形截面尺寸a 注材料是3号钢,込^咧, 规定安全系数=1.5。试校核竖杆的强度。

题8-4图 8-5若在正方形截面短柱的中间处开一个槽,使截面面积减小为原截面面 积的一半,问最大压应力将比不开槽时增大几倍? 题8-E 8-6图示一矩形截面杆,用应变片测得杆件上、下表面的轴向应变分别为一材料的弹性模量 E = 21^GPa 77 才 少:

(1) 试绘制横截面的正应力分布图。 (2) 求拉力P及其偏心距e的数值。 题8-5图 8-7 一矩形截面短柱,受图示偏心压力P作用,已知许用拉应力 [皿临⑷注许用压应力[代]曲张求许用压力 题8 7图 8-8加热炉炉门的升降装置如图所示。轴AB的直径d=4cm, CD为仆的矩形截面杆,材料都是Q235钢,3 ?仙化已 知力P=200N。 (1) 试求杆CD的最大正应力; (2) 求轴AB的工作安全系数。

提示:CD杆是压缩与弯曲的组合变形问题。AB轴是弯曲与扭转的组合变形构件,E处是危险截面,M=154.5N*m,T=173.2 N*m。 8-9 一轴上装有两个圆轮如图所示,P、Q两力分别作用于两轮上并处于平衡状态。圆轴直径d=110mm, 01=6OMpa,试按照第 四强度理论确定许用载荷。 題K-S图 8-10铁道路标的圆信号板,装在外径D=60mm的空心圆柱上。若信号板上作用的最大风载的强度p=2kPa,已知门他如, 试按第三强度理论选定空心柱的壁厚占。

材料力学习题01拉压剪切

拉伸与压缩 一、 选择题 (如果题目有5个备选答案选出其中2—5个正确答案,有4个备选答案选出其中一个正确答案。) 1.若两等直杆的横截面面积为A ,长度为l ,两端所受轴向拉力均相同,但材料不同,那么下列结论正确的是( )。 A .两者轴力相同应力相同 B .两者应变和仲长量不同 C .两者变形相同 D .两者强度相同 E .两者刚度不同 2.一圆截面直杆,两端承受拉力作用,若将其直径增大一倍,其它条件不变,则( )。 A .其轴力不变 B .其应力将是原来的1/4 C .其强度将是原来的4倍 D .其伸长量将是原来的1/4 E .其抗拉强度将是原来的4倍 3.设ε和1ε分别表示拉压杆的轴向线应变和横向线应变,μ为材料的泊松比,则下列结论正确的是( )。 A .εεμ1= B .εεμ1-= C .ε ε μ1= D .ε εμ1 - = E .常数时, =≤μσσ p 4.钢材经过冷作硬化处理后,其性能的变化是( )。 A .比例极限提高 B .屈服极限提高 C .弹性模量降低 D .延伸率提高 E .塑性变形能力降低 5.低碳钢的拉伸σ-ε曲线如图1-19所示若加载至强化阶段的C 点,然后卸载,则应力回到零值的路径是( )。 A .曲线cbao B .曲线cbf (bf ∥oa ) C .直线ce (ce ∥oa ) D .直线cd (cd ∥o σ轴)

