文档库 最新最全的文档下载
当前位置:文档库 › 教案第2章第4节弹性理论

教案第2章第4节弹性理论

教案第2章第4节弹性理论
教案第2章第4节弹性理论

《经济学原理》教案

授课时间_2012_年3月_13日第5_次课

+∞ππdp E 1,表示价格变动1%时,需求量的变动幅度大于1%。奢侈品大多富有弹性。

奢侈品对价格是比较敏感的,当涨价的时候,因为这些东西不是生活所必需的,所以人们可能暂时就不买了。相反降价的时候,人们也可能抢购。主义这里说的“奢侈品”,是广义的,不单指宝石,也包括大家电。

③单位弹性

1=dp E ,表示价格变动1%时,需求量的变动幅度也正好等于1%。这是一种理论上的特例。

④完全有弹性

+∞=dp E ,表示价格变动1%时,需求量的变动为无穷大。完全有弹性的需求曲线为一条水平线。其含义就是说,在给定价格下,需求是无穷大的。比如战争年代的军火。

⑤完全无弹性

0=dp E ,表示不管价格如何变动,需求量始终不变。完全无弹性的需求曲线为一条垂线(图略)。其含义是说,需求量与价格无关,不论价格如何变化,需求量都不会变化。比如一些特殊的药品。

(3)需求价格弹性的影响因素

①商品在人们生活中的重要性程度与需求价格弹性负相关。重要性越高,弹性越小,比如房子和粮食;

②替代品的多少与替代程度的高低与需求价格弹性正相关。比如日化用品,不同品牌的洗发水,一种牌子涨价,可以用别的牌子;

③对某种商品的支出在消费中支出中的比重与需求价格弹性正相关。日常使用的针头线脑,人们对其价格的变化就不太敏感;买辆车可能就敏感些。

④时间的长短与需求价格弹性正相关;假如汽油价格长期上涨,人们慢慢会购买更省油的汽车,或转向更省钱的其他交通工具,因此长期内的弹性更大。

⑤商品用途的多少与需求价格弹性正相关。也就是说,单一用途的商品弹性会比较低,比如某种特效药。因为使用的人也相对固定。

2、需求收入弹性

(1)需求收入弹性的含义

需求的收入弹性是指某种商品的需求量的变动率与消费者收入的变动率之比,它用来衡量某种商品的需求量对消费者收入变动的反应程度。

d d d

d

M Q M M Q M M

Q Q E ???=??==d

d Q M dM dQ ? (2)需求收入弹性的种类

需求收入弹性的种类:????????:低档商品或劣等品

0:奢侈品或高档商品1:生活必需品1:正常商品0πφπφM M M M E E E E

3、需求的交叉弹性

(1)需求交叉弹性的定义

(2)富有弹性:

+∞ππsp E 1,表示价格变动1%时,供给量的变动幅度大于1%。一般比较富裕的产品,供给弹性就比较大,比如农产品的供给。

(3)单位弹性:

1=sp E ,表示价格变动1%时,供给量的变动幅度也正好等于1%。

(4)完全有弹性:

+∞=sp E ,表示价格变动1%时,需求量的变动为无穷大。供给曲线为水平线。

(5)无弹性:

0=sp E ,表示不管价格如何变动,供给量始终不变。无弹性的供给曲线为一条垂线。

在现实的经济生活中,大部分商品的供给不是富有弹性就是缺乏弹性,单位弹性、完全无弹性和完全有弹性的情况比较少。例如:不可再生的资源以及那些无法复制的艺术品的供给就是完全无弹性的,其供给价格弹性为零;在劳动力严重过剩的地区,劳动力的供给曲线就具有完全弹性的特点。

