文档库 最新最全的文档下载
当前位置:文档库 › 达西实验报告

达西实验报告

达西实验报告
达西实验报告

《水文地质学基础》实验报告

实验名称:达西定律实验

实验人:实验日期:

一、实验目的

1、测定渗透砂体的渗透量与水头损失的关系,验证渗流的达西定律。

2、测定均质砂的渗透系数K值;

二、实验设备:

1.供水器装置(马氏瓶):以法国物理学家Mariotte的马利奥特瓶装置,是一种能控制水位又能自动连续补给水的量测装置。

2.渗透装置(试样筒):有机玻璃圆筒,上部设有进水孔,底部装有过滤板,下端有出水孔,供测量渗流量用。侧面有三个测压孔。

3.测压装置(测压板和测压管):在测压板上装有三根5-8mm带刻度的玻璃管,分别与试样筒上的三个测压孔连接,用于测定三个断面上的测压水位。三个测压管用胶管分别与试样筒相应的管孔连结。

4.排水装置:在测压板上均匀分布有一系列的圆孔,用于调节排水水位。

其它设备有:100m1的量筒、水槽、漏斗、捣捧、装样杯、秒表、温度计、管夹、胶皮管及吸气球等。

三、实验原理:

达西通过大量实验,得到圆筒过水断面的渗流量Q与圆筒断面F和水力坡度I成正比,并和土壤的透水性能有关,所建立基本关系式如下:

式中:

v---为渗流简化模型的断面平均流速;

K---为岩石的渗透系数,反映了孔隙介质透水性能。

四、实验步骤:

1.检查仪器设备是否齐全、完好。胶管与仪器连结处是否漏气漏水或堵塞。

2.装样:岩样有两种,即原状样和扰动样。原状样就是在野外取来土柱直接装到渗透装置(有机玻璃圆筒)内;扰动样则要按天然容重分层捣实,尽量接近天然状态,否则就没有实验意义了。装样前,在过滤筛板上放二层铜丝网,然后装样,每装3—5cm厚时,用捣捧轻击数次,并测定试样的孔隙度或容重,使其结构尽量符合实际状态。重复上述过程,直至试样超过最上一个测压孔以上5cm为止。

3.饱和试样(因达西定律是饱水带重力水运动的基本定律):先将排水水位调节高于试样水面,饱和试样时要自上而下进行注水(便于排气),打开供水管夹,待试样表面出现水膜时(即饱和了),立即关闭供水夹,观察试样筒及三个侧压管水位是否在同一水平面上(因此时试样筒与测压管是U型连通器),如果测压管水位不在同一水平面上,则说明有气泡存在或测压管被堵塞,这时需要排气,排气的方法有两种,即将测压板倾斜或用吸耳气球从偏高或偏低水位的管中吸出气泡,达到水平,各测压管水位差<1mm为准。

4.实验测定:打开供水管夹(实验过程中保持常水头供水),调节排水水位(不能高于供水水位),当测压管水位稳定后(30秒钟内水位变动

<1mm),记录各侧压水位值(读弯液面下缘高度),同时测定在时间t 秒钟内流出排水管的渗透量及水温t ℃。重复测定二次取其平均值。然后再调节二次排水水位(即改变水力坡度),如同前述测得二次调节后的各值。调节时应逐级上升或依次下降,不要跳跃式的上升或下降,以免装置内的渗透压变化剧烈,冲坏试样原有结构。 五、实验记录及结果: (一)实验记录

仪器内径D = cm ;渗透土柱断面面积F = cm 2;测压间距L = cm 。

实验记录表格

试 验 次 数 时 间 T (s) 水

W (cm 3)

Q

(cm 3

/s

)

渗 透

速 度 V (cm/s )

测 压 管

水 位

(cm)

水 位差

(cm)

水力 坡度 I 渗透

系数

Kt

(cm/s

)

t

(o C) h 1

h 2

h 3 h 1-h 2 h 2-h 3

平均

h

I

II III

(二)绘制v与I关系图:(三)实验结论:

达西实验报告

《水文地质学基础》实验报告 实验名称:达西定律实验 实验人:实验日期: 一、实验目的 1、测定渗透砂体的渗透量与水头损失的关系,验证渗流的达西定律。 2、测定均质砂的渗透系数K值; 二、实验设备: 1.供水器装置(马氏瓶):以法国物理学家Mariotte的马利奥特瓶装置,是一种能控制水位又能自动连续补给水的量测装置。 2.渗透装置(试样筒):有机玻璃圆筒,上部设有进水孔,底部装有过滤板,下端有出水孔,供测量渗流量用。侧面有三个测压孔。 3.测压装置(测压板和测压管):在测压板上装有三根5-8mm带刻度的玻璃管,分别与试样筒上的三个测压孔连接,用于测定三个断面上的测压水位。三个测压管用胶管分别与试样筒相应的管孔连结。 4.排水装置:在测压板上均匀分布有一系列的圆孔,用于调节排水水位。 其它设备有:100m1的量筒、水槽、漏斗、捣捧、装样杯、秒表、温度计、管夹、胶皮管及吸气球等。 三、实验原理: 达西通过大量实验,得到圆筒过水断面的渗流量Q与圆筒断面F和水力坡度I成正比,并和土壤的透水性能有关,所建立基本关系式如下:

式中: v---为渗流简化模型的断面平均流速; K---为岩石的渗透系数,反映了孔隙介质透水性能。 四、实验步骤: 1.检查仪器设备是否齐全、完好。胶管与仪器连结处是否漏气漏水或堵塞。 2.装样:岩样有两种,即原状样和扰动样。原状样就是在野外取来土柱直接装到渗透装置(有机玻璃圆筒)内;扰动样则要按天然容重分层捣实,尽量接近天然状态,否则就没有实验意义了。装样前,在过滤筛板上放二层铜丝网,然后装样,每装3—5cm厚时,用捣捧轻击数次,并测定试样的孔隙度或容重,使其结构尽量符合实际状态。重复上述过程,直至试样超过最上一个测压孔以上5cm为止。 3.饱和试样(因达西定律是饱水带重力水运动的基本定律):先将排水水位调节高于试样水面,饱和试样时要自上而下进行注水(便于排气),打开供水管夹,待试样表面出现水膜时(即饱和了),立即关闭供水夹,观察试样筒及三个侧压管水位是否在同一水平面上(因此时试样筒与测压管是U型连通器),如果测压管水位不在同一水平面上,则说明有气泡存在或测压管被堵塞,这时需要排气,排气的方法有两种,即将测压板倾斜或用吸耳气球从偏高或偏低水位的管中吸出气泡,达到水平,各测压管水位差<1mm为准。 4.实验测定:打开供水管夹(实验过程中保持常水头供水),调节排水水位(不能高于供水水位),当测压管水位稳定后(30秒钟内水位变动

