文档库 最新最全的文档下载
当前位置:文档库 › 一种特高压直流输电线路神经网络双端故障测距新方法_陈仕龙

一种特高压直流输电线路神经网络双端故障测距新方法_陈仕龙

一种特高压直流输电线路神经网络双端故障测距新方法_陈仕龙
一种特高压直流输电线路神经网络双端故障测距新方法_陈仕龙

电缆故障测距方法.

电缆故障测距方法 在线测距方法 故障定位技术的发展主要经历了三个阶段:模拟式定位技术、单端数字式定位技术、双端定位技术。早期的故障定位装置是机电式或静态电子仪器构成的模拟式装置。后期的故障录波器是以光电转化为原理、以胶片为记录载体、根据故障录波仪记录的电信号来粗略估计故障点位置。测试技术的出现以及计算机技术和通信技术都加速了故障定位技术的发展。这个阶段出现了许多利用计算机进行故障定位的方法,其特点是采用单端信息,应用计算机的超强运算能力对各自算法进行修正,求得故障距离。有些算法已应用到实际故障定位装置中,不足之处是无法克服故障电阻对故障定位精度的影响。 其中,单端阻抗法只用到线路一侧的电压、电流测量值,由于其理论上无法克服过渡电阻的影响,需要在测距算法中做一定的假设,所以其测量精度在很多情况下难以保证,但是有着造价低,不受通信因数的限制的优点,在实际应用中有着一定的应用需求。单纯依靠单端信息不能有效地消除因素包括:负荷电流;系统运行阻抗;故障点过渡电阻,这自然影响到测距的精度。 单端行波法 是基于单端信息量的一种测距方法,其中单端行波测距的关键是准确求出行波第一次到达监测端与其从故障点反射回到监测端的时间差,并包括故障行波分量的提取。常用的行波单端故障定位算法有求导数法、相关法、匹配滤波器法和主频率法。由于行波在特征阻抗变化处的折反射情况比较复杂(如行波到达故障点后会发生反射也会通过故障点折射到对侧母线上去),非故障线路不是“无限长”,由测量点折射过去的行波分量经一定时间后,又会从测量点折射回故障线路等,使行波分析和利用单端行波精确故障定位有较大困难。 双端行波测距 是通过计算故障行波到达线路两端的时间差来计算故障位置,其测距精度基本不受线路的故障位置、故障类型、线路长度、接地电阻等因素的影响。双端行波法的关键是准确记录下电流或电压行波到达线路两端的时间,误差应在几微秒以内,以保证故障定位误差在几百米内,行波在线路上的传播速度近似为300m/μs,1μs 时间误差对应约150m 的测距误差。双端信号要求严格的同步,随着GPS对民用开放,使得双端故障定位法迅速发展。这种定位方法的定位精度高,已成为近几年来故障定位方法研究的热点。 电缆故障定位技术经过国内外专家学者几十年的共同努力,已取得了

