文档库 最新最全的文档下载
当前位置:文档库 › MPPT算法

MPPT算法

MPPT算法
MPPT算法

MPPT算法

MPPT(太阳能最大功率点跟踪)扰动法算法的完整源程序,最好是汇编语言。多谢!

如果您能给出满意的答案,另有更多的追加积分!

在接入光伏发电系统之后,由汇编语言的控制,对电路实行最大功率跟踪控制。设定一定得占空比,测量目前功率p0,并加入扰动产生电流电压变化,利用电压电流传感器测得此时的u1,i1,并计算出p1=u1*i1。对p0,p1,进行比较,若p1大于p0,则说明扰动是让系统向其最大功率输出方向变动,则继续这种扰动,反之,则改变扰动方式,通过MPPT控制,送出这时的控制信号,再对比这次扰动前后的功率值,循环进行下去,直至系统功率值在某一点左右变化为止。

数据挖掘分类算法比较

数据挖掘分类算法比较 分类是数据挖掘、机器学习和模式识别中一个重要的研究领域。通过对当前数据挖掘中具有代表性的优秀分类算法进行分析和比较,总结出了各种算法的特性,为使用者选择算法或研究者改进算法提供了依据。 一、决策树(Decision Trees) 决策树的优点: 1、决策树易于理解和解释.人们在通过解释后都有能力去理解决策树所表达的意义。 2、对于决策树,数据的准备往往是简单或者是不必要的.其他的技术往往要求先把数据一般化,比如去掉多余的或者空白的属性。 3、能够同时处理数据型和常规型属性。其他的技术往往要求数据属性的单一。 4、决策树是一个白盒模型。如果给定一个观察的模型,那么根据所产生的决策树很容易推出相应的逻辑表达式。 5、易于通过静态测试来对模型进行评测。表示有可能测量该模型的可信度。 6、在相对短的时间内能够对大型数据源做出可行且效果良好的结果。 7、可以对有许多属性的数据集构造决策树。 8、决策树可很好地扩展到大型数据库中,同时它的大小独立于数据库的大小。 决策树的缺点: 1、对于那些各类别样本数量不一致的数据,在决策树当中,信息增益的结果偏向于那些具有更多数值的特征。 2、决策树处理缺失数据时的困难。 3、过度拟合问题的出现。 4、忽略数据集中属性之间的相关性。 二、人工神经网络 人工神经网络的优点:分类的准确度高,并行分布处理能力强,分布存储及学习能力强,对噪声神经有较强的鲁棒性和容错能力,能充分逼近复杂的非线性关系,具备联想记忆的功能等。 人工神经网络的缺点:神经网络需要大量的参数,如网络拓扑结构、权值和阈值的初始值;不能观察之间的学习过程,输出结果难以解释,会影响到结果的可信度和可接受程度;学习时间过长,甚至可能达不到学习的目的。

聚类分析算法解析

聚类分析算法解析 一、不相似矩阵计算 1.加载数据 data(iris) str(iris) 分类分析是无指导的分类,所以删除数据中的原分类变量。 iris$Species<-NULL 2. 不相似矩阵计算 不相似矩阵计算,也就是距离矩阵计算,在R中采用dist()函数,或者cluster包中的daisy()函数。dist()函数的基本形式是 dist(x, method = "euclidean", diag = FALSE, upper = FALSE, p = 2) 其中x是数据框(数据集),而方法可以指定为欧式距离"euclidean", 最大距离"maximum", 绝对值距离"manhattan", "canberra", 二进制距离非对称"binary" 和明氏距离"minkowski"。默认是计算欧式距离,所有的属性必须是相同的类型。比如都是连续类型,或者都是二值类型。 dd<-dist(iris) str(dd) 距离矩阵可以使用as.matrix()函数转化了矩阵的形式,方便显示。Iris数据共150例样本间距离矩阵为150行列的方阵。下面显示了1~5号样本间的欧式距离。 dd<-as.matrix(dd)

二、用hclust()进行谱系聚类法(层次聚类) 1.聚类函数 R中自带的聚类函数是hclust(),为谱系聚类法。基本的函数指令是 结果对象<- hclust(距离对象, method=方法) hclust()可以使用的类间距离计算方法包含离差法"ward",最短距离法"single",最大距离法"complete",平均距离法"average","mcquitty",中位数法"median" 和重心法"centroid"。下面采用平均距离法聚类。 hc <- hclust(dist(iris), method="ave") 2.聚类函数的结果 聚类结果对象包含很多聚类分析的结果,可以使用数据分量的方法列出相应的计算结果。 str(hc) 下面列出了聚类结果对象hc包含的merge和height结果值的前6个。其行编号表示聚类过程的步骤,X1,X2表示在该步合并的两类,该编号为负代表原始的样本序号,编号为正代表新合成的类;变量height表示合并时两类类间距离。比如第1步,合并的是样本102和143,其样本间距离是0.0,合并后的类则使用该步的步数编号代表,即样本-102和-143合并为1类。再如第6行表示样本11和49合并,该两个样本的类间距离是0.1,合并后的类称为6类。 head (hc$merge,hc$height)

