文档库 最新最全的文档下载
当前位置:文档库 › 二次函数复习——解析式的求法

二次函数复习——解析式的求法

二次函数复习——解析式的求法
二次函数复习——解析式的求法

课题:二次函数复习——解析式的求法

市南中学王文英

教学目标:在掌握有关二次函数的基本知识框架的基础上能运用数形结合的思想和待定系数法求二次函数的解析式

教学重点:熟练掌握求二次函数解析式的方法

教学难点:综合应用所学知识求二次函数解析式

教学过程:

(一)知识整理

(二)知识应用

一、求符合下列条件的二次函数解析式

1、已知二次函数的图像经过点(-1,8),(1,0),(0,-2)

2、已知二次函数的图像经过点(-1,8),(1,0),(-3,0)

3、已知二次函数的图像经过点(-1,8)和顶点(2,5)

4、已知二次函数的图像经过点(-1,8),(1,0),对称轴为直线x=2

二、对于二次函数2223

y x ax a

=-++,

1、当x>6时,y随x增大而增大;当x<6时,y随x增大而减小,求a的值

2、函数的最小值为-5,求a的值

3、图像在x轴上截得的线段长是3,求a的值

4、图像与x轴只有一个交点,求这个图像向上平移1个单位再向右平移2个

单位后的函数解析式

三、如图,反比例函数的图像与二次函数2

y x bx c

=-++的图像在第一象限内相交

于A、B两点,A、B两点的纵坐标分别为1、3,且

AB=

解析式

思考题:已知,一次函数y=2x+m的图像与x轴、y轴分别相交于点A、B,平行四边形ABCO的顶点A、B、C在一个二次函数的图像上,此二次函数图像顶点的横坐标为-1

求:(1)m的值

(2)二次函数的解析式

(三)小结

(四)作业:1、本张练习卷:一1、2、3及思考题

2、考纲P22: 6、7

(五)教学反思:

1、二次函数既是中考的重点内容,也是热点问题.而二次函数综合题在各级各类

考试中都属于难度较大的问题,要求同学们不但对于二次函数本身的内容掌

握要牢固,而且还要善于将二次函数和其他的有关知识,如方程、不等式以及几何等知识“攀亲”,搞好关系,这样问题的综合层次和要求都比较高。

对此我们备课组在研究二次函数的复习方法时,把二次函数的复习课分为三课时,即怎样求解析式,怎样充分利用二次函数图像解决问题及二次函数综合题这样的三课时。今天这节课主要是复习二次函数的解析式的求法。

2、针对我校学生特点,结合中考的要求,我们从基础入手,把重点放在基本功

的训练上,适当铺设台阶,逐步提高。所以这节课首先从复习二次函数的基本概念入手,后面的练习分为难度不同的三个层次:

(1)看题型套公式解出二次函数解析式。

(2)理解性质,运用性质求出待定系数,从而解出二次函数解析式。

(3)综合运用反比例函数、一次函数、两点之间距离公式、平行四边形的性质等有关知识,求出二次函数解析式。在教学过程中,渗透数形结合

等数学思想。

3、在教学过程中存在的问题:

(1)在第一大题的看题型选择适当的解析式设法中,请了三位同学用了三种不同的方法解第四小题,板书过程中学生有计算的错误,作为年级中一个好班的学生,对计算比较简单的题目应该不会出现问题,这个错误说明好班学生的基础知识还存在欠缺,平时基本功的训练决不能放松。计算要做到百分之百正确。

(2)在第二大题求a的过程中,第二小题有一个求顶点的纵坐标的过程,很多学生使用的是背公式的方法,实际上用配方的方法更简单方便,由此说明平时这方面的知识掌握不够全面,配方也不够熟练,需加强落实这些知识点的训练。

(3)教师对教材的理解力要强,解题能力要强。但不能停留在会做题,而要以题论法,在第三大题综合题中可通过一题多解更进一步渗透数形结合的思想和待定系数的方法,从单纯讲解题目到教授思想方法完成一个质的飞跃。

高中数学函数解析式求法

函数解析式的表示形式及五种确定方式 函数的解析式是函数的最常用的一种表示方法,本文重点研究函数的解析式的表达形式与解析式的求法。 一、解析式的表达形式 解析式的表达形式有一般式、分段式、复合式等。 1、一般式是大部分函数的表达形式,例 一次函数:b kx y += )0(≠k 二次函数:c bx ax y ++=2 )0(≠a 反比例函数:x k y = )0(≠k 正比例函数:kx y = )0(≠k 2、分段式 若函数在定义域的不同子集上对应法则不同,可用n 个式子来表示函数,这种形式的函数叫做分段函数。 例1、设函数(]() ???+∞∈∞-∈=-,1,log 1,,2)(81x x x x f x ,则满足41)(=x f 的x 的值为 。 解:当(]1,∞-∈x 时,由4 12= -x 得,2=x ,与1≤x 矛盾; 当()+∞∈,1x 时,由4 1log 81=x 得,3=x 。 ∴ 3=x 3、复合式 若y 是u 的函数,u 又是x 的函数,即),(),(),(b a x x g u u f y ∈==,那么y 关于x 的函数[]()b a x x g f y ,,)(∈=叫做f 和g 的复合函数。 例2、已知3)(,12)(2 +=+=x x g x x f ,则[]=)(x g f ,[]=)(x f g 。 解:[]721)3(21)(2)(2 2+=++=+=x x x g x g f [][]4443)12(3)()(222 ++=++=+=x x x x f x f g 二、解析式的求法 根据已知条件求函数的解析式,常用待定系数法、换元法、配凑法、赋值(式)法、方程法等。 1待定系数法 若已知函数为某种基本函数,可设出解析式的表达形式的一般式,再利用已知条件求出系数。

