文档库 最新最全的文档下载
当前位置:文档库 › (完整版)固体物理概念(自己整理)

(完整版)固体物理概念(自己整理)

(完整版)固体物理概念(自己整理)
(完整版)固体物理概念(自己整理)

1.晶体-----内部组成粒子(原子、离子或原子团)在微观上作有规则的周期性重复排列构成的固体。

晶体结构——晶体结构即晶体的微观结构,是指晶体中实际质点(原子、离子或分子)的具体排列情况。金属及合金在大多数情况下都以结晶状态使用。晶体结构是决定固态金属的物理、化学和力学性能的基本因素之一。

2.晶体的通性------所有晶体具有的共通性质,如自限性、最小内能性、锐熔性、均匀性和各向异性、对称性、解理性等。

3.单晶体和多晶体-----单晶体的内部粒子的周期性排列贯彻始终;多晶体由许多小单晶无规堆砌而成。

4.基元、格点和空间点阵------基元是晶体结构的基本单元,格点是基元的代表点,空间点阵是晶体结构中等同点(格点)的集合,其类型代表等同点的排列方式。

倒易点阵——是由被称为倒易点或倒易点的点所构成的一种点阵,它也是描述晶体结构的一种几何方法,它和空间点阵具有倒易关系。倒易点阵中的一倒易点对应着空间点阵中一组晶面间距相等的点格平面。

5.原胞、WS原胞-----在晶体结构中只考虑周期性时所选取的最小重复单元称为原胞;WS原胞即Wigner-Seitz原胞,是一种对称性原胞。

6.晶胞-----在晶体结构中不仅考虑周期性,同时能反映晶体对称性时所选取的最小重复单元称为晶胞。

7.原胞基矢和轴矢----原胞基矢是原胞中相交于一点的三个独立方向的最小重复矢量;晶胞基矢是晶胞中相交于一点的三个独立方向的最小重复矢量,通常以晶胞基矢构成晶体坐标系。

8.布喇菲格子(单式格子)和复式格子------晶体结构中全同原子构成的晶格称为布喇菲格子或单式格子,由两种或两种以上的原子构成的晶格称为复式格子。

9.简单格子和复杂格子(有心化格子)------一个晶胞只含一个格点则称为简单格子,此时格点位于晶胞的八个顶角处;晶胞中含不只一个格点时称为复杂格子,其格点除了位于晶胞的八个顶角处外,还可以位于晶胞的体心(体心格子)、一对面的中心(底心格子)和所有面的中心(面心格子)。

10.密堆积和配位数-----晶体组成原子视为等径原子时所采取的最紧密堆积方式称为密堆积,晶体中只有六角密积与立方密积两种密堆积方式。晶体中每个原子周围的最近邻原子数称为配位数。由于晶格周期性限制,晶体中的配位数只能取:12,8,6、4、3(二维)和2(一维)。

11.晶列、晶向(指数)和等效晶列-----晶列是晶体结构中包括无数格点的直线,晶列上格点周期性重复排列,相互平行的晶列上格点排列周期相同,一簇相互平行的晶列可将晶体中所有格点包括无遗;晶向指晶列的方向,晶向指数是晶列的方向余旋的互质整数比,表为[uvw];等效晶列是晶体结构中由对称性相联系的一组晶列,表为

12.晶面、晶面指数和等效晶面----晶面是晶体结构中包括无数格点的平面,相互平行的晶面的面间距相等,一簇相互平行的晶面可将晶体中所有格点包括无遗;晶面指数是晶面法线方向的方向余旋的互质整数比,表为(hkl);等效晶面是晶体结构中由对称性相联系的一组晶面,表为{hkl}。密勒指数特指晶胞坐标系中的晶面指数。

13.晶体衍射----晶体的组成粒子呈周期性规则排列,晶格周期和X-射线波长同数量级,因此光入射到晶体上会产生衍射现象,称为X-射线晶体衍射。

14.劳厄方程和布拉格公式----晶体衍射时产生衍射极大的条件。劳厄将晶体X-射线衍射看作是晶体中原子核外的电子与入射X-射线的相互作用,而布拉格父子则将晶体X-射线看作是晶面对X-射线的选择性反射,分别得到衍射加强条件为劳厄方程和布拉格公式,两者其实是