达西渗透实验指导书

达西渗透实验 1实验目的 (1) 测定均质沙的渗透系数k 值; (2) 测定通过沙体的渗透流量与水头损失的关系,验证达西定律。 (3) 通过试验,确定水流通过沙体的雷诺数,判别达西定律的适用范围。 2.实验设备与仪器 实验设备由活动盛水容器、溢流板、进水管、滤板、盛沙桶、溢流管和测压管组成。测量仪器为量筒、秒表、温度计。 3.实验原理 液体在空隙介质中流动时,由于液体具有粘性,在液体流动中会引起水头损失 1856年法国工程师H.Darcg 在装满沙的圆筒中进行实验。因为渗流流速极为微小,所以流速水头可以忽略不计。因此总水头H 可以用测压管水头h 来表示。水头损失h w 可以用测压管水头差来表示,即 γ/p Z h H +== (1) 21-h h h w = (2) 水力坡度可用测压管水头坡度来表示,即 L h h L h J w 2 1-== 达西分析了大量的实验资料表明,渗流量Q 与圆筒断面面积A 及水头损失h w 成正 比,与断面间距L 成反比,并和土壤的透水性有关,达西得到了如下基本关系式 L h h kA kAJ Q 2 1-== (3) L h h k kJ A Q v 21-=== (4) )/(AJ Q k = (5) 式中,v 为渗流的断面平均流速;γ/111p Z h +=,γ/222p Z h +=, k 为反映孔隙介质透水性能的一个综合系数,即渗透系数。 式(3)~(5)所表示的关系称为达西定律,它是渗流的基本定律。由式(4)可以看出,渗透速度V 与水力坡度J 成线性关系,所以达西定律又称为线性渗流定律。 渗透系数k 是反映土壤透水性的一个综合指标,其大小主要取决于土壤颗粒的形状、大小、均匀程度以及地质构造等孔隙介质的特性,同时也和流体的物性如粘滞性和重度等有关。因此k 值将随孔隙介质的不同而不同;对于同一介质,也因流体的不同而有差别;即使同一流体,当温度变化时重度和粘滞系数也有所变化,因而k 值也有所变

低渗非达西渗流特征及影响因素

《高等渗流力学》读书报告 ----低渗非达西渗流特征及影响因素 姓名: 张恒 学号:2010050031 专业:石油与天然气工程 教师:鲁洪江(教授)

低渗非达西渗流特征及影响因素 1 选题依据及研究现状 1.1选题依据 随着中国石油工业的发展,低渗透油藏在开发中所占的比例越来越大。低渗透油藏是我国今后乃至相当长一段时间内增储上产的主要资源基础。要合理高效地开发这些低渗透油藏,就需要充分合理的认识低渗透油藏本身所具有的特殊规律及其特性参数,并准确地描述低渗透油藏的渗流规律. 1.2研究现状 国内很多研究人员从实验方面发现了低渗透油藏的启动压力和非线性渗流规律的存在,从理论方面提出了描述启动压力和非线性渗流的模型[1]。但是,非线性渗流和启动压力梯度的存在并没有得到国内外学术界的普遍认可。反对者的意见是,引起低渗透油藏非线性达西流和启动压力的原因均为理论推测,而无充分的微观实验科学依据;在流速很低的情况下,受测量手段和如蒸发等现象的影响,对流速和压力的测量误差很大[2] 1.3 主要的参考文献 [1] 王正波,岳湘安等.影响低渗透油藏低速非线性渗流的实验研究[J].矿物学 报,2008,28(1),48-54. [2]王慧明,王恩志等.低渗透岩体饱和渗流研究进展[J].水科学进展, 2003,14(2): 245 [3]辛莹娟.低渗透非达西渗流研究[J].西部探矿工程。2010(10):115-117 [4]中国“八五”科技成果.低渗透油层多相渗流机理[M].北京:科学出版社,1996 [5]闫庆来,何秋轩,任晓娟,等.低渗透油层中单相液体渗流特征研究[J].西安石油学院学 报,1990,5(6):1-6. [6]吴景春,袁满,张继成,等.大庆东部低渗透油藏单相流体低速非达西渗流特征[J].大庆石油 学院学报,1999,23(2):82-84 [7]阮敏,何秋轩.低渗透多孔介质中新型渗流模型[J].石油勘探与开发,1996

达西定律

20120226\ 防水卷材搭接系数1.123% 外防内粘 外防外粘 方案 WORD EXCEL POWERPOINT CAD 一级建造 二级建造 达西定律 科技名词定义 中文名称:达西定律 英文名称:Darcy's law 定义1:表示液体在层流状况下,在多孔介质中单位流量与水力梯度的比例关系。 应用学科:地理学(一级学科);水文学(二级学科) 定义2:流体流过孔隙介质时,其流速与流动方向上的压力梯度成正比。 应用学科:煤炭科技(一级学科);煤矿安全(二级学科);瓦斯(三级学科) 定义3:渗流水流量与水力梯度呈正比的定律。 应用学科:水利科技(一级学科);岩石力学、土力学、岩土工程(二级学科);土力学(水利)(三级学科) 以上内容由全国科学技术名词审定委员会审定公布 目录