6.低碳钢的拉伸σ-ε曲线如图l —19,若加载至强化阶段的C 点时,试件的弹性应变 和塑性应变分别是( )。 A .弹性应变是of B .弹性应变是oe C .弹性应变是ed D .塑性应变是of E .塑性应变是oe 7.图l-2l 表示四种材料的应力—应变曲线,则: (1)弹性模量最大的材料是( ); (2)强度最高的材料是( ); (3)塑性性能最好的材料是( )。 8.等截面直杆承受拉力,若选用三种不同的截面形状:圆形、正方形、空心圆,比较材料用量,则( )。 A .正方形截面最省料 B .圆形截面最省料 C .空心圆截面最省料 D .三者用料相同 9.若直杆在两外力作用下发生轴向拉伸(压缩)变形,则此两外力应满足的条件是 A .等值 B .反向 C .同向 D .作用线与杆轴线重合 E .作用线与轴线垂直 10.轴向受拉杆的变形特征是( )。 A .轴向伸长横向缩短 B .横向伸长轴向缩短 C .轴向伸长横向伸长 D .横向线应变与轴向线应变正负号相反 E .横向线应变ε'与轴向线应变ε的关系是μεε=' 11.低碳钢(等塑性金属材料)在拉伸与压缩时力学性能指标相同的是( )。 A .比例极限 B .弹性极限 C .屈服极限 D .强度极限 E .弹性模量 12.材料安全正常地工作时容许承受的最大应力值是( )。 A .p σ B .σ C .b σ D .][σ 13.拉杆的危险截面一定是全杆中( )的横截面。 A .轴力最大 B .面积最小 C .应力σ最大 D .位移最大 E .应变ε最大 14.若正方形横截面的轴向拉杆容许应力][σ=100 MPa ,杆两端的轴向拉力N =2.5 kN ,根据强度条件,拉杆横截面的边长至少为 ( )。 A . m 2500100 B .m 1005.2 C .m 100 2500 D .mm 5 15.长度、横截面和轴向拉力相同的钢杆与铝杆的关系是两者的( )。 A .内力相同 B .应力相同 C. 容许荷载相同 D .轴向线应变相同 E .轴向伸长量相同 16.长度和轴向拉力相同的钢拉杆①和木拉杆②,如果产生相同的伸长量,那么两者 之间的关系是( )。 A .21εε= B .1σ>2σ C .1σ=2σ D .1A >2A E .1A <2A (其中1ε、1σ、1A 为钢杆的应变、应力和横截面面积,2ε、2σ、2A 为木杆的应变、应力和横截面面积。)

材料力学第八章复习题

材料力学第八章复习题

第八章 应力状态分析 1.矩形截面简支梁受力如图(a )所示,横截面上各点的应力状态如图(b )所示。关于他们的正确性,现有种答案: (A )点1、2的应力状态是正确的;(B )点2、3的应力状态是正确的; (C )点3、4的应力状态是正确的;(D )点1、5的应力状态是正确的; (

xy y x τσσ==; 正确答案是 。 4.对于图示三种应力状态(a )、(b )、(c ) 之间有下列四种答案 : (A )三种应力状态均相同; (B )三种应力状态均不同; (C )(b )和(c )相同; (D )(a )和(c )相同; 正确答案是 。 τ o o (a (b (c

5.直径为d 的圆截面杆,两端受扭转力偶m 作用。设 ?=45α,关于下列结论(E 、v 分别表示材料的弹性模量和泊松比) 1) 在A 、B 、C 点均有0==y x εε; 2) 在点C 处,()3 /16d m πσα -=; 3) 在点C 处,)]/(16[]/)1[(3 d m E v πεα ?+-=; 现有四种答案: (A )1)、2)正确; (B )2)、3)正确; 3)正确; (D 正确答案是 。 A B C

6.广义虎克定律适用范围,有下列四种答案: ( A ) 脆 性 材 料 ; (B )塑性材料; (C )材料为各向同性,且处于线弹性范围内; (D )任何材料; 正确答案是 。 7.单元体如图,其中 0,0>z ε; (B )0