九年级数学_二次函数几种解析式的求法

二次函数的解析式求法 求二次函数的解析式这类题涉及面广,灵活性大,技巧性强,笔者结合近几年来的中考 试题,总结出几种解析式的求法,供同学们学习时参考。 一、 三点型 例1 已知一个二次函数图象经过(-1,10)、(2,7)和(1,4)三点,那么这个函 数的解析式是_______。 分析 已知二次函数图象上的三个点,可设其解析式为y=ax 2 +bx+c,将三个点的坐标代入,易得a=2,b=-3,c=5 。故所求函数解析式为y=2x 2 -3x+5. 这种方法是将坐标代入y=ax 2 +bx+c 后,把问题归结为解一个三元一次方程组,求出待定系数 a, b , c, 进而获得解析式y=ax 2 +bx+c. 二、交点型 例2 已知抛物线y=-2x 2 +8x-9的顶点为A ,若二次函数y=ax 2 +bx+c 的图像经过A 点,且与x 轴交于B (0,0)、C (3,0)两点,试求这个二次函数的解析式。 分析 要求的二次函数的图象与x 轴的两个交点坐标,可设y=ax(x-3),再求也y=-2x 2 +8x-9 的顶点A (2,-1)。将A 点的坐标代入y=ax(x-3),得到a=21 ∴y=21x(x-3),即 y=x x 23 2 12 . 三、顶点型 例 3 已知抛物线y=ax 2 +bx+c 的顶点是A(-1,4)且经过点(1,2)求其解析式。 分析 此类题型可设顶点坐标为(m,k),故解析式为y=a(x-m)2 +k.在本题中可设y=a(x+1)2 +4. 再将点(1,2)代入求得a=-21

∴y=-, 4)1(21 2++x 即y=-.27 2 12+ -x x 由于题中只有一个待定的系数a ,将已知点代入即可求出,进而得到要求的解析式。 四、平移型 例 4 二次函数y=x 2 +bx+c 的图象向左平移两个单位,再向上平移3个单位得二次函 数 ,122 +-=x x y 则b 与c 分别等于 (A)2,-2;(B)-6,6;(c)-8,14;(D)-8,18. 分析 逆用平移分式,将函数y=x 2 -2x+1的顶点(1,0)先向下平移3个单位,再向右平移两个单位得原函数的图象的顶点为(3,-3)。 ∴y=x 3)3(2 2--=++x c bx =x .662 +-x ∴b=-6,c=6. 因此选(B ) 五、弦比型 例 5 已知二次函y=ax 2 +bx+c 为x=2时有最大值2,其图象在X 轴上截得的线段长为2,求这个二次函数的解析式。 分析 弦长型的问题有两种思路,一是利用对称性求出交点坐标,二是用弦比公式d= a ? 就本题而言,可由对称性求得两交点坐标为A (1,0),B (3,0)。再应用交点式或顶点式求得解析式为y=-2x 2 +8x-6. 六、识图型 例 6 如图1, 抛物线y=c x b x +++)2(212与y=d x b x +-+)2(212 其中一条的顶点为P ,

求函数解析式的几种常用方法

求函数解析式的几种常 用方法 -CAL-FENGHAI.-(YICAI)-Company One1

求函数解析式的几种常用方法 一、高考要求: 求解函数解析式是高考重点考查内容之一,需引起重视.本节主要帮助考生在深刻理解函数定义的基础上,掌握求函数解析式的几种方法,并形成能力,并培养考生的创新能力和解决实际问题的能力. 重难点归纳: 求解函数解析式的几种常用方法主要有: 1.待定系数法,如果已知函数解析式的构造时,用待定系数法; 2.换元法或配凑法,已知复合函数f [g (x )]的表达式可用换元法,当表达式较简单时也可用配凑法; 3.消参法,若已知抽象的函数表达式,则用解方程组消参的方法求解f (x ); 另外,在解题过程中经常用到分类讨论、等价转化等数学思想方法. 二、题例讲解: 例1.(1)已知函数f (x )满足f (log a x )= )1 (1 2x x a a --.(其中a >0,a ≠1,x >0),求f (x )的表达式. (2)已知二次函数f (x )=ax 2+bx +c 满足|f (1)|=|f (-1)|=|f (0)|=1,求f (x )的表达式. 命题意图:本题主要考查函数概念中的三要素:定义域、值域和对应法则,以及计算能力和综合运用知识的能力. 知识依托:利用函数基础知识,特别是对“f ”的理解,用好等价转化,注意定义域. 错解分析:本题对思维能力要求较高,对定义域的考查、等价转化易出错. 技巧与方法:(1)用换元法;(2)用待定系数法. 解:(1)令t=log a x (a >1,t >0;01,x >0;0