达西渗流公式推导 达西渗透实验与达西定律 达西定律的适用范围 展开 达西定律 Dar cy’s Law 反映水在岩土孔隙中渗流规律的实验定律。 由法国水力学家 H.-P.-G.达西在1852~1855年通过大量实验得出。其表达式为 Q=KFh/L 式中Q为单位时间渗流量,F为过水断面,h为总水头损失,L为渗流路径长度,I=h/L为水力坡度,K为渗透系数。关系式表明,水在单位时间内通过多孔介质的渗流量与渗流路径长度成反比,与过水断面面积和总水头损失成正比。从水力学已知,通过某一断面的流量Q等于流速v与过水断面F的乘积,即Q=Fv。或,据此,达西定律也可以用另一种形式表达v=KI v为渗流速度。上式表明,渗流速度与水力坡度一次方成正比。说明水力坡度与渗流速度呈线性关系,故又称线性渗流定律。达西定律适用的上限有两种看法:一种认为达西定律适用于地下水的层流运动;另一种认为并非所有地下水层流运动都能用达西定律来表述,有些地下水层流运动的情况偏离达西定律,达西定律的适应范围比层流范围小。 这个定律说明水通过多孔介质的速度同水力梯度的大小及介质的渗透性能成正比。 这种关系可用下列方程式表示:V=K[(h2-h1)÷L]。 其中V 代表水的流速,K 代表渗透力的量度(单位与流速相同, 即长度/时间),(h2-h1)÷L 代表地下水水位的坡度(即水力梯度)。因为摩擦的关系,地下水的运动比地表水缓慢得多。可以利用在井中投放盐或染料,测定渗流系数和到达另一井内所需的时间。 在美国佛罗里达的含水层中,曾沿着多口水井,采用碳14 方法测定地下水的年龄。结果测出渗流系数为每年7 米。在渗透性能良好的介质中,渗流系数可高达每日6 米。美国还测得过每日235 米的纪录。不过,在许多地方,速率通常是每年不超过30 米。

达西定律 Darcy

定律Darcy’s Law 反映水在岩土孔隙中渗流规律的实验定律。 由法国家达西在1852~1855年通过大量实验得出。其表达式为Q=KFh/L 式中Q为单位时间渗流量,F为过水断面,h为总水头损失,L 为渗流路径长度,I=h/L为水力坡度,K为渗流系数。关系式表明,水在单位时间内通过多孔介质的渗流量与渗流路径长度成反比,与过水断面面积和总水头损失成正比。从水力学已知,通过某一断面的流量Q等于流速v与过水断面F的乘积,即Q=Fv。或,据此,达西定律也可以用另一种形式表达 v=KI v为渗流速度。上式表明,渗流速度与水力坡度一次方成正比。说明水力坡度与渗流速度呈线性关系,故又称线性渗流定律。达西定律适用的上限有两种看法:一种认为达西定律适用于的层流运动;另一种认为并非所有地下水层流运动都能用达西定律来表述,有些地下水层流运动的情况偏离达西定律,达西定律的适应范围比层流范围小。 这个定律说明水通过多孔介质的速度同水力梯度的大小及介质 的渗透性能成正比。 这种关系可用下列方程式表示:V=K[(h2-h1)÷L]。 其中V 代表水的流速,K 代表渗透力的量度(单位与流速相同, 即长度/时间),(h2-h1)÷L 代表地下水水位的坡度(即水力梯度)。

因为摩擦的关系,地下水的运动比地表水缓慢得多。可以利用在井中投放盐或染料,测定渗流系数和到达另一井内所需的时间。 达西定律只适用于低流速条件。 在美国佛罗里达的含水层中,曾沿着多口水井,采用碳14 方法测定地下水的年龄。结果测出渗流系数为每年7 米。在渗透性能良好的介质中,渗流系数可高达每日6 米。美国还测得过每日235 米的纪录。不过,在许多地方,速率通常是每年不超过30 米。

达西渗透定律

达西渗透定律 (1)达西渗透实验与达西定律 地下水在土体孔隙中渗透时,由于渗透阻力的作用,沿程必然伴随着能量的损失。为了揭示水在土体中的渗透规律,法国工程师达西(H.darcy)经过大量的试验研究,1856年总结得出渗透能量损失与渗流速度之间的相互关系即为达西定律。 图1 达西渗透实验装置图 达西实验的装置如图1所示。装置中的①是横截面积为A的直立圆筒,其上端开口,在圆筒侧壁装有两支相距为l 的侧压管。筒底以上一定距离处装一滤板②,滤板上填放颗粒均匀的砂土。水由上端注入圆筒,多余的水从溢水管③溢出,使筒内的水位维持一个恒定值。渗透过砂层的水从短水管④流入量杯⑤中,并以此来计算渗流量q。设△t时间内流入量杯的水体体积为△V, 则渗流量为q=△V /△t。同时读取断面1-1和段面2-2处的侧压管水头值h1,h2,Δh为两断面之间的水头损失。 达西分析了大量实验资料,发现土中渗透的渗流量q与圆筒断面积A及水头损失△h 成正比,与断面间距l成反比,即

(1-1) 或 (1-2) 式中i=△h/l,称为水力梯度,也称水力坡降;k为渗透系数,其值等于水力梯度为1时水的渗透速度,cm/s 。 式(1-1)和(1-2)所表示的关系称为达西定律,它是渗透的基本定律。 (2)达西定律的适用范围 达西定律是由砂质土体实验得到的,后来推广应用于其他土体如粘土和具有细裂隙的岩石等。进一步的研究表明,在某些条件下,渗透并不一定符合达西定律,因此在实际工作中我们还要注意达西定律的适用范围。 大量试验表明,当渗透速度较小时,渗透的沿程水头损失与流速的一次方成正比。在一般情况下,砂土、粘土中的渗透速度很小,其渗流可以看作是一种水流流线互相平行的流动——层流,渗流运动规律符合达西定律,渗透速度v与水力梯度i的关系可在v-i坐标系中表示成一条直线,如图2(a)所示。粗颗粒土(如砾、卵石等)的试验结果如图2(b)所示, 由于其孔隙很大,当水力梯度较小时,流速不大,渗流可认为是层流, v-i关系成线性变化,达西定律仍然适用。当水力梯度较大时,流速增大,渗流将过渡为不规则的相互混杂的流动形式——紊流,这时v-i关系呈非线性变化, 达西定律不再适用。