应力应变曲线

应力应变曲线 stress-strain curve 在工程中,应力和应变是按下式计算的: 应力(工程应力或名义应力)ζ=P/A。,应变(工程应变或名义应变)ε=(L-L。)/L。 式中,P为载荷;A。为试样的原始截面积;L。为试样的原始标距长度;L 为试样变形后的长度。 这种应力-应变曲线通常称为工程应力-应变曲线,它与载荷-变形曲线相似,只是坐标不同。从此曲线上,可以看出低碳钢的变形过程有如下特点:当应力低于ζe 时,应力与试样的应变成正比,应力去除,变形消失,即试样处于弹性变形阶段,ζe 为材料的弹性极限,它表示材料保持完全弹性变形的最大应力。 当应力超过ζe 后,应力与应变之间的直线关系被破坏,并出现屈服平台或屈服齿。如果卸载,试样的变形只能部分恢复,而保留一部分残余变形,即塑性变形,这说明钢的变形进入弹塑性变形阶段。ζs称为材料的屈服强度或屈服点,对于无明显屈服的金属材料,规定以产生0.2%残余变形的应力值为其屈服极限。 当应力超过ζs后,试样发生明显而均匀的塑性变形,若使试样的应变增大,则必须增加应力值,这种随着塑性变形的增大,塑性变形抗力不断增加的现象称为加工硬化或形变强化。当应力达到ζb时试样的均匀变形阶段即告终止,此最大应力ζb称为材料的强度极限或抗拉强度,它表示材料对最大均匀塑性变形的抗力。 在ζb值之后,试样开始发生不均匀塑性变形并形成缩颈,应力下降,最后应力达到ζk时试样断裂。ζk为材料的条件断裂强度,它表示材料对塑性的极限抗力。 上述应力-应变曲线中的应力和应变是以试样的初始尺寸进行计算的,事实上,在拉伸过程中试样的尺寸是在不断变化的,此时的真实应力S应该是瞬时载荷(P)除以试样的瞬时截面积(A),即:S=P/A;同样,真实应变e应该是瞬时伸长量除以瞬时长度de=dL/L。下图是真应力-真应变曲线,它不像应力-应变曲线那样在载荷达到最大值后转而下降,而是继续上升直至断裂,这说明金属在塑性变形过程中不断地发生加工硬化,从而外加应力必须不断增高,才能使变形继续进行,即使在出现缩颈之后,缩颈处的真实应力仍在升高,这就排除了应力-应变曲线中应力下降的假象。 应力-应变曲线是描述材料力学性能的极其重要的图形。所有学习材料力学的学生将经常接触这些曲线。这些曲线也有某些细微的差别,特别对试验时会产生显著的几何变形的塑性材料。在本模块中,将对表明应力-应变曲线特征的几个点作简略讨论,使读者对材料力学性能的某些方面有初步的总体了解。本模块中不准备纵述“现代工程材料的应力-应变曲线”这一广阔的领域,相关内容可参阅参考文献中列出的博依(Boyer)编的图集。这里提到的几个专题——特别是屈服和断裂——将在随后的模块中更详尽地叙述。 “工程”应力-应变曲线 在确定材料力学响应的各种试验中,最重要的恐怕就是拉伸试验1了。进行拉伸试验时,杆状或线状试样的一端被加载装置夹紧,另一端的位移δ是可以

材料力学答案 第八章

习题9-38图 1-6 CABBBC 9-38 加固后的吊车主梁如图所示。梁的跨度l = 8m ,许用应力][σ= 100MPa 。试分析当小车行走到什么位置时,梁内弯矩最大,并计算许可载荷(小车对梁的作用可视为集中力)。 解:1.小车行至梁中间时,梁内弯矩最大。 P P 1242F F M =?= 823 8 1103467.1)16367512 675( 21010755.1?=??+?+?=z I mm 4 4351110113.8mm 10113.8166-?=?==z z I W m 3 ][11σ≤z W M ,即64P 1010010 113.82?≤?-F 56.40P ≤F kN (1) 2.小车行至离两端1.4 m 处 P P 2155.14.18) 4.18(F F M =?-= 4110922.6-?=z W m 3 ][22σ≤z W M ,即64 P 1010010 922.6155.1+-?≤?F 9.59P ≤F kN (2) 比较(1)、(2),得 [F P ] = 40.56 kN 9-42 简支梁受力如图所示。采用普通热轧工字型钢,且已知][σ= 160MPa 。试确定工字型钢型号,并按最大切应力准则对梁的强度作全面校核。 解:1.F R A = F R B = 180kN (↑) 75.885.0102 1 5.01802=??-?==D C M M kN ·m 1002102 1 5.116021802max =??-?-?==M M E kN ·m 175105.0180Q =?-=C F kN ][max max σσ≤= W M 46 3 max 1025.610 16010100][-?=??=≥σM W m 3 查型钢表,选工字钢No.32a : W = 692.2 cm 2,I z = 11075.5 cm 4 46.27=z z S I cm E 截面: 180 175) k N (Q F A C 15 15B D 175 E A C E D B 88.75 88.75 100 M m -kN