3、影响供给弹性的因素

(1)改变生产规模的难易程度:供给变动越容易,则供给价格弹性越大。例如纺织行业。

(2)时间的长短与供给价格弹性正相关:在价格上升后的短时期内,企业也许来不及增加固定资本的投入,只能通过增加劳动和原材料等变动投入来少量地增加供给。此时供给价格弹性可能比较小;随着时间的推移,企业可以增加固定投入,建造新的厂房,大量地扩大供给,供给价格弹性就会变大。

(3)生产采用的技术类型。劳动密集、资本密集、技术密集

四、弹性理论的应用

1、需求价格弹性与总收益的关系

现在回到课程开始时企业价格战的案例,可以知道,企业价格战策略的成败与商品的需求价格弹性密切相关。

(1)总收益的定义:总收益(total revenue )是指厂商销售一定量产品所得到的收入总和,等于某种商品的销售量与其价格的乘积。P Q TR ?=。这里的销售量Q 对消费者来说就是购买量。所以对厂商来说的总收益,同时对家庭来说,就是总支出。

(2) 总收益的决定因素

总收益取决于商品的销售量与价格两个因素:与它们正相关。然而由于需求曲线向右下方倾斜,销售量与价格负相关:当价格下降时,需求量会增加;反之,价格上升时,需求量会减少。价格变

动时,厂商的总收益到底是增加还是减少,取决于商品需求价格弹性的大小。

(3)需求缺乏弹性的商品,厂商的总收益与价格正相关:

需求缺乏弹性的商品价格下降时,厂商的总收益将下降。因为此时,需求量的增加幅度小于价格的下降幅度,使得需求量增加所导致的总收益的增加,小于价格下降带来的损失,最终使总收益下降。这就是所谓的“谷贱伤农”的道理。

举例如下:

设某种商品的需求价格弹性5.0=dp E ,初始的价格为=1P 1000元,与此对应的需求量为=1Q 100。此时厂商的总收益为:1000001001000111=?=?=P Q TR 。

现在价格降低10%,新的价格=2P 900,则需求量将增加%55.0%10=?,新的需求量为

=2Q 105。此时厂商的总收益为:94500105900222==?=x P Q TR 。显然总收益在降低价格以后减少了。

同理,需求缺乏弹性的商品价格上升时,厂商的总收益将上升。

(4)需求富有弹性的商品,厂商的总收益与价格负相关

需求富有弹性的商品价格下降时,厂商的总收益增加。因为此时,需求量的增加幅度大于价格的下降幅度,使得价格下降所导致的总收益的减少,可以通过更多需求量的上升来弥补而有余,最终使总收益增加。

举例如下:

设某种商品的需求价格弹性2=dp E ,初始的价格为=1P 1000元,与此对应的需求量为=1Q 100。此时厂商的总收益为:1000001001000111=?=?=P Q TR 。

现在价格下降10%,新的价格=2P 900%1010001000=?-,则需求量将增加%202%10=?,新的需求量=2Q 120%20100100=?+。此时厂商的总收益为:

108000120900222=?=?=P Q TR 。显然总收益在提高价格以后增加了。

因此,能够薄利多销的商品一定是富有弹性的商品。

2、需求弹性、供给弹性和税收分摊

直接税:税收由纳税人承担,无法转嫁出去的税收。比如说个人所得税,企业的营业税等。对于生产和分配环节的税收,一般都用直接税。

间接税:税收负担不一定由纳税人承担,可以全部或者部分转嫁出去的税收。转嫁的方法主要是通过价格。对于流通环节的税收,一般是间接税。比如商品税。

税收分摊:税收负担在生产者和消费者之间的分割。

税收归宿:税收负担最终由谁承担。

如果某种商品的需求富有弹性而供给缺乏弹性,税收就主要由生产者承担。比如奢侈品的消费:因为如果生产者提高价格,需求减少的会更快,总收益会减少。因为消费者可以用更多其它的消费,如买房子,旅行,高尔夫等替代这些消费,或者把钱存起来留给孩子都可以。但是厂商却不能在短期内调整生产。所以税收的负担只能由生产者自己从收入里扣除。