求函数解析式常用的方法

求函数解析式常用的方法 求函数解析式常用的方法有:待定系数法、换元法、配凑法、消元法、特殊值法。 以下主要从这几个方面来分析。 (一)待定系数法 待定系数法是求函数解析式的常用方法之一,它适用于已知所求函数类型(如一次函数,二次函数,正、反例函数等)及函数的某些特征求其解析式的题目,它在函数解析式的确定中扮演着十分重要的角色。其方法:已知所求函数类型,可预先设出所求函数的解析式,再根据题意列出方程组求出系数。 例1:已知()f x 是二次函数,若(0)0,f =且(1)()1f x f x x +=++试求()f x 的表达式。 解析:设2()f x ax bx c =++ (a ≠0) 由(0)0,f =得c=0 由(1)()1f x f x x +=++ 得 22(1)(1)1a x b x c ax bx c x ++++=++++ 整理得22(2)()1ax a b x a b c ax b c x c +++++=++++ 得 212211120011()22 a a b b a b c c b c c f x x x ?=?+=+????++=+?=????=?=??? ∴=+ 小结:我们只要明确所求函数解析式的类型,便可设出其函数解析式,设法求出其系数即可得到结果。类似的已知f(x)为一次函数时,可设f(x)=ax+b(a≠0);f(x)为反比例函数时,可设f(x)= k x (k≠0);f(x)为

二次函数时,根据条件可设①一般式:f(x)=ax2+bx+c(a≠0) ②顶点式:f(x)=a(x-h)2+k(a≠0) ③双根式:f(x)=a(x-x1)(x-x2)(a≠0) (二)换元法 换元法也是求函数解析式的常用方法之一,它主要用来处理不知道所求函数的类型,且函数的变量易于用另一个变量表示的问题。它主要适用于已知复合函数的解析式,但使用换元法时要注意新元定义域的变化,最后结果要注明所求函数的定义域。 例2 :已知1)1,f x =+求()f x 的解析式。 解析: 1视为t ,那左边就是一个关于t 的函数()f t , 1t =中,用t 表示x ,将右边化为t 的表达式,问题即可解决。 1t = 2220 1 ()(1)2(1)1()(1)x t f t t t t f x x x ≥∴≥∴=-+-+=∴=≥ 小结:①已知f[g(x)]是关于x 的函数,即f[g(x)]=F(x),求f(x)的解析式,通常令g(x)=t ,由此能解出x=(t),将x=(t)代入f[g(x)]=F(x)中,求得f(t)的解析式,再用x 替换t ,便得f(x)的解析式。 注意:换元后要确定新元t 的取值范围。 ②换元法就是通过引入一个或几个新的变量来替换原来的某些变量的解题方法,它的基本功能是:化难为易、化繁为简,以快速实现未知向已知的转换,从而达到顺利解题的目的。常见的换元法是多种多样的,如局部换元、整体换元、三角换元、分母换元等,它的应用极为广泛。 (三)配凑法 已知复合函数[()]f g x 的表达式,要求()f x 的解析式时,若[()]f g x 表达式右边易配成()g x 的运算形式,则可用配凑法,使用

二次函数几种解析式的求法

二次函数的解析式求法 求二次函数的解析式这类题涉及面广,灵活性大,技巧性强,笔者结合近几年来的中考 试题,总结出几种解析式的求法,供同学们学习时参考。 一、 三点型 例1 已知一个二次函数图象经过(-1,10)、(2,7)和(1,4)三点,那么这个函 数的解析式是_______。 分析 已知二次函数图象上的三个点,可设其解析式为y=ax 2 +bx+c,将三个点的坐标代入,易得a=2,b=-3,c=5 。故所求函数解析式为y=2x 2 -3x+5. 这种方法是将坐标代入y=ax 2 +bx+c 后,把问题归结为解一个三元一次方程组,求出待定系数 a, b , c, 进而获得解析式y=ax 2 +bx+c. 二、交点型 例2 已知抛物线y=-2x 2 +8x-9的顶点为A ,若二次函数y=ax 2 +bx+c 的图像经过A 点,且与x 轴交于B (0,0)、C (3,0)两点,试求这个二次函数的解析式。 分析 要求的二次函数的图象与x 轴的两个交点坐标,可设y=ax(x-3),再求也y=-2x 2 +8x-9 的顶点A (2,-1)。将A 点的坐标代入y=ax(x-3),得到a=21 ∴y=21x(x-3),即 y= x x 23 212 . 三、顶点型 例 3 已知抛物线y=ax 2 +bx+c 的顶点是A(-1,4)且经过点(1,2)求其解析式。 分析 此类题型可设顶点坐标为(m,k),故解析式为y=a(x-m)2 +k.在本题中可设y=a(x+1)2 +4.

再将点(1,2)代入求得a=-21 ∴y=-, 4)1(21 2++x 即y=-.27 2 12+ -x x 由于题中只有一个待定的系数a ,将已知点代入即可求出,进而得到要求的解析式。 四、平移型 例 4 二次函数y=x 2 +bx+c 的图象向左平移两个单位,再向上平移3个单位得二次函 数 ,122 +-=x x y 则b 与c 分别等于 (A)2,-2;(B)-6,6;(c)-8,14;(D)-8,18. 分析 逆用平移分式,将函数y=x 2 -2x+1的顶点(1,0)先向下平移3个单位,再向右平移两个单位得原函数的图象的顶点为(3,-3)。 ∴y=x 3)3(2 2 --=++x c bx =x .662 +-x ∴b=-6,c=6. 因此选(B ) 五、弦比型 例 5 已知二次函y=ax 2 +bx+c 为x=2时有最大值2,其图象在X 轴上截得的线段长为2,求这个二次函数的解析式。 分析 弦长型的问题有两种思路,一是利用对称性求出交点坐标,二是用弦比公式d= a ? 就本题而言,可由对称性求得两交点坐标为A (1,0),B (3,0)。再应用交点式或顶点式求得解析式为y=-2x 2 +8x-6. 六、识图型

