文档库 最新最全的文档下载
当前位置:文档库 › 现代信号处理02a

现代信号处理02a

现代信号处理02a
现代信号处理02a

第二章 噪声中信号波形的检测

假设检验理论-------->信号波形的检测

输入的是信号加噪声,此任务就是按某一准则来设计最佳检测器或称为最佳接受机。这种最佳检测器常常用匹配滤波器来构造。故匹配滤波器的概念是很重要的。通信中许多接收机都可以,用此模型来表示。

§2-1匹配滤波器

加性噪声中已知信号的检测。

若输 且线性时不变滤波器的输入为加性平稳

噪声此时,输出信噪比为最大的滤波器,就是一个与输入信号相匹配的最佳滤波器-匹配滤波器。

())12()(.----=?

--dt e

t h H t

j ωω

())

22()(21.----=

?

-dt e H t h t

j ωωπ

滤波器输入为:

Z(t)=s(t)+n(t)-----(2-3)

其中s(t)是有用的已知信号,n(t)-零均值平稳噪声.利用叠加原理可以分别计算出s 0(t), n 0(t) .若输入信号的傅氏变换存在

())42()(.----=

?

∞--dt e

t s S t

j ωω

())

52()()(21.0----=

?

-dt e S H t s t

j ωωωπ

若s 0(t)在t 0处出现峰值,即:

())

62()()(21

.00----=

?

-dt e

S H t s t j ωωωπ

输入噪声n(t) 的功率谱密度为S n (ω) 输出噪声n 0(t)的功率谱密度为S n0(ω)

()())72()(2

0----=ωωωn n S H S

滤波器输出噪声的平均功率为:

())82()()(21)(21][2

020

----=

=

?

?

-∞

∞-ωωωπ

ω

ωπ

d S H d S t n E n n

定义:输出信噪比=输出信号峰值功率/输出噪声平均功率

[

]

)

92.()()(21)()(21

)

()

(2

2

0020

-==?

?

-∞

∞-ω

ωωπ

ω

ωωπωd S H d e

S H t n E t S SNR

n t j

要使此式达到最大值,可利用Schwarz 不等式

?

?

?∞

∞-?

≤---)

102..()()(*21)()(*21)()(*212

dx x x dx x F x F dx x x F θθπ

π

θπF(x),θ(x)为两个复函数,*-共轭

且当θ(x)=αF(x),

α

为任意常数时,上式中等号成立。

)

112()()()(,)

(2)()(*0

---=

=ωωθωπ

ωωH S x S e S x F n n t j

于是有:

)

122.()()(21)

()

(21)()(21)()(21

)()(21

)

()(2

2

2

2

-?

≤??

?

?

???

???????

????=

?

?

?

?

?∞

-∞

-∞

-∞

-∞

∞-ω

ωωπ

ω

ωωπ

ωωωπ

ωωωπ

ωωωπ

ωωωd S H d S S d S H d S H d e

S S S H SNR

n n n n t j n n 则

)

132()

()

(212

---≤

?

-ωωωπ

d S S SNR

n

根据Schwarz 不等式之等号成立的条件 只有当)142()

()(*2)(0

---=-t j n e

S S H ωωωπ

α

ω

时上式等号成立。

一般情况下假定噪声是有色的(非白),此式即为有色噪声的匹配滤波器。当输入为白噪声,其功率谱密度为N0/2时,

)

152(2

/)

(2102

---≤

?

-ωωπ

d N S SNR

若令ε表示信号能量,由Parseval 定理有:

)162()(21)(2

2

---=

=

?

?

-∞

-ωωπ

εd S dt t s

)

172(20

---≤

N SNR

ε

此即输出信噪比的上限。匹配滤波器为:

)182()(*)(0

---=-t j e

KS H ωωω

其中0

N K πα

=为任意常数。

因为是求最佳线性滤波,故称为匹配滤波器-匹配滤波器的频率相应除了相差一个因子0

t j Ke ω-以外,等于信号频谱

的复共轭。

[]

[]

[][])

222()(arg )(arg )

212()()()

202()()()192()()(0)(arg )(arg -----=---?=--=--=t S H S K H e

H H e

S S H j S j ωωωωωωωωωωω频率响应-信号频谱-

其物理意义为:

系统的频率特性与输入信号的幅频特性一致,即对输入信号中幅度较大的频率成份给予较大的权重,而噪声是均匀功率谱,从而可以滤出信号。信号在相位延迟t 0处形成输出峰值,而噪声的相位是随机的,与系统无关。故有时可两个网络级联来实现匹配滤波器。

单位脉冲响应Impulse Response

())

232)..((*)(*210.0

--==

?

--t t Ks dt e

e

KS t h t

j t j ωωωπ

实信号则有:h(t)=Ks(t 0-t)—(2-24)

冲击响应等于输入信号波形的镜象,时间移动了t 0,即与输入信号相匹配。此外,为使匹配滤波器满足因果条件,必有:

)

252(0,00),()(0----?

??<--≥---=t t t t ks t h

匹配滤波器的性质: 1、输出信噪比最大=2ε/N 0

2、频率响应与输入信号的频谱相匹配,幅度相等,-相位-wt 0

3、输出信号在t=t 0时刻达到最大瞬时功率

4、t 0应等于输入信号的持续时间T ,即s(t)=0,t> t 0;在t 0时刻,应将全部信号送入滤波器,才有最大信噪比;否则,若未有全部输入,则不可能达到最大信噪比。

5、匹配滤波器对波形相似,幅度及延迟不同的输入信号,有适应性;而对频移信号不具有适应性。

所谓具有适应性,是指--若对于信号s(t)有一匹配滤波器

)(*)(t j e

KS H ωωω-=,则对于所相同有与s(t)

波形,而仅是幅度、延迟不同的信号S 1(t)=As(t-τ)而言,H(ω)也都仍是S 1(t)的匹配滤波器。

)

'('

1'

11100)(*)(*)()()()()

()(τωωωτ

ωωωωωω----===------t j t j j e

AS e

S A H e AS S t s S t s

)

(')(,')()(100)]

('[100ωωτωωτωH A H t t e AH H t t j =+==+--则有

若取

而对于频移信号s 2(t)—S 2(ω)=S(ω+υ)而言,H(ω)就不再是S 2(t)的匹配滤波器了。

0)(*)()()(*)(*)(()()(2'

2'

222t j t j t j e

AS H H e

AS e

S A H S S t s ωωωωωωυωωωυωω---=≠+===---〕+例2-1、设单一脉冲信号s(t)如图所示

?

?--≤≤=else T t A t s ,00,)(

求其匹配滤波器的传输函数与输出信号 解:

先求s(t)的频谱

())

1()(0

..T

j T

t

j t

j e

j A dt e

A dt e

t s S ωωωω

ω--∞

---=

==

??