工程力学--材料力学(北京科大、东北大学版)第4版第八章习题答案

第八章 习题 8-1斜杆AB的截面为100×100mm2的正方形,若P=3kN,试求其最大拉应力和最大压应力。 8-2水塔受水平风力的作用,风压的合力P=60kN.作用在离地面高H=15m 的位置,基础入土深 h=3m 设土的许用压应力[б] =0.3MPa,基础的直径d=5m 为使基础不受拉应力最大压应力又不超过[б],求水塔连同基础的总重G允许的范围。

8-3悬臂吊车如图所示起重量(包括电葫芦)G=30kN衡量BC 为工字钢,许用应力[]=140MPa,试选择工字钢的型号(可近似按G行至梁中点位置计算) 8-4 如图所示,已知,偏心距,竖杆的矩形截面 尺寸材料是3号钢,, 规定安全系数=1.5。试校核竖杆的强度。 8-5 若在正方形截面短柱的中间处开一个槽,使截面面积减小为原截面面积的一半,问最大压应力将比不开槽时增大几倍?

8-6 图示一矩形截面杆,用应变片测得杆件上、下表面的轴向应变分别为材料的弹性模量 。 (1)试绘制横截面的正应力分布图。 (2)求拉力P及其偏心距e的数值。 8-7 一矩形截面短柱,受图示偏心压力P作用,已知许用拉应力许用压应力求许用压力 。

8-8 加热炉炉门的升降装置如图所示。轴AB的直径d=4cm,CD 为的矩形截面杆,材料都是Q235钢,已 知力P=200N。 (1)试求杆CD的最大正应力; (2)求轴AB的工作安全系数。 提示:CD杆是压缩与弯曲的组合变形问题。AB轴是弯曲与扭转的组合变形构件,E处是危险截面,M=154.5N*m,T=173.2 N*m。 8-9 一轴上装有两个圆轮如图所示,P、Q两力分别作用于两轮上并处于平衡状态。圆轴直径d=110mm,=60Mpa,试按照第 四强度理论确定许用载荷。

《材料力学》期末复习题

1、解释:形变(应变)强化、弹性变形、刚度、弹性不完整性、弹性后效、弹性滞后、Bauschinger效应、应变时效、韧性、脆性断裂、韧性断裂、平面应力状态、平面应变状态、低温脆性、高周疲劳、低周疲劳、疲劳极限、等强温度、弹性极限、疲劳极限、应力腐蚀开裂、氢脆、腐蚀疲劳、蠕变极限、持久强度、松弛稳定性、磨损。 2.弹性滞后环是由于什么原因产生的。材料的弹性滞后环的大小对不同零件有不同的要求? 弹性滞后环是由于材料的加载线和卸载线不重合而产生的。对机床的底座等构件,为保证机器的平稳运转,材料的弹性滞后环越大越好;而对弹簧片、钟表等材料,要求材料的弹性滞后环越小越好。3.断口的三个特征区?微孔聚集型断裂、解理断裂和沿晶断裂的微观特征分别为? 断口的三要素是纤维区、放射区和剪切唇。微孔聚集型断裂的微观特征是韧窝;解理断裂的微观特征主要有解理台阶和河流和舌状花样;沿晶断裂的微观特征为石状断口和冰糖块状断口。 4.应力状态系数α值大小和应力状态的软硬关系。为测量脆性材料的塑性,常选用应力状态系数α值(大)的实验方法,如(压缩)等。 5. 在扭转实验中,塑性材料的断口方向及形貌,产生的原因?脆性材料的断口的断口方向及形貌,产生的原因? 在扭转试验中,塑性材料的断裂面与试样轴线垂直;脆性材料的断裂面与试样轴线成450。 6. 材料截面上缺口的存在,使得缺口根部产生(应力集中)和(双(三)向应力),试样的屈服强度(升高),塑性(降低)。 7. 低温脆性常发生在具有什么结构的金属及合金中,在什么结构的金属及合金中很少发现。 低温脆性常发生在具有体心立方结构的金属及合金 中,而在面心立方结构的金属及合金中很少发现。 8. 按断裂寿命和应力水平,疲劳可分为?疲劳断口的典型特征是? 9.材料的磨损按机理可分为哪些磨损形式。 10. 不同加载试验下的应力状态系数分别为多少? 11. 材料的断裂按断裂机理可分为?按断裂前塑性变形大小可分为? 答:材料的断裂按断裂机理分可分为微孔聚集型断裂,解理断裂和沿晶断裂;按断裂前塑性变形大小分可分为延性断裂和脆性断裂。微孔聚集型断裂的微观特征是韧窝;解理断裂的微观特征主要有解理台阶和河流和舌状花

