文档库 最新最全的文档下载
当前位置:文档库 › 数学哲学的内容和意义

数学哲学的内容和意义

数学哲学的内容和意义
数学哲学的内容和意义

數學哲學的內容和意義

鄭毓信

什麼是數學哲學?什麼又是數學哲學研究的基本意義?這顯然是數學哲學研究的二個基本問題,並事實上關係到了數學哲學的研究方向或途徑。本文將分別圍繞數學哲學的歷史發展和數學哲學的現實意義對此作出簡要的分析。

一.什麼是數學哲學?

“什麼是數學哲學?”這無疑是數學哲學研究最為基本的一個問題。儘管數學哲學這一學科在世界上建立已久,而且,即使在中國,這也不再是一個陌生的名詞;然而,就數學哲學研究的現實情況進行分析,可以看出,有不少不能令人滿意的地方其根源仍應追溯到對於上述基本問題的模糊或錯誤認識。

具體地說,我們在此可以首先考慮以下的問題:

一些專業的數學工作者、甚至是著名的數學家,他們平時的一些哲學言論、或者是對於自己數學工作較為自覺的哲學反思,能否就說是數學哲學?

應當肯定,這些言論、特別是著名數學家對於自己工作自覺的哲學反思,無論對於數學哲學或是新的數學研究都具有十分重要

的意義;然而,作為上述問題的明確回答,我們則又應當說,這種言論或分析不應被等同於數學哲學,或者說,它們不應被看成數學哲學的主要內容,因為,即如任何一門科學的理論,數學哲學也具有自己特殊的研究問題,從而,數學哲學的基本內容就具有相對的穩定性,即是圍繞這些基本問題展開的,而不能被等同於個人隨意的哲學暇想或反思。

例如,從歷史的角度看,數學對象的實在性問題(本體論問題)和數學的真理性問題(認識論問題)可以被看成數學哲學研究的兩個基本問題;而除去一般哲學的影響外,這在很大程度上又是由數學本身的特殊性所決定的:由於數學的抽象性,因此,數學對象就並非經驗世界中的客觀存在,然而,在數學中我們所從事的又顯然是一種客觀的研究,從而,我們就必須對數學對象的實在性問題作出明確的解答;另外,由於數學是演繹地展開的,因此,如果我們能對數學公理的真理性作出合理的說明,數學似乎就可以被看成先驗論的“最堅固堡壘”,但是,我們又應怎樣去解釋數學在現實世界中的成功應用呢—當然,我們在此不能僅限於斷言這是一個“不可思議的謎”,而必須從根本上對數學的真理

1

2數學傳播十八卷一期民83年3月

性、特別是數學的認識論問題作出深入的分析。

也就是圍繞上述的基本問題,從古希臘的時代起,在數學哲學的範圍內就形成了“柏拉圖主義”和“唯名論”、以及“先驗論”和“經驗論”等對立的觀點,這種對立並一直延伸到了今天。

其次,作為對於“什麼是數學哲學?”的具體分析,我們又應強調指出,與其它科學的理論一樣,數學哲學也有一個歷史發展過程,從而,其基本內容就不應被看成絕對不變的。

例如,就早期的數學哲學研究而言,主要是作為一般哲學研究的一個部分得到了發展;然而,從十九世紀中期開始,數學哲學則進入了一個以數學基礎研究為中心的新的不同時期,而其基本問題就在於:如何為數學奠定一個可靠的基礎,並借助於可靠的方法去開展(重建)出全部或大部分的數學,從而徹底地解決數學的可靠性問題。

對於基礎問題的重視在本質上也是由數學本身的特性所決定的。事實上,在數學中歷來存在有兩種不同方向的研究:一是由已有的數學去發展、構造出新的、更為複雜的結論和理論;另一則是研究已有的數學可以以何種更為一般的概念和原理作為基礎而得到建立。顯然,公理化方法在數學中的普遍採用即是與後一方向上的研究直接相聯繫的。另外,以下的一些實際發展則又構成了數學基礎研究的特殊的“歷史背景”:分析(微積分理論)的嚴格化,非歐幾何的建立,悖論的發現。

由於各自觀點的不同,在基礎研究中形成了邏輯主義、直覺主義和形式主義等不同的學派。這些學派的一個共同特點是“哲學分析與數學工作”的密切結合:依據各自的哲學主張,他們分別提出了自己的基礎研究規劃,並希望通過這些規劃的實施(這主要是一種數學工作)來證明自己的哲學觀點的正確性。這樣,就數學哲學的研究而言,在1890至1940年之間就出現了一個“百花齊放”、欣欣向榮的“黃金時代”。(關於數學基礎研究可參見夏基松、鄭毓信:《西方數學哲學》,人民出版社,1986年。)

然而,數學哲學以基礎研究為中心的時代現在也已過去了。這不僅是因為邏輯主義等學派的基礎研究規劃都未能取得成功,而且也是因為這種“失敗”及隨之而出現的發展的停頓引起了關於應當如何去從事數學哲學研究的新的思考:“數學哲學往何處去?”

對於數學哲學的現代發展可參見本期另文“數學哲學現代發展概述”。

綜上可見,數學哲學具有自己特殊的研究問題,從而就不應被等同於各種片斷的見解;另外,又正是通過研究問題的解決和轉移,數學哲學獲得了自己的歷史發展,從而我們也就不應對此持絕對的、僵化的觀點。

二.數學哲學研究的基本意義

作為一般哲學、特別是科學哲學的一個重要組成部分,數學哲學顯然有著一定的理論意義,或者說,具有作為獨立學科存在的必要性;然而,筆者在此所關心的主要是數學哲學的實際意義。這即是指:除去專門的研究家外,誰最需要數學哲學?

數學哲學的內容和意義3

顯然,作為可能的解答,我們可以分別列舉出哲學家、數學家和數學教師。

的確,從歷史的角度看,數學哲學可以被認為對於一般哲學、特別是認識論研究有著特殊的重要性。事實上,在很長時期內,數學被認為是唯一的真理,從而就為相應的哲學思考提供了必要的立足點。這就正如M.克萊因所指出的:“在各種哲學系統紛紛瓦解、神學上的信念受人懷疑以及倫理道德變化無常的情況下,數學是唯一被大家公認的真理體系。數學知識是確定無疑的,它給人們在沼澤地上提供了一個穩妥的立足點。”(《古今數學思想》,上海科學技術出版社,1979年,第一冊,第251頁。)例如,正是以數學為典範,笛卡兒發展起了自己的理性主義方法論;另外,也就是基於關於“純數學何以可能?”的分析,康德提出了自己的先驗主義的認識論。一般地說,正如前面所已提及的,數學往往被認為是先驗論的最堅固堡壘,從而,數學的真理性問題也就成了經驗主義所必須認真對待的一個難題。即如休謨關於兩類命題的區分;這一立場並一直延續到了現代的邏輯實證主義。