15劳厄方程

16. 布拉格公式

布拉格定律——考虑间距为d 的平行晶面,入射辐射线位于纸面平面内。相邻平行晶面反射

的射线行程差是2dsinx ,式中从镜面开始量度。当行程差是波长的整数倍时,来自相继平面

的辐射就发生了相长干涉。 这就是布拉格定律。

17. 几何结构因子----晶胞中所有原子对X-射线的散射振幅与一个电子对X-射线的散射振幅

之比,几何结构因子是一种相对振幅。

18.消光规律----因晶胞中原子的几何排列所引起的衍射线消失的规律,称为结构消光。

19.倒格子------晶格经傅里叶变换所得到的几何格子。倒格子基矢定义:

(1) (2)

倒格子空间是正格子的倒易空间

20布里渊区-----布里渊区是倒空间中由倒格矢的中垂面(二维为中垂线)所围成的区域,按

序号由倒空间的原点逐步向外扩展,每个布区的体积(或面积)等于倒格子原胞的体积(或

面积)。第一布里渊区(中心布区或简约布区)是倒格矢的中垂面(线)所围成的最小区域,

是倒空间中的对称性原胞。第n 布区是跨越第(n-1)布区的边界所能到达的,由倒格矢的中垂

面(线)所围成的一些分离区域,且各区域体积(面积)之和等于倒格子原胞体积(面积)。

21. 晶体对称性----晶体的外形或物理性质在不同方向上有规律地重复的现象。

22.对称操作----使对称图形复原的动作或变换(保持晶体上任意两点间距离不变的变换——

正交变换)。

23.对称要素---施行对称操作时所凭借的几何元素。描述晶体宏观对称性的独立基本对称要

素只有八个:1,2,3,6,I,m 和 。

24.对称操作数----晶体投影图中由对称性联系起来的等同点的数目,其值体现了对称性的高

低。

25. 群的概念:群是一些元素的集合,记为 G={E ,A ,B ,C ,……},群元素满足下述群的

乘法定则: 1) 闭合性: ;

2) 存在单位元素E :对任意 ,有

AE=EA=A ;

3) 存在逆元素对任意 ,存在 ,有:

)K ( 或:)( 或:)为整数(2)(***h 000c l b k a h K k -k S s s R S S R k -k h m m m m m

2d sin n 220123i j ij i j a b i j i,j ,, r r 213132321222a a b a a b a a b G C AB G B G A ,G A G A 1 A E

A A AA 11

4) 结合律:A(BC)=(AB)C

26. 对称群----对称要素和对称操作的集合构成对称群。

27.点群----晶体中相交于一点的对称要素及相应的对称操作的集合,晶体共有32种点群,又

称32种宏观对称类型。

28.宏观对称要素----描述晶体宏观对称性的对称要素,晶体中独立的基本对称要素只有八个:

1、2、3、4、6、i 、m 和 。

29.微观对称要素-----描述晶格对称性的对称要素,在宏观对称要素的基础上加上平移轴及平

移与旋转、镜象形成的复合对称要素螺旋轴和滑移面。

30.空间群-----晶格中全部对称要素及相应的对称操作的集合;晶体共有230种空间群。

第二章

1. 元素电负性-----元素电负性是原子对核外电子束缚能力大小的量度,通常用电离能与亲合

能之和表示。

2.结合键-----指原子结合成晶体的方式,晶体的典型结合方式有:离子键、共价键、金属键、

分子键和氢键。

3.离子键-----吸引力来源于正、负离子间的静电库仑力。

4.共价键-----吸引力来源于共用电子对的交换作用能(量子效应)。

5.金属键-----吸引力来源于带正电的金属原子实与带负电的自由的价电子(电子云)间的静

电库仑力。

6. 分子键----吸引力来源于分子间的范德瓦尔斯力,即电偶极矩间的相互作用为力。

7.氢键------吸引力来源于裸露的氢核(带正电)与电负性较大的原子之间作用力。

8.结合能-----晶体中粒子组成晶体后的总能量与粒子间无相互作用时总能量之差称为晶体结

合能.(常令无相互作用时势能为零点)

9.最近邻间距-----晶体中最近邻原子之间的平衡距离。

10.范德瓦尔斯力-----电偶极矩间的相互作用力,包括:固有偶极矩间的互作用力、瞬时偶极

矩间的互作用力和诱导偶极矩间的互作用力。

11. 共价键的饱和性和方向性-----饱和性指两原子间能形成的共价键有一定的数目限制[(8-N)