特高压输电工程简介

特高压输电工程简介 ABSTRACT: Transporting electrical power with ultra-high voltage has been very popular these days, but most people in the society do not know much about it. In this essay, we will have a short cover about ultra-high voltage technology and focus on the necessity and importance of ultra-high voltage for China to develop this technology, some difficulties in this process, and finally some sample projects in destruction. KEY WORDS:ultra-high voltage, electrical power 摘要:特高压输电,作为近年来国家重点发展的示范项目,已经引起了越来越多的关注和讨论,社会中的绝大部分群体对这一新兴概念并不十分了解,本文对我国特高压输电工程进行一个简单的介绍和讨论,重点介绍我国现阶段特高压输电的必要性和重要性、期间面临的一些反对意见和应对措施、我国现阶段对特高压工程的研究进展情况,以及目前已建成的或在建的特高压示范工程规划。 关键词:特高压,电力系统 目前我国常用的电压等级有:220V、380V、6kV、10kV、35kV、110kV、220kV、330kV、500kV。交流220kV及以下的称为高压(HV),330kV到750kV为超高压(EHV),交流1000kV及以上为特高压(UHV),通常把1000KV到1150kV这一级电压称为百万伏级特高压。对于直流输电,±600kV及以下的为高压直流(HVDC),±600kV以上为特高压直流(UHVDC)。 对于我国发展特高压输电的必要性和重要性,主要有以下几个方面: (1)电力快速发展的需要 改革开放30 年以来,我国用电总量快速增长。1978 年,全社会用电量为2498 亿千瓦时,到2007 年达到32565 亿千瓦时,是1978 年的13 倍,年均增长9.45%。改革开放之初,我国逐步扭转了单纯发展重化工业的思路,轻工业得以快速发展,用电增速呈现先降后升的态势,“六五”、“七五”期间年均增长分别达到6.52%、8.62%,其间,在经济体制改革的带动下,我国用电增速曾连续6 年(1982~1987 年)逐年上升,是改革开放以来最长的增速上升周期。1990 年以来,在小平南巡讲话带动下,我国经济掀起了新的一轮发展高潮。“八五”期间,全社会用电增长明显加快,年均增长10.05%。“九五”期间,受经济结构调整和亚洲金融危机影响,用电增速明显放缓,年均增长6.44%,尤其是1998 年,增速仅为2.8%,为改革开放以来的最低水平。进入“十五”以来,受积极的财政货币政策和扩大内需政策拉动,我国经济驶入快速增长轨道,经济结构出现重型化,用电需求持续高速增长,年均增长12.96%,尤其是2003 年、2004 年达到了改革开放以来用电增长高峰,增速分别为15.3%和15.46%。“十一五”前两年,我国用电继续保持快速增长势头,增速均高于14%。 由此可以看出,随着工业化和城镇化的不断推动和发展,我国用电量逐年增加,在工业化和全面建设小康社会的带动下,预计我国到2020 年全社会用电量将达到6.5~7.5 万亿千瓦时,年均增速将达到5.5%~6.6%;人均用电量达到4500~5200千瓦时,相当于日本上世纪80 年代的水平。所以,要求现有的电力系统增大发电容量,满足用电需求。 (2)我国资源和电力负荷分布不均衡 受经济增长,尤其是工业生产增长的强劲拉动,我国电力需求实现高速增长,但是,我国用电增长地区分布不均。总体来看我国东部沿海经济发达地区用电强劲增长,西部地区高耗能产业分布较多的省区用电增长幅度也较大,中部地区增长较慢,我国电力系统的负荷也呈现出结构性变化。但是,我国的资源分布却呈现出相反的情况,水能、煤炭等电力资源主要分布在中西部地区,远离东部的集中用电区域,这同

输电线路故障查找(2021年)

输电线路故障查找(2021年) Security technology is an industry that uses security technology to provide security services to society. Systematic design, service and management. ( 安全管理 ) 单位:______________________ 姓名:______________________ 日期:______________________ 编号:AQ-SN-0785

输电线路故障查找(2021年) 1正确的数据是故障定点的保障 为了提高故障的准确定位,在110kV及以上变电站大部分都装有电力系统故障动态记录装置,即故障录波器。故障录波器的整定值要求其测距误差不大于5,(或2km)且无判相错误,并能准确记录故障前后的电压、电流量,这给故障巡视提供了详实的第一手资料。而装置提供资料的准确与否决定于以下4个方面:①装置的接线是否正确;②装置的定值整定是否准确,这决定于线路参数的测量、定值的计算和定值的整定;③线路进行改造后是否再次进行了核相,线路参数测量计算定值并进行整定。④线路跳闸后是否进行事故分析,并对装置的定值进行校核和调整,这一点是今后装置能否准确定位的要害。 110kV及以上线路大部分都装有微机保护。微机保护装置故障数

据的准确率和故障量虽然没有要求,也没有故障录波器提供得多,但只要按照线路参数进行准确的定值计算和整定,其测距定位数据也是非常重要的参考。 保护及自动装置测出的只是变电站到故障点的距离,并没有给出故障杆号。因此,需要在线路台账上做些工作,统计计算出每基杆塔距两侧变电站的距离,只有这样才能实现线路故障点的快速准确定位。 输电线路的故障大部分都是单相故障,搞清线路的相位很重要,仅通过巡线前的交代和在耐张杆、换位杆作标志的做法,对巡线人员分清故障相是不实用的。在每基线路杆号牌上制作标志的做法比较好,这样可以减少事故巡线人员2/3~1/2的工作量。 有些线路故障往往是由缺陷发展演变而来的,搞好缺陷的定性和记录也很重要。 2细致的分析是故障定点的要害 线路发生故障后,尽管到达故障点的时间越短,故障检出的成功率越高。但是,接到调度命令后决不能盲目地立即巡线,而应一