再取观测时刻t 0=T ,则可得匹配滤波器的传输函数为:

)

1()1()(*)(0

T

j T

j T

j t j e

j KA e

e

j KA e KS H ωωωωω

ω

ωω----=--=

=匹配滤波器的冲击响应为

???--≤≤=-=else

T

t KA t h t T Ks t h ,00,)()()(

匹配滤波器的输出信号为:

()??

???><≤≤-<≤=???

????><≤≤<≤=-=

???

-∞

-T t t T t T t T KA T t o t KA T t t T

t T AKAd T t o AKAd d t h s t s T

T t t 2,0,02),2(,,2,0,02,,)()(2

2

00τττ

ττ

此匹配滤波器可用积分器、延迟器和加法器来实现:

§2-2高斯有色噪声n(t)中信号波形检测

对于有色高斯噪声的信号波形检测,一般有两种方法:一种是将卡亨南-洛维展开进行延拓,到有色噪声的情况,主要是数学推导,其物理概念不容易看出来。另一种方法是对有色噪声进行预处理,即白化处理,其物理概念清楚,容易理解。这里以此方法为例,这也是一种常用的概念。 n(t)—有色高斯噪声,其噪声功率谱密度Pn(ω)≠常数 令n 1(t)为功率谱Pn 1(ω)≡1的白噪声,故有:

)

272()

(1)()262(1)()()(2

112

1----=

---==?ωωωωωn n n P j H P j H P

此时匹配滤波器的设计如下:

282()(*)(12---=-T

j e

KS H ωωω

T 为匹配滤波器H 2(jw)输出信噪比达到最大的时间

())292()(.11----=

?

--dt e

t s S t

j ωω

()()())302(11----=ωωωj H S S 综上所述,可以得出总的传输函数:

()()()()()())

312.()

()(*)(*)(*2

12121-=

===---T

j n T

j T

j e

P S e

S j H e S j H j H j H j H H ωωωωωωωωωωωωω由(2-27)式,求物理可实现的白化滤波器时,应注意功率谱P n (w)的另极点是成对出现的,故必需取左半平面的另极点构成传输函数H 1(jw),即

)

322()

(1)(1----=

=+ω

ωj s n

s P j H

可能产生高斯有色噪声的主要原因有:

1、 实际的噪声源与接收机的检测器之间可能存在一个或

几个具有某种形状通带的部件,如天线和射频滤波器等,使白噪声通过以后,产生频谱的再分布,形成有色噪声。 2、 在有用信号以外,接收信号中可能还含有一个具有高

斯特征的干扰信号,如在雷达和声纳系统中往往就是一个干扰目标。

所谓高斯白噪声就是其统计特性为独立的。而高斯有色噪声,就是其样值为统计相关的。

鲁棒检测Robustness detection

Robust—坚韧,结实,在逆境中保持稳定。

经典检测理论-统计特性已知,假定概率分布模型,可以得出最佳检测器。当噪声的统计特性偏离了假设的情况时,就会导致最佳检测器的特性严重退化。

实际中,统计模型只能近似成立,如是在高斯分布的基础上叠加了一个分布尾Distribution tails.(<200MH无线信道)

构成混合型分布密度函数。

鲁棒检测:

☆当观测的采样数据受到异常值污染时,检测性能对模型的微小变化不敏感。

此外、鲁棒检测还要求下列性能:

☆实际模型与假设的理论模型严重偏离时,仍能使用;

☆实际模型与假设的理论模型少许差异时,性能影响小;☆实际模型与假设的理论模型相符合时,性能只是良好;☆实际模型与假设的理论模型完全吻合时,不必最优。

鲁棒检测虽然做了很多工作,但一些含义不够明确,在很大

程度上,都是相对意义,即针对某些准则和在某些范围内有意义。

在更广泛的意义上,需要作进一步的探讨,或借助新理论:信息融合理论,基于符号处理的信号处理算法等等。

现代信号处理

一、有两个ARMA 过程,其中信号1是宽带信号,信号2是窄带信号,分别用AR 谱估计算法、ARMA 谱估计算法和周期图算法估计其功率谱。 产生信号1的系统函数为 1234 1234 10.35440.35080.17360.2401()1 1.3817 1.56320.88430.4906z z z z H z z z z z --------++++=-+-+ 激励白噪声的方差为1。 产生信号2的系统函数为 12 1234 1 1.58570.9604()1 1.6408 2.2044 1.48080.8145z z H z z z z z ------++=-+-+ 激励白噪声的方差为1。 每次实验使用的数据长度为256。 (1) 对信号1,分别使用AR(4),AR(8),ARMA(4,4)和ARMA(8,8)模型进行谱估计,对AR 方法采用自协方差算法,对ARMA 算法采用改进的Yule-Walker 方程算法,也用周期图法作谱估计。做20次独立实验,将20次实验结果画在一张图上,观察谱估计的随机分布性质,另将20次的平均值和真实谱画在一张图上进行比较。 (2) 对信号2,分别使用AR(4),AR(8),AR(12),AR(16),ARMA(4,2),ARMA(8,4)和ARMA(12,6)模型进行谱估计,对AR 方法采用自协方差算法,对ARMA 算法采用改进的Yule-Walker 方程算法,也用周期图法作谱估计。做20次独立实验,将20次实验结果画在一张图上,观察谱估计的随机分布性质,另将20次的平均值和真实谱画在一张图上进行比较。 (3) 对各种算法的性能进行比较分析。 解: (1 )很多随机过程可以由或近似由均值为零、方差为 的白噪声序列u(n)经过具有有理传输函数H(z)的ARMA 线性系统来得到。称该随机过程为ARMA 过程。任意平稳ARMA 过程,其功率谱密度有如下形式: 2 2 2| )(||)(|)(σ ωωω?= A B P x (1) 则x(n)可用ARMA(p,q)模型描述,即 2 2|)(|)(σ ωω?=H P x (2) 则可以根据给出的信号1的系统函数来进行计算。 2 σ

现代数字信号处理复习题

现代数字信号处理复习题 一、填空题 1、平稳随机信号是指:概率分布不随时间推移而变化的随机信号,也就是说,平稳随机信号的统计特性与起始 时间无关,只与时间间隔有关。 判断随机信号是否广义平稳的三个条件是: (1)x(t)的均值为与时间无关的常数:C t m x =)( (C 为常数) ; (2)x(t)的自相关函数与起始时间无关,即:)(),(),(ττx i i x j i x R t t R t t R =+=; (3)信号的瞬时功率有限,即:∞<=)0(x x R D 。 高斯白噪声信号是指:噪声的概率密度函数满足正态分布统计特性,同时其功率谱密度函数是常数的一类噪 声信号。 信号的遍历性是指:从随机过程中得到的任一样本函数,好象经历了随机过程的所有可能状态,因此,用一个 样本函数的时间平均就可以代替它的集合平均 。 广义遍历信号x(n)的时间均值的定义为: ,其时间自相关函数的定义为: 。 2、连续随机信号f(t)在区间上的能量E 定义为: 其功率P 定义为: 离散随机信号f(n)在区间 上的能量E 定义为: 其功率P 定义为: 注意:(1)如果信号的能量0

