文档库 最新最全的文档下载
当前位置:文档库 › 线性方程组的公式解

线性方程组的公式解

线性方程组有解的判别定理

非齐次线性方程组同解的讨论 摘要 本文主要讨论两个非齐次线性方程组有相同解的条件,即如何判定这两个非齐次线性方程组有相同的解. 关键词 非齐次线性方程组 同解 陪集 零空间 引言 无论是解齐次线性方程组,还是解非齐次线性方程组.所用的方法都是消元法,即对其系数矩阵或增广矩阵施以行的初等变换,而得到比较简单的同解方程组.用矩阵理论来说,就是系数矩阵或增广矩阵左乘以可逆矩阵后所得线性方程组与原线性方程组据有相同的解.这仅为问题的一面,而问题的反面是,如果两个非齐次线性方程组同解,则它们的系数矩阵或增广矩阵之间是否存在一个可逆矩阵?答案是肯定的,此即是本文主要解决的问题。 下面是一个非齐次线性方程组,我们用矩阵的形式写出 11121121222212n n m m mn m a x a x a x b a x a x a x b a x a x a x b +++=??+++=????+++=? 令 A= 111212122212n n m m mn a a a a a a a a a ???????????? ,b= 12m b b b ???????????? 。 即非齐次线性方程组可写成Ax b =。 一 、线性方程组同解的性质 引理 1 如果非齐次线性方程组Ax b =与Bx d =同解,则矩阵[]A b 与[]B d 的秩相等. 证明 设非齐次线性方程组Ax b =的导出组的基础解系为111,,,r ξξξ ,其中1 r 为矩阵[]A b 的秩,再设非齐次线性方程组Bx=d 的导出组的基础解系为 2 12,,,r ηηη ,其中2r 为矩阵[]B d 的秩,如果*η是非齐次线性方程组Ax=b 与Bx=d 特解,由于这两个方程组同解,所以向量组1*11,,,,r ξξξη 与向量组2*12,,,,r ηηηη 等价。从而这两个线性无关的向量组所含的向量个数相等,于是有12,r r =则矩阵[]A b 与[]B d 的秩相等. 引理[1]2 设A 、B 为m n ?矩阵,则齐次线性方程组0Ax =与0Bx =同解的充

线性方程组解的几何意义

设有三元非齐次线性方程组 线性方程组解的几何意义 ???????=++=++=++,,,)1(22221111m m m m d z c y b x a d z c y b x a d z c y b x a 我们来讨论一下三元非齐次线性方程组解的几何意义.

2) 有唯一解这时方程组(1) 中的m 个方?? ???=+--=--=+,423, 32,123z y x y x z x 该方程组有唯一解.817,21,4 7??? ??--则方程组(1) 的解有以下三种情况: 1) 无解这时方程组(1) 中的m 个方程所表示的平面既不交于一点, 也不共线、共面. 程所表示的平面交于一点. 例如

其几何意义如图3 -11 所示. 2x-y=-3 3x+2z=-1 x-3y+2z=4 图3-11

交直线所确定.3) 有无穷多组解 这时又可分为两种情形:情形一自由变量, 基础解系中有两个向量,其一般解的形式为 γ=c 1η1+ c 2η2+ γ0(c 1, c 2为任意常数).这时方程组的所有解构成一个平面, 而这个平面是由过点γ0且分别以η1、η2为方向向量的两条相A 的秩=A 的秩= 1 .此时,有两个γ=c 1η1+ c 2η2+ γ0 称为平面的参数方程.

例如, 设保留方程组为 x + y + z = 3, 则可求得其通解为 . 11110101121???? ? ??+????? ??-+????? ??-=c c x

则过点P (1,1,1) 分别以(1,-1,0)T , (1,0,-1)T 为方向,1 10111:,0 11111:21--=-=--=--=-z y x L z y x L 则这两条相交直线L 1, L 2所确定的平面的方程即向量的两直线的方程分别为 为x + y + z = 3 . 如图3-12