电力系统输电线路故障测距研究方法

电力系统输电线路故障测距方法研究 摘要:本文首先全面地介绍了故障测距在国内外发展历程和研究现状。根据各测距算法采用的原理不同,将现有的各种测距算法分为行波法、阻抗法、故障分析法以及智能法,然后逐类对各种算法的理论基础和应用条件上进行了分析、对比和讨论,并在此基础上总结得出了各测距算法的优点及存在的问题,指出了每种测距算法的适用范围和应用局限性。 其次设计了一套高压输电线路新型故障测距装置,该测距装置采用专门设计 的高速采样单元捕获暂态电流行波信号,采用全球定位系统GPS为线路两端提供精度高达s 1的统一时标,从而可实现高精度的双端行波法测距。 为了验证本论文提出的故障定位方法的可行性,通过分析研究,其结果说 明本系统的实验方案确实可行。理论和仿真结果表明,本文所作的工作提高了行波故障测距在不同线路结果情况下的适应性、精度和可靠性。 关键词:输电线路;故障测距;电力系统;行波;全球定位系统(GPS) Research about the measure of fault

location in power system transmission line Abstract:The development and general situation of the research in this field in China and in other countries is introduced in this paper. All the existing algorithms can be classified into 4 main methods those are traveling wave location, impedance location, fault analysis location and Intelligence location .Then the principle and application condition of each algorithm are presented and discussed. Based on the analysis and comparison of each algorithm, the corresponding merits and application limitation are concluded. In this article, a new design scheme of the fault locator for HV transmission lines is presented. By using high-speed data acquisitioning unit designed specially to capture traveling waves of transient current, using Global Positioning System (GPS) to supply high precise time tagging for both ends and using wavelet transform theories to identify the head of the traveling waves, the fault locator can realize high precise double-ended traveling waves location. At the same time, using two-terminal voltages and currents sampled by the medium-speed sampling and processing unit synchronized by the Pulse Per Second (1PPS) of GPS, can realize accurate double ended steady state location. In order to verifying the feasibility of the fault location method, which is presented in this thesis, the experiment is performed based on the locale condition. The result shows that the experimental scheme of this thesis is feasible. The analysis and simulation results indicate that the studies in this dissertation can improve the accuracy, reliability and adaptability of traveling wave fault location. Keywords: power transmission line; Traveling wave; power system;Global Positioning System (GPS) ;fault location 第1章绪论

高压直流输电与特高压交流输电的优缺点比较

高压直流输电与特高压交流输电的优缺点比较 从经济方面考虑,直流输电有如下优点: (1) 线路造价低。对于架空输电线,交流用三根导线,而直流一般用两根采用大地或海水作回路时只要一根,能节省大量的线路建设费用。对于电缆,由于绝缘介质的直流强度远高于交流强度,如通常的油浸纸电缆,直流的允许工作电压约为交流的3倍,直流电缆的投资少得多。 (2) 年电能损失小。直流架空输电线只用两根,导线电阻损耗比交流输电小;没有感抗和容抗的无功损耗;没有集肤效应,导线的截面利用充分。另外,直流架空线路的“空间电荷效应”使其电晕损耗和无线电干扰都比交流线路小。 所以,直流架空输电线路在线路建设初投资和年运行费用上均较交流经济。 直流输电在技术方面有如下优点: (1) 不存在系统稳定问题,可实现电网的非同期互联,而交流电力系统中所有的同步发电机都保持同步运行。直流输电的输送容量和距离不受同步运行稳定性的限制,还可连接两个不同频率的系统,实现非同期联网,提高系统的稳定性。 (2) 限制短路电流。如用交流输电线连接两个交流系统,短路容量增大,甚至需要更换断路器或增设限流装置。然而用直流输电线路连接两个交流系统,直流系统的“定电流控制”将快速把短路电流限制在额定功率附近,短路容量不因互联而增大。 (3) 调节快速,运行可靠。直流输电通过可控硅换流器能快速调整有功功率,实现“潮流翻转”(功率流动方向的改变),在正常时能保证稳定输出,在事故情况下,可实现健全系统对故障系统的紧急支援,也能实现振荡阻尼和次同步振荡的抑制。在交直流线路并列运行时,如果交流线路发生短路,可短暂增大直流输送功率以减少发电机转子加速,提高系统的可靠性。 (4) 没有电容充电电流。直流线路稳态时无电容电流,沿线电压分布平稳,无空、轻载时交流长线受端及中部发生电压异常升高的现象,也不需要并联电抗补偿。 (5) 节省线路走廊。按同电压500 kV考虑,一条直流输电线路的走廊~40 m,一条交流线路走廊~50 m,而前者输送容量约为后者2倍,即直流传输效率约为交流2倍。 下列因素限制了直流输电的应用范围: (1) 换流装置较昂贵。这是限制直流输电应用的最主要原因。在输送相同容量时,直流线路单位长度的造价比交流低;而直流输电两端换流设备造价比交流变电站贵很多。这就引起了所谓的“等价距离”问题。 (2) 消耗无功功率多。一般每端换流站消耗无功功率约为输送功率的40%~60%,需要无功补偿。 (3) 产生谐波影响。换流器在交流和直流侧都产生谐波电压和谐波电流,使电容器和发电机过热、换流器的控制不稳定,对通信系统产生干扰。 (4) 缺乏直流开关。直流无波形过零点,灭弧比较困难。目前把换流器的控制脉冲信号闭锁,能起到部分开关功能的作用,但在多端供电式,就不能单独切断事故线路,而要切断整个线路。 (5) 不能用变压器来改变电压等级。 直流输电主要用于长距离大容量输电、交流系统之间异步互联和海底电缆送电等。与直流输电比较,现有的交流500 kV输电(经济输送容量为1 000 kW、输送距离为300~500 km)已不能满足需要,只有提高电压等级,采用特高压输电方式,才能获得较高的经济效益。