函数解析式的七种求法(讲解)之令狐文艳创作

函数解析式的七种求法 令狐文艳 一、待定系数法:在已知函数解析式的构造时,可用待定系数法。 例1 设)(x f 是一次函数,且34)]([+=x x f f ,求 )(x f 解:设b ax x f +=)()0(≠a ,则 二、配凑法:已知复合函数 [()]f g x 的表达式,求()f x 的解析式,[()]f g x 的表达式容易配成()g x 的运算形式时, 常用配凑法。但要注意所求函数 ()f x 的定义域不是原复合函数的定义域,而是()g x 的值域。 例2已知221)1(x x x x f +=+)0(>x ,求 ()f x 的解析式。 解:2)1()1(2-+=+x x x x f , 21≥+x x 三、换元法:已知复合函数 [()]f g x 的表达式时,还可以用换元法求()f x 的解析式。与配凑法一样,要注意所换元的定义域的变化。

例3已知 x x x f 2)1(+=+,求)1(+x f 解:令1+=x t ,则1≥t ,2)1(-=t x 四、代入法:求已知函数关于某点或者某条直线的对称函数时,一 般用代入法。 例4已知:函数 )(2x g y x x y =+=与的图象关于点)3,2(-对称,求)(x g 的解析式。 解:设),(y x M 为)(x g y =上任一点,且),(y x M '''为),(y x M 关于点 )3,2(-的对称点 则?????=+'-=+'322 2y y x x ,解得:???-='--='y y x x 64, 点),(y x M '''在)(x g y =上 把???-='--='y y x x 64代入得: 整理得 672---=x x y 五、构造方程组法:若已知的函数关系较为抽象简约,则可以对变量进行置换,设法构造方程组,通过解方程组求得函数解析式。 例5设,)1(2)()(x x f x f x f =-满足求 )(x f 解 x x f x f =-)1(2)(① 显然,0≠x 将x 换成x 1 ,得:

浅议函数解析式的几种求法

浅议函数解析式的几种求法 一、 待定系数法:在已知函数解析式的构造时,可用待定系数法。 例1 设)(x f 是一次函数,且34)]([+=x x f f ,求)(x f 解:设b ax x f +=)( )0(≠a ,则 b ab x a b b ax a b x af x f f ++=++=+=2)()()]([ ∴???=+=342b ab a ∴? ?????=-===3212b a b a 或 32)(12)(+-=+=∴x x f x x f 或 二、 配凑法:已知复合函数[()]f g x 的表达式,求()f x 的解析式,[()]f g x 的表达式容易配成()g x 的运算形式时,常用配凑法。但要注意所求函数()f x 的定义域不是原复合函数的定义域,而是()g x 的值域。 例2 已知221)1(x x x x f +=+ )0(>x ,求 ()f x 的解析式 解:2)1()1(2-+=+x x x x f , 21≥+x x 2)(2-=∴x x f )2(≥x 三、换元法:已知复合函数[()]f g x 的表达式时,还可以用换元法求()f x 的解析式。与配凑法一样,要注意所换元的定义域的变化。 例3 已知x x x f 2)1(+=+,求)1(+x f 解:令1+=x t ,则1≥t ,2)1(-=t x x x x f 2)1(+=+ ∴,1)1(2)1()(22-=-+-=t t t t f 1)(2-=∴x x f )1(≥x x x x x f 21)1()1(22+=-+=+∴ )0(≥x 四、代入法:求已知函数关于某点或者某条直线的对称函数时,一般用代入法。 例4已知:函数)(2 x g y x x y =+=与的图象关于点)3,2(-对称,求)(x g 的解析式

九年级数学二次函数几种解析式的求法素材

二次函数的解析式求法 求二次函数的解析式这类题涉及面广,灵活性大,技巧性强,笔者结合近几年来的中考 试题,总结出几种解析式的求法,供同学们学习时参考。 一、 三点型 例1 已知一个二次函数图象经过(-1,10)、(2,7)和(1,4)三点,那么这个函 数的解析式是_______。 分析 已知二次函数图象上的三个点,可设其解析式为y=ax 2 +bx+c,将三个点的坐标代 入,易得a=2,b=-3,c=5 。故所求函数解析式为y=2x 2-3x+5. 这种方法是将坐标代入y=ax 2+bx+c 后,把问题归结为解一个三元一次方程组,求出待定系 数 a, b , c, 进而获得解析式y=ax 2+bx+c. 二、交点型 例2 已知抛物线y=-2x 2+8x-9的顶点为A ,若二次函数y=ax 2+bx+c 的图像经过A 点, 且与x 轴交于B (0,0)、C (3,0)两点,试求这个二次函数的解析式。 分析 要求的二次函数的图象与x 轴的两个交点坐标,可设y=ax(x-3),再求也y=-2x 2+8x-9的顶点A (2,-1)。将A 点的坐标代入y=ax(x-3),得到a=21 ∴y=21x(x-3),即 y= x x 23212 . 三、顶点型 例 3 已知抛物线y=ax 2 +bx+c 的顶点是A(-1,4)且经过点(1,2)求其解析式。 分析 此类题型可设顶点坐标为(m,k),故解析式为y=a(x-m)2+k.在本题中可设y=a(x+1)2+4.