但是,在邏輯實證主義以後,數學與哲學的這種密切聯繫開始變得疏遠起來。特別是,現代的哲學大師們對於數學已經不那麼熟悉了。對於造成這種現象的原因可以從各個角度去進行分析:即如現代數學已經變得過分專門化、從而對於非專門家來說是過於深奧了;或是因為另有更重要的問題吸引了哲學家的注意;等等。但是,無論最終的原因是什麼,這已表明了這樣一個事實,即數學在現代的哲學研究中已不再占有特別重要的地位。

其次,數學哲學能否說對於實際的數學研究工作有著重要的指導意義?應當肯定:數學家的研究工作必定處在一定哲學觀念、特別是數學哲學觀念的指導或影響之下;但是,現在的問題卻在於,一個成熟的數學工作者往往已經形成了固定的觀念—儘管這可能只是一些素樸的觀念,但由於這些是與其研究活動密切相關、並就是在這種實踐活動逐漸地(並且常常是不知不覺地)形成的,因此,他們通常就感受不到有必要對此進行系統學習和反思、以期達到由不自覺向自覺狀態的轉化和必要的更新。事實上,除個人的特殊與趣外,大部分數學家在自己的工作生涯中主要地都是集中於專業研究,而根本無暇從事系統的哲學思考,從而也就談不上對於數學哲學的迫切需要。另外,從整體上說,作為數學的哲學分析,數學哲學相對於數學本身而言在發展上必然表現出一定的滯後性,從而,對一個處在自己學科前沿的數學家來說,數學哲學也就往往會顯得過於陳舊落後。(當然,筆者在此並不是要完全否定數學哲學對於實際數學活動的促進作用,而只是認為這種作用往往是以一種較為間接的形式體現出來的。對此可見以下的討論。)

那麼,數學哲學是否對於任何人來說都是不必要的呢?不!筆者認為,對於廣大的數學教師來說,我們就應作出肯定的答覆。

具體地說,與數學家的研究活動一樣,各種層次上的數學教師的教學工作也都處於其哲學觀念、特別是數學哲學觀念的指導或影響之下;然而,這種教學活動則又不僅反映了教師本身的觀念,而且也直接影響到了新的

4數學傳播十八卷一期民83年3月

年輕一代的數學觀念的形成—正是在後一意義上,我們即應明確肯定數學哲學對於數學教師特殊的重要性。

為了清楚地說明問題,在此可以借助道德教育的例子來進行分析。如眾所知,正常人的行動都是在一定的道德規範指導下進行的。然而,儘管道德教育對任何人來說都有一定的意義,但又只是對於年輕人來說才是特別重要的,因為,他們尚未形成固定的道德規範,而這一旦形成,則又將對其整個人生產生十分重要的影響;與此相反,成年人則往往不能感到對自己的道德規範進行自覺反省的必要性,另外,這也是一個無可否認的事實,即要改變一個人所已形成的道德規範是十分困難的。

進而,上述的比喻同時也表明了這樣一點:正如教師的日常言行往往對於學生道德觀念的形成有著十分重要的影響(這就是通常所說的“身教重於言教”),學生往往也就是在教師的影響下逐步地形成了自己的數學觀念。例如,正如G.波利亞所指出的:“有一條絕對無誤的教學法—假如教師厭煩他的課題,那麼,整個班級也將毫無例外地厭煩它。”(《數學的發現》,內蒙古人民社,1982年,第二冊,第174頁。)

由此,從教育的角度看,我們就應充分肯定數學哲學對於數學教育的重要性;進而,考慮到素樸的哲學觀念往往是片面或膚淺的;我們則又應當說,首要的任務就是應幫助廣大的數學教師通過數學哲學的學習建立起正確的數學觀。

值得指出的是,就數學教育的現代發展來說,我們已經看到數學哲學、特別是數學哲學現代發展的重要影響。例如,數學觀的現代演變,即由靜態的數學觀向動態的數學觀的過渡,就是現代數學教育中突出強調“問題解決”的重要原因之一。一般地說,這就正如同美國著名數學教育家倫伯格(T.Romberg)所指出的:“兩千多年來,數學一直被認為是與人類的活動和價值觀念無關的無可懷疑的真理的集合。這一觀念現在遭到了越來越多的數學哲學家的挑戰,他們認為數學是可錯的、變化的,並和其它知識一樣都是人類創造性的產物。···這種動態的數學觀具有重要的教育涵義。”(可參見另文“數學哲學、數學教育與數學教育哲學”,載《哲學與文化》[台灣],1992年,第十期。)

在筆者看來,以數學教育為“中介”,數學哲學最終也將對數學的未來發展產生重要和深遠的影響,從而,這也就更為清楚和全面地表明了數學哲學的意義。

—本文作者任教於南京大學哲學系—

数学中的哲学思想

数学与哲学 何晓川 材料学院材料1005班 201065041 摘要:本文首先介绍了数学与哲学的本源关系,然后讲述了数学与哲学在东西方发展进程中的表现,以及数学的三大危机,接下来介绍了数学与哲学研究所面临的六大问题,最后形象化总结数学与哲学的关系。 一:数学与哲学 现代的数学家大都很少关心哲学文题,甚至对基础问题一般都不闻不问。从二十世纪三十年代之后,数理逻辑成为一门极为专门的学科,象几何、拓扑、分析、代数、数论一样,成为专家研究的对象,外行简直难于理解。 任何一门学问,必然是反映着哲学的探索与诉求,数学作为一种同经验无关的人类思维的结晶,更需要哲学的支撑。 哲学是人类认识世界的先导,哲学关心的首先是科学的未知领域,哲学倾听着科学的发现,准备提出新的问题。哲学,从某种意义上说,是自然学科的望远镜,数学就产生在哲学已探索的未知领域。数学本身源于自然哲学,虽然在历史的进程中,数学学科逐渐从哲学中分离出来,但是数学基础仍带有浓厚的哲学味道。 柏拉图有句名言:“没有数学就没有真正的智慧。”智慧是被运用于生活中的哲学,是哲学的生活化、实际化。历史上,许多著名的学者,如英国的罗素、德国的数学家康托尔,正是踏着数学的阶梯步入哲学堂奥的。 二:数学与哲学在东西方的表现 哲学与数学在东西方世界的表现有着不同。 西方哲学与数学有着密切的关系。追溯起来,数学与哲学自西方哲学诞生之日起就结下了不解之缘。西方第一位哲学家泰勒斯是数学家;著名数学家毕达哥拉斯在对数学的深入研究上得出了“万物皆数”的著名哲学命题;大哲学家柏拉图相信数是一种独特的客观存在,由此产生了数学上的“柏拉图主义”……进入20世纪,围绕着数学基础研究所产生的三大流派更是把两者的关系推向了高峰。在古希腊罗马时期,哲学尚未与其他的学科明确分开,许多哲学家本身就是自然数学家,哲学与数学是一个学科,无疑他们是联系在一起的。这个时期的哲学家探讨的主要是自然哲学和本体论的问题,为了搞清客观世界及其原因和规律究竟是什么,人们创造了数学方法、辩证法和逻辑,这是西方理性思维的萌芽时期。 亚里士多德后,哲学与其他学科分开了,但西方哲学与数学仍然紧密联系,近代西方的许多哲学家,其本身也是数学家。而中国的哲学与数学联系很少,历史上鲜有集数学家与哲学家于一身的人。中国传统哲学子孔子以来就培养了一种深厚的“实用理性精神”,总是同做人即人格修养联系在一起。这实际上体现了东西方哲学思维方式的一种不同。 这种不同的表现,对近代的科学在东西方的兴起发展起了不同的影响作用。对于今天的我们,又该如何看待呢?我们国家正处于社会主义现代化建设时期,个人认为,我们应该学习西方的哲学思想,并改造中国的传统哲学,努力养成一种与数学思维方式相似的注重严密推理和论证的思维方式和习惯。 在这两千多年结伴而行的漫长岁月里,哲学与数学相互影响,相互促进,与此同时也产生了许多介于两者之间的问题。比如:如何理解数学的真理性?什么是数?如何理解无穷、连续概念?等等。对这一系列问题的研究与探讨,促成了对数学进行哲学分析的数学哲学分支的确立。然而,由于问题的复杂,涉及面的广泛,分歧的众多,一般人对之只能望而却步,对有关数学哲学研究有一个概貌了解都成为一件困难的事情。 三:数学的三大危机