不同填料的渗透系数测定实验——达西定律

不同填料的渗透系数测定实验——达西定律 一、实验意义 通过描绘流速与水头差的函数关系图,来确定渗透流量与水头损失的关系,从而来验证达西定律。以及通过平行实验和对比实验,对数据进行比较处理,从而可知那些数据受到粒径的影响。 二、实验目的 1.了解达西实验装置,通过稳定流条件下的渗流实验,测定不同粒径填料的渗透系数k 值。 2.加深理解渗流速度、水力梯度、渗透系数之间的关系,并验证达西定律。 二、实验仪器 1.达西实验装置(自行设计),分别装有不同粒径的均质试样:①砂体(粒径<0.5mm ,0.7~1mm );②煤块(粒径5~10mm );③砖块(粒径5~10mm )。 2.秒表、量筒、直尺、温度计、电子称等。 三、实验原理 室内渗透系数测定是根据达西关于多孔介质中地下水的线性渗透定律而设计的。由达西定律,在常水头条件下,水流在单位时间内透过岩石空隙的流量(Q )与岩石的断面面积(ω)、水力坡度(I )成正比:测定不同试样的渗透系数。 H Q K K I L ω ω?== 式中:Q ——渗透流量(cm 3); ω——过水断面面积(cm 2);?H ——上下游过水断面的水头差(cm );L ——渗透途径(cm );I ——水力梯度。 由上式可推知,Q V K I I ω==,亦即,渗透系数在数值上等于水力坡度为1时,透过某单位过水断面 的渗流量(亦即渗流速度)。 达西实验装置示意图 1—试样;2—进水管;3—出水管;4—测压管;5—溢流口;6—仪器架 四、实验步骤 1 2 3 4 6 5

1.测量仪器的几何参数。 分别测量过水断面面积( ω )、测压管a 、b 的间距或渗透途径(L );记入(表1)。 2.调试仪器。 打开进水管,将水引入实验筒内,底部控制阀T 打开,此时要保持溢水管有少量水溢出,这时可以进行第一次实验。 3.测定水头 待a 、b 两个测压管的水位稳定后,读出各测压管的水头值,记入(表1)中。 4.测定流量 在进行步骤3的同时,利用秒表和量筒测量t 时间内水管流出的水体积,及时计算流量Q 。连测两次,使流量的相对误差小于5%[相对误差],2112100% ()/2 Q Q Q Q δ -= ?+取平均值记入(表1)。 5.由大往小调节进水量,改变a 、b 两个测压管的读数,重复步骤3和4。 6.重复第5步骤8-10次。即完成8-10次实验,取得8-10组数据。 7.按记录表计算实验数据。 五、注意事项 实验过程中要及时排除气泡。 为使渗透流速—水力梯度(v —I )曲线的测点分布均匀,流量(或水头差)的变化要控制合适。 六、实验成果 提交实验报告表(表1)。 在同一坐标系内绘出三种试样的—曲线,并分别用这些曲线求渗透系数K 值,与直接数据(表1)中实验数据计算结果进行对比。 表1 达西渗流实验报告表 仪器编号: 过水断面面积(ω) (cm ) 渗透途径(L ) (cm ) 水温 (℃)

实验一达西定律验证实验

实验一 达西定律验证实验 1 实验目的和要求 (1)测定均质沙柱的渗透系数K 值; (2)测定通过沙柱的渗流量与水头损失的关系,验证渗流的达西定律。 2 实验原理 液体在孔隙介质中流动时,由于粘滞性作用将会产生能量损失。达西(Henry Darcy )在1852-1855年间通过实验,总结得出渗流能 量损失与渗流速度成一次方的线性规律,后人称为达西定律。 由于渗流速度很小,故速度水头可以忽略不计。因此总水头H 可用测压水头h 来表示,水头损失w h 可用测压水头差来表示,即 , 于是,水力坡度J 可用测管水头坡度来表示: 12w h h h h J L L L -?= == 式中:L 为两个测压管孔之间距离;1h 与2h 为两个测压孔的测压水头。 达西通过大量实验,得到砂柱内渗流量Q 与过水断面面积A 和水力坡度J 成正比,并和砂的透水性能有关,所建立基本关系式如下: 12 h h Q KA KAJ L -==或者 式中v 为渗流简化模型的断面平均流速,即渗流速度;系数K 为反映孔隙介质透水性能的综合系数,即渗透系数。 实验中的渗流区为一圆柱形的均质砂体,属于均匀渗流,可以认为各点的流动状态是 相同的,任意点的渗流流速v 等于断面平均渗流流速,因此达西定律也可以表示为:v KJ =。 渗流雷诺数用下列经验公式求:1 0.750.23 e e vd R n υ = ? + 式中e d 为砂样有效粒径、v 为渗流速度、υ为流体的运动粘滞系数、n 为孔隙率。 3 实验仪器或设备 直立圆筒沙柱;供水箱;量筒;测压管;秒表等。

4 实验步骤 (1)记录基本常数,包括实验圆筒内径D 、测孔间距L及砂样有效粒径d e、孔隙率n 与水温T。 (2)开启供水管注水,让水浸透圆筒内全部砂体并使圆筒充满水;一般按流量从大到小顺 h),通过调节出水口位置高度(即序进行实验。本次实验采用固定供水箱以及该测压水头( 1 h)来改变测压水头差。待水流稳定后,即可用体积法测定渗流量。 2 (3)依次调整水头,待水流稳定后进行上述测量,共测10次。 5 实验数据记录 (1)相关常数: 圆筒内径D=cm; 渗透路径L=cm; d= cm; 沙粒有效粒径 e 孔隙率n=; 渗透水温T=℃; 运动粘滞系数υ=cm2/s (2)实验记录表格 6 实验结果与数据处理 h,渗流量Q,水利坡度J,渗流速度v,渗透系数K,(1)计算出各测次的渗流水头损失 w 并填如下表; h的关系曲线; (2)给出流量Q与水头损失 w

第一章 渗流的基本概念和基本规律

第一章渗流的基本概念和基本规律 内容概要: 油气渗流是在地下油层中进行的,因此学习渗流力学首先需了解油气储集层和多孔介质的概念;流体在地下渗流需要里的作用,故还要了解流体受到哪些力的作用、地层中有哪些能量;然后学习渗流的基本规律-达西定律;流体渗流不总是遵循达西定律,就有了非达西渗流或称非线性渗流;对于地层中有多相流体同时参与流动的情况就是两相或多相渗流了,在本章也做一简单介绍。 渗流的基本规律和渗流方式 内容概要: 地层流体渗流规律复杂,但一般情况下符合渗流的基本规律,即达西定律;渗流的方式也是多种多样的,我们可以对各种渗流方式进行归类、化简,变成三种基本的渗流方式,复杂渗流再由这三种方式进行组合。本节应牢固掌握达西定律,真实流速与渗流速度的概念及其关系,掌握三种基本渗流的方式。 课程讲解: 讲解ppt 教材自学: 第三节渗流的基本规律和渗流方式 本节导学 地层流体渗流规律复杂,但一般情况下符合渗流的基本规律,即达西定律;渗流的方式也是多种多样的,我们可以对各种渗流方式进行归类、化简,变成三种基本的渗流方式,复杂渗流再由这三种方式进行组合。 本节重点 1、达西定律★★★★★ 2、真实流速与渗流速度的关系★★★★★ 3、单向流★★★ 4、平面径向流★★★ 5、球面向心流★★★