本章应力和应变分析与强度理论的知识结构框图

本章应力和应变分析与强度理论重点、难点、考点 本章重点是应力状态分析,要掌握二向应力状态下斜截面上的应力、主应力、主平面方位及最大切应力的计算。能够用广义胡克定律求解应力和应变关系。理解强度理论的概念,能够

按材料可能发生的破坏形式,选择适当的强度理论。 难点主要有 ① 主平面方位的判断。当由解析法求主平面方位时,结果有两个相差 90 ”的方位角,一般不容易直接判断出它们分别对应哪一个主应力,除去直接将两个方位角代人式中验算确定的方法外,最简明直观的方法是利用应力圆判定,即使用应力圆草图。还可约定y x σσ≥,则两个方位中绝对值较小的角度对应max σ所在平面。 ② 最大切应力。无论何种应力状态,最大切应力均为2/)(31max σστ-=,而由式( 7 一 l )中第二式取导数0d d =α τα得到的切应力只是单元体的极值切应力,也称为面内最大切应力,它仅对垂直于Oxy 坐标平面的方向而言。面内最大切应力不一定是一点的所有方位面中切应力的最大值,在解题时要特别注意,不要掉人“陷阱”中。 本章主要考点: ① 建立一点应力状态的概念,能够准确地从构件中截取单元体。 ② 二向应力状态下求解主应力、主平面方位,并会用主单元体表示。会计算任意斜截面上的应力分量。 ③ 计算单元体的最大切应力。 ④ 广义胡克定律的应用。 ⑤ 能够选择适当的强度理论进行复杂应力状态下的强度计算,会分析简单强度破坏问题的原因。 本章习题大致可分为四类: ( l )从构件中截取单元体这类题一般沿构件截面截取一正六面体,根据轴力、弯矩判断横截面上的正应力方向,由扭矩、剪力判断切应力方向,单元体其他侧面上的应力分量由力平衡和切应力互等定理画完整。特别是当单元体包括构件表面(自由面)时,其上应力分量为零。 ( 2 )复杂应力状态分析一般考题都不限制采用哪一种方法解题,故最好采用应力圆分析,它常常能快速而有效地解决一些复杂的问题。 ( 3 )广义胡克定律的应用在求解应力与应变关系的题目中,不论构件的受力状态,均采用广义胡克定律,即可避免产生不必要的错误,因为广义胡克定律中包含了其他形式的胡克定律。 ( 4 )强度理论的应用对分析破坏原因的概念题,一般先分析危险点的应力状态,根据应力状态和材料性质,判断可能发生哪种类型的破坏,并选择相应的强度理论加以解释。计算题一般为组合变形构件的强度分析(详见第 8 章)与薄壁容器的强度分析,薄壁容器可利用平衡条件求出横截面与纵向截面上的正应力,由于容器的对称性,两平面上无切应力,故该应力即为主应力,并选择第三或第四强度理论进行强度计算。