再将点(1,2)代入求得a=-21 ∴y=-,4)1(212++x 即y=-.272 12+-x x 由于题中只有一个待定的系数a ,将已知点代入即可求出,进而得到要求的解析式。 四、平移型 例 4 二次函数y=x 2 +bx+c 的图象向左平移两个单位,再向上平移3个单位得二次函 数,122+-=x x y 则b 与c 分别等于 (A)2,-2;(B)-6,6;(c)-8,14;(D)-8,18. 分析 逆用平移分式,将函数y=x 2 -2x+1的顶点(1,0)先向下平移3个单位,再向右平移 两个单位得原函数的图象的顶点为(3,-3)。 ∴y=x 3)3(22--=++x c bx =x .662 +-x ∴b=-6,c=6. 因此选(B ) 五、弦比型 例 5 已知二次函y=ax 2+bx+c 为x=2时有最大值2,其图象在X 轴上截得的线段长为 2,求这个二次函数的解析式。 分析 弦长型的问题有两种思路,一是利用对称性求出交点坐标,二是用弦比公式d=a ?

一元二次函数解析式的8种求法

二次函数解析式的8 种求法 二次函数的解析式的求法是数学教学的难点,学不易掌握.他的基本思想方法是待定系数法,根据题目给出的具体条件,设出不同形式的解析式,找出满足解析式的点,求出相应的系数.下面就不同形式的二次函数解析式的求法归纳如下,和大家共勉: 一、定义型: 此类题目是根据二次函数的定义来解题,必须满足二个条件:1、a ≠0;2、x 的最 高次数为 2 次. 例1、若y =( m2+ m )x m2 –2m 1是二次函数,则m = . 2 解:由m + m≠0得:m ≠0,且m ≠-1 2 由m2–2m –1 = 2 得m =-1 或m =3 ∴ m = 3 . 二、开放型此类题目只给出一个条件,只需写出满足此条件的解析式,所以他的答案并不 唯一. 例2、(1)经过点A(0,3)的抛物线的解析式是. 分析:根据给出的条件,点 A 在y 轴上,所以这道题只需满足y a 2b c中的C=3,且a≠0即可∴ y 2 3 (注:答案不唯一) 三、平移型:将一个二次函数的图像经过上下左右的平移得到一个新的抛物线.要借此类题目,应先将已知函数的解析是写成顶点式y = a( x –h)2 + k,当图像向左(右)平移n 个单位时,就在x –h 上加上(减去)n;当图像向上(下)平移m 个单位时,就在k 上加上(减去)m.其平移的规律是:h 值正、负,右、左移;k 值正负,上下移.由于经过平移的图像形状、大小和开口方向都没有改变,所以 a 得值不变. 1 2 5 1 2 例3、二次函数y 23 的图像是由y 2的图像先向平移 2 2 2 个单位,再向平移个单位得到的. 1 5 1 2

高中数学-求函数解析式的六种常用方法

求函数解析式的六种常用方法 一、换元法 已知复合函数f [g (x )]的解析式,求原函数f (x )的解析式.令g (x )= t ,求f (t )的解析式,再把t 换为x 即可. 例1 已知f (x x 1+)= x x x 1122++,求f (x )的解析式. 解: 设x x 1+= t ,则 x= 1 1-t (t ≠1), ∴f (t )= 1 11)11(1)11(22-+-+-t t t = 1+2)1(-t +(t -1)= t 2-t+1 故 f (x )=x 2-x+1 (x ≠1). 评注: 实施换元后,应注意新变量的取值范围,即为函数的定义域. 二、配凑法 例2 已知f (x +1)= x+2 x ,求f (x )的解析式. 解: f (x +1)= 2)(x +2 x +1-1=2)1(+x -1, ∴ f (x +1)= 2)1(+x -1 (x +1≥1),将x +1视为自变量x , 则有 f (x )= x 2-1 (x ≥1). 评注: 使用配凑法时,一定要注意函数的定义域的变化,否则容易出错. 三、待定系数法 例3 已知二次函数f (x )满足f (0)=0,f (x+1)= f (x )+2x+8,求f (x )的解析式. 解:设二次函数f (x )= ax 2+bx+c ,则 f (0)= c= 0 ① f (x+1)= a 2)1(+x +b (x+1)= ax 2+(2a+b )x+a+b ② 由f (x+1)= f (x )+2x+8 与①、② 得 ???=++=+822b a b b a 解得 ???==. 7,1b a 故f (x )= x 2+7x. 评注: 已知函数类型,常用待定系数法求函数解析式.

二次函数解析式的8种求法

二次函数解析式的8种求法 河北 高顺利 二次函数的解析式的求法是数学教学的难点,学不易掌握.他的基本思想方法是待定系数法,根据题目给出的具体条件,设出不同形式的解析式,找出满足解析式的点,求出相应的系数.下面就不同形式的二次函数解析式的求法归纳如下,和大家共勉: 一、定义型: 此类题目是根据二次函数的定义来解题,必须满足二个条件:1、a ≠0; 2、x 的最高次数为2次. 例1、若 y =( m 2+ m )x m 2 – 2m -1是二次函数,则m = . 解:由m 2+ m ≠0得:m ≠0,且 m ≠- 1 由m 2–2m –1 = 2得m =-1 或m =3 ∴ m = 3 . 二、开放型 此类题目只给出一个条件,只需写出满足此条件的解析式,所以他的答案并不唯一. 例2、(1)经过点A (0,3)的抛物线的解析式是 . 分析:根据给出的条件,点A 在y 轴上,所以这道题只需满足c b a y ++=χχ2 中的C =3,且a ≠0即可∴32++=χχy (注:答案不唯一) 三、平移型: 将一个二次函数的图像经过上下左右的平移得到一个新的抛物线.要借此类题目,应先将已知函数的解析是写成顶点式y = a ( x – h )2 + k ,当图像向左(右)平移n 个单位时,就在x – h 上加上(减去)n ;当图像向上(下)平移m 个单位时,就在k 上加上(减去)m .其平移的规律是:h 值正、负,右、左移;k 值正负,上下移.由于经过平移的图像形状、大小和开口方向都没有改变,所以a 得值不变.