现代信号处理方法1-3

1.3 时频分布及其性质 1.3.1 单分量信号与多分量信号 从物理学的角度看,信号可以分为单分量信号和多分量信号两类,而时-频分布的一个主要优点就是能够确定一个信号是单分量的还是多分量的。所谓单分量信号就是在任一时间只有一个频率或一个频率窄带的信号。一般地,单分量信号看上去只有一个山峰(如图 1.2.2),图中所示的是信号)()()(t j e t A t s ?=的时-频表示,在每一个时间,山峰的峰值有明显的不同。如果它是充分局部化的,那么峰值就是瞬时频率;山峰的宽度就是瞬时带宽。一般地,如果)(t z 是信号)(cos )()(t t a t s φ=的解析信号,)(f Z 是)(t z 对应的频谱, 图1.2.2 单分量信号时-频表示及其特征 则其瞬时频率定义如下: )]([arg 21)(t z dt d t f i π= (1.2.1) 与瞬时频率对偶的物理量叫做群延迟,定义如下: )]([arg 21)(f Z dt d f g πτ= (1.2.2) 而多分量信号是由两个(或多个)山峰构成, 每一个山峰都有它自己不同的瞬时 频率和瞬时带宽。(如图1.2.3所示)。 图1.2.3 多分量信号时-频表示及特征

1.3.2 时-频分布定义 Fourier 变换的另一种形式 ?∞ ∞ --=dt e t s f S ft j π2)()( ?∞ ∞ -=df e f S t s tf j π2)()( Cohen 指出,尽管信号)(t z 的时-频分布有许多形式,但不同的时-频分布只是体现 在积分变换核的函数形式上,而对于时-频分布各种性质的要求则反映在对核函数的约束条件上,因此它可以用一个统一形式来表示,通常把它叫做Cohen 类时-频分布,连续时间信号)(t z ()(t z 为连续时间信号)(t s 的解析信号)的Cohen 类时-频分布定义为 ττφτττπdudvd e v u z u z f t P vu f vt j ) (2*),()2 1()21(),(-+-∞ ∞ -∞ ∞ -∞ ∞ --+=?? ? (1.3.1) 式中),(v τφ称为核函数。原则上,核函数可以是时间和频率两者的函数,但常用的核函数与时间和频率无关,只是时延τ和频偏v 的函数,即核函数具有时、频移不变性。这个定义提供了全面理解任何一种时-频分析方法的通用工具,而且能够在信号分析中将信号的一种时-频表示及其性质同另一种时-频表示及其性质联系在一起。进一步可将(1.3.1)简记为 ττφττπdvd e v v A f t P f vt j z )(2),(),(),(+-∞ ∞ -∞ ∞ -? ? = (1.3.2) 式中),(v A z τ是双线性变换(双时间信号))2 ()2(),(*τ τ τ-+ =t z t z t k z 关于时间t 作 Fourier 反变换得到的一种二维时-频分布函数,称为模糊函数,即 dt e t z t z v A tv j z πτ ττ2*)2 ()2(),(-+=?∞ ∞- (1.3.3) 因为Cohen 类时-频分布是以核函数加权的模糊函数的二维Fourier 变换,所以Cohen 类 时-频分布又称为广义双线性时-频分布。 两个连续信号)(t x ,)(t y 的互时-频分布定义为: ???∞ ∞-∞ ∞--+-∞ ∞ --+= ττφτττπdudvd e v u y u x f t P vu f vt j xy ) (2*),()2 1()21(),( ? ? ∞ ∞-∞ ∞ -+-=dv d e v v A f tv j xy ττφττπ)(2),(),( (1.3.4) 式中 du e u y u x v A vu j xy πτ ττ2*)2 ()2(),(?∞ ∞--+= (1.3.5) 是)(t x 和)(t y 的互模函数。

现代信号处理教程 - 胡广书(清华)

81 为了看清图3.3.4中交叉项的行为,我们将该图作了旋转,因此,水平方向为频率,垂直方向为时间。 图3.3.3 例3.3.3的WVD 图3.3.4 例3.3.4的WVD 例3.3.5 令 ()21 4 2 t x t e ααπ-??= ??? (3.3.5) 可求出其WVD 为 ()22,2exp[]x W t t ααΩ=--Ω (3.3.6) 这是一个二维的高斯函数,,且()Ω,t W x 是恒正的,如图3.3.5所示。 由该图可以看出,该高斯信号的WVD 的中心在()()0,0,=Ωt 处,峰值为2。参数α控制了WVD 在时间和频率方向上的扩展。α越大,在时域扩展越小,而在频域扩展越大,反之亦然。其WVD 的等高线为一椭圆。当WVD 由峰值降到1 -e 时,该椭圆的面积π=A 。它反映了时-频平面上的分辨率。 如果令 ()21 42t h t e ααπ-??= ???,()214 2 t x t e ββπ-??= ??? ,则()t x 的谱图 ()?? ????Ω+-+-+=Ω222 1exp 2,βαβααββααβ t t STFT x (3.3.7)

82 图3.3.5 例3.3.5的WVD,(a )高斯信号,(b )高斯信号的WVD 它也是时-频平面上的高斯函数。当其峰值降到1 -e 时,椭圆面积π2=A 。这一结果说明,WVD 比STFT 有着更好的时-频分辨率。 如果令 ()()t j e t t x t x 001Ω-= (3.3.8) 式中()t x 是(3.3.5)式的高斯函数。()t x 1是()t x 的时移加调制,其WVD 是: ()12 2 00,2exp[()()/]x W t t t ααΩ=---Ω-Ω (3.3.9) 它将(3.3.6)式的()Ω,t W x 由()()0,0,=Ωt 移至()()00,,Ω=Ωt t 处。其WVD 图形请读者自己画出。 例3.3.6 令 ()2201 4 22j t t j t z t e e e αβαπΩ-??= ??? (3.3.10) 它是由(3.3.5)式的()t x 与