高等数学中特殊符号的读法及功能

大写小写英文注音国际音标注音中文注音 Ααalpha alfa 阿耳法Ββbeta beta 贝塔 Γγgamma gamma 伽马 Γδdeta delta 德耳塔Δεepsilon epsilon 艾普西隆Εδzeta zeta 截塔 Ζεeta eta 艾塔 Θζtheta ζita西塔 Ηηiota iota 约塔 Κθkappa kappa 卡帕 ∧ιlambda lambda 兰姆达Μκmu miu 缪 Νλnu niu 纽 Ξμxi ksi 可塞 Ονomicron omikron 奥密可戎∏πpi pai 派 Ρξrho rou 柔 ∑ζsigma sigma 西格马 Τηtau tau 套 Υυupsilon jupsilon 衣普西隆Φθphi fai 斐 Φχchi khai 喜 Χψpsi psai 普西

Ψωomega omiga 欧米伽 符号表符号含义i -1的平方根 f(x) 函数f在自变量x处的值 sin(x) 在自变量x处的正弦函数值 exp(x) 在自变量x处的指数函数值,常被写作ex a^x a的x次方;有理数x由反函数定义 ln x exp x 的反函数 ax 同a^x logba 以b为底a的对数;blogba = a cos x 在自变量x处余弦函数的值 tan x 其值等于sin x/cos x cot x 余切函数的值或cos x/sin x sec x 正割含数的值,其值等于1/cos x csc x 余割函数的值,其值等于1/sin x asin x y,正弦函数反函数在x处的值,即x = sin y acos x y,余弦函数反函数在x处的值,即x = cos y atan x y,正切函数反函数在x处的值,即x = tan y acot x y,余切函数反函数在x处的值,即x = cot y asec x y,正割函数反函数在x处的值,即x = sec y acsc x y,余割函数反函数在x处的值,即x = csc y ζ角度的一个标准符号,不注明均指弧度,尤其用于表示atan x/y,当x、y、z用于表示空间中的点时 i, j, k 分别表示x、y、z方向上的单位向量 (a, b, c) 以a、b、c为元素的向量 (a, b) 以a、b为元素的向量 (a, b) a、b向量的点积 a?b a、b向量的点积 (a?b) a、b向量的点积 |v| 向量v的模 |x| 数x的绝对值 Σ 表示求和,通常是某项指数。下边界值写在其下部,上边界值写在其上部。如j从1到100的 和可以表示成:。这表示 1 + 2 + … + n M 表示一个矩阵或数列或其它

数学与哲学的关系论文【数学和哲学的关系优秀参考论文】

数学与哲学的关系论文【数学和哲学的关系优秀参考论文】 数学和哲学之间的关系,一直受到人们的探讨,有很多的论文都对数学和哲学作出了深刻的描写。以下是小编精心整理的数学和哲学的关系论文的相关资料,希望对你有帮助! 数学和哲学的关系论文篇一 摘要:本文首先介绍柏拉图的数学哲学思想,接着讲述一下数学哲学,再介绍必然性和先天性知识,接着介绍三大主义,以及数学哲学的现代发展,最后简单总结数学哲学。关键词:柏拉图数学哲学先天性必然性知识三大主义 正文: 一:柏拉图的数学哲学思想 柏拉图的数学哲学思想主要体现在数学本体论的问题上,而在数学的本体论问题上他采取了实在论的立场,即认为数学的对象是他所说的“理念世界”中的真实存在。柏拉图的这一认识是建立在对数学绝对真理性的信念之上的。他认为数学对象就是一种独立的、不依赖于人类思维的客观存在。 除去实在论的观点外,柏拉图还强调了数学认识活动的先天性。按柏拉图的观点,理念世界是理性认识的对象,而且,这种认识只能通过“对先天的回忆”得到实现;由于对象也是理念世界中的存在,因此,在柏拉图看来,数学就从属于研究理念的科学——“辨证法”,即是一种先天的认识。 另外,除去数学的先天性以外,柏拉图还强调数学认识在一般的理性认识中的作用:由于数学对象被说成是感性事物与理念之间的“中介对象”,因此,数学的认识也就具有一种“桥梁”作用,它能刺激人们,从而引起灵魂对“先天知识”的回忆。柏拉图说:“几何会把灵魂引向真理,产生哲学精神……。” 二:数学哲学 数学在形式化和抽象化方向上的发展,数理逻辑和数学基础研究的进展,以及悖论的发现,开创了数学哲学的研究的新时期。 数学家们认为,数学是建立在一系列自明原则基础上的。一个数学家的责任是尽可能完全地发现由这些原则所得出的结论。他应该坦率地承认这些原则本身是一些明显的洞察,因而它们形成一个无可懈击的、永恒的基础。与此相反,哲学家会听任数学家去探索由这些原则得出结论;他对这些结论并不感兴趣。然而他必须对下述事实作出解释,即我们具有供我们使用的、此类自明性所适用的一些洞察力,他还需要说明与这些洞察有关的对象。他们同意数学的对象不属于物质世界,数学洞察不可能以经验作为依据,因为适合于数学原则的这类自明性决不属于我们的经验知识而是数学原则所特有的。 三:必然性和先天性知识 数学哲学在很大程度上是认识论——在哲学中处理认知和知识的部分——的一个分支。但是,数学至少表面上与其他求知的努力不同。特别是与科学追求的其他方面不同。数学命题,像7+5=12有时被当做必然真理的范例,简直不可能有其他情况。 科学家会乐意承认她的较为基本的论题可能是假的。这种谦恭被科学革命的历史所印证,在革命中,长期存在且深信不疑的信念被推翻了。数学也能严肃地支持这种谦恭吗?能怀疑数学归纳法对自然数成立吗?能怀疑5+7=12吗?有没有数学革命,其结果是推翻长期存在的核心的数学概念?恰恰相反,数学方法论似乎并不像科学那样是或必然性的。与科学不同,数学通过证明展开,一个成功的、正确的证明扫除了所有基于理性的怀疑,不仅仅是所有有理由的怀疑。一个数学证明要表明它的前提逻辑地蕴涵它的结论。前提为真而结论为假是不可能的。 “先天”这个词的意思差不多是“先于经验”或“独立于经验”。它是一个认识论的概念,如