如果某种商品的需求缺乏弹性而供给富有弹性,税收就主要有消费者承担。比如香烟。吸烟的

弹性力学基础讲解

一、基本物理量 应力张量:在直角坐标系中,过弹性体内任一点取分别平行于三个坐标平面的三个微平面,它们的外法线方向分别为三个坐标轴的方向,将三个剪应力平行于坐标轴的两个分量;由此共得九个应力分量,记为: ??? ? ??????=zz zy zx yz yy yx xz xy xx ττττττττττ;每个分量的第一下标表示应力分量所在平面的外法线方向,第二下标表示应力分量 的方向。应力分量的正负号规定为:当应力分量所在平面的外法线方向与某坐标轴同向时,应力分量的方向也与相应坐标轴同向;当应力分量所在平面的外法线方向与某坐标轴反向时,应力分量的方向也与相应坐标轴反向。 3、应变 弹性体内某一点的正应变(线应变):设P 为弹性体内任意点,过P 点某一微元线段变形前的长度为l ?,变形后的长度为'l ?,定义P 点l 方向的正应变为:l l l l ll ??-?=→?'lim 0ε。即正应变表示单位长度线段的伸长 或缩短。 弹性体内某一点的剪应变(角应变):设r l ?和s l ?为过P 点的两微元线段,变形前两线段相互垂直,定义变形后两线段间夹角的改变量(弧度)为角应变,夹角减小则角应变为正。 应变张量:在直角坐标系中,过弹性体内任一点取分别平行三个坐标轴的线段,按上述原则定义各应变分 量,得:??? ? ? ?????=zz zy zx yz yy yx xz xy xx εεεεεεεεεε;两个下标相同的分量为正应变,其它为剪应变。 关于主应变和主应变方向的讨论与主应力基本相同,可以证明,主应变方向与主应力方向重合。 4、外力 体积力:作用于弹性体内部每一点上,如重力、电磁力、惯性力等。设V ?为包含P 点的微元体,作用于该微元体上的体积力为V F ?,则定义P 点的体积力为:{}T z y x V V f f f V =??=→?F f 0lim 。 表面力:作用于弹性体表面,如压力,约束力等。设S ?为包含P 点的微元面,作用于该微元面上的表面力为S F ?,则定义P 点的表面力为:{}T z y x S S s s s S =??=→?F s 0lim 。 二、基本方程 1、平衡方程

第二章弹性力学基础

第二章弹性力学基础 弹性力学又称弹性理论,它是固体力学的一个分支。弹性力学任务是确定结构或机械零件在外载荷作用或温度改变等原因而发生的应力、位移和应变。 弹性力学与材料力学总的任务是相同的,但弹性力学研究的问题比材料力学要更加深刻和精确,并研究材料力学所不能解决的一些问题。 材料力学-----研究杆状构件(长度>>高度和宽度)在拉压、剪切、弯曲、扭转作用下的应力和位移。 弹性力学-----研究板壳、挡土墙、堤坝、地基等实体结构。对杆状构件作较精确的分析,也需用弹性力学。 结构力学-----研究杆状构件所组成的结构。例如桁架、刚架。

第一节弹性力学假设 在弹性力学中,所研究的问题主要是理想弹性体的线性问题,所谓理想弹性体的线性问题,是指符合以下假定的物体。 1. 假设物体是线弹性的 假定物体服从虎克定律,即应变与引起该应变的应力成正比,反映这一比例关系的常数,就是弹性常数。即该比例关系不随应力、应变的大小和符号而变。 由材料力学已知: 脆性材料的物体:在应力?比例极限以前,可作为近似的完全弹性体; 韧性(塑性)材料的物体:在应力<屈服极限以前,可作为近似的完全弹性体。 这个假定,使得物体在任意瞬时的应变将完全取决于该瞬时物体所受到的外力或温度变化等因素,而与加载的历史和加载顺序无关。 2. 假设物体是连续性的 假设整个物体的体积都被该物体介质完全充满,不留下任何空隙。有了这一假定决定了应力、应变、位移是连续的,可用坐标的连续函数来表示他们的变化规律。 注:实际上,一切物体都是由微粒组成的,都不能符合该假定。但是由于物体粒子的尺寸以及相邻粒子间的距离,