材料力学第八章复习题

第八章 应力状态分析 1.矩形截面简支梁受力如图(a )所示,横截面上各点的应力状态如图(b ) 所示。关于他们的正确性,现有种答案: (A )点1、2的应力状态是正确的;(B )点2、3的应力状态是正确的; (C )点3、4的应力状态是正确的;(D )点1、5的应力状态是正确的; 正确答案是 。 2.已知单元体AB 、BC 面上只作用有剪应力 τ ,现关于AC 面上应力有下 列四种答案: (A )2/ττ=AC ,0=AC σ; (B )2/ττ=AC ,2/3τσ=AC ; (C )2/ττ=AC ,2/3τσ-=AC ; (D )2/ττ-=AC ,2/3τσ=AC ; 正确答案是 。 3.在平面应力状态下,对于任意两斜截面上的正应力 βασσ= 成立的充分 必要条件,有下列四种答案: (A )y x σσ=,0≠xy τ; (B )y x σσ=,0=xy τ; (C )y x σσ≠,0=xy τ; (D )xy y x τσσ==; 正确答案是 。 C τ (a) (b)

4.对于图示三种应力状态(a )、(b )、(c )之间有下列四种答案 : (A )三种应力状态均相同; (B )三种应力状态均不同; (C )(b )和(c )相同; (D )(a )和(c )相同; 正确答案是 。 5.直径为d 的圆截面杆,两端受扭转力偶m 作用。设 ?=45α,关于下列结 论(E 、v 分别表示材料的弹性模量和泊松比) 1) 在A 、B 、C 点均有0==y x εε; 2) 在点C 处,() 3 /16d m πσα-=; 3) 在点C 处,)]/(16[]/)1[(3 d m E v πεα?+-=; 现有四种答案: (A )1)、2)正确; (B )2)、3)正确; (C )1)、3)正确; (D ) 全正确; 正确答案是 。 6.广义虎克定律适用范围,有下列四种答案: (A )脆性材料; (B )塑性材料; (C )材料为各向同性,且处于线弹性范围内; (D )任何材料; 正确答案是 。 τ (a) (b) (c) m A C

坝体的有限元建模与应力应变分析1

Project2 坝体的有限元建模与应力应变分析 计算分析模型如图2-1 所示, 习题文件名: dam 。 图2-1 坝体的计算分析模型 选择单元类型Solid Quad 4node 42 Options… →select K3: Plane Strain 定义材料参数EX:2.1e11, PRXY:0.3 模型施加约束 ? 分别给下底边和竖直的纵边施加x 和y 方向的约束 ? 给斜边施加x 方向的分布载荷: ANSYS 命令菜单栏: Parameters →Functions →Define/Edit →1) 在下方的下拉列表框内选择x ,作为设置的变量;2) 在Result 窗口中出现{X},写入所施加的载荷函数:1000*{X}; 3) File>Save(文件扩展名:func) →返回:Parameters →Functions →Read from file :将需要的.func 文件打开,任给一个参数名,它表示随之将施加的载荷→OK →ANSYS Main Menu: Solution →Define Loads →Apply →Structural →Pressure →On Lines →拾取斜边;OK →在下拉列表框中,选择:Existing table →OK →选择需要的载荷参数名→OK 单元控制 纵边20等分;上下底边15等分 结果显示 ANSYS Main Menu: General Postproc →Plot Results →Deformed Shape… → select Def + Undeformed →OK (back to Plot Results window)→Contour Plot →Nodal Solu… →select: DOF solution, UX,UY, Def + Undeformed , Stress ,SX,SY,SZ, Def + Undeformed →OK