例3、二次函数 253212++=χχy 的图像是由22 1χ=y 的图像先向 平移 个 单位,再向 平移 个单位得到的. 解: 253212++= χχy = ()232 12-+χ, ∴二次函数 253212++=χχy 的图像是由221χ=y 的图像先向左平移3个单位,再向下平移2个单位得到的. 这两类题目多出现在选择题或是填空题目中 四、一般式 当题目给出函数图像上的三个点时,设为一般式c b a y ++=χχ2 ,转化成一个三元一次方程组,以求得a ,b ,c 的值; 五、顶点式 若已知抛物线的顶点或对称轴、极值,则设为顶点式()k h x a y +-=2.这顶点坐标为( h ,k ),对称轴方程x = h ,极值为当x = h 时,y 极值=k 来求出相应的系数; 六、两根式 已知图像与 x 轴交于不同的两点()()1200x x ,,, ,设二次函数的解析式为()()21x x x x a y --=,根据题目条件求出a 的值. 例4、根据下面的条件,求二次函数的解析式: 1.图像经过(1,-4),(-1,0),(-2,5) 2.图象顶点是(-2,3),且过(-1,5) 3.图像与x 轴交于(-2,0),(4,0)两点,且过(1,- 29) 解:1、设二次函数的解析式为:c b a ++=χχγ2,依题意得: 40542a b c a b c a b c -=++??=-+??=-+? 解得:?? ???-=-==321c b a

求二次函数解析式的四种方法详解

求二次函数解析式的四种基本方法 二次函数是初中数学的一个重要内容,也是高中数学的一个重要基础。熟练地求出二次函数的解析式是解决二次函数问题的重要保证。 二次函数的解析式有三种基本形式: 1、一般式:y=ax 2 +bx+c (a ≠0)。 2、顶点式:y=a(x -h)2+k (a ≠0),其中点(h,k)为顶点,对称轴为x=h 。 3、交点式:y=a(x -x 1)(x -x 2) (a ≠0),其中x 1,x 2是抛物线与x 轴的交点的横坐标。 4.对称点式: y=a(x -x 1)(x -x 2)+m (a ≠0) 求二次函数的解析式一般用待定系数法,但要根据不同条件,设出恰当的解析式: 1、若给出抛物线上任意三点,通常可设一般式。 2、若给出抛物线的顶点坐标或对称轴或最值,通常可设顶点式。 3、若给出抛物线与x 轴的交点或对称轴或与x 轴的交点距离,通常可设交点式。 4.若已知二次函数图象上的两个对称点(x 1、m)(x 2、m),则设成: y=a(x -x 1)(x -x 2)+m (a ≠0),再将另一个坐标代入式子中,求出a 的值,再化成一般形式即可。 探究问题,典例指津: 例1、已知二次函数的图象经过点)4,0(),5,1(---和)1,1(.求这个二次函数的解析式. 分析:由于题目给出的是抛物线上任意三点,可设一般式y=ax 2+bx+c (a ≠0)。 解:设这个二次函数的解析式为y=ax 2+bx+c (a ≠0) 依题意得:?????=++-=-=+-145c b a c c b a 解这个方程组得:?? ???-===432c b a ∴这个二次函数的解析式为y=2x 2 +3x -4。 例2、已知抛物线c bx ax y ++=2的顶点坐标为)1,4(-,与y 轴交于点)3,0(,求这条抛物线的解析式。 分析:此题给出抛物线c bx ax y ++=2的顶点坐标为)1,4(-,最好抛开题目给出的c bx ax y ++=2,重新设顶点式y=a(x -h)2+k (a ≠0),其中点(h,k)为顶点。 解:依题意,设这个二次函数的解析式为y=a(x -4)2 -1 (a ≠0) 又抛物线与y 轴交于点)3,0(。

函数解析式求法总结及练习题

2[()]()()f f x af x b a ax b b a x ab b =+=++=++函 数 解 析 式 的 七 种 求 法 一、 待定系数法:在已知函数解析式的构造时,可用待定系数法. 它适用于已知所求函数类型(如一次函数,二次函数,正、反例函数等)及函数的某些特征求其解析式的题目。其方法:已知所求函数类型,可预先设出所求函数的解析式,再根据题意列出方程组求出系数。 例1 设)(x f 是一次函数,且34)]([+=x x f f ,求)(x f . 解:设b ax x f +=)()0(≠a ,则 ∴?? ? =+=3 42b ab a , ∴????? ?=-===3 2 1 2b a b a 或 . 32)(12)(+-=+=∴x x f x x f 或 . 二、配凑法:已知复合函数[()]f g x 的表达式,求()f x 的解析式,[()]f g x 的表达式容易配成()g x 的运算形式时,常用配凑法.但要注意所求函数()f x 的定义域不是原复合函数的定义域,而是()g x 的值域. 例2 已知221 )1(x x x x f + =+ )0(>x ,求 ()f x 的解析式. 解:2)1()1(2-+=+x x x x f , 21≥+x x , 2)(2-=∴x x f )2(≥x . 三、换元法:已知复合函数[()]f g x 的表达式时,还可以用换元法求()f x 的解 析式.用来处理不知道所求函数的类型,且函数的变量易于用另一个变量表 示的问题。它主要适用于已知复合函数的解析式,但使用换元法时要注意新元定义域的变化,最后结果要注明所求函数的定义域。 例3 已知x x x f 2)1(+=+,求)1(+x f . 解:令1+=x t ,则1≥t ,2)1(-=t x . x x x f 2)1(+=+, ∴,1)1(2)1()(22-=-+-=t t t t f 1)(2-=∴x x f )1(≥x , x x x x f 21)1()1(22+=-+=+∴ )0(≥x . 四、代入法:求已知函数关于某点或者某条直线的对称函数时,一般用代入法. 例4已知:函数)(2x g y x x y =+=与的图象关于点)3,2(-对称,求)(x g 的解析式. 解:设),(y x M 为)(x g y =上任一点,且),(y x M '''为),(y x M 关于点)3,2(-的对称点. 则 ?????=+'-=+'32 22y y x x ,解得:???-='--='y y x x 64 , 点),(y x M '''在)(x g y =上 , x x y '+'='∴2. 把???-='--='y y x x 64代入得:)4()4(62--+--=-x x y . 整理得672---=x x y , ∴67)(2---=x x x g . 五、构造方程组法:若已知的函数关系较为抽象简约,则可以对变量进行置