【免费下载】线性方程组的解空间

第六章 向量空间 6.1 定义和例子 6.2 子空间 6.3 向量的线性相关性 6.4 基和维数 6.5 坐标 6.6 向量空间的同构 6.7 矩阵的秩齐次线性方程组的解空间返回教案总目录6.7矩阵的秩,齐次线性方程组的解空间一、教学思考 1、矩阵的秩与线性方程组解的理论在前面已经有过讨论,本节运用向量空间的有关理论重新认识矩阵的秩的几何意义,讨论线性方程组解的结构。2、注意:齐次线性方程组(含n 个未知量)的解的集合构成n F 的子空间,而非齐次线性方程组的解的集合非也。3、注意具体方法:1)证矩阵的行空间与列空间的维数相等;2)求齐次线性方程组的基础解系。 二、内容要求 1、内容:矩阵的秩的几何意义,齐次线性方程组的解空间。 2、要求:理解掌握矩阵的秩的几何意义,齐次线性方程组的基础解系的求法。三、教学过程 1、矩阵的秩的几何意义几个术语:设)(F M A n m ?∈,????? ??=mn m n a a a a A 1111,A 的每一行看作n F 的一个元素,叫做A 的行向量,用),2,1(m i i =α表示;由),2,1(m i i =α生成的n F 的子空间),,(1m L αα 叫做矩阵A 的行空间。 类似地,A 的每一列看作m F 的一个元素,叫做A 的列向量;由A 的n 个列向量生成的m F 的子空间叫做矩阵A 的列空间。注:)(F M A n m ?∈的行空间与列空间一般不同,分别是n F 与m F 的子空间;下证其维数相同。 引理6.7.1设)(F M A n m ?∈,1)若PA B =,P 是一个m 阶可逆矩阵,则B 与A 有相同的行空间;2)若AQ C =,Q 是一个n 阶可逆矩阵,则C 与A 有相同的列空间。分析:设()()()m m ij n m ij n m ij p P b B a A ???===,,,),2,1(m i i =α是A 的行向量,),2,1(m j j =β是B 的行向量;只需证这两组向量等价。

线性方程组解的判定

1 / 3 第四节 线性方程组解的判定 从本节开始,讨论含有n 个未知量、m 个方程的线性方程组的解. 11112211211222221122n n n n m m mn n m a x a x a x b a x a x a x b a x a x a x b +++=??+++=????+++= ? (13—2) 主要问题是要判断出方程组(13-2)何时有解?何时无解?有解时解有多少?如何求出方程组的解。 线性方程组有没有解,以及有怎样的解,完全决定于方程组的系数和常数项。因此,将线性方程组写成矩阵形式或向量形式,以矩阵或向量作为讨论线性方程组的工具,将带来极大的方便。 方程组(13-2)中各未知量的系数组成的矩阵111212122212n n m m mn a a a a a a A a a a ??????=?????? 称为方程组(13-2)的系数矩阵.由各系数与常数项组成的矩阵,称为增广矩阵,记作A ,即 11121121 222212n n m m mn m a a a b a a a b A a a a b ??????=?????? 方程组(13-2)中的未知量组成一个n 行、1列的矩阵(或列向量),记作X ;常数项组成一个m 行、1列 的矩阵(或列向量),记作b ,即12n x x X x ??????=??????,12m b b b b ??????=?????? 由矩阵运算,方程组(13—2)实际上是如下关系111212122212 n n m m mn a a a a a a a a a ????????????12n x x x ????????????=12m b b b ???????????? 即 AX=b

线性方程组解的情况及其判别准则

摘要:近年来,线性代数在自然科学和工程技术中的应用日益广泛,而线性方程组求解问题是线性代数的基本研究内容之一,同时它也是贯穿线性代数知识的主线。本文探究了线性方程组一般理论的发展,用向量空间和矩阵原理分析了线性方程组解的情况及其判别准则。介绍了线性方程组理论在解决解析几何问题中的作用,举例说明了线性方程组解的结构理论在判断空间几何图形间位置关系时的便利之处。 关键字:线性方程组;解空间;基础解系;矩阵的秩 Abstract:In recent years, linear algebra in science and engineering application, and wide linear equations solving problems is the basic content of linear algebra, at the same time, it is one of the main knowledge of linear algebra.This article has researched the development of system of linear equations theory,discussed the general theory of linear equations, vector space with the development and matrix theory to analyze the linear equations and the criterion of the situation. Introduces the theory of linear equations in solving the problem of analytic geometry, illustrates the role of linear equations of structure theory in judgment space relation between the geometry of the convenience of position. space geometric figure between time the position relations with theory of the system of linear equation with examples. Key words: linear equations, The solution space, Basic solution, Matrix rank