输电线路故障测距系统现状及发展趋势综述

输电线路故障测距系统现状及发展趋势综述 发表时间:2016-10-18T15:34:19.453Z 来源:《电力技术》2016年第8期作者:关昕[导读] 本文阐述了输电线路行波故障测距技术的原理、发展历程,介绍了输电线路行波故障测距系统在国内的应用现状。 贵州电网公司都匀供电局贵州都匀 558000摘要:本文阐述了输电线路行波故障测距技术的原理、发展历程,介绍了输电线路行波故障测距系统在国内的应用现状,分析了工程应用中存在的问题。针对上述问题,并结合近年来电力科技发展,本文提出了行波故障测距系统的后续技术发展方向。 关键词:输电线路;行波法;故障测距 1.引言 输电线路是电网中较容易故障的部分,输电线路故障后,快速、精确的定位故障点位置对缩短线路停电时间、快速恢复供电、降低停电带来的经济损失具有重要意义。从长期运行的角度看,精确的故障点定位信息有助于运行单位的事故分析,及时地发现故障隐患,采取有针对性的措施,提高线路运行的长期可靠性。 输电线路故障测距方法(故障定位)从原理上可分为阻抗法、行波法、时域法、频域法等。目前,获得实际应用的主要是阻抗法和行波法,保护/录波装置中主要应用的是阻抗法,行波故障测距装置则一般是单独组屏。相对而言,阻抗法受过渡电阻、系统运行方式、互感器等因素影响,在长线路、高阻故障情况下,定位误差较大,因此,输电线路行波故障测距装置是目前国内电力运营单位最主要的故障定位手段。本文首先阐述了输电线路行波故障测距系统在国内发展及应用现状,介绍了存在的问题,并对后续技术发展进行了分析。 2.输电线路行波故障测距技术原理及发展历程 2.1 输电线路行波故障测距原理 输电线路行波测距法(也称为行波故障定位),根据需要的电气量的不同,可分为单端法、双端法、脉冲法。目前,现场运行装置基本上都是采用采用双端法,其原理是利用故障产生的暂态行波,通过计算暂态行波到达线路两端的时间差来计算故障位置。故障测距计算中主要解决以下两个问题:①行波在传输过程中的衰减及波形畸变(即信号色散);②不同线路类型中行波波速的确定。 图1 双端行波测距原理 2.2 输电线路行波故障测距技术发展历程 在上世纪70年代,国外相关研究单位就提出了行波故障定位概念,但受采样、授时等技术的限制一直未能实用化。在行波测距技术实用化之前,电力系统主要通过保护/录波装置数据利用阻抗测距法完成故障定位,但受故障过渡电阻、互感器误差等因素的影响,测距精度和可靠性较低,并且不适用直流输电、T阶等类型线路。上世纪80年代以后,随着GPS、数字信号处理技术的成熟,行波故障测距装置技术上逐渐成熟。而在行波故障测距理论研究领域也取得了突破,中国电科院、山东科汇等单位采用小波变换、模量变换、自适应滤波器等手段[1~7]的综合应用解决了色散、波速确定等问题,行波故障测距装置进入实用化阶段。 3.输电线路故障测距系统发展现状 3.1 应用规模 目前,基于行波原理的输电线路故障测距装置在我国电网已经获得了广泛应用,安装厂站数量超过3000个,全面覆盖500kV/330kV以上电压等级线路,距离较长的220kV电压等级线路也基本安装有行波故障测距装置。在国内,从事该领域产品研制与开发的主要厂家是:南京南瑞集团公司,山东科汇公司、山大电力等,由于国内在此领域的应用水平较高,在装置开发和相关技术研究方面与国外机构差距较小。 3.2 应用效果 实际运行统计表明,输电线路行波故障测距装置的精度基本上达到500米~1000米,在现场运行中主要发挥了以下作用: 1)输电线路行波故障测距装置的应用有效缩短了线路停电时间,仅在辽宁电网,根据2006年~2009年统计,挽回停电损失上亿元。 2)对于四川、青海、云贵等地电网,由于输电线路多跨越山区、林地,巡线困难,行波故障测距装置的应用大大降低了巡线工作量。 3)输电线路故障点的准确定位有助于运营单位采取预防性措施,这也间接降低了输电线路后续故障发生的概率。 但需要指出的是,输电线路行波故障测距装置的应用效果与现场的运行维护情况相关。以辽宁电网为例,2014年上半年,220kV线路故障的定位成功率超过95%,平均误差在2级杆塔以内(不到500米误差);而运行维护不力的地区,故障定位成功率甚至不及50%。 3.3 存在的问题 (1)故障测距装置可靠性相对较低。 这是影响行波故障测距装置应用效果的最主要因素。由于行波故障测距装置系统构成较为复杂,包括装置采样、通讯、GPS授时(精度要求较高)多个环节,其中一个环节出现问题,即可能导致故障失败。根据各网省公司统计,由于通讯、GPS原因导致的故障定位失败占据故障总原因的70%以上。