函数解析式的几种基本方法及例题

求函数解析式的几种基本方法及例题: 1、凑配法:已知复合函数[()]f g x 的表达式,求()f x 的解析式,[()]f g x 的表达式容易配成()g x 的运算形式时,常用配凑法。但要注意所求函数()f x 的定义域不是原复合函数的定义域,而是()g x 的值域。 此法较适合简单题目。 例1、(1)已知f(x+1)=x 2+2x,求f(x)及f(x-2). (2) 已知2 2 1)1(x x x x f + =+ )0(>x ,求 ()f x 的解析式 解:(1)f(x+1)=(x+1)2-1,∴f (x )=x 2-1.f(x-2)=(x-2)2-1=x 2-4x+3. (2) 2)1()1(2 -+ =+ x x x x f , 21≥+ x x 2)(2-=∴x x f )2(≥x 2、换元法:已知复合函数[()]f g x 的表达式时,还可以用换元法求()f x 的解析式。与配凑法一样,要注意所换元的定义域的变化。 例2 (1) 已知x x x f 2)1(+=+,求)1(+x f (2)如果).(,,)(x f x x x x f 时,求则当1011≠-= 解:(1)令1+= x t ,则1≥t ,2)1(-=t x x x x f 2)1(+=+ ∴,1)1(2)1()(2 2 -=-+-=t t t t f 1)(2 -=∴x x f )1(≥x x x x x f 21)1()1(2 2 +=-+=+∴ )0(≥x

(2)设 .)(,,,1 11 1111 11-= ∴-= - = = =x x f t t t f t x t x t )(代入已知得则 3、待定系数法:当已知函数的模式求解析式时适合此法。应用此法解题时往往需要解恒等式。 例3、已知f(x)是二次函数,且满足f(x+1)+f(x-1)=2x 2-4x,求f(x). 解:设f(x)=ax 2+bx+c(a ≠0),∴f(x+1)+f(x-1)=a(x+1)2+b(x+1)+c +a(x-1)2+b(x-1)+c=2ax 2+2bx+2a+2c=2x 2-4x, 则应有.)(12121 0224 2222 --=∴?? ???-=-==∴?????=+-==x x x f c b a c a b a 四、构造方程组法:若已知的函数关系较为抽象简约,则可以对变量进行置换,设法构造方程组,通过解方程组求得函数解析式。 例4 设,)1 (2)()(x x f x f x f =-满足求)(x f 解 x x f x f =-)1 (2)( ① 显然,0≠x 将x 换成 x 1,得: x x f x f 1 )(2)1(=- ② 解① ②联立的方程组,得: x x x f 323)(-- = 五、赋值法:当题中所给变量较多,且含有“任意”等条件时,往往可以对具有“任意性”的变量进行赋值,使问题具体化、简单化,从而求得解析式。 例5 已知:1)0(=f ,对于任意实数x 、y ,等式

求函数解析式的方法

求函数的解析式的方法 求函数的解析式是函数的常见问题,也是高考的常规题型之一,方法众多,下面对一些常用的方法一一辨析. 一.换元法:已知f (g(x)),求f(x)的解析式,一般的可用换元法,具体为:令t=g(x),在求出f(t)可得f (x )的解析式。换元后要确定新元t 的取值范围。 例题1.已知f(3x+1)=4x+3, 求f(x)的解析式. 令t=3x+1, x= 31-t 3 54)(3314)(-=?+-?=?t t f t t f 练习1.若x x x f -=1)1(,求)(x f . 二.配凑法:把形如f(g(x))内的g(x)当做整体,在解析式的右端整理成只含有g(x)的形式,再把g(x)用x 代替。 一般的利用完全平方公式。 例题2.已知221)1(x x x x f +=-, 求)(x f 的解析式. 练习2.若x x x f 2)1(+=+,求)(x f . 三.待定系数法:已知函数模型(如:一次函数,二次函数,指数函数等)求解析式,首先设出函数解析式,根据已知条件代入求系数 例题3.设)(x f 是一元二次函数, )(2)(x f x g x ?=,且212)()1(x x g x g x ?=-++, 求)(x f 与)(x g . 解;设c bx ax x f =+=2)(,则g(x)=2x (ax 2+bx+c) 练习3.设二次函数)(x f 满足)2()2(--=-x f x f ,且图象在y 轴上截距为1,在x 轴上截得的线段长为22,求)(x f 的表达式. 四.解方程组法:求抽象函数的解析式,往往通过变换变量构造一个方程,组成方程组,利用消元法求f (x )的解析式 例题4.设函数)(x f 是定义(-∞,0)∪(0,+ ∞)在上的函数,且满足关系式 x x f x f 4)1(2)(3=+,求)(x f 的解析式. 解;令x x 1=,x x f x f 14)(2)1(3?=+ 联立方程,得: ??? ????=+=+x x f x f x x f x f 4)(2)1(34)1(2)(3 , 解得x x x f 58512)(-= 练习4.若x x x f x f +=-+1)1()(,求)(x f . 五.利用给定的特性求解析式:一般为已知x>0时, f(x)的解析式,求x<0时,f(x)的解析式。首先求出f(-x)的解析式,根据f (x )=f(-x)或f(x)=-f(-x)求得f(x) 例题5设)(x f 是偶函数,当x >0时, x e x e x f +?=2)(,求当x <0时,)(x f 的表 达式. 由x>0时,x e x e x f +?=2)(,则x x e ex e x e x f --+=+-?=-22)()(