一、渗流的基本规律—达西定律 多孔介质组成复杂,流体渗流规律复杂。人们最初研究渗流规律是以实验为基础的宏观研究方法。 1.达西定律 实验步骤: (1)、调节入水阀,保持一定的进水水位 (2)、调节出水阀门,得一流量Q ; (3)、流动稳定后测流量和压差。 a:出水口(稳定水位) b:滤网 E:阀门,控制流量和水头压差 D:量杯,测流量 达西实验装置图 做多组实验:不同砂层横截面积、L 、流量、砂粒大小、液体、压差。 1-1截面总水头高度 2-2截面总水头 两截面水头差 其折算压差为 大量实验研究表明,流量Q 与折算压力差△Pr 、岩心截面积A 成正比,与液体粘度μ、测压管两截面距离△L 成反比,其比例常数与填砂粒径有关,砂粒粒径越大,流量越大,反之流量越小。 用公式表示(达西公式) Q ——通过砂岩的流量,cm 3/s ; K ——砂岩的渗透率,μm 2(=1D=1000mD); A ——渗流截面积,cm 2; △L ——两渗流截面间的距离,cm ; μ——液体粘度,mPa·S; △Pr ——两渗流截面间的折算压力差,10-1 MPa ,即大气压。 上式可写成 a b 111P H z g ρ=+2 22 P H z g ρ=+1212 P P H z z g g ρρ?????=+-+ ? ????? r P g H ρ?=? () ()r P Q L KA μ?= ?动力阻力

非稳定流达西实验

3.2 变水头达西流渗流实验 一、实验目的 通过非稳定流条件下的渗流实验,加深对达西定律的理解。从而认识到达西定律既适用 于稳定流条件也适用于非稳定流条件。 二、实验装置 如图1-1所示,圆管A 下段装有待测定的砂样,底端为铜丝网,砂样表层铺放薄层细 砾。实验开始时,圆管上部装满水,水便通过砂样渗流,圆管上部水位则逐渐下降。 圆管下端放在盛水器皿B 中,通过砂样渗流到器皿中的水会自动溢出,以固定渗流段下游水位。排水容器E 通过排水管随时排走盛水器皿溢出的水。 三、实验原理 利用达西定律和水均衡原理可以证明图1-1所示的装置中,水头H 与时间呈半对数关 系(详见《地下水动力学》第一章),即 H K L H K L H K L H K L t lg 3.2lg 3.2ln ln 00-=-= 式中:t - 时间; 0H - 实验的初始水头(即当t =0时的水头); H - 对应不同时间t 的水头; K - 渗透系数。 因此,实验过程中,可测定对应不同时间的水头值,作出t ~H lg 直线关系图(图3-3)。利用该直线的斜率m 求渗透系数K 。 四、实验步骤 (1)熟悉仪器结构以及秒表操作方法与读数。进行实验分工,建议一人观察水头变化,一人看秒表,一人记录。 (2)将盛水器皿充满水,并将渗透管的下端放入盛水器皿B 的水面之下约1cm 。 (3)用量杯对试样充水,使其自由渗透2~3次,以饱和砂土,排除空气。 (4)记下初始水头0H ,对透明管充水到渗透管零点上方。待水位下降至零刻度,开动秒表记时。 (5)水位下降到预先设计的降深值(1,2,3,……,10cm )时,记录对应的时间(表3-2)。 (6)重复实验步骤(4)~(5)1~2次,进行核对。

达西渗流实验

达西渗流实验 设计人:汪卓红程新颖 班级:土木结构0101 指导老师:毛根海教授 日期:2003年12月6日浙江大学建筑工程学院水利实验室

达西渗流实验 一实验目的 1 测定均质砂的渗透系数; 2 测定渗过砂体的渗流量与水头损失的关系,验证达西定律; 3 通过常水头线性渗流实验,进一步了解和掌握达西定律。二实验装置 1---水泵及供水箱 2---常水头供水箱 3---可水平移动的标尺4---测压管 5---塑料平板 6---橡皮管 7---装砂圆筒 8---滤网 9---水桶 10---进水阀门 11---出水阀门 12---溢流管嘴本实验装置是采用半自动循环系统供水,设计简洁,但非常实用,实验结果可靠。

三实验原理 液体在孔隙介质中流动时,由于粘滞性作用将产生能量损失。达西(Henri Darcy)在1852——1855年间通过实验,总结出渗流能量损失与渗流速度成一次方的线性规律,后人称为达西定律。 由于渗流流速很小,故流速水头可以忽略不计。因此总水头H可用测管水头h来表示,水头损失hw可用测管水头差来表示,即 H=h=z+p/γ, hw=h1-h2=Δh 则水力坡度J可用测管水头坡度来表示: J=hw/L=(h1-h2)/L=Δh/L 式中:L为两个测量管孔之间距离;h1与h2为两个侧压孔的测管水头。 达西通过大量实验,得到圆筒断面积A和水力坡度J成正比,并和土壤的透水性能有关,所建立基本关系式如下: Q=KAJ v=Q/A=kJ 式中v为渗流简化模型的断面平均流速;系数K为反映孔隙介质透水性能的综合系数,称为渗透系数。 实验中的渗流区为一圆柱形的均质砂体,属于均匀渗流,(本装置宜适用于中粗砂,细砂不是非常适合,因为常水头渗透实验本来就宜适用于粗土粒渗透系数的测定)可以认为各点的流动状

达西定律.