解线性方程组

课程设计阶段性报告 班级:学号:姓名:申报等级: 题目:线性方程组求解 1.题目要求:输入是N(N<256)元线性方程组Ax=B,输出是方程组的解,也可能无解或有多组解。可以用高斯消去法求解,也可以采用其它方法。 2.设计内容描述:将线性方程组做成增广矩阵,对增广矩阵进行变换然后采用高斯消元法消去元素,从而得到上三角矩阵,再对得到的上三角矩阵进行回代操作,即可以得到方程组的解。 3.编译环境及子函数介绍:我使用Dev-C++环境编译的,调用uptrbk() FindMax()和ExchangeRow(),uptrbk是上三角变换函数,FindMax()用于找出列向量中绝对值最大项的标号,ExchangeRow()用于交换两行 4. 程序源代码: #include #include #include //在列向量中寻找绝对值最大的项,并返回该项的标号 int FindMax(int p,int N,double *A) { int i=0,j=0; double max=0.0; for(i=p;imax) { j=i; max=fabs(A[i*(N+1)+p]); } } return j;

//交换矩阵中的两行 void ExchangeRow(int p,int j,double *A,int N) { int i=0; double C=0.0; for(i=0;i

线性方程组解的判定

第四节 线性方程组解的判定 从本节开始,讨论含有n 个未知量、m 个方程的线性方程组的解。 11112211211222 22 11 22n n n n m m mn n m a x a x a x b a x a x a x b a x a x a x b +++=??+ ++= ????+++=? (13—2) 主要问题是要判断出方程组(13-2)何时有解?何时无解?有解时解有多少?如何求出方程组的解。 线性方程组有没有解,以及有怎样的解,完全决定于方程组的系数和常数项。因此,将线性方程组写成矩阵形式或向量形式,以矩阵或向量作为讨论线性方程组的工具,将带来极大的方便。 方程组(13-2)中各未知量的系数组成的矩阵11121212221 2 n n m m mn a a a a a a A a a a ? ?? ? ? ?=?? ?? ? ? 称为方程组(13-2)的系数矩阵。由各系数与常数项组成的矩阵,称为增广矩阵,记作A ,即 11121121 222212 n n m m mn m a a a b a a a b A a a a b ?? ????=??? ??? 方程组(13-2)中的未知量组成一个n 行、1列的矩阵(或列向量),记作X;常数项组成一个m 行、1 列的矩阵(或列向量),记作b ,即12n x x X x ??????=?????? ,12 m b b b b ?? ????=?????? 由矩阵运算,方程组(13-2)实际上是如下关系111212122212 n n m m mn a a a a a a a a a ? ?? ? ? ? ?? ?? ? ? 12n x x x ???????????? =12m b b b ???????????? 即 AX=b

解线性方程组基思想

解线性方程组基思想

————————————————————————————————作者:————————————————————————————————日期:

四:基本方法 基本思路将在解题的过程中得到体现。 1.(求线性方程组的唯一解或特解),这类问题的求法分为两类:一类主要用于解低阶稠 密矩阵——直接法;一类是解大型稀疏矩阵——迭代法。 1.1利用矩阵除法求线性方程组的特解(或一个解) 方程:AX=b,解法:X=A\b,(注意此处’\’不是’/’) 例1-1 求方程组的解。 解: A = ; = ;b=(1,0,0,0,1)’ 由于>>rank(A)=5,rank( )=5 %求秩,此为R(A)=R()>=n的情形,有唯一解。 >>X= A\b %求解X =(2.2662, -1.7218, 1.0571,-0.5940, 0.3188)’ 或用函数rref 求解,>>sv=rref(A:b);所得sv的最后一列即为所要求的解。 1.2 利用矩阵的LU、QR和cholesky分解求方程组的解 这三种分解,在求解大型方程组时很有用。其优点是运算速度快、可以节省磁盘空间、节省内存。 I) LU分解又称Gauss消去分解,可把任意方阵分解为下三角矩阵的基本变换形式(行交换)和上三角矩阵的乘积。即A=LU,L为下三角阵,U为上三角阵。 则:A*X=b 变成L*U*X=b 所以X=U\(L\b) 这样可以大大提高运算速度。命令[L,U]=lu (A) 在matlab中可以编如下通用m 文件: 在Matlab中建立M文件如下 % exp1.m A;b; [L,U]=lu (A); X=U\(L\b) II)Cholesky分解 若A为对称正定矩阵,则Cholesky分解可将矩阵A分解成上三角矩阵和其转置的乘积,即:其中R为上三角阵。 方程A*X=b 变成所以 在Matlab中建立M文件如下 % exp2.m A;b; [R’,R]=chol(A); X=R\(R’\b) III)QR分解 对于任何长方矩阵A,都可以进行QR分解,其中Q为正交矩阵,R为上三角矩阵的初等变换形 式,即:A=QR 方程A*X=b 变形成QRX=b 所以X=R\(Q\b)

线性方程组的解法及其应用

线性方程组的解法及其应用 The solution of linear equation and its application 专业:测控技术与仪器 班级: 2010-1班 作者:刘颖 学号: 20100310110105