现代信号处理思考题(含答案)Word版

第一章 绪论 1、 试举例说明信号与信息这两个概念的区别与联系。 信息反映了一个物理系统的状态或特性,是自然界、人类社会和人类思维活动中普遍存在的物质和事物的属性。 信号是传载信息的物理量是信息的表现形式,如文字、语言、图像等。 如人们常用qq 聊天,即是用文字形式的信号将所要表达的信息传递给别人。 2、 什么是信号的正交分解?如何理解正交分解在机械故障诊断中的重要价值? P9正交函数的定义 信号的正交分解如傅里叶变换、小波分解等,即将信号分解成多个独立的相互正交的信号的叠加。从而将信号独立的分解到不同空间中去,通常指滤波器频域内正交以便于故障分析和故障特征的提取。 傅里叶变换将信号分解成各个正交的傅里叶级数,将信号从时域转换到频域从而得到信号中的各个信号的频率。正交小波变换能够将任意信号(平稳或非平稳)分解到各自独立的频带中;正交性保证了这些独立频带中状态信息无冗余、无疏漏,排除了干扰,浓缩了了动态分析与监测诊断的信息。 3、 为什么要从内积变换的角度来认识常见的几种信号处理方法?如何选择合适的信号处理方法? 在信号处理各种运算中内积变换发挥了重要作用。内积变换可视为信号与基函数关系紧密程度或相似性的一种度量。对于平稳信号,是利用傅里叶变换将信号从时域变为频域函数实现的方式是信号函数x (t )与基函数 通过内积运算。匹配出信号x (t )中圆频率为w 的正弦波.而非平稳信号一般会用快速傅里叶变换、离散小波变换、连续小波变换等这些小波变换的内积变换内积运算旨在探求信号x (t )中包含与小波基函数最相关或最相似的分量。 “特征波形基函数信号分解”旨在灵活运用小波基函数 去更好地处理信号、提取故障特征。用特定的基函数分解信号是为了获得具有不同物理意义的分类信息。 不同类型的机械故障会在动态信号中反应出不同的特征波形,如旋转机械失衡振动的波形与正弦波形有关,内燃机爆燃振动波形是具有钟形包络的高频波;齿轮轴承等机械零部件出现剥落。裂纹等王府机械活塞连杆、气阀磨损缺陷在运行过程中产生的冲击振动呈现出接近单边震荡衰减波形,等等充分利用基函数的各种性质,根据研究对象的特点和需求,选用针对性强的小波基函数,才能合理地解决工程实际问题,融合表征各种不同类型机械状态特征波形的混合基函数,是现代信号处理进行机械动态分析和检测诊断的一个新的研究方向。 4、 对于基函数的各种性质的物理意义如何理解? 1、 正交性——是小波基函数一个非常优良的性质,他保证信号处理时将信息独立化的提取出来。 2、 正则性——在数学上表现为小波函数的光滑性或可微性。 3、 消失矩——小波基函数的消失矩必须具有足够高的阶数,一个小波消失矩为N ,则它的滤波器长 度不能少于2R 。在信号奇异性检测中要求有足够高的消失矩,但不能过高否则会将奇异的信号平滑掉。表示基函数必行光滑性的程度,R 越大越光滑。) ( ,t b a ψ

现代信号处理

第一章 练习题 1.1(1)对一AR 模型随机信号()x n ,证明:()x n 的功率谱可以表示为: ()() ()2 2 1 01j x p j k p k b P e a k e ω ω-== +∑,其中() {} 1 p p k a k =和()0b 都是AR 模型参数。要求给出证明过 程中用到的假定条件。 (2)假定测得观测数据为()01x =,()10.5x =,()20.4x =。求:()x n 的有偏自相关函数的估计值。 1.2设()x n 是均值为0,方差为1的白噪声()v n 通过一个1阶线性移不变系统产生的随机信号,系统传递函数为()1 1 10.25H z z -=-,求:(1)、()x n 的功率谱()xx P z ;(2)、() x n 的自相关函数()xx r m 。 1.3一个2阶过程()()()()0.810.482x n x n x n v n =-+-+,其中()v n 是均值为0,方差为1的白噪声。求: ()x n 的功率谱。

第二章 练习题 2.1已知()()()x n s n v n =+,其中信号()s n 是AR(1)过程:()()()0.61s n s n w n =-+, ()w n 是均值为0,方差为0.64的白噪声,()v n 是均值为0,方差为1的白噪声,且() s n 与()v n 不相关。试设计一个长度为M =2的维纳滤波器估计()s n 。 求:(1)、Wiener 滤波器的传递函数;(2)、()?s n 的表达式。 2.2已知()()()x n s n v n =+,其中信号()s n 是AR(1)过程:()()()0.81s n s n w n =-+, ()w n 是均值为0,方差为0.36的白噪声;()v n 是均值为0,方差为1的白噪声,且() s n 与()v n 不相关。试设计一个长度为M=2的维纳滤波器估计()s n 。 求:(1)维纳滤波器的 传递函数()opt H z ;(2)滤波器的输出()?s n 的表达式。 2.3已知:(1)、观测数据()()()x n d n v n =+,其中,()d n 为期望信号,其自相关函数为()0.8k d R k =;()v n 是均值为0,方差为1的白噪声。 (2)、期望信号是一个AR(1)过程:()()()0.81d n d n w n =-+,其中,()w n 是一白噪声, 其均值为0,方差为2 0.36w σ=。 (3)、期望信号()d n 与噪声()v n 不相关,噪声()v n 与()w n 不相关,且观测数据()x n 为实信号。试用因果Wiener 滤波器对()x n 进行滤波,滤波器输出作为期望信号()d n 的估计 ()?d n 。 求:(1)、因果Wiener 滤波器的传递函数;(2)、()?d n 的表达式。

现代信号处理

现代信号处理课程设计实验报告 实验课题:现代信号处理 专业班级: 学生姓名: 学生学号: 指导老师: 完成时间:

目录 一.前言-------------------------------------------------2 二.课程设计内容要求及题目-------------------------3 三.设计思想和系统功能结构及功能说明-----------4 四.关键部分的详细描述和介绍,流程图描述关键模块和设计思想--------------------------------------------------7 五.问题分析及心得体会--------------------------20 六.参考文献------------------------------------------21 七.附录:程序源代码清单------------------------21