材料力学第八章习题选及其解答

8-3. 图示起重架的最大起吊重量(包括行走小车等)为P=40kN ,横梁AC 由两 根No18槽钢组成,材料为Q235钢,许用应力[σ]=120MPa 。试校核梁的强度。 解:(1)受力分析 当小车行走至横梁中间时最危险,此时梁AC 的受力为 由平衡方程求得 kN Y kN X kN S 20 64.34 40=== (2)作梁的弯矩图和轴力图 此时横梁发生压弯变形,D 截面为危险截面, kNm M kN N 35 64.34max == (3)由型钢表查得 No.18工字钢 2 3 299.29 152cm A cm W y == (4)强度校核 ] [05.112122max max max σσ σ MPa W M A N y c =+ = = 故梁AC 满足强度要求。 8-5. 单臂液压机架及其立柱的横截面尺寸如图所示。P=1600kN ,材料的许用应 A A — 35KNm 34.64KN

力[σ]=160MPa 。试校核立柱的强度(关于立柱横截面几何性质的计算可参看附录A 例A-8)。 解:(1)内力分析 截开立柱横截面Ⅰ- 由静力平衡方程可得 kNm y P M kN P N c 2256 1600=?=== 所以立柱发生压弯变形。 (2)计算截面几何性质 4 10 2 109.2 99448mm I mm A z ?== (3)计算最大正应力 立柱左侧 MPa A N I My Z C t 7.55max =+ = σ 立柱右侧 []MPa MPa MPa A N I M Z c 1607.552.53890max max ==∴=+?- =σσ σ (4)结论:力柱满足强度要求。 I 截面I-I

材料力学性能考试题及答案要点

07 秋材料力学性能 一、填空:(每空1分,总分25分 1.材料硬度的测定方法有、和。 2.在材料力学行为的研究中,经常采用三种典型的试样进行研究,即、和。 3.平均应力越高,疲劳寿命。 4.材料在扭转作用下,在圆杆横截面上无正应力而只有,中心处切 应力为,表面处。 5.脆性断裂的两种方式为和。 6.脆性材料切口根部裂纹形成准则遵循断裂准则;塑性材料切口根 部裂纹形成准则遵循断裂准则; 7.外力与裂纹面的取向关系不同,断裂模式不同,张开型中外加拉 应力与断裂面,而在滑开型中两者的取向关系则为。 8.蠕变断裂全过程大致由、和 三个阶段组成。 9.磨损目前比较常用的分类方法是按磨损的失效机制分为、和腐蚀磨损等。 10.深层剥落一般发生在表面强化材料的区域。 11.诱发材料脆断的三大因素分别是、和

。 二、选择:(每题1分,总分15分 (1. 下列哪项不是陶瓷材料的优点 a耐高温 b 耐腐蚀 c 耐磨损 d塑性好 (2. 对于脆性材料,其抗压强度一般比抗拉强度 a高b低c 相等d 不确定 (3.用10mm直径淬火钢球,加压3000kg,保持30s,测得的布氏硬度值为150的正确表示应为 a 150HBW10/3000/30 b 150HRA3000/l0/ 30 c 150HRC30/3000/10 d 150HBSl0/3000/30 (4.对同一种材料,δ5比δ10 a 大 b 小 c 相同 d 不确定 (5.下列哪种材料用显微硬度方法测定其硬度。 a 淬火钢件 b 灰铸铁铸件 c 退货态下的软钢 d 陶瓷 (6.下列哪种材料适合作为机床床身材料

a 45钢 b 40Cr钢 c 35CrMo钢 d 灰铸铁(7.下列哪种断裂模式的外加应力与裂纹面垂直,因而 它是最危险的一种断裂方式。 a 撕开型 b 张开型 c 滑开型 d 复合型(8. 下列哪副图是金属材料沿晶断裂的典型断口形貌 a b c d (9.下列哪种材料中的弹性模量最高 a 氧化铝 b 钢 c 铝 d 铜 (10.韧性材料在什么样的条件下可能变成脆性材料

相关文档