达西定律电子教材 《土工技术与应用》项目组 2015年3月

达西定律 (一)达西定律 早在1856年,法国工程师达西(H.Darcy)用渗透试验装置对不同粒径的砂土进行大量的试验研究,发现渗流为层流状态时,水在砂土中的渗透流速与土样两端的水头差h成正比,而与渗径长度L成反比,即渗透速度与水力坡降成正比。可用下列关系式表示: (1) 或 (2) 式中——断面平均渗透流速,cm/s或m/d; i——水力坡降,表示单位渗径长度上的水头损失(i=h/L); k——土的渗透系数,其物理意义是水力坡降i=1时的渗透流速,与渗透流速的量纲相同,是表示土的渗透性强弱的指标; Q——渗透流量,cm3/s或m3/d; A——垂直于渗流方向的土样截面面积,cm2或m2。 式(1)、式(2)即为达西定律(或称渗透定律)的表达式。式(1)表示渗透速度与水力坡降的线性关系,即渗透速度与水力坡降成直线关系,如图1(a)所示。 渗透水流实际上只是通过土体内土粒之间的孔隙发生流动,而不是土的整个截面。达西定律中的渗透速度则为土样全截面的平均流速,并非渗流在孔隙中运动 的实际流速。由于实际过水截面小于土体截面A,因此,实际平均渗透流速大于达西定律中的平均渗透速度,两者的关系为: (3) 式(3)中 n——土的孔隙率。 (二)达西定律的适用范围 达西定律是描述层流状态下渗透速度与水力坡降关系的基本规律,即达西定律只适用于层流状态。在土建工程中遇到的多数渗流情况,均属于层流范围。如坝基和灌溉渠道的渗透量以及基坑、水井的涌水量的计算,均可以用达西定律来解决。

研究表明,土的渗透性与土的性质有关。 (1)对于密实的黏土,其孔隙主要为结合水所占据,当水力坡降较小时,由于受到结合水的黏滞阻力作用,渗流极为缓慢,甚至不发生渗流。只有当水力坡降达到某一数值克服了结合水的黏滞阻力作用后,才能发生渗流。渗流速度与水力坡降呈非线性关系,如图1(b)中的实线所示。工程中一般将曲线简化为直线关系,如图1(b)中的虚线所示,并可用下式表示: (4) 式(4)中——密实黏土的起始水力坡降。 (2)对于某些粗粒土(如砾类土)和巨粒土中的渗流,只有在水力坡降较小的情况下,渗透速度与水力坡降呈线性关系,符合达西定律。随着水力坡降的增大,水在土中的渗流呈现紊流状态,渗透规律呈非线性关系,此时达西定律不再适用,如图1(c)所示。 图1土的渗透流速与水力坡降的关系

水工渗流模型实验指导书

水工建筑渗流实验指导书及报告 (水工13级) 班级: 学号: 姓名: 三峡大学水利与环境学院 2016年5月

土坝渗流缝隙槽模型实验(1) 土坝渗流缝隙槽模型实验是利用粘性液体在模型的坝断面与平板间狭窄缝中流动,能很好显示出层流运动特性,来模拟土坝中渗流。 一、实验目的 1.通过实验,找出土坝浸润线的位置坐标,并与理论计算成果相比较; 2.观察水位变化时,浸润线位置的变化情况; 3.观察流动的流线状态及其特性,并对层流运动得到进一步的感性认识。 二、实验原理 粘性液体在狭窄缝隙中流动时,形成层流,且符合达西定律,用此来模拟土基中的渗流,粘性流在缝隙中流动的平均流速为 ds dh K V m m -= 式中:m K —缝隙槽的透水系数,决定于缝隙宽度和粘滞性的常数, V ga K m 3/2= a ——缝隙的半宽; V ——液体的运动粘滞系数; g ——重力加速度; dh ——沿流动方向ds 距离上的水头损失。 三、实验步骤 实验设备及装置由实验课中讲述。实验步骤如下: 1.每人准备一张方格纸,大小为75cm ×25cm ; 2.熟悉实验设备,并做好实验前的分工准备工作; 3.用方格纸按比例绘制好与模型相似的土坝模型图,见附图; 4.打开电源开关,调节进库液体流量,向缝隙模型槽内充液到固定液位,使上游保持溢流状态,下游也开始溢流时,即形成了稳定的水面; 5.将有染色液体的细金属管分别放在坝面的液面高程和其他任一高程上,即可观察出流动的浸润线和流线,此时可将浸润线的坐标记录下来(在正面的有机玻璃板上有方格,计数方格确定坐标)。

四、附图 均质坝(模型尺寸)单位:厘米原模比:1:100 五、思考并回答下列问题 1.为什么上、下游液位要保持始终有溢流? 答: 2.流线具有哪些特点,它分布的疏密程度说明了什么? 答: 3.在试验中浸润线和流线与上游边坡线交角是否相同?为什么?答:

达西定律 Darcy

达西定律Darcy’s Law 反映水在岩土孔隙中渗流规律的实验定律。 由法国水力学家 H.-P.-G.达西在1852~1855年通过大量实验得出。其表达式为 Q=KFh/L 式中Q为单位时间渗流量,F为过水断面,h为总水头损失,L为渗流路径长度,I=h/L为水力坡度,K为渗流系数。关系式表明,水在单位时间内通过多孔介质的渗流量与渗流路径长度成反比,与过水断面面积和总水头损失成正比。从水力学已知,通过某一断面的流量Q等于流速v与过水断面F的乘积,即Q=Fv。或,据此,达西定律也可以用另一种形式表达 v=KI v为渗流速度。上式表明,渗流速度与水力坡度一次方成正比。说明水力坡度与渗流速度呈线性关系,故又称线性渗流定律。达西定律适用的上限有两种看法:一种认为达西定律适用于地下水的层流运动;另一种认为并非所有地下水层流运动都能用达西定律来表述,有些地下水层流运动的情况偏离达西定律,达西定律的适应范围比层流范围小。 这个定律说明水通过多孔介质的速度同水力梯度的大小及 介质的渗透性能成正比。 这种关系可用下列方程式表示:V=K[(h2-h1)÷L]。

其中V 代表水的流速,K 代表渗透力的量度(单位与流速相同, 即长度/时间),(h2-h1)÷L 代表地下水水位的坡度(即水力梯度)。因为摩擦的关系,地下水的运动比地表水缓慢得多。可以利用在井中投放盐或染料,测定渗流系数和到达另一井内所需的时间。 达西定律只适用于低流速条件。 在美国佛罗里达的含水层中,曾沿着多口水井,采用碳14 方法测定地下水的年龄。结果测出渗流系数为每年7 米。在渗透性能良好的介质中,渗流系数可高达每日6 米。美国还测得过每日235 米的纪录。不过,在许多地方,速率通常是每年不超过30 米。(学习的目的是增长知识,提高能力,相信一分耕耘一分收获,努力就一定可以获得应有的回报)