一、前言 数字滤波在通信、图像编码、语音编码、雷达等许多领域中有着十分广泛的应用。目前,数字信号滤波器的设计在图像处理、数据压缩等方面的应用取得了令人瞩目的进展和成就。它是数字信号处理理论的一部分。数字信号处理主要是研究用数字或符号的序列来表示信号波形,并用数字的方式去处理这些序列,以便估计信号的特征参量,或削弱信号中的多余分量和增强信号中的有用分量。具体来说,凡是用数字方式对信号进行滤波、变换、调制、解调、均衡、增强、压缩、固定、识别、产生等加工处理,都可纳入数字信号处理领域。数字信号处理学科的一项重大进展是关于数字滤波器设计方法的研究。关于数字滤波器,早在上世纪40年代末期就有人讨论设计它的可能性问题,在50年代也有人讨论过数字滤波器,但直到60年代中期,才开始形成关于数字滤波器的一整套完整的正规理论。在这一时期,提出了各种各样的数字滤波器结构,有的以运算误差最小为特点,有的则以运算速度高见长,而有的则二者兼而有之。出现了数字滤波器的各种实现方法,对递归和非递归两类滤波器作了全面的比较,统一了数字滤波器的基本概念和理论。 数字滤波器与模拟滤波器相比,具有精度高、稳定、体积小、重量轻、灵活、不要求阻抗匹配以及能实现模拟滤波器无法进行的特殊滤波等优点。 上学期学习了《数字信号处理》这门课,这学期的课程设计使我更加形象具体的掌握这门课程,并且可以熟练的运用MATLAB进行编程,

现代信号处理教程 - 胡广书(清华)

320 第11章 正交小波构造 我们在上一章中集中讨论了离散小波变换中的多分辨率分析,证明了在空间0V 中存在正交归一基}),({Z k k t ∈-φ,由)(t φ作尺度伸缩及位移所产生的},),({,Z k j t k j ∈φ是j V 中的正交归一基。)(t φ是尺度函数,在有的文献中又称其为“父小波”。同时,我们假定j V 的正交补空间j W 中也存在正交归一基},),({,Z k j t k j ∈ψ,它即是小波基,)(t ψ为小波函数,又称“母小波”。本章,我们集中讨论如何构造出一个正交小波)(t ψ。所谓“正交小波”,指的 是由)(t ψ生成的}),({Z k k t ∈-ψ,或j W 空间中的正交归一基},),({,Z k j t k j ∈ψ。 Daubechies 在正交小波的构造中作出了突出的贡献。本章所讨论的正交小波的构造方法即是以她的理论为基础的。 11.1 正交小波概述 现在举两个大家熟知的例子来说明什么是正交小波及对正交小波的要求, 一是Haar 小波,二是Shannon 小波。 1.Haar 小波 我们在10.1节中已给出Haar 小波的定义及其波形,见图10.1.1(d),Haar 小波的尺度函数 )(t φ如图10.1.1(a)所示。重写其定义,即 ??? ??-=011 )(t ψ 其它12/12/10<≤<≤t t (11.1.1) ? ??=01 )(t φ 其它10<≤t (11.1.2) 显然, )(t ψ的整数位移互相之间没有重叠,所以)()(),(' 'k k k t k t -=--δψψ,即它们

321 是正交的。同理, )()(),(',,' k k t t k j k j -=δψψ。 很容易推出)(t ψ和)(t φ的傅里叶变换是 4 /4 /sin )(22 /ωωωωj je -=ψ 2 /2 /sin )(2 /ωωωωj e -=Φ 注意式中ω实际上应为Ω。由于Haar 小波在时域是有限支撑的,因此它在时域有着极好的定位功能。但是,由于时域的不连续引起频域的无限扩展,因此,它在频域的定位功能极差,或者说频域的分辨率极差。 上一章指出,Haar 小波对应的二尺度差分方程中的滤波器是: ??????=21,21)(0n h ,??????-=21,2 1 )(1 n h (11.1.5) 它们是最简单的两系数滤波器。 2.Shannon 小波 令 t t t ππφsin )(= (11.1.6) 则 ?? ?=Φ01)(ω 其它π ω≤ (11.1.7) 由于 ?ΦΦ= --ωωωπ φφd k t k t k k )()(21 )(),(',0*,0' )(21')(' k k d e k k j -==? ---δωπ π π ω (11.1.8) 所以{}Z k k t ∈-),(φ构成0V 中的正交归一基。)(t φ称为Shannon 小波的尺度函数。 由于0,0)(V t k ∈φ,100-=⊕V W V ,由二尺度性质,1)2(V k t ∈-φ,因此 ???=Φ-0 1 )(,1ωk 其它πω2≤ (11.1.9) 这样,对0)(W t ∈ψ,有

现代数字信号处理习题

1.设()u n 是离散时间平稳随机过程,证明其功率谱()w 0S ≥。 证明:将()u n 通过冲激响应为()h n 的LTI 离散时间系统,设其频率响应()w H 为 ()001,w -w w 0, w -w w H w ???? 输出随机过程()y n 的功率谱为()()()2y S w H w S w = 输出随机过程()y n 的平均功率为()()()00201 1r 022w w y y w w S w dw S w dw π π π+?-?= =?? 当频率宽度w 0???→时,上式可表示为()()()01 r 00y S w w π =?≥ 由于频率0w 是任意的,所以有()w 0 S ≥ 3、已知:状态方程 )()1,()1()1,()(1n n n n x n n F n x ν-Γ+--=观测方程 )()()()(2n n x n C n z ν+= )()]()([111n Q n n E H =νν )()]()([222n Q n n E H =νν 滤波初值 )]0([)|0(0x E x =ξ } )]]0([)0()]][0([)0({[)0(H x E x x E x E P --= 请简述在此已知条件下卡尔曼滤波算法的递推步骤。 解:步骤1 状态一步预测,即 1 *11)|1(?)1,()|(N n n C n x n n F n x ∈--=--∧ ξξ 步骤2 由观测信号z(n)计算新息过程,即 1*11)|(?)()()|(?)()(M n n C n x n C n z n z n z n ∈-=-=--ξξα 步骤3 一步预测误差自相关矩阵 N N H H C n n n Q n n n n F n P n n F n n P *1)1,()1()1,() 1,()1()1,()1,(∈-Γ--Γ+---=- 步骤4 新息过程自相关矩阵M M H C n Q n C n n P n C n A *2)()()1,()()(∈+-= 步骤5 卡尔曼增益M N H C n A n C n n P n K *1)()()1,()(∈-=- 或 )()()()(1 2n Q n C n P n K H -= 步骤6 状态估计 1*1)()()|(?)|(?N n n C n n K n x n x ∈+=-αξξ 步骤7 状态估计自相关矩阵 N N C n n P n C n K I n P *)1,()]()([)(∈--= 或 )()()()]()()[1,()]()([)(2n K n Q n K n C n K I n n P n C n K I n P H H +---= 步骤8 重复步骤1-7,进行递推滤波计算 4、经典谱估计方法:

现代信号处理考试题

一、 基本概念填空 1、 统计检测理论是利用 信号 与 噪声 的统计特性等信息来建立最佳判决的数学理论。 2、 主要解决在受噪声干扰的观测中信号有无的判决问题 3、 信号估计主要解决的是在受噪声干扰的观测中,信号参量 和 波形 的确定问题。 4、 在二元假设检验中,如果发送端发送为H 1,而检测为H 0,则成为 漏警 ,发送端发送H 0,而检测为H 1,则称为 虚警 。 5、 若滤波器的冲激响应时无限长,称为 IIR 滤波器,反之,称为 FIR 滤波器 6、 若滤波器的输出到达 最大信噪比 成为 匹配 滤波器;若使输出滤波器的 均方估计误差 为最小,称为 维纳 滤波器。 7、 在参量估计中,所包含的转换空间有 参量空间 和 观测空间 8、 在小波分析中,小波函数应满足 ∫φφ(tt )ddtt =0+∞?∞ 和 ∫|φφ(tt )|ddtt =1+∞ ?∞ 两个数学条件。 9、 在小波的基本概念中,主要存在 F (w )=∫ff (tt )ee ?ii ii ii ddtt +∞?∞和f(t)=12ππ∫FF (ww )ee ii ii ii ddww +∞?∞ 两个基本方程。(这个不确定答案,个人感觉是) 10、 在谱估计中,有 经典谱估计 和 现代谱估计 组成了完整的谱估计。 11、 如果系统为一个稳定系统,则在Z 变换中,零极点的分布

应在单位圆内,如果系统为因果系统,在拉普拉斯变换中, 零极点的分布应在左边平面。 二、问题 1、在信号检测中,在什么条件下,使用贝叶斯准则,什么条 件下使用极大极小准则?什么条件下使用Neyman-Pearson准 则? 答:先验概率和代价函数均已知的情况下,使用贝叶斯准则,先验概率未知,但可选代价函数时,使用极大极小准则,先验 概率和代价函数均未知的情况下,使用Neyman-Pearson准则。 2、在参量估计中,无偏估计和渐进无偏估计的定义是什么? 答:无偏估计:若估计量的均值等于被估计量的均值(随机变 量),即E?θθ??=EE(θθ)或等于被估计量的真值(非随机参 量)E?θθ??=θθ,则称θθ?为θ的无偏估计。 渐进无偏估计:若lim NN→∞EE?θθ??=EE(θ ),称θθ?为θ的渐进无偏估计。 3、卡尔曼滤波器的主要特征是什么? 答:随机过程的状态空间模型,用矩阵表示,可同时估计多参 量,根据观测数据,提出递推算法,便于实时处理。 4、在现代信号处理中,对信号的处理通常是给出一个算法, 对一个算法性能的评价,应从那些方面进行评价。 答:算法的复杂度,算法的稳定性和现有算法的比较,算法的 运算速度、可靠性、算法的收敛速度。

2012《现代数字信号处理》课程复习...

“现代数字信号处理”复习思考题 变换 1.给出DFT的定义和主要性质。 2.DTFT与DFT之间有什么关系? 3.写出FT、DTFT、DFT的数学表达式。 离散时间系统分析 1.说明IIR滤波器的直接型、级联型和并联型结构的主要特点。 2.全通数字滤波器、最小相位滤波器有何特点? 3.线性相位FIR滤波器的h(n)应满足什么条件?其幅度特性如何? 4.简述FIR离散时间系统的Lattice结构的特点。 5.简述IIR离散时间系统的Lattice结构的特点。 采样 1.抽取过程为什么要先进行滤波,此滤波器应逼近什么样的指标? 维纳滤波 1.画出Wiener滤波器结构,写出平稳信号下的滤波方程,导出Wiener-Hopf方程。 2.写出最优滤波器的均方误差表示式。 3.试说明最优滤波器满足正交性原理,即输出误差与输入信号正交。 4.试说明Wiener-Hopf方程和Yule-Walker方程的主要区别。 5.试说明随机信号的自相关阵与白噪声的自相关阵的主要区别。 6.维纳滤波理论对信号和系统作了哪些假设和限制? 自适应信号处理 1.如何确定LMS算法的μ值,μ值与算法收敛的关系如何? 2.什么是失调量?它与哪些因素有关? 3.RLS算法如何实现?它与LMS算法有何区别? 4.什么是遗忘因子,它在RLS算法中有何作用,取值范围是多少? 5.怎样理解参考信号d(n)在自适应信号处理处理中的作用?既然他是滤波器的期望响应,一般在滤波前是不知道的,那么在实际应用中d(n)是怎样获得的,试举两个应用例子来加以说明。 功率谱估计 1.为什么偏差为零的估计不一定是正确的估计? 2.什么叫一致估计?它要满足哪些条件? 3.什么叫维拉-辛钦(Wiener-Khinteche)定理? 4.功率谱的两种定义。 5.功率谱有哪些重要性质? 6.平稳随机信号通过线性系统时输入和输出之间的关系。 7.AR模型的正则方程(Yule-Walker方程)的导出。 8.用有限长数据估计自相关函数的估计质量如何? 9.周期图法谱估计的缺点是什么?为什么会产生这些缺点? 10.改进的周期图法谱估计有哪些方法?它们的根据是什么? 11.既然隐含加窗有不利作用,为什么改进周期图法谱估计是还要引用各种窗? 12.经典谱估计和现代谱估计的主要差别在哪里? 13.为什么AR模型谱估计应用比较普遍? 14.对于高斯随机过程最大熵谱估计可归结为什么样的模型? 15.为什么Levison-Durbin快速算法的反射系数的模小于1? 16.什么是前向预测?什么是后向预测? 17.AR模型谱估计自相关法的主要缺点是什么? 18.Burg算法与Levison-Durbin算法的区别有哪些?

现代信号处理论文(1)