线路故障测距的人工智能算法研究

Smart Grid 智能电网, 2016, 6(2), 64-72 Published Online April 2016 in Hans. https://www.wendangku.net/doc/071344525.html,/journal/sg https://www.wendangku.net/doc/071344525.html,/10.12677/sg.2016.62008 A Fault Locator for Transmission Line Based on Artificial Intelligent Algorithm Yu Zou Qinzhou Power Supply Bureau, Guangxi Power Grid Co., Ltd., Qinzhou Guangxi Received: Mar. 24th, 2016; accepted: Apr. 8th, 2016; published: Apr. 11th, 2016 Copyright ? 2016 by author and Hans Publishers Inc. This work is licensed under the Creative Commons Attribution International License (CC BY). https://www.wendangku.net/doc/071344525.html,/licenses/by/4.0/ Abstract Considering the transmission line with multi-branch, a dynamic fault location algorithm based on intelligent algorithm is presented in this paper. Based on the measured voltage and current at two terminals, a discrimination index is proposed by which the faulted section can be located first. Af-ter that the equivalent voltage and current at the branch node is obtained by the equivalent calcu-lation of the healthy branches. It corrects the results of fault location method based on genetic al-gorithm by the way of neural network algorithm, with the ranging accuracy improved when there are faults at two terminals of transmission line. The proposed algorithm only demands the meas-ured voltage and current on the two terminals, and inherits the advantages of fault location me-thod based on genetic algorithm, which is independent of fault type, fault resistance at fault point, etc., the influence on ranging accuracy by line parameters deviation is greatly reduced. The pro-posed method is simulated by PSCAD, and the results verified the correctness and high precision of the algorithm. Keywords Transmission Lines with Multi-Branch, The Principle of Superposition, Fault Location, Genetic Algorithm, Artificial Intelligence Algorithm 线路故障测距的人工智能算法研究 邹宇 广西电网有限责任公司钦州供电局,广西钦州

直供线路故障测距修正方法

直供线路故障测距修正说明 1.测距原理 直供测距定值说明: 表测距定值表(针对直供线路有效) 注意单位电抗和总电抗都是二次换算值. 测距分段数:测距时将此馈线根据不同的电抗区段分成的测距分段的个数。 单位电抗:在此分段内接触网的单位电抗值,为二次值,x2=x1*K U/K I,单位Ω/Km. 总电抗:保护安装处到此分段末端的总电抗,为二次值,单位Ω。 距离:保护安装处到此分段末端的总距离,单位Km。 以4段分段的故标定值设置举例如下: 变电所 供电线区间线路站场区间线路 设馈线压互变比27.5/0.1,流互变比800/5, 供电线单位电抗0.65Ω/Km,接触网线路单位电抗0.42Ω/Km,站场单位电抗0.2Ω/Km,L1=1Km,L2=10Km,L3=12Km,L4=25Km。则故障测距定值设置如下:

2.测距修正方法 具备原始测距整定数据,现场保护动作数据,实际短路位置数据等相关参数 主要有:整定数据:N,x1,X1,L1,x2,X2,L2,……. 动作数据: Xs,Lj 所在段K, 实际故障距离Ls 设修正后的测距定值:N,x1’,X1’,L1,x2’,X2’,L2,……. 3.计算原理 1)第一段内故障,测距定值修正方法: X1’=L1/Ls*X1 x1’=X1’/L1,其他段根据此参数重新计算 2)第二段内故障,测距定值修正方法: X2’=X1+(L2-L1)*(X-X1)/(Ls-L1) x2’=(X2’-X1)/(L2-L1),后续分段根据此参数重新计算 3)第I段(I≠1) XI’=X I-1+(L I-L I-1)*(X-X I-1)/(L S-L I-1) x i’=(X I’-X I-1)/(L I-L I-1), 后续分段根据此参数重新计算 4.验算为保证正确性,最好按照计算结果划出线性分段图,将故障时的Xs通过坐标及计算,检验是否对应结果为Ls.