摘要 线性方程组是线性代数的一个重要组成部分,也在现实生产生活中有着广泛的运用,在电子工程、软件开发、人员管理、交通运输等领域都起着重要的作用。在一些学科领域的研究中,线性方程组也有着不可撼动的辅助性作用,在实验和调查后期利用线性方程组对大量的数据进行处理是很方便简捷的选择。本文主要围绕如何解线性方程组来进行讲解,对于不同类型的线性方程组的不同方法,并简述线性方程组的一些实际应用。 关键词: 齐次线性方程组,非齐次线性方程组,克莱姆法则,消元法,矩阵,矩阵的秩,特解,通解。

Abstract Linear equations linear algebra is one of the important component parts, and in real life has extensive production use,and it plays an important role in electronic engineering, software development, personnel management, transportation, etc. In some discipline study, it also has the reigns of linear equations of the auxiliary function.In experiment and survey using the linear equations of the late on the data processing is very convenient simple choice. This article, focusing on how to solve linear equations to explain, for different types of linear equations of different methods, and briefly introduces some of the practical application of linear equations. Keywords: Homogeneous linear equations, Non homogeneous linear equation,Clem’s law,Elimination method,Matrix,Rank of matrix,Special solution,General solution.

线性方程组的公共解

线性方程组的公共解 问题:如何求解线性方程组的公共解? 线性方程组是高代学习的一个重点内容,它的一般形式为 ???????=+++=+++=+++bs asnxn x as x as b nxn a x a x a b nxn a x a x a ...2211... ,22...222121,11...212111 而线性方程组的求解也是这部分学习的重点和难点。其中求解线性方程组的公共解也是高等代数学习所必须掌握的一个知识点。 例1、证明:对于n 元齐次线性方程组(Ⅰ)AX=0与(Ⅱ)BX=0,有非零公共解的充要条件是r(B A )

???=-=+0 42031x x x x 又已知某齐次线性方程组(Ⅱ)的通解为 k1(0,1,1,0)’+k2(-1,2,2,1)’ 问(Ⅰ)与(Ⅱ)是否有非零公共解?若有,则求出所有公共解,若没有,则说明理由。(出自2005年中科院) 解:方法一:将(Ⅱ)的通解代入方程组(Ⅰ)得 ???=+=+0 21021k k k k 解得k1=-k2,故方程组(Ⅰ)与(Ⅱ)有非零公共解,所有非零公共解为k (1,1,1,1)’,k ≠0为任意常数 方法二:令方程组(Ⅰ)与(Ⅱ)的通解相同,即 k1(0,1,1,0)’+k2(-1,2,2,1)’=k3(-1,0,1,0)’+k4(0,1,0,1)’ 得到关于k1,k2,k3,k4的一个方程组 ???????=-=-+=-+=-0 420 422103221032k k k k k k k k k k 可求其通解为(k1,k2,k3,k4)’=k(-1,1,1,1)’ 将k1=-1,k2=k 代入(Ⅰ)的通解可得所有非零公共解为k (1,1,1,1)’,k ≠0为任意常数 方法三:方程组(Ⅱ)可以是 ? ??=+=+-041032x x x x 解(Ⅰ)与(Ⅱ)的联立方程组可得所有非零公共解为k (1,1,1,1)’,k ≠0为任意常数 韩梦雪 20132113429

本章介绍了线性方程组有解的充要条件和求解的方法

本章介绍了线性方程组有解的充要条件和求解的方法;为了在理论上深入的研究与此有关的问题,本章还引入了向量和向量空间的基本概念,介绍了向量的线性运算,讨论向量间的线性关系,向量的内积等有关概念和性质,并在此基础上,研究线性方程组解的性质和解的结构等问题。 一、一、线性方程组 1、Cramer法则 教材p64,定理2.1 2、线性方程组有解的判别定理 教材p72,定理2.3 3、线性方程组的消元解法 步骤:(1)对线性方程组的增广矩阵施以初等行变换,将其化为阶梯型矩阵 (2)如果系数矩阵的秩与增广矩阵的秩不相等,表明方程组无解; 如果相等,则表明有解,继续对阶梯型矩阵进行初等行变换,求出 方程的解。【详见p68】 初等行变换: (1)(1)交换两方程的位置; (2)(2)用一个非零数乘某一方程; (3)(3)把一方程的若干倍加到另一方程去 4、消元法与Cramer法则的异同:在条件的限制上,Cramer法则仅适用于 方程数与未知数相等并且系数行列式不为零的情况,而消元法对此没有限制。即便是满足Cramer法则的要求,用消元法可以区分方程组无解还是有无穷多解,而Cremer法则却不能区分 二、二、向量及向量间的线性关系 (一)向量的定义 1、向量、行向量、列向量【教材p77,定义2.1】 2、零向量【教材p78,定义2.2】 3、向量的相等【教材p78,定义2.3】 4、向量的加法、减法【教材p78,定义2.3】 5、数乘向量【教材p78,定义2.5】