AR 模型的功率谱估计BURG 算法的分析与仿真 钱平 (信号与信息处理 S101904010) 一.引言 现代谱估计法主要以随机过程的参数模型为基础,也可以称其为参数模型方法或简称模型方法。现代谱估计技术的研究和应用主要起始于20世纪60年代,在分辨率的可靠性和滤波性能方面有较大进步。目前,现代谱估计研究侧重于一维谱分析,其他如多维谱估计、多通道谱估计、高阶谱估计等的研究正在兴起,特别是双谱和三谱估计的研究受到重视,人们希望这些新方法能在提取信息、估计相位和描述非线性等方面获得更多的应用。 现代谱估计从方法上大致可分为参数模型谱估计和非参数模型谱估计两种。基于参数建摸的功率谱估计是现代功率谱估计的重要内容,其目的就是为了改善功率谱估计的频率分辨率,它主要包括AR 模型、MA 模型、ARMA 模型,其中基于AR 模型的功率谱估计是现代功率谱估计中最常用的一种方法,这是因为AR 模型参数的精确估计可以通过解一组线性方程求得,而对于MA 和ARMA 模型功率谱估计来说,其参数的精确估计需要解一组高阶的非线性方程。在利用AR 模型进行功率谱估计时,必须计算出AR 模型的参数和激励白噪声序列的方差。这些参数的提取算法主要包括自相关法、Burg 算法、协方差法、 改进的协方差法,以及最大似然估计法。本章主要针对采用AR 模型的两种方法:Levinson-Durbin 递推算法、Burg 递推算法。 实际中,数字信号的功率谱只能用所得的有限次记录的有限长数据来予以估计,这就产生了功率谱估计这一研究领域。功率谱的估计大致可分为经典功率谱估计和现代功率谱估计,针对经典谱估计的分辨率低和方差性能不好等问题提出了现代谱估计,AR 模型谱估计就是现代谱估计常用的方法之一。 信号的频谱分析是研究信号特性的重要手段之一,通常是求其功率谱来进行频谱分析。功率谱反映了随机信号各频率成份功率能量的分布情况,可以揭示信号中隐含的周期性及靠得很近的谱峰等有用信息,在许多领域都发挥了重要作用。然而,实际应用中的平稳随机信号通常是有限长的,只能根据有限长信号估计原信号的真实功率谱,这就是功率谱估计。 二.AR 模型的构建 假定u(n)、x(n)都是实平稳的随机信号,u(n)为白噪声,方差为 ,现在,我们希望建立AR 模型 的参数和x(n)的自相关函数的关系,也即AR 模型的正则方程(normal equation)。 由 )}()]()({[)}()({)(1 n x m n u k m n x E m n x n x E m p k k x a r ++-+-=+=∑= )()()(1 m k m m r r a r xu x p k k x +--=∑= (1) 由于u(n)是方差为 的白噪声,有 ?? ?=≠=-0 00)}()({2 m m m n x n u E σ (2) 由Z 变换的定义, ,当 时,有h(0)=1。综合(1)及(2)两式, ???????=-≥--=∑∑==0)(1)()(1 2 1 m k m k m m p k x k p k x k x r a r a r σ (3) 在上面的推导中,应用了自相关函数的偶对称性。上式可写成矩阵式:

现代信号处理教程 - 胡广书(清华)

1 第1章 信号分析基础 1.1 信号的时-频联合分析 我们生活在一个信息社会里,而信息的载体就是我们本书要讨论的主题——信号。在我们身边以及在我们身上,信号是无处不在的。如我们随时可听到的语音信号,随时可看到的视频图像信号,伴随着我们生命始终的心电信号,脑电信号以及心音、脉搏、血压、呼吸等众多的生理信号。 对一个给定的信号,如)(t x ,我们可以用众多的方法来描述它,如)(t x 的函数表达式, 通过傅立叶变换所得到的)(t x 的频谱,即)(Ωj X ,再如)(t x 的相关函数,其能量谱或功率谱等。在这些众多的描述方法中,有两个最基本的物理量,即时间和频率。显然,时间和频率与我们的日常生活关系最为密切,我们时时可以感受到它们的存在。时间自不必说,对频率,如夕阳西下时多变的彩霞,音乐会上那优美动听的旋律以及在一片寂静中突然冒出的一声刺耳的尖叫等,这些都包含了丰富的频率内容。正因为如此,时间和频率也成了描述信号行为的两个最重要的物理量。 信号是变化着的,变化着的信号构成了我们周围五彩斑斓的世界。此处所说的“变化”,一是指信号的幅度随时间变化,二是指信号的频率内容随时间变化。幅度不变的信号是“直流”信号,而频率内容不变的信号是由单频率信号,或多频率信号所组成的信号,如正弦波、方波、三角波等。不论是“直流”信号还是正弦类信号都只携带着最简单的信息。 给定了信号)(t x 的函数表达式,或x 随t 变化的曲线,我们可以由此得出在任一时刻处 该信号的幅值。如果想要了解该信号的频率成分,即“在××Hz 处频率分量的大小”,则可通过傅立叶变换来实现,即 ?∞ ∞ -Ω-=Ωdt e t x j X t j )()( (1.1.1a ) ? ∞ ∞ -ΩΩΩ= d e j X t x t j )()(21π (1.1.1b ) 式中f π2=Ω,单位为弧度/秒,将)(Ωj X 表示成) (|)(|ΩΩ?j e j X 的形式,即可得到 |)(|Ωj X 和)(Ω?随Ω变化的曲线,我们分别称之为)(t x 的幅频特性和相频特性。 如果我们想知道在某一个特定时间,如0t ,所对应的频率是多少,或对某一个特点的频

现代信号处理试题及答案总结

P29采样、频率混叠,画图说明 将连续信号转换成离散的数字序列过程就是信号的采样。 它包含了离散和量化两个主要步骤。 若采样间隔Δt 太大,使得平移距离2π/Δt 过小。移至各采样脉冲函数对应频域序列点上的频谱X(ω)就会有一部分相互重叠, 由此造成离散信号的频谱与原信号频谱不一致,这种现象称为混叠。 P33列举时域参数(有量纲和无量纲),说明其意义与作用。 有量纲参数指标包括方根幅值、平均幅值、均方幅值和峰值四种。 无量纲参数指标包括了波形指标、峰值指标、脉冲指标和裕度指标。 偏斜度指标S 表示信号概率密度函数的中心偏离正态分布的程度,反映信号幅值分布相对其均值的不对称性。 峭度指标K 表示信号概率密度函数峰顶的陡峭程度,反映信号波形中的冲击分量的大小。 P37~自相关互相关及作用(举例说明) 相关,就是指变量之间的线性联系或相互依赖关系。 信号x (t )的自相关函数: 信号中的周期性分量在相应的自相关函数中不会衰减,且保持了原来的周期。因此,自相关函数可从被噪声干扰的信号中找出周期成分。 在用噪声诊断机器运行状态时,正常机器噪声是由大量、无序、大小近似相等的随机成分叠加的结果,因此正常机器噪声具有较宽而均匀的频谱。当机器状态异常时,随机噪声中将出现有规则、周期性的信号,其幅度要比正常噪声的幅度大得多。 依靠自相关函数就可在噪声中发现隐藏的周期分量,确定机器的缺陷所在。 (如:自相关分析识别车床变速箱运行状态,确定存在缺陷轴的位置;确定信号周期。) 互相关函数: 互相关函数的周期与信号x(t)和y(t)的周期相同,同时保留了两个信号的相位差信息φ。可在噪音背景下提取有用信息;速度测量;板墙对声音的反射和衰减测量等。 (如:利用互相关分析测定船舶的航速;探测地下水管的破损地点。P42) P51~蝶形算法 FFT 的基本思想是把长度为2的正整数次幂的数据序列{x k }分隔成若干较短的序列作DFT 计算,用以代替原始序列的DFT 计算。然后再把他们合并起来。得到整个序列{x k }DFT 。(图示N=8时FFT) t t x t x T R T T x d )()(1lim )(0 ? ±=∞ →ττt t y t x T R T T xy d )()(1lim )(0 ? +=∞ →ττ x 0 x 1x 2x 3x 4x 5x 6 x 7x 0x 4x 6x 3x 5 x 0x 4x 2x 6x 1x 5x 3x 7x 0x 4x 2x 6x 1x 5x 3x 7x'0 x'4 x' 2x'6 x'1 x'5x'3 x'7 -1 -1 -1 -1 -1 -1 -1-1 -1 -1 -1 -1 X 0 X 1 X 2X 3 X 4X 5X 6X 7 x 7x 1x 2N W N W N W 0N W 0N W N W N W 1 N W 1 N W 1 N W 0N 0N W 2N W 3