都比物体自己本身的尺寸小得很多,因此连续性假设不会引起显着的误差。 3. 假设物体是均匀性、各向同性的 整个物体是由同一材料组成的。这样整个物体的所有各部分才具有相同的弹性,因而物体的弹性常数不随坐标而变化,可以取出该物体的任意一小部分来加以分析,然后把分析所得结果应用于整个物体。 各向同性是指物体内一点的弹性在所的各个方向上都是相同的,故物体的弹性常数不随方向而变化。 对于非晶体材料,是完全符合这一假定。而由木材,竹材等做成的构件,就不能作为各向同性体来研究;钢材构件基本上是各向同性的。 弹性常数? 凡是符合以上三个假定的物体,就称为理想弹性体。 4. 假设物体的位移和应变是微小的 假定物体在载荷或温度变化等外界因素的作用下所产生的位移远小于物体原来的尺寸,应变分量和转角都远小于1。 因此 ①在建立物体变形以后的平衡方程时,可用变形前的尺寸代替变形后的尺寸,而不至于引起显著的误差。

第2章 弹性力学基础(1)

第2章弹性力学基础 内容提要:本章主要介绍弹性力学的基本概念,主要包括应力、应变的定义和性质,应力平衡方程、几何方程和物理方程,并对弹性力学问题的基本求解方法进行简介。为了便于对机械结构有限元计算结果能够很好地分析评价,本章还介绍了结构强度与失效的基本理论。有关能量法的简单知识是后续有限元法的重要理论基础。 教学要求:学习掌握应力、应变基本概念和主要性质,掌握弹性力学基本方程、应力边界条件、协调方程等,了解弹性力学平面问题的应力函数法,掌握结构强度失效准则中的等效应力理论等内容,了解能量法的基本思想。 2.1 引言 弹性力学(Elastic Theory)作为一门基础技术学科,是近代工程技术的必要基础之一。在现代工程结构分析,特别是航空、航天、机械、土建和水利工程等大型结构的设计中,广泛应用着弹性力学的基本公式和结论。 弹性力学与材料力学(Foundamental Strengths of Materials)在研究内容和基本任务方面,是基本相同的,研究对象也是近似的,但是二者的研究方法却有较大的差别。弹性力学和材料力学研究问题的方法都是从静力学、几何学、物理学三方面入手的。但是材料力学的研究对象是杆状构件,即长度远大于宽度和厚度的构件,分析这类构件在拉压、剪切、弯曲、扭转等几类典型外载荷作用下的应力和位移。在材料力学中,除了从静力学、几何学、物理学三方面进行分析外,为了简化推导,还引用了一些关于构件的形变状态或应力分布的假定(如平面截面的假定、拉应力在截面上均匀分布的假定等等)。杆件横截面的变形可以根据平面假设确定,因此综合分析的结果,即问题求解的基本方程,是常微分方程。对于常微分方程,数学求解是没有困难的。而在弹性力学里研究杆状构件一般都不必引用那些假定,所以其解答要比材料力学里得出的解答精确得多。当然,弹性力学在研究板壳等一些复杂问题时,也引用了一些有关形变状态或应力分布的假定来简化其数学推导。但是由于弹性力学除研究杆状构件之外,还研究板、壳、块,甚至是三维物体等,因此问题分析只能从微分单元体入手,以分析单元体的平衡、变形和应力应变关系,因此问题综合分析的结果是满足一定边界条件的偏微分方程。也就是说,问题的基本方程是偏微分方程的边值问题。从理论上讲,弹性力学能解决一切弹性体的应力和应变问题。但在工程实际中,一般构件的形状、受力状态、边界条件都比较复杂,所以除少数的典型问题外,对大多数工程实际问题,往往都无法用弹性力学的基本方程直接进行解析求解,有些只能通过数值计算方法来求得其近似解。 弹性力学的研究方法决定了它是一门基础理论课程,把弹性力学的理论直接用于分析工程问题具有很大的困难。原因主要在于它的基本方程——偏微分方程边值问题求解的困难。由于经典的解析方法很难用于工程构件分析,因此探讨近似解法是弹性力学发展中的特色。近似求解方法,如差分法和变分法等,特别是随着计算机的广泛应用而发展的有限单元法,为弹性力学的发展和解决工程实际问题开辟了广阔的前景。 本章主要介绍弹性力学基本概念、用解析法求解简单弹性力学问题的基础知识,主要包括弹性