6、n维向量空间【教材p78,定义2.6】 7、n维向量空间的子空间【教材p78,定义2.7】 (二)向量间的线性关系 1、线性组合 (1)一个向量可表为一个向量组的线性组合,或称此向量可由此向量组线性表出【教材p80,定义2.8 (2)一个向量可表为一向量组的线性组合的充要条件:由它们做系数及常数项组成的线性方程组有解【教材p81】 (3)几个结论 a、n维零向量是任一n维向量组的线性组合 b、任一n维向量可由n 维基本单位向量组线性表示 c、向量组中的任一向量可由此向量组线性表示 2、向量组的线性相关与线性无关 (1)向量组的线性相关与线性无关的定义【教材p82:定义2.9,2.10】 (2)几个充要条件 Ⅰ向量组线性相关的充要条件由它们做系数组成的齐次线性方程组有非零解【教材p83】 Ⅱ向量组线性无关的充要条件由它们做系数组成的齐次线性方程组仅有零解【教材p83】 Ⅲ一个向量组线性相关的充要条件是由它们做系数组成的齐次线性方程组的系数行列式等于零【教材p83】 Ⅳ一个向量组线性无关的充要条件是由它们做系数组成的齐次线性方程组的系数行列式不等于零【教材p83】: Ⅴ一个向量组线性相关的充要条件是此向量组中至少有一个向量可以表为其余向量的线性组合【教材p85:定理2.6】 Ⅵ一个向量组线性无关的充要条件是此向量组中每一个向量都不能表为其余向量的线性组合【教材p86:定理2.6 的推论】 Ⅶ若一向量可由一向量组线性表出,则表示法唯一的充要条件是此向量组线性无关 三、向量组

一般线性方程组

7、5 一般线性方程组 课题: 一般线性方程组 目的要求:1.掌握矩阵秩概念 2.掌握线性方程组解判定方法; 3.掌握齐次线性方程组的解法。 重点: 线性方程组解判定方法 难点: 线性方程组的消元法 教学方法: 讲练结合 教学时数: 4课时 教学进程: 一、矩阵的秩 矩阵的秩就是矩阵的重要特性之一,它在线性方程组解的讨论中起着关键的作用. 定义:矩阵A 的阶梯形矩阵所含非零行的行数称为矩阵A 的秩,记为r (A ). 根据这个定义,可以得出求矩阵A 的秩的一般步骤: 1. 用矩阵的初等行变换把A 化为阶梯形矩阵; 2. 数一下阶梯形矩阵中有多少个非零行. 例1 求矩阵?? ? ? ? ? ? ? ?--=28552311314321 112 21A 的秩. 解 ???? ?? ? ??-----?????→?---??????? ??--=6110305502550011221)(2)()(3)() ()(2855231131432111221141312r r r r r r A ??? ?? ?? ??--?????→?+??????? ??-----?????→??255000000611011221)(5)(255003055061 1011221)()(2324r r r r ????? ? ? ??--?????→??00002550061 1011221)()(43r r 所以r (A )=3. 例2 求矩阵????? ?? ? ??------=231453312112231B 的秩.

解 ??????? ? ? ?------?????→?---+???????? ??------=46024077 055 0231)()()(3)() (2)() (2)(23145331211223115 141312r r r r r r r r B ??????? ? ???????→??-???????? ? ??????→?+++???????? ??------???→?000000 200110 231 )()()()(200200000 110231)(6)()(4)() (7)(460240*********)(5143452524232r r r r r r r r r r r 所以r (B )=3. 二、 一般线性方程组的解 一般的线性方程组,它的未知数个数与方程的个数可以相等也可以不相等.对于n 个未知 数n 个方程的线性方程组,当它的系数行列式不为零时,可以有以下三种求解方法:⑴克莱姆法则;⑵逆矩阵;⑶矩阵法.其中矩阵法还能用来求解未知数个数与方程个数不相等的线性方程组.本节将运用矩阵法来讨论一般的线性方程组的解.先考察先面的两个例子. 例3 讨论线性方程组??? ??=+--=-++=-++0 524232324321 43214321x x x x x x x x x x x x 的解. 解 ???? ? ??-------?????→?--????? ??----=228402284021321)()() (3)(015214112 321321~ 1312r r r r A ????? ? ??--???→?-????? ??----????→?-00000212121021321)(41000002284021321)()(223r r r ? ???? ? ??--?????→?-00000212121010101)(2)(21r r ① 最后一个矩阵对应于方程组:132********x x x x x -=???+-=??,因此有132******** x x x x x =+?? ?=-+??. 由于当x 3与x 4分别任意取定一个值时,都可得到方程组的一组解,因此该方程组有无穷多 组解.