我国特高压直流输电技术的现状及发展

我国特高压直流输电技术的现状及发展 (华北电力大学,北京市) 【摘要】直流输电是目前世界上电力大国解决高电压、大容量、远距离送电和电网互联的一个重要手段。本文主要介绍了特高压直流输电技术的特点,特高压直流输电技术所要解决的问题,特高压直流输电技术的在我国发展的必要性以及发展前景。 【关键词】特高压直流输电,特点,问题,必要性,发展前景 0.引言 特高压电网是指由特高压骨干网架、超高压、高压输电网、配电网及高压直流输电系统共同构成的分层、分区,结构清晰的大电网。其中,国家电网特高压骨干网架是指由1000kV级交流输电网和±600kV级以上直流输电系统构成的电网。 特高压直流输电技术起源于20 世纪60 年代,瑞典Chalmers 大学1966 年开始研究±750kV 导线。1966 年后前苏联、巴西等国家也先后开展了特高压直流输电研究工作,20 世纪80 年代曾一度形成了特高压输电技术的研究热潮。国际电气与电子工程师协会(IEEE)和国际大电网会议(Cigre)均在80 年代末得出结论:根据已有技术和运行经验,±800kV 是合适的直流输电电压等级,2002 年Cigre又重申了这一观点。随着国民经济的增长,中国用电需求不断增加,中国的自然条件以及能源和负荷中心的分布特点使得超远距离、超大容量的电力传输成为必然,为减少输电线路的损耗和节约宝贵的土地资源,需要一种经济高效的输电方式。特高压直流输电技术恰好迎合了这一要求。 1.特高压直流输电的技术特点 1.1特高压直流输电系统 特高压直流输电的系统组成形式与超高压直流输电相同,但单桥个数、输送容量、电气一次设备的容量及绝缘水平等相差很大。换流站主接线的典型方式为每极2组12脉动换流单元串联,也可用每极2组12脉动换流单元并联。特高压直流输电采用对称双极结构,即每12脉动换流器的额定电压均为400kV,这样的接线方式使运行灵活性可靠性大为提高。特高压直流输电的运行方式有:双极运行方式、双极混合电压运行方式、单击运行方式和单极半压运行方式等。换流阀采用二重阀,空气绝缘,水冷却;控制角为整流器触发角15°;逆变器熄弧角17°。换流变压器形式为单相双绕组,油浸式;短路阻抗16%-18%;有载调压开关共29档,每档1.25%。换流站平面布置为高、低压阀厅及其换流变压器采用面对面布置方式,高压阀厅布置在两侧,低压阀厅布置在中间。 1.2 特高压直流输电技术的主要特点 (1)特高压直流输电系统中间不落点,可点对点、大功率、远距离直接将电力送往负荷中心。在送受关系明确的情况下,采用特高压直流输电,实现交直流并联输电或非同步联网,电网结构比较松散、清晰。 (2)特高压直流输电可以减少或避免大量过网潮流,按照送受两端运行方式变化而改变潮流。特高压直流输电系统的潮流方向和大小均能方便地进行控制。 (3)特高压直流输电的电压高、输送容量大、线路走廊窄,适合大功率、远距离输电。 (4)在交直流并联输电的情况下,利用直流有功功率调制,可以有效抑制与其并列的交流线路的功率振荡,包括区域性低频振荡,明显提高交流的暂态、动态稳定性能。 (5)大功率直流输电,当发生直流系统闭锁时,两端交流系统将承受大的功率冲击。 1.3 与超高压直流输电比较 和±600千伏级及600千伏以下超高压

电力系统MATLAB仿真实训说明书——输电线路双端故障测距仿真

电力系统MATLAB仿真实训说明书——输电线路双端故障测距仿真

————————————————————————————————作者:————————————————————————————————日期:

燕山大学 课程设计说明书题目:输电线路双端故障测距仿真 学院(系): 年级专业: 学号: 学生姓名: 指导教师: 教师职称: 燕山大学课程设计(论文)任务书

院(系):电气工程学院基层教学单位:电力工程系学号学生姓名专业(班级) 设计题目输电线路双端故障测距仿真 设计技术参数 测距方法大致分3大类:行波法、阻抗法和故障分析法,其中建立在工频电气量基础之一的阻抗算法目前得到了广泛的工程应用。在掌握双端测距基本原理的基础上,搭建输电线路MATLAB故障测距仿真模型,分析不同的故障、故障距离、两侧电源相位差和接地过渡电阻对测距结果的影响。具体参数见参考资料。 设计要求1.搭建输电线路MATLAB故障测距仿真模型,分析不同的故障、故障距离、两侧电源相位差和接地过渡电阻对测距结果的影响; 2.遵守实训期间的纪律要求,独立完成实训任务,; 3.撰写实训总结报告一份(不少于五千字),要求有理论分析和仿真结果,文字符号符合国家现行标准。 工作量1.学会使用MATLAB/SIMULINK电力系统仿真工具箱;2.独立完成仿真电路设计、连接与调试; 3.参加答辩并完成实训报告。 工作计划1.学习使用MATLAB/SIMULINK电力系统仿真工具箱,下发任务书;2.完成实训内容的原理分析与电路设计; 3.在MA TLAB仿真平台上进行电路连接、调试并验收。 4.参加答辩并撰写实训报告。 参考资料1.吴天明. MA TLAB电力系统设计与分析. 国防工业出版社 2.毕潇, 李学农, 陈延枫, 等. 一各双端故障测距算法的仿真及现场实例分析. 高电压技术, 2006, 32(3):105-107 3.自查资料 指导教师签字基层教学单位主任签字 说明:此表一式四份,学生、指导教师、基层教学单位、系部各一份。 年月日燕山大学课程设计评审意见表

特高压交直流输电系统技术经济分析

特高压交直流输电系统技术经济分析 摘要:随着我国电力事业的快速发展,我国特高压输电工程建设正处于稳步上 升阶段。特高压输电技术的广泛应用,很好地解决了当前输电技术存在的经济性 较低以及无法实现或者实现难度较大的更远距离输电问题,进一步提高了输电系 统供电的稳定性、安全性以及经济性。对于当前特高压输电网而言,1000kV以及±800kV输电系统的技术经济性是重中之重。基于此,研究特高压交直流输电系统 技术经济性具有重要的现实意义。 关键词:特高压交直流水电系统;技术经济性 引言: 1000kV与±800kV输电系统的技术经济性是发展特高压输电网的重要基础。从我国特高压交直流输电示范工程成功运行经验讨论1000kV与±800kV输电的技术 经济性对推进特高压输电网的规划建设具有重要现实意义。 1 1000kV和±800kV输电系统建设成本阐述 1.1 1000kV输电系统的建设成本 一般来说,都是使用单位输电建设成本来表示1000kV与±800kV输电系统的 建设成本。同时,参照示范工程投资决算实对其施估算。以2009年投入运行的1000kV特高压交流试验示范工程为例来看,其最初建设成本为56.9亿元。根据 试验示范工程相关元器件成本以及建设成本的实际情况,使用工程成本计算方法 对其建设成本进行估算,拟使用1000kV、4410MW、1500km特高压输电系统, 其单位输电建设成本预期估算成本为1900元/km?MW。若将500kV输电系统建 设成本按照2500元/km?MW的价格来看,那么此1000kV特高压输电系统的单位 建设成本则近似为500kV输电系统的8成左右。 1.2 ±800kV输电系统的建设成本 对于±800kV直流输电系统而言,首先需要把各发电单元机组通过电站500kV 母线汇集在一起,接着借助500kV输电线路连通到直流输电的整流站中,从而把 三相交流电更换成直流电,再使用两条正负极输电线路将其配送到逆变站中,再 把直流电转变为三相交流电,最后输送到有电压作为保障的500kV枢纽变电站中。和其余输电系统相同,±800kV直流输电系统在进行长距离、大规模输电的过程中,也需要两个电厂作为支撑,拟将其发电机组定位6×600MW以及5×600MW,线路 总长度为1500km,通过±800kV特高压直流输电示范工程数据对其输电建设成本 实施估算。某±800kV特高压直流输电示范工程的直流输电线路总长度为1891km,额定直流电流为4kA,额定换流功率为6400MW,分裂导线的规格为6×720mm2,开工建设的时间为2007年,不断对系统进行调试,最终于2010年正式投入使用。根据系统调试以及投入运行的实际结果来看,自助研发的±800kV特高压直流输电 系统及其相关设备具有较高的运行性能。该±800kV直流输电示范工程建设成本为190亿元,其中换流站与相关线路的成本均占总成本的一半。根据示范工程建设 成本进行估算,±800kV、6400MW、1500km直流输电系统的单位输电建设成本应为1780元/km?MW。 1.3 1000kV和±800kV输电系统建设成本对比分析 一般来说,通过逆变站的输出功率对交流输电进行估算,而直流输电的估算 亦是如此;1000kV交流输电系统的单位建设成本与±800kV直流输电系统的单位 建设成本基本一致,都为1900元/km?MW,处于相同等级。1000kV交流输电系 统的对地电压为578kV和±800kV直流输电系统极线的对地电压相匹配。±800kV