(完整word版)弹性力学简明教程(第四版)_第二章_课后作业题答案

第二章 平面问题的基本理论 【2-9】试列出图2-17,图2-18所示问题的全部边界条件。在其端部小边界上,应用圣维南原理列出三个积分的应力边界条件。 x y 2 h 1h b g ρo () 2h b >> h x y l /2/2 h M N F S F 1 q q 图2-17 图2-18 【分析】有约束的边界上可考虑采用位移边界条件,若为小边界也可写成圣维南原理的三个积分形式,大边界上应精确满足公式(2-15)。 【解答】图2-17: 上(y =0) 左(x =0) 右(x =b ) l 0 -1 1 m -1 () x f s () 1g y h ρ+ () 1g y h ρ-+ () y f s 1gh ρ 代入公式(2-15)得 ①在主要边界上x=0,x=b 上精确满足应力边界条件: ()()100(),0;===-+=x xy x x g y h σρτ ()()1b b (),0; ===-+=x xy x x g y h σρτ ②在小边界0y =上,能精确满足下列应力边界条件: () () ,0y xy y y gh σρτ===-= ③在小边界2y h =上,能精确满足下列位移边界条件: ()()2 2 0,0 ====y h y h u v 这两个位移边界条件可以应用圣维南原理,改用三个积分的应力边界条件来代替,当板厚=1δ时,可求得固定端约束反力分别为: 10,,0s N F F gh b M ρ==-=

由于2y h =为正面,故应力分量与面力分量同号,则有: ()()()22210000 0b y y h b y y h b xy y h dx gh b xdx dx σρστ===?=-???=???=?? ??? ⑵图2-18 ①上下主要边界y=-h/2,y=h/2上,应精确满足公式(2-15) l m x f (s) y f (s) 2h y =- 0 -1 0 q 2 h y = 1 -1q -/2()y y h q σ==-,-/2()0yx y h τ==,/2()0y y h σ==,/21()yx y h q τ==- ②在x =0的小边界上,应用圣维南原理,列出三个积分的应力边界条件:负面上应力与面力符号相反,有 /20/2/2 0/2/20 /2()()()h xy x S h h x x N h h x x h dx F dx F ydx M τσσ=-=-=-?=-??=-???=-???? ③在x=l 的小边界上,可应用位移边界条件0,0====l x l x v u 这两个位移边界条件也可改用三个积分的应力边界条件来代替。 首先,求固定端约束反力,按面力正方向假设画反力,如图所示,列平衡方程求反力: 110,x N N N N F F F q l F q l F ''=+=?=-∑ 0,0y S S S S F F F ql F ql F ''=++=?=--∑ 2 211110,'02222 A S S q lh ql M M M F l ql q lh M M F l =+++-=?=---∑ 由于x=l 为正面,应力分量与面力分量同号,故 M ' N F 'S F '