线性方程组解法综述

线性方程组解法综述 Prepared on 22 November 2020

线性方程组解法的研究综述 摘要:这篇论文在说明了线性方程组的应用目的的基础上,提出了线性方程组求解的研究现状,并列举了常用的求解方法,同时说明了它们的应用条件,剖析了各种方法的不足之处。 关键词高斯消元迭代病态方程组 一、问题提出 在自然科学和工程实际应用中,有许多问题的求解最终都转化为线性方程组的求解问题。例如,电学中的网络问题,曲线拟合中常用的最小二乘法、样条函数插值、解非线性方程组、求解偏微分方程的差分法、有限元法和边界元法以及目前工程实践中普遍存在的反演问题等。特别是在图像恢复、模型参数估计、解卷积、带限信号外推、地震勘探等众多领域,都需要求解线性方程组。 由于线性方程组问题在理论上的重要性和在工程实际应用中的大量存在,多年来人们在这方面做了广泛深入的研究和探讨,并取得了许多有价值的成果.由于模型误差、测量误差、计算误差等各种误差的存在,常常使得线性方程组中的系数矩阵和非齐次项信息具有某种程度的近似性(即扰动性),这种近似性显然会使得线性方程组的求解不容易得到真实的理论解。此时,不同的求解方法由于运算机理不一样,求解过程中误差积累程度就不一样,因此必然会使得不同的求解方法得到的解具有不同的逼近真解的误差程度,尤其对具有病态性的方程组而言,由于病态线性方程组的条件数很大,数据误差以及计算过程中引入的舍入误差往往会使线性方程组的解不稳定,即不管原始数据的误差多么小,都可能造成解的很大变化,使线性方程组的解严重失真。因此,许多现有的方

法都是无效的,病态线性方程组的求解变得相当困难。求解线性方程组的最常用的方法主要有直接法和迭代法两大类,其中直接法中最常用的方法是高斯消元法。但是,该方法求解病态线性方程组时不能得到合理的解,误差很大。 二、研究现状 目前关于线性方程组的数值解法一般有两大类。一类是直接方法,另一类是迭代方法。直接方法最基本的是高斯消元法及其变形,这类方法是解低阶稠密矩阵方程组的有效方法,近十几年来直接法在求解具有较大型稀疏矩阵方程组方面取得了较大进展。迭代法就是用某种迭代过程去逐步逼近线性方程组的精确解,迭代法具有需要计算机的存储单元较少,程序设计简单,原始系数矩阵在计算过程中始终不变等优点,但存在收敛性及收敛速度问题。迭代法是解大型稀疏矩阵方程组的重要方法。当前对迭代算法的研究已经较为成熟,但如何使之适合新体系模型,以获得更好的性能加速一直是应用和体系设计者关心的问题。 三、常用方法比较 1.直接方法 直接方法是指假设计算过程中不产生舍入误差,经过有限次运算可求得方程组的精确解的方法。事实上,由于舍入误差的存在,用直接法一般也只能求得方程组的近似解。直接方法中主要有三种方法:克拉默法则、高斯消元法、LU 分解法。 (1)克拉默法则 设有线性方程组( n 个未知数 n 个方程)