应用潜在分类泊松回归模型及EM算法分析陈述偏好数据:

《统计计算》案例1,吕晓玲 应用潜在分类泊松回归模型及EM算法分析陈述偏好数据: 以网络购物使用次数为例 1. 问题提出 随着网络的兴起,网上购物已经在人们的生活中发挥着越来越重要的作用。网上购物以其方便快捷等特点吸引了很多购物者,但是也有一些人质疑网上购物安全性、不可触摸性等问题。影响人们选择网上购物的因素有很多,不同的人对网上购物也有不同的态度。大学生是网络购物这个群体的很重要的一部分,什么因素影响大学生对网络购物的选择?大学生由于对网络购物的态度取向不同可分为多少潜在的类别?本文应用陈述偏好方法(stat ed pr eferenc e met hod)收集大学生网上购物的数据,并应用潜在分类泊松回归模型(l atent cla ss P oi ss on re gression mode l)及EM 算法分析数据,回答以上两个问题。 2. 数据收集 源于心理学的陈述偏好调查已经被市场营销中研究消费者行为广泛应用。虽然在进行每个具体研究时操作不尽相同,总的原则是事先设定几个重要因素,每个因素有若干水平,然后提出一些假想情景,每个情景是这些因素不同水平的组合。受访者按照他们的喜好给不同的情景打分或者排序。研究者应用模型分析数据,寻找各因素的重要性。 为了确定影响网络购物的重要因素,我们首先开展了预调查,针对购买商品的种类、价格、邮费、卖家信用度、介绍商品详细程度以及网上购物节省时间和到货时间等因素对大学生进行了调查,并应用简单统计分析得到了对网上购物次数影响比较显著的四个因素,分别是购买商品的种类、价格、卖家信誉度以及介绍商品的详细程度。具体因素和因素水平如下所示: 种类:服饰,化妆品,文体 价格:50元,100元,150元,200元,250元 卖家或网站的信誉度:1,2,3,4,5 介绍商品的详细程度:1,2,3,4,5 若每一种组合都进行调查则共有3555225???=组合,在这里运用了正交设计的方法进行试验设计,共进行75种不同的组合,将这75种组合分成25组,每组中包含3个场景(分别为3个不同的种类),每一个被调查者将被给定3个不同的场景。每个被调查者回答的问题是在特定的场景能够在十次购物中选择网上购物的可能次数。我们总共访问了197名在京大学生,得到了在588种场景下他们对网络购物的使用情况的有效回答。 3. 模型介绍 市场营销中常用的分析陈述偏好数据的方法是联合分析(c onjoi nt an aly sis ),我们这里使用泊松回归模型,因为:(1)因变量不是受访者对场景的排序,而是使用网络购物的次数,它是一个取值为离散整数的变量,可以假设服从泊松分布;(2)可以对泊松回归模型进一步应用潜在分类模型分析受访者的异质性。我们首先介绍泊松回归模型和潜在分类模型,然后介绍如何应用最大似然法和EM 算法估计参数。 令ij Y 为第i (I i ,...,1=)个个体在面临第j (J j ,...,1=)种场景时的选择,服从参数为ij λ的泊松分布。因为从平均的意义上来讲,ij λ取值越大意味着受访者越倾向于多次使用