高压直流输电线路单端故障测距组合算法

第42卷第3期电力系统保护与控制V ol.42 No.3 2014年2月1日Power System Protection and Control Feb.1, 2014 高压直流输电线路单端故障测距组合算法 李博雅1,杨 耀2,杨立红3 (1.沈阳工程学院,辽宁 沈阳100136;2.河南省电力公司三门峡供电公司,河南 三门峡 472000; 3.华北电力大学电气与电子工程学院,河北 保定 071003) 摘要:行波波速的选取和反射波头的识别是影响单端行波测距精度和可靠性的主要因素。基于故障行波的时频域特征,提出一种行波法和固有频率法相结合的单端故障测距算法。利用行波固有频率计算出故障点位置的粗略值,确定故障反射波达到母线测点的时间范围。利用集成经验模态分解算法提取的行波高频分量,对反射波头进行有效识别并获取测距所需的精确时间参数,同时将该高频分量对应的行波波速利用到行波测距中,解决了波速选取的难题。PSCAD仿真结果表明,该测距算法可有效识别行波波头,且测距的精度得到明显提高。 关键词:故障测距;行波;固有频率;集成经验模态分解;高压直流 A combined method of single-ended fault location for HVDC transmission lines LI Bo-ya1, YANG Yao 2, YANG Li-hong3 (1.Shenyang Institute of Engineering, Shenyang 100136, China; 2. Sanmenxia Power Supply Company, Henan Electric Power Company, Sanmenxia 472000, China; 3. School of Electrical and Electronic Engineering, North China Electric Power University, Baoding 071003, China) Abstract:There are two main factors influencing the accuracy and reliability of single-ended traveling wave fault location, namely the determination of traveling wave velocity and the time when the reflected wave fronts arrives. A new fault location method based on the travelling wave’s time- and frequency-characteristics combining with natural frequency is presented. It uses method based on natural frequency to calculate rough value of fault distance, and the time regions of reflected waves from fault point to detective bus are confirmed through the distance. Ensemble empirical mode decomposition is employed to extract the high-frequency component from traveling wave, recognize the reflected wave fronts and determine more accurate traveling wave time parameters. According to the propagation velocity of the frequency, the fault distance is calculated. The results of simulations by PSCAD show that the method proposed can effectively identify the initial traveling wave and improves the fault location accuracy obviously. Key words:fault location; traveling wave; natural frequency; ensemble empirical mode decomposition; HVDC 中图分类号:TM77 文献标识码:A 文章编号:1674-3415(2014)03-0116-06 0 引言 高压直流输电(High V oltage Direct Current,HVDC)具有输送容量大、送电距离远、电网互联方便、功率调节容易等诸多优点,在我国具有广阔的应用前景。直流输电线路距离长,要跨越不同地形和气候区域,工作条件恶劣,故障概率高,巡线难度大,因此,发展精确可靠的故障测距技术,对于保障电力系统的安全运行,提高系统的经济性和可靠性具有重要意义[1-2]。 目前,投入商业运行的故障测距技术主要是行波法。其中,单端行波原理测距结果精确,不需要GPS授时系统及两端数据通信,测距成本低,实时性强,因此,针对单端测距原理的研究具有重要的实际意义[3-4]。 单端行波法需要对行波反射波头进行准确识别和标定,从而降低了测距的可靠性[5-6]。而基于固有频率的测距算法不受行波波头识别的限制,只需要故障后任一段暂态数据提取固有频率即可对故障距离进行估算。虽然该算法测距精度低于行波法,但在原理上具有较高可靠性,鲁棒性强,可用来确定故障点的粗略范围。 本文利用行波法和固有频率法的测距优势互补性,提出一种单端故障测距组合算法。该算法利用固有频率法得到故障距离的粗略值,使得行波反射波头识别范围由整个时间轴变为可选择的局部范

相关文档
相关文档 最新文档