对线性方程组条件数的讨论

对线性方程组条件数的讨论 [摘要] 本文主要研究了线性方程组的病态问题,讨论衡量线性方程组病态问题的一个量—条件数,条件数对解的影响及条件数对数值算法中停机条件的影响;以Hilbert矩阵为例进行验证和讨论。 [关键字] 病态问题条件数范数奇异值分解 1.前言 在许多工程物理与力学问题中经常碰到的病态线性方程组[2]的求解问题,病态线性方程组在不同情形下需要不同的解法,才能得到更好的效果,当病态线性方程组较小型时,使用传统的数值算法求解会减轻求解过程中的计算量及避免浪费资源.但当遇到大型病态线性方程组时,因为其条件数太大,此算法的收敛性很差,若继续使用传统的数值算法求解,而很难得到满意的结果.诸如此类的问题,均可从数学上归结为病态问题。 2.病态问题 对某数学问题本身,如果输入数据有微小扰动(即误差),引起输出数据(即问题的解)的很大扰动,称此数学问题为病态问题[1]。这是数学问题本身的性质决定的,与算法无关。例如: 即有0.01的扰动,对结果产生232.67倍的误差。这里并没涉及具体的算法,是问题本身的性质造成的。实际上1.5接近,而在附近,是一个病态问题。 算法的稳定性 如果误差增长并不是数学问题本身引起,而是算法选择不当所致。则称此算法稳定性不好。例如: 选择用差商近似代替微商,取步长,用四位有效数字作近似计算 , 结果明显很差。这里并不是因为取得不够小的原因,如,将只能得到,结果更差。这是因为用相近数相减,损失了大量有效数位的原故。 3. 条件数 线性代数计算中,如求线性方程组的解,计算得到的解(计算解)通常是近似的。其原因一是系数矩阵和右端项往往由观测或计算得到,因而产生(数据)误差;另一个是求解计算过程出现舍入误差。下面来研究方程组的数据(或)的

线性方程组解的判定与解的结构

***学院数学分析课程论文 线性方程组解的判定与解的结构 院系数学与统计学院 专业数学与应用数学(师范) 姓名******* 年级 2009级 学号200906034*** 指导教师 ** 2011年6月

线性方程组解的判定与解的结构 姓名****** (重庆三峡学院数学与计算机科学学院09级数本?班) 摘 要:线性方程组是否有解,用系数矩阵和增广矩阵的秩来刻画.在方程组有解且有 多个解的情况下,解的结构就是了解解与解之间的关系. 关键词:矩阵; 秩; 线性方程组; 解 引言 通过系数矩阵和增广矩阵的秩是否相同来给出判定线性方程组的解的判别条件.在了解了线性方程组的判别条件之后,我们进一步讨论解的结构.对于齐次线性方程组,解的线性组合还是方程组的解.在线性方程组有无穷个解时可用有限多个解表示出来.另外以下还涉及到线性方程组通解的表达方式. 1 基本性质 下面我们分析一个线性方程组的问题,导出线性方程组有解的判别条件. 对于线性方程组 1111221121122222 1122n n n n s s sn n s a x a x a x b a x a x a x b a x a x a x b ++???+=??++???+=???????++???+=? (1) 引入向量 112111s αααα??????=?????????,122222s αααα??????=?????????,…12n n n sn αααα??????=????????? ,12s b b b β?? ?? ??=??????? ?? 方程(1)可以表示为 1122n n x x x αααβ++???+= 性质 线性方程组⑴有解的充分必要条件为向量β可以表成向量组α1,α2,…,αn 的线性组合. 定理1 线性方程组⑴有解的充分必要条件为它的系数矩阵

三元线性方程组的几何解法.doc

三元线性方程组的几何解法 任春丽,王金金 (西安电子科技人学理学院数学系,陕西酋安710071 ) 线性方程组是线性代数中重要的内容,其解的结构在线性代数课程中已通过向量及矩阵理论讨论的非常清楚,但在教材中很少提及几何意义.由于三元线性方程表示空间屮的平而,因此,通过平面图形Z间的位置关系求解线性方程组,不仅形象、直观,而且为从三维空间抽象的代数问题推广到n维空间更定了基础°文献[2] 丿IJ矩阵 的秩判别了空间屮平面、直线之间的位證关系;相反的,本文利用空间中平而、肓线之间的位宜关系讨论了三元线性方程组解的情况,并举例说明。 1.两个方程的三元线性方程组 设方程组(I): [仲+恥+C"。-街俩个平面) A2X +B2y + C2z = D2—兀2 讨论:令e=4,d,G,o)(心1,2), %=Q,B,C)(i = l,2) ⑴若wa,即牛鲁咱唔‘则 眄与龙2重合,方程组(I)有无穷多解; (2)若n.//n2i a^a29即4 =邑』』, 1 2 1 2 码场C? D2则眄与?平行但不重合,方程组(I )无解; (3)若讥叫,则陌与幻相交,方程纨I)有无穷多解,其解为相交直线上的所有点。 例1求解下列线性方程组 3兀 + 6y — 3z = 8 fx + 2y-z = 7 (1){ : (2){ ?一兀一 2y + z = 3 [-2x + y + z = 4 解⑴因为—7^-,所以两个平 -1-213 血平行但不重合,故方程组无解; (2)因为阿x〃2 =(1,2,T)x(一2,1,1) = (3丄5) H 0, 所以两个平面相交于H线L,故方程组有无穷多 解。又点(1,4,2)在L上,故直线L的参数方程x = 1 + 3f, 为:」= 4+r,即是方程组的通解。 z = 2 + 5/. 2.三个方程的三元线性方程组 设方程组(II): A}x + + Gz = °―兀、 < A2x + B2y + C2z = D2—兀2(三个平面) A.x + B,y^C.z = D. 一心 讨论:令q=Q,d,G,q)(i = l,2,3), n,=(4.,B/,C/)(i = l,2,3)o (1)若= 1,2,3)中至少有两个平行,则至 少有两个平面重合,其解的讨论同第1 H; (2)若? (/ = 1,2,3)屮至少有两个平行,但相应的乞?加勺(心力,则至少冇两个平面平行但 不重合,方程组(II)无解; (3)若?加? (心/),则三个平面两两相交, 方程组(II)可能有解,也可能无解。进一步:求 x = x Q + mt, ! IW与兀2的交线L的参数式方程:\y = y o+ntf z = 5 + pt. 如果厶〃龙3,但点(兀O,y°,Zo)不在龙3上,则