几种重要的数学思想方法

几种重要的数学思想方法 韩晓荣 数学思想方法是数学学科的精髓,是数学素养的重要内容之一,学生只有领会了数学思想方法,才能有效地应用知识,形成能力,从而为解决数学问题、进行数学思维起到很好的促进作用。 《数学课程标准》在对初中阶段的教学建议中要求“对于重要的数学思想方法应体现螺旋上升的、不断深化的过程,不宜集中体现”。这就要求我们教师能在实际的教学过程中不断地发现、总结、渗透数学思想方法。 一、化归思想, 所谓“化归”是指把待解决或未解决的问题,通过转化,归结到已经解决或比较容易解决的问题中去,最终使问题得到解决的一种思想方法。我们也常把它称之为“转化思想”。例如:解分式方程转化为解整式方程,解“二元”方程转化为解“一元”方程,解多边形问题转化为解三角形问题等等。 二、数形结合的思想方法 数形结合思想是指将数与图形结合起来解决问题的一种思维方式。著名的数学家华罗庚曾经说过:“数缺形时少直观,形少数时难入微。”这就是在强调把数和形结合起来考虑的重要性。在教材《有理数》里面用数轴上的点来表示有理数,就是最简单的数形结合思想的体现。 三、分类讨论的思想方法 在渗透分类讨论思想的过程中,我认为首要的是分类。比如在《有理数》研究相反数、绝对值、有理数的乘法运算的符号法则等都是按有理数分成正数、负数、零三类分别研究的:在《平面图形的认识》一章中,用分类讨论思想进行了角的分类、点和直线的位置关系的分类、两条直线位置关系的分类。这种思想方法主要可以避免漏解、错解。 四、方程思想 方程思想指借助解方程来求出未知量的一种解题策略。我们知道方程是刻画现实世界的一个有效的数学模型。所以方程思想实际上就是由实际问题抽象为方程过程的数学建模思想。例如利用一元一次方程,一元二次方程能解决好多实际问题。 五、从特殊到一般的思想方法

论文:数学思想方法

数学思想方法 河南省虞城县李老家乡第二初级中学;高华增数学思想方法一般是指人们在数学的发生、形成、发展过程中总结概括出来的数学规律的本质认识,是利用数学知识去解决问题的思维策略和指导思想,它为数学知识的学习和运用提供了方向,是解决数学问题的“向导”,数学思想的产生并作用于数学学习的整个过程中,尤其是在解决复杂的综合题时,数学思想的合理运用起着关键性的决定作用,数学思想方法是数学思想的具体体现,不仅是学习和运用数学知识的解决数学问题应具备的、最基本的思想方法.而且是新课标改革的方向和中考试题解题特征 常见的数学思想方法有:化归思想方法、数形结合思想方法、分类讨论思想方法、数学建模思想方法、方程思想方法、函数思想方法、整体思想方法,对此类问题的突破,方法具体如下: 类型一:化归思想方法:重难点突破:解决问题的基本思想就是化未知为已知,把复杂的问题简单化,把生疏的问题熟悉化,把实际问题数学化,不同的数学问题相互转化,也体现了把不易解决的问题转化为有章可循,容易解决的问题的思想

【例1】 如下图中每个阴影部分是以多边形各顶点为圆心,1为半径 的扇形,并且所有多边形的每条边都大于2,则第n 个多边形中,所有扇形面积之和是______.(结果保留π) 分析:本题考察了扇形面积和n 边形内角和公式,解题关键是:是求第n 个图形中(n +2)个半径为1的扇形的面积之和 解析:[]ππ2n 1802-2)(n 3601S 2 =?+?=,答案;π2 n

类型二:数形结合: 重难点突破: 根据数学问题的题设和结论之间的内在联系,分析其数量关系,又揭示其几何意义,使数量关系和几何图形巧妙结合,充分利用这种结合探究解题思路,使问题得以解决; 【例2】(09重庆)如图,在矩形ABCD 中,A B =2,BC =1,动点P 从点B 出发,沿路线B →C →D 作匀速运动,那么△ABP 的面积S 与点P 运动的路程x 之间的函数图象大致是 ( ) 分析:本题考查点是运动变化为前提,根据几何图形的面积变化特征,通过分段讨论,确立相应函数关系,进而确定函数图象,这是一道典型的数形结合与分类讨论的综合题,是这几年中招试题常见题型,解题关键是能否充分利用分类的讨论思想,难点是能否把所有情况分别讨论,很多同学因考虑不全而丢分. 解析:当点P 在BC 上时,即0<x ≤1时 x x 2PB AB S 2121PAB =??=?=? 当点P 在CD 上时,即1<x ≤3时

反例在高等数学教学中的功能

反例在高等数学教学中的功能 发表时间:2014-08-22T11:01:32.153Z 来源:《素质教育》2014年6月总第154期供稿作者:韩召伟 [导读] 高等数学主要围绕数学知识的理论体系的建立来展开,然而解释概念、得出命题、阐明定理大都是从正面陈述的,对于反例的陈述少之又少。 韩召伟陕西师范大学数学与信息科学学院710062 摘要:高等数学是近代数学的基础,是现代科学技术中应用最广泛的一门学科。在高等数学教学中, 恰当地开发和有效地利用反例,能起到事半功倍的效果。本文具体以多元微分学中极限、可偏导和可微之间的关系为例,剖析了高等数学教学中反例的功能。 关键词:高等数学多元函数反例 一、引言 高等数学主要围绕数学知识的理论体系的建立来展开,然而解释概念、得出命题、阐明定理大都是从正面陈述的,对于反例的陈述少之又少。因为缺乏反例的衬托,在学习过程中学生对数学概念内涵和外延理解上的偏差或对于命题的条件和结论认知的不充分,都将成为学生高等数学学习的屏障。构造适当的反例,一方面能帮助学生全面理解和正确掌握高等数学中的基本知识,激发学生的求知欲;另一方面对于提高学生的数学学习能力和数学思维能力将会起到十分重要的作用。因此,在高等数学教学中,充分发掘反例的教学功能,有效地构造和利用反例,教师应予以足够重视。 二、高等数学教学中反例的功能 1.反例是全面理解概念的基础。数学知识理论体系向来以思维严密和逻辑严谨而著称,教材主要由定义和定理等内容构成,比较注重学生的抽象概括能力、逻辑思维能力、空间想象能力、分析运算能力、解决问题方面能力的培养,而这些能力的取得都以深刻理解概念和准确掌握概念为基础,因此,在教学中只要求学生死背概念是不行的,必须注重理解其实质。高等数学中具有若干新概念,而要很好地理解这些新概念,正面的例子可起到了解、熟悉新概念的作用,而反例则可加深对新概念的理解。在高等数学教学中,教师不仅要运用正确的例子深刻阐明知识点,而且要运用恰当的反例从另一个侧面抓住概念或规则的本质,弥补正面教学的不足,从而加深学生对知识的理解。