函数解析式的七种求法(讲解)

函 数 解 析 式 的 七 种 求 法 一、待定系数法:在已知函数解析式的构造时,可用待定系数法。 例1 设)(x f 是一次函数,且34)]([+=x x f f ,求 )(x f 解:设b ax x f +=)( )0(≠a ,则 b ab x a b b ax a b x af x f f ++=++=+=2)()()]([ ∴???=+=342b ab a ∴??????=-===32 12b a b a 或 32)(12)(+-=+=∴x x f x x f 或

求()f x 的解析式,[()]f g x 的表达式容易配成()g x 的运算形式时,常用配凑法。但要注意所求函数()f x 的定义域不是原复合函数的定义域,而是()g x 的值域。 例2 已知 221)1(x x x x f +=+ )0(>x ,求 ()f x 的 解析式。 解:2)1()1(2-+=+x x x x f , 21≥+x x 2)(2-=∴x x f )2(≥x

时,还可以用换元法求()f x 的解析式。与配凑法一样,要注意所换元的定义域的变化。 例3 已知x x x f 2)1(+=+,求)1(+x f 解:令1+=x t ,则1≥t ,2)1(-=t x x x x f 2)1(+=+ ∴,1)1(2)1()(22-=-+-=t t t t f 1)(2-=∴x x f )1(≥x x x x x f 21)1()1(22+=-+=+∴ )0(≥x

四、代入法:求已知函数关于某点或者某条直 线的对称函数时,一般用代入法。 例4已知:函数 )(2x g y x x y =+=与的图象关于点)3,2(-对称,求)(x g 的解析式。 解:设),(y x M 为)(x g y =上任一点,且),(y x M '''为),(y x M 关于点)3,2(-的对称点 则?????=+'-=+'32 22y y x x ,解得:???-='--='y y x x 64 , 点),(y x M '''在)(x g y =上 x x y '+'='∴2 把? ??-='--='y y x x 64代入得: )4()4(62--+--=-x x y 整理得672---=x x y ∴67)(2---=x x x g

函数解析式的求法高中

函数解析式的七种求法 一、待定系数法:在已知函数解析式的构造时,可用待定系数法。 例1 设f (x ) 是一次函数,且f [f (x )]=4x +3,求f (x ) 解:设f (x ) =ax +b (a ≠0) ,则 f [f (x )]=af (x ) +b =a (ax +b ) +b =a 2x +ab +b ?a =2?a 2=4?a =-2或∴?∴??b =1b =3ab +b =3??? ∴f (x ) =2x +1或 f (x ) =-2x +3 二、配凑法:已知复合函数f [g (x )]的表达式,求f (x ) 的解析式,f [g (x )]的表达式容易配成g (x ) 的运算形式时,常用配凑法。但要注意所求函数f (x ) 的定义域不是原复合函数的定义域,而是g (x ) 的值域。例2 已知f (x +11) =x 2+2 (x >0) ,求 f (x ) 的解析式x x 解:f (x +111) =(x +) 2-2,x +≥2 x x x ∴f (x ) =x 2-2 (x ≥2) 三、换元法:已知复合函数f [g (x )]的表达式时,还可以用换元法求f (x ) 的解析式。与配凑法一样,要注意所换元的定义域的变化。 例3 已知f (x +1) =x +2x ,求f (x +1) 解:令t =x +1,则t ≥1,x =(t -1) 2 f (x +1) =x +2x ∴f (t ) =(t -1) 2+2(t -1) =t 2-1, ∴f (x ) =x 2-1 (x ≥1) ∴f (x +1) =(x +1) 2-1=x 2+2x (x ≥0) 四、代入法:求已知函数关于某点或者某条直线的对称函数时,一般用代入法。 例4已知:函数y =x +x 与y =g (x ) 的图象关于点(-2, 3) 对称,求g (x ) 的解析式2 解:设M (x , y ) 为y =g (x ) 上任一点,且M "(x ", y ") 为M (x , y ) 关于点(-2, 3) 的对称点 ?x "+x ?2=-2?x "=-x -4 则?,解得:?,y "+y "y =6-y ??=3?2 点M "(x ", y ") 在y =g (x ) 上 ∴y "=x "2+x " 把??x "=-x -4代入得:"?y =6-y 6-y =(-x -4) 2+(-x -4) 整理得y =-x -7x -6 2 ∴g (x ) =-x 2-7x -6

相关文档
相关文档 最新文档