渗透试验报告

双环渗透 8.1试验的目的 双环法试验是野外测定包气带非饱和松散岩层的渗透系数的常用的简易方法,试验的结果更接近实际情况。利用这个试验资料研究区域性水均衡以及水库、灌区、渠道渗漏量等都是十分重要的。 8.2试验的适用范围 对砂土和粉土,可采用试坑法或单环法,对粘性土应采用试坑双环法 8.3试验的基本原理 水在土中的流动符合达西定律,水在土的孔隙中流动时,大多数情况下流速较小,可以认为属于层流(即水流流线相互平行的流动)。则渗透速度与水力坡降成正比。当水力坡降为1时的渗透速度称为土的渗透系数。对于饱和土的渗透现象常用达西定律来表示。即 v= k =或 kIF q I 在一定的水文地质边界以内,向地表松散岩层进行注水,使渗入的水量达到稳定,即单位时间的渗入水量近似相等时,再利用达西定律的原理求出渗透系数(K)值。在坑底嵌入两个高约50cm,直径分别为0.25m和0.50m的铁环,试验时同时往内、外铁环内注水,并保持内外环的水柱都保持在同一高度,以0.1m为宜,由于外环渗透场的约束作用使内环的水只能垂向渗入,因而排除了侧向渗流的误差,因此它比试坑法和单环法的精度都高。 8.4 试验仪器及制样工具 双环、铁锹、水平尺、量筒、笔直的树枝 双环:(外环:上底0.5m,下底0.5m,高0.25m;内环:上底0.25m,下底0.25m,高0.25m)。 8.5试验的操作步骤 (1)选择试验场地,最好在潜水埋藏深度大于5m的地方为好。如果潜水埋深小于2m时,因渗透路径太短,测得的渗透系数不真实,就不要使用渗水试验; (2)按双环法渗水试验示意图,安装好试验装置。 (3)往内、外铁环内注水,并保持内外环的水柱都保持在同一高度,以0.1m为宜。 (4)按一定的时间间隔观测渗入水量。开始时因渗入量大,观测间隔时间要短,

达西渗流实验

达西渗流实验 一、实验目的和要求 1.测量样砂的渗透系数k 值,掌握特定介质渗透系数的测量技术。 2.通过测量透过砂土的渗流流量和水头损失的关系,验证达西定律。 二、 实验原理 1.渗流水力坡度J 由于渗流流速很小,故流速水头可以忽略不计。因此总水头H 可用测压管水头h 来表示,水头损失h w 可用测压管水头差来表示,则水力坡度J 可用测压管水头坡度来表示: w 12h h h h J l l l -?= == 式中:l 为两个测量断面之间的距离(测点间距);h 1与h 2为两个测量断面的测压管水头。 2.达西定律 达西通过大量实验,得到圆筒断面积A 和水力坡度J 成正比,并和土壤的透水性能有关,即 w h k kJ l ==v 或 V q kAJ = 式中:v —— 渗流断面平均流速; k —— 土质透水性能的综合系数,称为渗透系数; V q —— 渗流量; A —— 圆桶断面面积; h w —— 水头损失。 上式即为达西定律,它表明,渗流的水力坡度,即单位距离上的水头损失与渗流流速的一次方成正比,因此也称为渗流线性定律。 3.达西定律适用范围 达西定律有一定适应范围,可以用雷诺数10 d R e ν = v 来表示。其中v 为渗流断

面平均流速;d10为土壤颗粒筛分时占10%重量土粒所通过的筛分直径;ν为水的运动粘度。一般认为当Re<1~10时(如绝大多数细颗粒土壤中的渗流),达西定律是适用的。只有在砾石、卵石等大颗粒土层中渗流才会出现水力坡度与渗流流速不再成一次方比例的非线性渗流(Re>1~10),达西定律不再适应。 三、实验内容 按照基本操作方法,改变流量2~3次,测量渗透系数k,实验数据处理与分析参考第五部分 四、数据处理及成果要求 1.记录有关信息及实验常数 实验设备名称:达西渗流实验仪实验台号:____No.1_ 实验者:____________A1组7人___ 实验日期:_5月10日_ 砂土名称:人工粗砂;测点间距l = 30.0 ?10-2m; 砂筒直径d =15.0 ?10-2m;d10= 0.03 ?10-2m 2.实验数据记录及计算结果(参表1) 3.成果要求 完成实验数据记录及计算表。校验实验条件是否符合达西定律适用条件。五、分析思考题 1.不同流量下渗流系数k是否相同,为什么? 答:不同流量下渗流系数k相同,渗流系数大小取决于很多因素,主要取决于土的颗粒形状、大小、不均匀系数以及水温等,一旦这些因素确定,则k也确定,因此k的大小与流量无关 q、v、J与渗透系数k 2.装砂圆筒垂直放置、倾斜放置时,对实验测得的 V 值有何影响? q、v、J有影响,这是因为在答:装砂圆筒垂直放置、倾斜放置,对测得的 V 整个系统达到渗流以后,装砂圆筒垂直放置、倾斜放置,相当于改变了砂桶溢流水面的高度,也就是改变了供水箱水头和砂桶溢流水面水头高度差H ?,这样的话, q、J也会相应的改变。但是装砂圆筒垂直放置、倾斜渗流系数k就会改变,从而 V 放置时,对实验测得的渗透系数k值没有影响,因为渗透系数k是砂子的内在属性。

水电模拟渗流实验

中国石油大学渗流力学实验报告 实验日期:成绩: 班级:学号:姓名:教师: 同组者: 实验三水电模拟渗流实验 一、实验目的 1. 掌握水电模拟的实验原理、实验方法,学会计算相似系数。 2. 测定圆形定压边界中心一口直井生产时产量与压差的关系,并与理论曲线进行对比,加深对达西定律的理解。 3. 测定生产井周围的压降漏斗曲线,加深对压力场的分布的认识。 二、实验流程及原理 实验电路如图3-7所示。图3-4中拔下电流表与可变电阻相连的一端,使其与测量电源的低压端连接,电流表另一端与带铜丝的导线2连接,如图3-7所示。改变调压器,由测量电压表读出供给边缘与生产井2之间的电压值,由电流表读出电流值。 图3-7 圆形恒压边界中心一口直井电路图 1 - 电解槽 2 - 铜丝(模拟井) 3 - 供给边界 三、计算原理 圆形恒压边界中心一口直井(完善井)稳定生产时产量计算公式:

2ln e f w Kh P P Q r R r πμ??== (3-17) 地层中任一点压力分布公式: ln ln ln W e w w P r P P A B r r r r ?=+?=+ (3-18) 由相似原理可知,模拟模型中电压与电流同样满足上述关系式: 完善“井”“产量”公式: 2ln m em m wm h U U I r R r πρ??== (3-19) 改变电压U ?值,并测得相应的电流值I 。由此可得到U ?-I 关系曲线(理论上应为直线)。 任一点电压分布公式: ln ln ln m wm m m m em wm wm r U U U A B r r r r ?=+ =+ (3-20) 固定U ?值,测得不同m r 处的电位值U ,由此可得“压降”漏斗曲线。 由“完善井” 电压与电流的关系及相似系数Cp 、Cq ,可以求出完善井压差(w e P P -)与流量的关系: 流量: q C I Q = ; 压差: p w e C U P P ?= - (3-21) 由模拟条件下任意半径m r 处的电位值U ,可求得实际地层中任意半径r 出的压力P ,即可求得地层中的压力分布: 压力:p C U P = ; 对应半径: L m C r r = (3-22) 式(3-18)的压力及半径均用式(3-22)处理,可求得实际地层中任意点的压力分布。

达西实验报告

达西定律验证实验报告 一、实验目的 通过进行本实验,测定均质砂的渗透系数K 值以及渗过砂体的渗流量与水头损失的关系,验证渗流的达西定律。 二、实验类型 验证型 三、实验仪器 在直立圆筒中装入均质砂,底部装一块滤板,实验用水由带溢水装置的供水桶供给,恒定水流由砂体下部进入,渗过砂体的水由圆筒顶溢出,用量筒与停表测定渗流量Q ;在圆筒侧壁上装两只测压管,以测定渗流水头损失。供水桶可上下移动以改变实验水头与流量。 四、实验原理 液体在孔隙介质中流动时,由于粘滞性作用将会产生能量损失。达西(Henri Darcy )在1852-1855年间通过实验,总结得出渗流能 量损失与渗流速度成一次方的线性规律,后人称为达西定律。 由于渗流速度很小,故速度水头可以忽略不计。因此总水头H 可用测管水头h 来表示,水头损失h w 可用测管水头差来表示,即 γ/p z h H +==,21h h H h W -=?= 于是,水力坡度J 可用测管水头坡度来表示 L H L h J W //?== 式中:l 为两个测压管孔之间距离;h 1与h 2为两个测压孔的测管水头。 达西通过大量实验,得到圆筒内渗流量Q 与圆筒断面积A 和水力坡度J 成正比,并和土壤的透水性能有关,所建立基本关系式如下: kAJ Q = kJ A Q v ==/ 式中v 为渗流简化模型的断面平均流速;系数K 为反映孔隙介质透水性能的综合系数,称为渗透系数。 实验中的渗流区为一圆柱形的均质砂体,属于均匀渗流,可以认为各点的流动状态是相同的,任意点的渗流流速u 等于断面平均渗流流速,因此达西定律也可以表示为: kJ u = 上式表明,渗流的水力坡度,即单位距离上的水头损失与渗流流速的一次方成正比,因此称为渗流线性定律 渗流雷诺数用下列经验公式求: νe vd n 23.075.01 Re += 式中d e 为砂样有效粒径、n 为孔隙率。

达西定律实验

水力学及流体力学实验仪系列产品 DXY型达西定律实验仪 仪器编号: 北京新华教仪科贸有限公司 华同丰(北京)科技有限公司 https://www.wendangku.net/doc/0f466335.html,

达西定律实验 一、实验目的 1.测定渗透砂体的渗透量与水头损失的关系,验证渗流的达西定律。 2.测定均质砂的渗透系数K值; 二、实验设备 设备由水泵、供水箱、存水箱及升降装置构成供水系统。实验箱内装均质砂,底部及砂体的上表面各装一块滤板,中部设二个多孔测压管测定渗流水头损失。用体积法测流量。 1—水泵2—升降定位手柄 3—供水箱4—供水箱溢流槽 5—供水调节阀6—排气软管 7—测压管8—实验箱溢流槽 9—实验箱10—多孔测压管 11—转向阀12—计量箱 13—存水箱14—泄流槽 15—泄水阀16—供水阀*实验前请用地脚螺丝调平实验台

三、实验原理及计算式 液体在孔隙介质中流动时,由于粘滞性作用将会产生能量损失。达西(Henri Darcy)在1852-1855年间通过实验,总结出渗流能量损失与渗流速度成一次方的线性规律,后人称为达西定律。 由于渗流速度很小,故速度水头可以忽略不计。因此总水头H可用测管水头h来表示,水头损失h w可用测管水头差来表示,即 于是,水力坡度J可用测管水头坡度来表示: 式中,L为两个测压管孔之间的距离,h1与h2为两个测压孔的测管水头。 达西通过实验,得到实验圆筒内渗流量Q与圆筒断面积A和水力坡度J成正比,并和土壤的透水性有关,所建立基本关系式如下:Q=KAJ v=Q/A=KJ 式中,v为渗流简化模型的断面平均流速,系数K为反映孔隙介质透水性能的综合系数,称为参透系数。 实验中的渗流区为一圆柱形的均质砂体,属于均匀渗流,可以认为各点的流动状态是相同的,任意点的渗流流速u等于断面平均渗流流速,因此达西定律也可以表示为:u= v= KJ 上式表明,渗流的水力坡度,即单位距离上的水头损失与渗流流速的一次方成正比,因此称为渗流线性定律。 Darcy’s Law 是描述以粘滞力为主、雷诺数Re< 1~10的层流状态下的地下水渗流基本定律,指出渗流速度V与水力坡度J成线性关系,V=KJ,或Q=KAJ,又称线性渗透定律。它反映了渗流场中的能量守恒与转换定律。 渗流雷诺数(Re): 雷诺数(Reynolds number )是判断水流呈层流和紊流状态的指数。其值为圆管内惯性力与粘滞力的比值,与地下水渗透速度(v)、含水介质颗粒平均粒径(d e)呈正比,与地下水运动粘滞系数(ν)呈反比,即 Re =v d e /ν。 渗流雷诺数用下列经验公式求: 式中,d e为砂样有效粒径、n为孔隙率。ν为实验筒断面平均流速,ν为水的运动粘性系数.

相关文档