浅谈数学教学中的哲学思想

浅谈数学教学中的哲学思想 数学是整个自然科学发展的前提条件和存在的依据,又是自然科学和社会科学发展的基础。数学也是一门工具性学科,在数学教学中含有丰富的哲学思想,如辩证法,物质和意识的第一性问题,量变到质变的问题,矛盾双方的依存问题,真理的相对性和绝对性问题等等。因此,本文从五个方面谈数学教学中的哲学思想。 一、物质和意识谁是第一性的哲学思想 马克思主义哲学认为,物质第一性,意识第二性,物质决定意识。 世界的本质是物质。人的意识是客观存在的一种反映。如无理数的产生就是人对客观世界的认识的一个飞跃。古希腊时期,著名的毕达哥拉斯学派倡导“唯数论”,即任何量均可以由两个整数之比来表示。但到公元前五世纪末,希腊数学家们却发现有些量例外。在平面几何中寻找正方形的对角线与边的公共度量,其结果与“唯数论”产生了矛盾。因此发生了第一次数学“危机”,其主要原因是认识上的局限性、片面性和绝对化。人们对“唯数论”产生了怀疑。数学家们后来又发现了更多的不能用两个整数之比表示的数,把它们统称为无理数。能用两个整数之比表示的数叫作有理

数。这说明物质不依赖人的意识而客观存在。物质决定一切,意识反映物质。 二、量变到质变的哲学思想 在哲学中,把事物在数量和程度上的逐渐的、不显著的变化叫作量变。把事物显著的、根本性的变化叫作质变。在数学教学中也有这样的情况。如极限的教学中,每个加数都存在极限且每个加数的极限值都等于0,但的确不等于0,它的正确解法是 又如无理数的发现,它也是人的意识由量变到质变的产物,是人对客观事物的认识发生变化的产物。 三、真理的绝对性的哲学思想 真理是绝对的,但人对真理的反映是片面或存在局限的。意识是客观事物在人脑中的反映。这种反映有正确的,也有歪曲的,还有片面性或存在局限的。由此?a生了真理的相对性。如数学悖论的产生和数学“危机”的发生都是人对客观事物的反映的局限性所造成的。数学对客观事物的反映是真实可靠的。但人的意识总达不到完美无缺的状态。由此产生了三次数学“危机”。导致第一次数学“危机”的根本原因是认识上的片面性和绝对化。一方面未能正确认识“一切均可以归纳为整数之比”这一结论的局限性,由此把它看成是绝对的完善的真理。这样实际上就造成了一种片面的、僵化的概念。另一方面,不可通约量的发现,最终必将导致

高等数学符号列表

线性代数意义符号 ... 矩阵,B,C,A m×n阶矩阵A A的第i 行第j列元素为a(i=1,2,…,m;j=1,2,…,n) ij 矩阵A的转置矩阵 矩r(A的 矩阵A的逆矩阵 AX B 矩阵方程, 线性方程组= 的行列式矩阵A A*A的伴随矩阵 A的增广矩阵线性方程组系数矩阵 集合与逻辑 符号意义符号意义 具有性质p(x全体实数的集合,同)的对象x组成的集R )} xp({x?合(?? ,+??? b}x,开区间?全体整数的集合{ x a Z ? ( a , b ) [ a , b ] { x?N a?x?b}全体正整数的集合,闭区间 ( a , b ] { x?a? x?b},左开右闭区间x是集合X的元素X x?x不是集合X的元素?a [ , b ) { x? a x?b},左闭右开区间X x?B?A空集,若A蕴涵命题B A则B命题?B→A或B等价 于命题命题AB,A蕴涵A?BΩ全集蕴涵AB?或AB且A∪B与的并集B逻辑加集合A ∨ A A集合与B逻辑乘的交集∧∩B B包含A逻辑非┐A是B的子集合, B ?A 集合A的补集 数列、函数与极限符号意义符号意义 u,…u,u,…,n21 n趋于无穷大时数列{y} 的极n 为通项的数列以u n限} {u或n x 趋于无穷大时函数

u为通项的无穷级数和以n f(x)的极限 趋于正无穷大时函 的和uu++…+u有限项n12极限 x趋于负无穷大时函数fx在对应规律f下对应到(x)的 y极限ff 函数:X为定义域, )(x的极限为自变量, x趋于a时函数fx为对应规律,y为因变量a时函数 x>a且x 趋于 D的定义域函数f f的右极限(x)f ax

数学与哲学

数学与哲学 从1900年到1930年左右,数学的危机使许多数学家都卷入到一场大辩论当中。他们看到这次危机涉及数学的根本,必须对数学的哲学基础加以严密的考察。在这场大辩论中,原来的不明显的意见分歧扩展成为学派的争论,以罗素为代表的逻辑主义,以布劳威尔为代表的直觉主义,以希尔伯特为代表的形式主义三大学派应运而生。他们在争论过程中尽管言语尖刻,好象势不两立,其实他们各自的观点在争论过程中都吸收了对立面的看法而有很多变化。 1930年,哥德尔不完全性定理的证明暴露了各派的弱点,哲学的争论冷淡了下去。此后各派力量沿着自己的道路发展演化。尽管争论的问题远未解决,但大部分数学家并不太关心哲学问题。近年来数学哲学问题又激起人们的兴趣,因此我们有必要了解一下数学哲学的来龙去脉。 1、逻辑主义 罗素在1903年出版的《数学的原理》中对于数学的本性发表了自己的见解。他说:“纯粹数学是所有形如…p蕴涵q?的所有命题类,其中p和q都包含数目相同的一个或多个变元的命题,且p和q除了逻辑常项之外,不包含任何常项。所谓逻辑常项是可由下面这些对象定义的概念:蕴涵,一个项与它所属类的关系,如此这般的概念,关系的概念,以及象涉及上述形式一般命题概念的其他概念。除此之外,数学使用一个不是它所考虑的命题组成部分的概念,即真假的概念。” 这种看法是罗素自己最早发表的关于逻辑主义的论点。这种看法在以前也不同程度被戴德金、弗雷格、皮亚诺、怀特海等人表达过。戴德金在1872年出版了《连续性及无理数》一文,在这篇文章中,他把有理数做为已知,进而分析连续性这个概念。为了要彻底解决这个问题,必须考虑有理数乃至自然数产生的问题。他认为应该建立在逻辑基础上,但没有实行。 弗雷格在1884年《算术基础》中认为每个数是一个独立的对象。他认为算术规则是分析判断,因此是先验的。根据这点,算术只是逻辑进一步发展的形式,每个算术定理是一个逻辑规律。把算术应用到自然现象上的解释只是对所观察到的事实的逻辑加工,计算就是推理。数字规律无须实践检验即可应用于外在世界,而在外在世界、空间总体及其内容物,并没有概念、没有数。因此,数字规律实际上不能应用于外在世界,这些规律并不是自然规律。不过它们可以应用于对外在世界中的事物为真的判断上,这些判断即是自然规律。它们反映的不是自然现象之间的关系,而是关于自然现象的判断之间的关系。 早在罗素发现悖论之前,他在写作《数学的原理》时就企图把数学还原为逻辑,由于发现悖论,这个计划遭到了困难。他发现消除悖论的方法之后,又开始具体实现他的计划,这就是他和怀特海合著的《数学原理》。 既然罗素、怀特海的《数学原理》原来的目的是企图把数学建立在逻辑的基础上,因此,书一开始就提出几个不加定义的概念和一些逻辑的公理,由此推出逻辑规则以及数学定性。 不加定义的概念有基本命题、命题函数、断言、或、否(非);这里讲的命题是指陈述一件事实或描述一种关系的一个语句,如“张三是人”,“苹果是红的”等等,由这些概念可定义逻辑上最重要的概念“蕴涵”。 要想由逻辑推出数学,第一步是推出“数”来,这件事皮亚诺及弗雷格都做了。罗素在消除悖论之后,成功地用“类”来定义1。这个过程极为繁琐费力,一直到《数学原理》第一卷的363页才推出“1”的定义,而第二卷费了很大力气证明了n×m=m×n。 在《数学的原理》及《数学原理》中,罗素的目标在于证明“数学和逻辑是全等的”这个逻辑主义论题,它可以分析为三部分内容:

数学思想方法及意义

数学思想方法及意义 美国心理学家布鲁纳认为,“不论我们选教什么学科,务必使学生理解该学科的基本结构.”所谓基本结构就是指“基本的、统一的观点,或者是一般的、基本的原理.”“学习结构就是学习事物是怎样相互关联的.”数学思想与方法为数学学科的一般原理的重要组成部分.下面从布鲁纳的基本结构学说中来看数学思想、方法教学所具有的重要意义. 1.数学思想方法教学的心理学意义 第一,“懂得基本原理使得学科更容易理解”.心理学认为“由于认知结构中原有的有关观念在包摄和概括水平上高于新学习的知识,因而新知识与旧知识所构成的这种类属关系又可称为下位关系,这种学习便称为下位学习.”当学生掌握了一些数学思想、方法,再去学习相关的数学知识,就属于下位学习了.下位学习所学知识“具有足够的稳定性,有利于牢固地固定新学习的意义,”即使新知识能够较顺利地纳入到学生已有的认知结构中去.学生学习了数学思想、方法就能够更好地理解和掌握数学内容. 第二,有利于记忆.布鲁纳认为,“除非把一件件事情放进构造得好的模型里面,否则很快就会忘记.”“学习基本原理的目的,就在于保证记忆的丧失不是全部丧失,而遗留下来的东西将使我们在需要的时候得以把一件件事情重新构思起来.高明的理论不仅是现在用以理解现象的工具,而且也是明天用以回忆那个现象的工具.”由此可见,数学思想、方法作为数学学科的“一般原理”,在数学学习中是至关重要的.无怪乎有人认为,对于中学生“不管他们将来从事什么业务工作,唯有深深地铭刻于头脑中的数学的精神、数学的思维方法、研究方法,却随时随地发生作用,使他们受益终生.” 第三,学习基本原理有利于“原理和态度的迁移”.布鲁纳认为,“这种类型的迁移应该是教育过程的核心——用基本的和一般的观念来不断扩大和加深知识.”曹才翰教授也认为,“如果学生

数学的哲学原理

数学的哲学原理 题记 本文作于2003年底至2004年初那段沉迷的日子。 ——李阳数学并不是宇宙中存在的事物,而是在人类哲学对所有能量接受后的反思。这种反思创造了许多可以用来更好的描述我们世界的工具。要想弄明白所有数学问题我们必须先从哲学开始谈起。哲学是人类大脑中有序能量和无序能量的碰撞,因此哲学才会成为提出问题并解决问题的科学。哲学的提问是人类所有科学发展的能量源泉。数学也不例外。 数字概念的形成 当外界信息以各种能量形式做用于我们的大脑时,我们大脑中的无序能量会从中选择一组排列。从而形成了新的相对有序排列。这种新的相对有序能量排列并不会影响我们对客观存在的认识。大脑在这一过程中只是做了一次最简单的等量代换。例如当我们描述一个物体时可能会出现很多种表达,当这个物体变成相同的两个物体时描述就会变得更加不同。在人类早期我们根本不会有1,2等概念。我们最早的认识应该只有“有”和“无”,这在中国古代的哲学概念中就存在。在语言出现之前,我们更多的用手势和体态语来描述我们所看到的物体。对于我们看到的东西我们会认为它是“有”,当这个东西不在了我们会认为是“无”,在生活中没有的东西当然就没有任何意义了,所以我们古代最早形成的应该是1到9这样的数字。当我们在描述一个物体时我们用1来代换了,对两个相同物体我们会用1,1来代换。但是对更多的相同物体我们要是都用1,1,1……来表示就不会很妥当了,而且也不容易表达。这是我

们伟大的哲学家又一次运用了代数的最基本原理,引入新的变量。就像这样:1+1=X; X+1=Y……当然他们并不会使用X,Y这样的变量。而是他们创造的新的符号来表示,这便是2,同时还创造了它的发音以便于表达信息。接下来的3到9也是这样创造出来的。他们都表示了几个1相加这样的概念。好了现在我们知道为什么1+1=2了。1是一种用来描述一种外在能量反映而创造的一个大脑能量序列,2则是我们创造出来用来表达外在新的能量变化反映的大脑能量序列。这种序列实际上是一种抽象出来的等量符号。而我们的计算机语言恰好又将这种符号以另一种方式展现了出来。直到现在我们还在不断的创造新的符号来表达新的事物,代数的原始应用仍然存在。 我只是为了更容易理解才使用了阿拉伯数字,对于不同的文明来说他们都创造了不同的符号来表示这样的概念,就像我们的汉字里那样。只是在后来出于两种力量不得不放弃了原来所创造的符号。一种是武力,当一个文明征服另一个文明时也必然将这个文明所创造的符号强制性的灌输给被征服者,从而实现了符号的统一;一种是认同,在普遍的交流下不同文明之间为了更方便可能会形成共识。所有这些符号的形成都经历了一个从形象到抽象的过程。这种形成是在我们的大脑中由于重复的使用而记忆下来的能量的有序排列,所以这些符号某种程度上都表现了外界能量对我们的传递。为了更好的描述这些能量我们的数学形成了。任何数学上的发展都代表着人类对能量的更深层的认识。随着人类的发展这些数字已经不能在满足我们的需要。我们在除了表达“有和无”的概念外还需要表达“应该有而没有得到”这样的概念。正如你劳动了但是老板没有给你报酬。此时便出现了负数的概念。这样的我们的代数表

高等数学符号列表

线性代数 符号意义 A,B,C,... 矩阵 m×n阶矩阵A A的第i 行第j列元素为a ij (i=1,2,…,m;j=1,2,…,n) 矩阵A的转置矩阵 r(A)矩阵A的秩 矩阵A的逆矩阵 AX= B 矩阵方程, 线性方程组 矩阵A的行列式 A*A的伴随矩阵 线性方程组系数矩阵A的增广矩阵 集合与逻辑 符号意义符号意义 R 全体实数的集合,同 (∞- ,+∞) {x∣p(x)} 具有性质p(x)的对象x组成的集 合 Z 全体整数的集合( a , b ) { x∣a