分类算法

分类算法 摘要:分类算法是数据挖掘中的最重要的技术之一。通过对当前提出的最新的具有代表性的分类算法进行分析和比较,总结每类算法的各方面特性,从而便于研究者对已有的算法进行改进,提出具有更好性能的新的分类算法,同时方便使用者在应用时对算法的选择和使用。 关键词:分类算法决策树基于规则贝叶斯人工神经网络支持向量机 分类是挖掘数据的一个重要技术,是数据挖掘中最有应用价值的技术之一,其应用遍及社会各个领域。分类任务就是通过学习得到一个目标函数(通常也称作分类模型,即分类器),把每个属性集映射到一个预先定义的类标号。分类和回归都可以用于预测。和回归方法不同的是,分类的类标号是离散属性,而预测建模的回归的目标属性是连续的。 构造分类器的过程一般分为训练和测试两个阶段。在构造模型之前,要求将数据集随机地分为训练数据集和测试数据集。在训练阶段,分析训练数据集的属性,为每个属性产生一个对相应数据集的属性描述或模型。在测试阶段,利用属性描述或模型对测试数据集进行分类,测试其分类准确度。一般来说,测试阶段的代价远远低于训练阶段。 为了提高分类的准确性、有效性和可伸缩性,在进行分类之前,通常要对数据进行预处理,包括: (1)数据清理。其目的是消除或减少数据噪声,处理空缺值。 (2)相关性分析。由于数据集中的许多属性可能与分类任务不相关,若包含这些属性将减慢和可能误导学习过程。相关性分析的目的就是删除这些不相关或冗余的属性。 (3)数据变换。数据可以概化到较高层概念。比如,连续值属性“收入”的数值可以概化为离散值:低,中,高。又比如,标称值属性“市”可概化到高层概念“省”。此外,数据也可以规范化, ,规范化将给定属性的值按比例缩放,落入较小的区间,比如[0,1]等。 分类模型的构造方法有决策树类、基于规则类、最近邻类、贝叶斯类、人工神经网络类等。 1决策树分类算法 1.1决策树基本概念 决策树是一种由结点和有向边组成的层次结构,树中包含三种结点;根结点、内部结点和叶结点(终结点)。它采用自顶向下的递归方式,在根结点使用属性将训练数据集区分开,在内部结点进行属性值的比较,并根据不同的属性值从该结点向下分支,树的每个叶结点都赋予一个类标号,即在叶结点得到结论。决策树是实例的分类器。从根到叶结点的一条路径就对应着一条规则,整个决策树就对应着一组析取表达式规则。可将实例分到多个分类(≥2)并以析取范式(DNF)形式重写为规则。这种具有预测功能的系统叫决策树分类器。 1.2常用的决策树算法 决策树分类算法从提出以来,出现了很多算法,比较常用的有:1986年Quinlan提出了著名的ID3算法。ID3算法体现了决策树分类的优点:算法的理论清晰,方法简单,学习能力较强。其缺点是:只对比较小的数据集有效,且对噪声比较敏感,当训练数据集加大时,决策树可能会随之改变,并且在测试属性选择时,它倾向于选择取值较多的属性。 在ID3算法的基础上,1993年Quinlan又自己提出了改进算法—C4. 5算法。为了适应处理大规模数据集的需要,后来又提出了若干改进的算法,其中SLIQ(su-pervised learning in quest)和SPRINT (scalable parallelizable induction of decision trees)是比较有代表性的两个算法,PUBLIC (Pruning and

分类算法的研究进展

分类算法的研究进展 分类是数据挖掘、机器学习和模式识别中一个重要的研究领域,分类的目的是根据数据集的特点构造一个分类函数或分类模型,该分类模型能把未知类别的样本映射到给定类别中的某一个。分类和回归都可以用于预测,和回归方法不同的是,分类的输出是离散的类别值,而回归的输出是连续或有序值。 一、分类算法概述为了提高分类的准确性、有效性和可伸缩性,在进行分类之前,通常要对数据进行预处理,包括:(1)数据清理,其目的是消除或减少数据噪声处理空缺值。 (2)相关性分析,由于数据集中的许多属性可能与分类任务不相关,若包含这些属性将减慢和可能误导分析过程,所以相关性分析的目的就是删除这些不相关的或兀余 性。(3)数据变换,数据可以概化到较 高层概念,比如连续值属 为离散值:低、 可概化到高层概念“省”此外,数据也可以规范化,规 范化将给定的值按比例缩放,落入较小的区间,比如【0,1】等。

的属 性“收入”的数值可以概化 性“市” 中、高。又比如,标称值属 二、常见分类算法 2.1 决策树 决策树是用于分类和预测的主要技术之一,决策树学习是以实例为基础的归纳学习算法,它着眼于从一组无次序、无规则的实例中推理出以决策树表示的分类规则。构造决策树的目的是找出属性和类别间的关系,用它来预测将来未知类别的记录的类别。它采用自顶向下的递归方式,在决策树的内部节点进行属性的比较,并根据不同属性值判断从该节点向下的分支,在决策树的叶节点得到结论。 2.2贝叶斯分类贝叶斯分类是统计学分类方法,它足一类利用概率统计知识进行分类的算法。在许多场合,朴素贝叶斯(Naive Bayes, NB)分类算法可以与决策树和神经网络分类算法相媲美,该算法能运用到大型数据库中,且方法简单、分类准确率高、速度快。由于贝叶斯定理假设一个属性值对给定类的影响独立于其它属性的值,而此假设在实际情况中经常是不成立的,因此其分类准确率可能会下降。为此,就出现了许多降低独立性假设的贝叶斯分类算

相关文档