解线性方程组克默法则

解线性方程组克默法则

————————————————————————————————作者:————————————————————————————————日期:

第一章 解线性方程组的克拉默()Gramer 法则 解方程是数学中一个基本问题,特别是在中学代数中, 解方程占有重要地位,因此这个问题是读者所熟悉的,譬如说,如果我们知道了一段导线的电阻r ,它的两端电位差v ,那么通过这段导线的电流强度i ,就可以由关系式 ir v = 求出来,这就是通常所谓一元一次方程的问题,在中学代数中, 我们解过一元,二元,三元以致四元一次方程组,这一章和下一章主要就是讨论一般的多元一次方程组,即线性方程组,这一章是引进行列式来解线性方程组,而下一章则在更一般的情况下来讨论解线性方程组的问题。 线性方程组的理论在数学中是基本的也是重要的内容。 对于二元线性方程组 11112212112222 a x a x b a x a x b +=??+=? 当112212210a a a a -≠时,此方程组有唯一解,即 122122*********b a a b x a a a a -= - 112211********* a b a b x a a a a -=- 我们称11221221a a a a -为二级行列式,用符号表示为 1112 112212212122 a a a a a a a a -= 于是上述解可以用二级行列式叙述为: 当二级行列式 1112 2122 0a a a a ≠ 时,该方程组有唯一解,即 1 12 11 1 222212121112111221 22 21 22 ,b a a b b a a b x x a a a a a a a a = = 对于三元线性方程组有相仿的结论,设有三元线性方程组 1111221331 21122223323113223333 a x a x a x b a x a x a x b a x a x a x b ++=?? ++=??++=?

线性方程组的几种求解方法

甘肃政法学院 本科学年论文(设计)题目浅议线性方程组的几种求解方法 学号: 姓名: 指导教师: 成绩:__________________ 完成时间: 2012 年 11 月

目录 第一章引言 (1) 第二章线性方程组的几种解法 (1) 2.1 斯消元法 (1) 2.1.1 消元过程 (1) 2.1.2 回代过程 (2) 2.1.3 解的判断 (2) 2.2 克莱姆法则 (3) 2.3 LU分解法 (4) 2.4 追赶法 (6) 第三章结束语 (8) 致谢 (8) 参考文献 (9)

摘要:线性方程组是线性代数的核心内容之一,其解法研究是代数学中经典且重要的研究课题.下面将综述几种不同类型的线性方程组的解法,如消元法、克莱姆法则、直接三角形法、、追赶法,并以具体例子介绍不同解法的应用技巧. 在这些解法中,高斯消元法方法,具有表达式清晰,使用范围广的特点.另外,这些方法有利于快速有效地解决线性方程组的求解问题,为解线性方程组提供一个简易平台,促进了理论与实际的结合。 关键词:线性方程组;解法;应用 Several methods of solving linear equation group Abstract:The system of linear equations is one of linear algebra core contents, its solution research is in the algebra the classics also the important research topic. This article summarized several kind of different type system of linear equations solution, like the elimination, the Cramer principle, the generalized inverse matrix law, the direct triangle law, the square root method, pursue the law, and by concrete example introduction different solution application skill. In these solutions, the generalized inverse matrix method, has the expression to be clear, use scope broad characteristic. Moreover, these methods favor effectively solve the system of linear equations solution problem fast, provides a simple platform for the solution system of linear equations, promoted the theory and the actual union. Key word: Linear equations; Solution ; Example

相关文档