弹性力学基础(程尧舜 同济大学出版社)课后习题解答

1 图2.4 习题解答 第二章 2.1计算:(1)pi iq qj jk δδδδ,(2)pqi ijk jk e e A ,(3)ijp klp ki lj e e B B 。 解:(1)pi iq qj jk pq qj jk pj jk pk δδδδδδδδδδ===; (2)()pqi ijk jk pj qk pk qj jk pq qp e e A A A A δδδδ=-=-; (3)()ijp klp ki lj ik jl il jk ki lj ii jj ji ij e e B B B B B B B B δδδδ=-=-。 2.2证明:若ij ji a a =,则0ijk jk e a =。 证:20ijk jk jk jk ikj kj ijk jk ijk kj ijk jk ijk jk i e a e a e a e a e a e a e a ==-=-=+。 2.3设a 、b 和c 是三个矢量,试证明: 2[,,]??????=???a a a b a c b a b b b c a b c c a c b c c 证:123111 2 123222123333 [,,]i i i i i i i i i i i i i i i i i i a a a b a c a a a a b c b a b b b c b b b a b c c a c b c c c c c a b c ??????=???==a a a b a c b a b b b c a b c c a c b c c 。 2.4设a 、b 、c 和d 是四个矢量,证明: ()()()()()()???=??-??a b c d a c b d a d b c 证:()()i j ijk k l m lmn n i j l m ijk lmk a b e c d e a b c d e e ???=?=a b c d e e ()()()()()i j l m il jm im jl i i j j i i j j a b c d a c b d a d b c δδδδ=-=- ()()()()=??-??a c b d a d b c 。 2.5设有矢量i i u =u e 。原坐标系绕z 轴转动θ系,如图2.4所示。试求矢量u 在新坐标系中的分量。 解:11cos βθ'=,12sin βθ'=,130β'=, 21sin βθ'=-,22cos βθ'=,230β'=, 310β'=,320β'=,331β'=。 1112cos sin i i u u u u βθθ''==+,

弹性力学 第二章 应力状态分析

第二章应力状态分析 一、内容介绍 弹性力学的研究对象为三维弹性体,因此分析从微分单元体入手,本章的任务就是从静力学观点出发,讨论一点的应力状态,建立平衡微分方程和面力边界条件。 应力状态是本章讨论的首要问题。由于应力矢量与内力和作用截面方位均有关。因此,一点各个截面的应力是不同的。确定一点不同截面的应力变化规律称为应力状态分析。首先是确定应力状态的描述方法,这包括应力矢量定义,及其分解为主应力、切应力和应力分量;其次是任意截面的应力分量的确定—转轴公式;最后是一点的特殊应力确定,主应力和主平面、最大切应力和应力圆等。应力状态分析表明应力分量为二阶对称张量。本课程分析中使用张量符号描述物理量和基本方程,如果你没有学习过张量概念,请进入附录一,或者查阅参考资料。 本章的另一个任务是讨论弹性体内一点-微分单元体的平衡。弹性体内部单元体的平衡条件为平衡微分方程和切应力互等定理;边界单元体的平衡条件为面力边界条件。 二、重点 1、应力状态的定义:应力矢量;正应力与切应力;应力分量; 2、平衡微分方程与切应力互等定理; 3、面力边界条件; 4、应力分量的转轴公式; 5、应力状态特征方程和应力不变量; 知识点: 体力;面力;应力矢量;正应力与切应力;应力分量;应力矢量与应力 分量;平衡微分方程;面力边界条件;主平面与主应力;主应力性质; 截面正应力与切应力;三向应力圆;八面体单元;偏应力张量不变量; 切应力互等定理;应力分量转轴公式;平面问题的转轴公式;应力状态 特征方程;应力不变量;最大切应力;球应力张量和偏应力张量 §2.1 体力和面力 学习思路:

本节介绍弹性力学的基本概念——体力和面力,体力F b和面力F s的概念均不难理解。 应该注意的问题是,在弹性力学中,虽然体力和面力都是矢量,但是它们均为作用于一点的力,而且体力是指单位体积的力;面力为单位面积的作用力。 体力矢量用F b表示,其沿三个坐标轴的分量用F b i(i=1,2,3)或者F b x、F b y和F b z表示,称为体力分量。 面力矢量用F s表示,其分量用F s i(i=1,2,3)或者F s x、F s y和F s z表示。 体力和面力分量的方向均规定与坐标轴方向一致为正,反之为负。 学习要点: 1、体力; 2、面力。 1、体力 作用于物体的外力可以分为两种类型:体力和面力。 所谓体力就是分布在物体整个体积内部各个质点上的力,又称为质量力。例如物体的重力,惯性力,电磁力等等。 面力是分布在物体表面上的力,例如风力,静水压力,物体之间的接触力等。为了表明物体在xyz坐标系内任意一点P 所受体力的大小和方向,在P点的邻域取一微小体积元素△V,如图所示 设△V 的体力合力为△F,则P点的体力定义为 令微小体积元素△V趋近于0,则可以定义一点P的体力为

第二章弹性力学的基本原理

第二章 弹性力学的基本原理 §2.1 应力分析 2.1.1应力与应力张量 应力被定义为:用假想截面将物体截开,在截面上一点P 的周围取一微元S ?, 设S ?的外法线为ν, S ?上的力为T ?,如极限ν???T S T S =→/lim 0 存在,则称νT 为P 点在该截面上的应力矢量。 考察三个面为与坐标面平行的截面(即以321,,x x x 三个坐标轴为法线的三个截面), )3()2()1( , ,T T T 分别表示三个截面上的应力矢量。每一个应力矢量又分解为沿三个坐标轴的应力分量,有 j ij i e T σ=)( (i ,j =1,2,3) (2.1) 这里的张量运算形式满足“求和约定”,即凡是同一指标字母在乘积中出现两次时,则理解为对所有同类求和,即j ij e σ应理解为∑=3 1j j ij e σ。这样的求和指标j 称之为假指标或哑指标。由此得到 九个应力分量表示一点的应力状态,这九个分量组成应力张量: ? ?? ?? ??=333231232221131211σσσσσσσσσσij 或??? ? ? ??=zz zy zx yz yy yx xz xy xx ij στττστττσσ (2.2) 在本书第一章致第九章,应力分量符号(正负号)规定如下:对于正应力,我们规定张应力为正,压应力为负。对于剪应力,如果截面外法向与坐标轴的正方向一致,则沿坐标轴正方向的剪应力为正,反之为负。如果沿截面外法向与坐标轴的正方向相反,则沿坐标轴正方向的剪应力为负。 2.1.2 柯西(Cauchy)方程 记S 为过P 点的外法向为n 的斜截面。外法线n 的方向可由其方向余弦记为),,cos(11x n n =α ),cos(22x n n =α, ),cos(33x n n =α。 设此斜截面ABC ?的面积为S , 则如图2.1, 过此点所取的小四面体OABC 另外三个面为与坐标面平行的截面(即以321,,x x x 三个坐标轴为法线的三个截面), 其面积分别为 ??? ?? ?=?=?=?=?=?=333222111),cos(:),cos(:),cos(:n n n S x S S OAB S x S S OAC S x S S OBC α?α?α?n n n (2.3) 此截面上的应力矢量记为)(n T , 即 j n j n T e T )()(= (2.4) 另外三个面上的应力矢量分别为)1(T -, )2(T -, )3(T -。 考虑此微元(四面体OABC 的平衡,其平衡方程为 ()031 3)3(2)2(1)1()(=??+?+?+?-?h S S S S S n f T T T T (2.5) 其中f 为作用于此单元上的体力,h 为O 点至截面ABC 的垂直距离,h S ?3 1 为此微元的体积。当

相关文档
相关文档 最新文档