现代信号处理教程---胡广书(清华)

第5章信号的抽取与插值 5.1前言 至今,我们讨论的信号处理的各种理论、算法及实现这些算法的系统都是把抽样频率 f视为恒定值,即在一个数字系统中只有一个抽样率。但是,在实际工作中,我们经常会s 遇到抽样率转换的问题。一方面,要求一个数字系统能工作在“多抽样率(multirate)”状态,以适应不同抽样信号的需要;另一方面,对一个数字信号,要视对其处理的需要及其自身的特征,能在一个系统中以不同的抽样频率出现。例如: 1. 一个数字传输系统,即可传输一般的语音信号,也可传输播视频信号,这些信号的频率成份相差甚远,因此,相应的抽样频率也相差甚远。因此,该系统应具有传输多种抽样率信号的能力,并自动地完成抽样率的转换; 2. 如在音频世界,就存在着多种抽样频率。得到立体声声音信号(Studio work)所用的抽样频率是48kHz,CD产品用的抽样率是44.1kHz,而数字音频广播用的是32kHz[15]。 3. 当需要将数字信号在两个具有独立时钟的数字系统之间传递时,则要求该数字信号的抽样率要能根据时钟的不同而转换; 4.对信号(如语音,图象)作谱分析或编码时,可用具有不同频带的低通、带通及高通滤波器对该信号作“子带”分解,对分解后的信号再作抽样率转换及特征提取,以实现最大限度减少数据量,也即数据压缩的目的; 5. 对一个信号抽样时,若抽样率过高,必然会造成数据的冗余,这时,希望能在该数字信号的基础上将抽样率减下来。 以上几个方面都是希望能对抽样率进行转换,或要求数字系统能工作在多抽样率状态。近20年来,建立在抽样率转换理论及其系统实现基础上的“多抽样率数字信号处理”已成为现代信号处理的重要内容。“多抽样率数字信号处理”的核心内容是信号抽样率的转换及滤波器组。 减少抽样率以去掉过多数据的过程称为信号的“抽取(decimatim)”,增加抽样率以增加数据的过程称为信号的“插值(interpolation)。抽取、插值及其二者相结合的使用便可实现信号抽样率的转换。 推荐精选

现代数字信号处理实验报告

现代数字信号处理实验报告 1、估计随机信号的样本自相关序列。先以白噪声()x n 为例。 (a) 产生零均值单位方差高斯白噪声的1000个样点。 (b)用公式: 999 1?()()()1000x n r k x n x n k ==-∑ 估计()x n 的前100个自相关序列值。与真实的自相关序列()()x r k k δ=相比较,讨论你的估计的精确性。 (c) 将样本数据分成10段,每段100个样点,将所有子段的样本自相关的平均值作为()x n 自相关的估值,即: 999 00 1?()(100)(100) , 0,1,...,991000x m n r k x n m x n k m k ===+-+=∑∑ 与(b)的结果相比,该估计值有什么变化?它更接近真实自相关序列()()x r k k δ=吗? (d)再将1000点的白噪声()x n 通过滤波器1 1 ()10.9H z z -= -产生1000点的y (n ),试重复(b)的工作,估计y (n )的前100个自相关序列值,并与真实的自相关序列()y r k 相比较,讨论你的估计的精确性。 仿真结果: (a)

图1.1零均值单位方差高斯白噪声的1000个样本点 分析图1.1:这1000个样本点是均值近似为0,方差为1的高斯白噪声。(b) 图1.2() x n的前100个自相关序列值 分析上图可知:当k=0时取得峰值,且峰值大小比较接近于1,而当k≠0时估计的自相关值在0附近有小幅度的波动,这与真实自相关序列r (k)=δ(k) x 比较接近,k≠0时估计值非常接近0,说明了估计的结果是比较精确的。

现代信号处理方法及工程应用的研究

现代信号处理方法及工程应用的研究 班级:研1102 学号:2011020058 姓名:赵鹏飞 摘要 本文首先介绍了时频发展的基本概念和比较成熟的时频分析方法一一短时Fourier分析。然后给出了实际转子振动信号的时频分析。其次,介绍了二进小波分析,并应用二进小波分析实现了对透平压缩机信号的监测分析,得到了压缩机原始信号在不同频率段分解的细节信号和逼近信号。用小波分析和谱分析相结合的方法对某国产电机的噪声进行了分析,找出了人的听闭不阅的几个高谱峰位置,进行了空气动力噪声计算,通过与理论计算结果进行对比分析,进一步找出了产生该频闻谱峰的几个原因。第三,介绍了谐波小波和分形的基本原理。对车辆的一般振动信号和复杂振动信号进行了分形分析。第四,对车辆传动系的振动信号进行了检测分析与故障诊断。首先对汽车传动系进行了模态测试与分析,然后对汽车传动系各部分在垂直方向上的相对振动幅值进行了测试与分析。根据上述测试分析并综合其它因素得出了结论。 关键词:小波分析,分形,故障诊断,信号 第一章绪论 世界从本质上说是非线性的,线性是非线性的特殊情况:以非线性为特征的非线性科学是一门跨学科的综合性基础科学,旨在揭示非线性系统的共同性质、基本特征和运动规律。当前研究非线性科学的主要工具有Fourier变换(STFT)、小波分析(Wavelet Analysis)、分形理论、人工神经网络等。 1.1时频分析的发展及应用 Fourier分析方法的应用,使科学与技术研究领域发生了具大的变化,从而极大地推动了经济发展乃至社会变革,目前在信号处理与图象处理方面Fourier 变换是不可缺少的分析工具。在机械设备状态监测与诊断系统中,应用最广泛也是最成功的就是基于Fourier变换的各种分析方法:许多在时域分析困难的问

相关文档