数列、函数与极限 符号意义符号意义u1,u2,…,u n,… 或{u n} 以u n为通项的数列 n趋于无穷大时数列{y n} 的极 限 以u n为通项的无穷级数和 x 趋于无穷大时函数 f(x)的极限 有限项u1+u2+…+u n的和 x趋于正无穷大时函数f(x)的 极限 x在对应规律f下对应到 y x趋于负无穷大时函数f(x)的 极限 函数f :X为定义域,f 为对应规律,x为自变量, y为因变量 x趋于a时函数f(x)的极限 D f函数f的定义域 x>a且x趋于a时函数 f(x)的右极限 R f函数f的值域 x

论微积分的哲学原理

论微积分的哲学原理 亮笔 “哲学不应当从自身开始。而应当从它的反面,从非哲学开始”①。自然科学是哲学的基础。数学、物理学、化学、生物学、天文学等等,蕴含着极其丰富哲学思想。微积分是研究变数的科学。从本质上看是辩证法在数学上的运用。因此,微积分中的哲学思想比起初等数学更丰富、更明显。如果将其全部抽象出来,可以构成一部完整的自然哲学。本文试从微积分与现实世界的关系及其辩证内容略作粗浅探讨。 关于微积分的本原问题 微积分的本原问题是指它同现实世界的关系问题,即它是产生于存在还是产生于纯思维的问题。唯物主义与唯心主义有着根本不同的看法。唯心主义认为纯数学产生于纯思维。它可以先验地,不需利用外部世界给我们提供的经验,而从头脑中创造出来。杜林、康德、贝克莱等唯心主义者就是这种观点的代表②。牛顿、莱布尼茨是微积分的创立者。他们分别在研究质点运动和曲线的性质中,不自觉地把客观世界中的运动问题引进了数学。各自独立地创立了微积分。这个功劳是应该肯定的。但是,他们没有很好注意到微积分同现实世界的亲缘关系。其运算出发点是先验的。所以,马克思把牛、莱的微积分称为“神秘的微分学”③。唯物主义认为,微积分同所有的科学一样,它起源经验,然后又脱离外部世界,具有高度抽象性和相对独立性的一门崭新的科学。 恩格斯指出:“数学是从人的需要中产生的”④微积分是从生产斗争和科学实验的需要中产生的。生产实践对微积分的创立起着决定的作用。从十五世纪开始,资本主义在西欧封建社会内部逐渐形成。到十七世纪,资本主义生产方式有了巨大发展。随着生产发展,自然科学技术也雨后春笋般地发展起来了。它们跑出来向数学敲门,提出了大量研究新课题。微积分的创立就是为了处理十六、十七世纪在生产实践和科学实验中所遇到的一系列新问题。这些问题归纳起来大致分为四类:一是已知物体运动的路程与时间的函数关系,求速度和加速度;反过来,已知物体运动的速度和加速度与时间的函数关系,求路程。二是求曲线的切线。三是求函数的极大值、极小值。四是求曲线的弧长,求曲线所围成的面积,曲面所围成的体积等求积问题。 上述四类问题,形式各不相同,但有着共同的本质,即都是反映客观事物的矛盾运动过程。其中的量都在不断变化着。因此,研究常量的初等数学无法解决这些问题。生产和科研的需要,促使数学由研究常量向研究变量转化。于是微积分在传统代数学的长期孕育中,经《解释几何》这个“助产婆”的接生“而分娩了”。所以,恩格斯说:“数学的转折点是笛卡尔的变数。有了变数,运动进入了数学。有了变数,辩证法进入了数学。有了变数,微分学和积分学也就立刻成了必要的了”⑤ 微积分不仅是适应生产和科学发展需要的产物。而且,它的概念、运算法则、定理、推论等在客观世界中都各有其现实的原型。微分与积分的现象在自然界中普遍存在。自然界的蒸发与凝结过程,就是微分与积分及其相互转化的辩证过程恩格斯是这样描述自然界中的微分与积分现象及其矛盾的相互转化: “如果一杯水的最上面一层分子蒸发了,那么水层的高度x就减少了dx。这样一层分子又

数学与哲学的关系完整版

数学与哲学的关系 HEN system office room 【HEN16H-HENS2AHENS8Q8-HENH1688】

论数学与哲学的关系 【摘要】哲学,在里,对于这一词并无普遍接受的定义,也预见不到有达成一致定义的可能。单就西方学术史来说,哲学是对一些问题的研究,涉及等。数学,是研究现实世界中数量关系和空间形式的,简单地说,是研究数和形的科学。数学是社会科学和自然科学的基础,哲学是社会科学和自然科学的概括。 关键词:哲学;数学;原理;关系 哲学是对普遍而基本的问题的研究,这些问题多与实在、存在、知识、价值、、心灵、语言等有关。在东方,哲学一词通常用来说明一个人对生活的某种看法(例如某人的“人生哲学”)和基本原则(例如、、)。而在学术上的哲学,则是对这些基本的理性根据的质疑、反思,并试图对这些基本原则进行的重建。在日常用语中,“哲学”一词可以引申为个人或团体最基本的信仰、概念和态度,哲学一词可以是指一种、或者。 而对于我的专业-——基础数学,我认为我的这个专业,必然和哲学有着千丝万缕的关系,我发现了张景中院士献给数学爱好者的礼物——《数学与哲学》一书,书中主要内容包括了“万物皆数”观点的破灭与再生、哪种几何才是真的、变量·无穷小·量的鬼魂、自然数有多少、罗素悖论引起的轩然大波、数是什么、是真的但又不能证明等内容,使我开阔了视野,对于研究生期间要学习的内容,也有了更深层次的见解。 由于具体的数学问题多如繁星,数学家往往整天埋头于解决数学问题,无暇关注数学发展中出现的“矛盾”。但数学史告诉我们,恰好是“矛盾”的一次次解决,才导致数学发展的飞跃与深化。张景中的书《数学与哲学》就是对数学发展中这些重大的历史事件,用通俗的讲法向大众展示当时的争论内容与形势,及以后的解决办法及数学的飞跃发展。 例如关于数,是否仅有自然数及由它产生的有理数就够了。那么√2是什么?这就导致无理数的产生。在欧氏几何中,不少人企图给出第五公设的证明,但都失败了。这导致非欧几何的产生;无穷小量的应用与定义,导致严格实数极限理论的建立;无穷集合的比较;集合定义的确定及哥德尔定理,等等。每经过这些重大的历史事件,数学思想都得到飞跃,从而使数学得到质的发展与飞跃。 翻开西方数学史或哲学史,我们会发现一个有趣而重要的现象:西方数学与哲学有着千丝万缕的联系。这种联系不但源源流长,而且绵延至今。追溯起来,数学与哲学自西方哲学诞生之日起就结下了不解之缘。西方第一位哲学家泰勒斯是数学家;着名数学家毕达哥拉斯在对数学的深入研究上得出了“万物皆数”的着名哲学命题;大哲学家柏拉图相信数是一种独特的客观存在,由此产生了数学上的“柏拉图主义”……进入20世纪,围绕着数学基础研究所产生的三大流派更是把两者的关系推向了高峰。 在这两千多年结伴而行的漫长岁月里,哲学与数学相互影响,相互促进,与此同时也产生了许多介于两者之间的问题。比如:如何理解数学的真理性?什么是数?如何理解无穷、连续概念?等等。对这一系列问题的研究与探讨,促成了对数学进行哲学分析的数学哲学分支的确立。然而,由于问题的复杂,涉及面的广泛,分歧的众多,一般人对之只能望而却步,对有关数学哲学研究有一个概貌了解都成为一件困难的事情。 再比如,“模糊的哲学与精确的数学——人类的望远镜与显微镜”来描述数学与哲学各自的特点;“数学的领域在扩大。哲学的地盘在缩小”等等。值得注意的是我们可以对自己的部分数学研究工作做出新颖的哲学分析。例如从常微分方程的

高等数学的数学思想方法研究.doc

讲座题目高等数学的数学思想方法研究所属学科数学教育学 讲座时间2007年5月持续时间 最后学历研究生最后学位硕士 研究方向数学教育研究专长教育管理职称教授职务 学术特长及成果简介: 学术特长是数学教育学有关的课题和教育管理有关的课题。主要研究成果如下: 1、2006年9月完成了2004——2005年度中国职业技术教育学会科研规划项目《高职院校推进 学分制管理的研究与实践》,并获得结题证书。 2、论文《完善选课制是实行学分制的精髓》2005年12月发表在《长春教育学院学报》上。 3、论文《专升本院校实行学分制的几点思考》2006年10月发表在《中国育人杂志》上。 讲座内容介绍:(包括:选题意义和价值、研究现状、主要内容、观点和创新之处、主要 参考文献等。限2000字以内。) 一、选题意义和价值 为适应二十一世纪科技与社经的发展,培养大批具有高综合素质的创新型人才,我国正在进行从 应试教育向素质教育转轨的伟大改革,并提出在素质教育中着重培养学生的创新精神和实践能力的现 代教育目标。为实现这一目标,自九十年代初以来,高等数学教育也和其它学科教育一样,从教学思 想、教学内容、课程设置、教学方法和教学手段等方面进行了一系列的改革试验,并取得了初步的成 效。例如随着人们愈来愈认识到高等数学在大学人文素质教育中不可或缺的普遍和重要的作用,我国 许多重点的文史、外语和艺术等文科专业都开设了《大学数学》这一课程,又如为了加强教学建模和 运用计算机解决实际问题的能力,有些院校在高等数学中开设了《数学实验》或《数学建模》的课程,这是可喜的试验,但是高等数学的教育改革涉及面广,内容庞杂,矛盾和问题都较多,因此它的改革 是一项复杂的系统工程。当前如何把高等数学教育改革有序和有效地深入下去?当然这有许多方面的 工作要协同配合去做,我们认为其中根本的一项就是要改革在高等数学教学中相当普遍存在的形式主 义弊端——只注重纯数学知识与技能的传授而忽视对蕴涵于其中的数学思想方法的教学。为此必须认 真研究在高等数学教学全过程中,如何有效地加强数学思想方法教学的问题,提升一点来说,就是要 在所有数学教学活动中,结合具体的数学内容和活动形式,适当进行数学方法论的教育。 二、研究现状及主要内容 著名数学家和数学教育家徐利治教授认为“数学方法论主要是研究和讨论数学的发展规律、数学思想方法以及数学中的发现发明与创新法则的一门学问”。[1]自80年代初,徐教授倡导数学方法论以来,这一学科在国内至今已有了很大发展,取得了不少理论成果,出版了许多有关的著作,特别自90年代以来,不少数学教育工作者把它应用于指导中学数学教育改革的具体实践,取得了很大的成效[2]。至于应用数学方法论指导高校数学教育改革的研究与实践至今只看到少量个别的报导,看来这方面还 未引起高校广大数学教育工作者足够的重视,本讲座试图对高等数学加强数学思想方法教学的意义, 它包含那些基本的数学思想方法以及如何加强这方面的教学作一初步阐述。 三、观点和创新之处 1.首先,各方在思想上要真正重视,尽快把数学思想方法的教学正式纳入高等数学教学大纲。 要在大纲中明确规定数学思想方法的教学目标、基本教学内容和具体的要求。这是落实加强数学思想

无穷极数中的几个典型反例

无穷极数中的几个典型反例 一、正项级数中比值判别法和根值判别法的反例 (1) 比值差别法: 例1: 1(1)3 n n ∞=+- 级数1(1)3n n ∞=+-发散,但极限1lim n n n u u +→∞并不存在 因为级数13n ∞=发散而级数1(1)3n n ∞=-∑ 收敛。所以级数1 (1)3n n ∞=+-发散。 而11n n n u u ++= 是摆动数列,故11lim n n n n n u u ++→∞=并不存在。 当然,p-级数∑∞ =11n n p 也是一个典型的反例, 1lim n n n u u +→∞=1,但当p>1时收敛; 1≤p 时,发散。 (2) 根值判别法: 例2: 1(1)3n n n ∞ =?-???∑ 级数1(1)3n n n ∞=?-???∑ 收敛,但(1)lim 3n n n →∞-=并不存在。 2(1)210 33n n n ????-≤≤ ??? ???? ? 而1 13n n ∞=?? ? ???∑收敛(公比小于1的等比级数)。 由比较判别法,1(1)3n n n ∞=?-??? ∑ (1)3n -=是摆动数列。 故(1)lim 3 n n n →∞-=不存在。 注:在正项级数的敛散性判别中,比值判别法和根值判别法使用起来非常方便,但是它成立的条件是充分而非必要的。 二、 交错级数中使用莱布尼兹差别法的反例

在交错级数的敛散性判别中,莱布尼兹判别法使用起来非常方便,但是有些情况下的交错级数不满足条件。 例3: n n ∞= n u =, 显而易见满足lim 0n n u →∞ =,而不满足。1(1,2,)n n u u n +≥= , 但作为任意项级数 (1)(1)1(1)111n n n n n u n n n ?--??===----- 由级数2(1)1n n ∞=--∑ 收敛,而级数211n n ∞=-∑ 发散知,级数n n ∞=发散。 例4: n n n n )1(1)1(2-+-∑∞ = n n n n )1(1)1(2-+-∑∞==111)1(1))1(()1(222----=----n n n n n n n n , 根据莱布尼兹判别法易知交错级数∑∞ =--221)1(n n n n 收敛,而∑∞=-2211n n 收敛,所以原级数 n n n n ) 1(1)1(2-+-∑∞=是收敛的。 注:例3与例4都是不满足n n u u <+1的情况,不能使用莱布尼兹判别法直接判定。 三、 幂级数中的反例 有些同学认为,如果幂级数∑∞=0n n n x a 的收敛半径R ≠0,那么一定有 n n n a a 1lim +∞→=L=1/R ,这是不对的,因为有可能n n n a a 1lim +∞→不存在。 例5: 求幂级数∑∞=-+1 2)1(2n n n n x 的收敛半径

相关文档