定则];方向性指两原子间的共价键总是沿波函数重叠最大的方向成键。

12.轨道杂化-----电子的不同状态(分子轨道)间重新进行线性组合后再形成共键键,如金刚

石(碳原子)中的SP3杂化:

第三章

1. 简谐近似----晶体中原子之间相互作用能按平衡距离作泰勒展开,只取到距离的二次方项,

忽略距离的高阶项;简谐近似下原子间互作用力与相对位移成正比。

2.Born-Von Karman 边界条件-----即周期性边界条件,一维情况下将晶格原子链视为由N 个原

胞组成的无穷大半径之圆环,则环上第n 个原子与第(N+n )个原子系同一原子,具有完全

相同的属性。三维情况则可将每一个独立方向视为Ni 个原胞组成的无穷大半径之圆环。 412342222222232222222212121212x y z x y z x y z x y z s p p p k s p p p k s p p p k s p p p k ()()SP ()() r r r r

3.格波-----晶格中原子的集体振动模式形成格波。

4. 色散关系-----晶格振动时格波之圆频率与波矢间的关系。

5.声子-----格波的能量量子,声子的能量为?ω,准动量为 ; 声子是玻色子,服从玻色-爱因斯坦统计,能量

为?ω的声子的平均声子数为:

6.声学波-----声频支格波,描述晶体中原胞的整体运动。

7.光学波-----光频支格波,描述晶体中原胞内原子之间的相对运动。

8. 晶格振动的一般结论:对于由N 个原胞组成,每个原胞中有s 个原子的三维复式格子,

晶格振动中,有3s 支色散关 系,其中3支为声学波,其余3(s -1)支为光学波,且:

9.晶格振动波矢的取值数=晶体的原胞数N

10.晶格振动格波(模式)数=晶体的总自由度数3sN

11.模式密度-----又称为频率分布函数,定义为单位频率范围内的模式数:

12. 黄昆方程----关于离子晶体中的长光学波的维象方程: 振动方程受极化电场修正 极化方程受晶格振动修正

13. LST 关系-Lyden-Sachs-Teller relation

1)静态介电常数总大于光频介电常数→长光学纵波的频率总是大于横波的频率;因此,长

光学纵波是极化波;

2)当 时, ,晶体中出现自发极化现象(铁电软模理论),有自发

极化的晶体称铁电体。

14. 杜隆-珀替定律-----固体比热的经验规律:固体的比热是与温度无关的常数。(高温与实

验相符)

15.爱因斯坦模型----固体比热模型,爱因斯坦假设晶体中各原子的振动相互独立,且所有原

子都以同一频率ω0振动。由此得到高温固体的比热是常数,低温下随温度T →0 K 比热按指

数规律趋于零。

16.德拜模型-----固体比热模型,又称弹性波模型,德拜假设晶体可视为各向同性的连续弹性

介质,格波可以看成连续介质的弹性波,色散关系为:

由此得到高温固体的比热是常数,低温下随温度T →0 K 比热按T3规律趋于零。

17. 非谐效应----晶体中原子间的互作用能展式中的三次方以上的项称非谐项,非谐项不能忽

略时所引起的一些现象,如热膨胀,热传导等称为非谐效应。

18.晶体状态方程----晶体的热力学参数P 、T 、V 之间的关系式。

19.拉曼散射----光子与晶体中光学声子间的散射。

20.布里渊散射----光子与晶体中声学声子间的散射。

21.三声子过程----两个声子间相互作用(散射)产生第三个声子的过程(该过程满足能量和

h q q K r r r h h 11 T k B e f dZ

g d E b W b P E b W b W 22211211s 2L02T0 0TO s .d V const q dq

动量守恒定律)

。 123123h r r r h h h r r r r h h h h q q q q q q K

第四章

1. Bloch 定理----在周期场中运动的电子,其波函数为Bloch 函数,物理意义为受晶格周期函

数调制的平面波。

2. 能带结构----周期场中运动的电子的能量状态形成分段连续的能谱,由允带和禁带相间构

成,称为能带结构 。

能带理论——研究固体中电子运动的主要理论基础,定性阐明了晶体中电子运动的普遍性的

特点,说明了导体、非导体的区别,晶体中电子的平均自由程为什么远大于原子的间距,半

导体理论问题的基础,推动了半导体技术的发展。能带理论是单电子近似的理论,将每个电

子的运动看成是独立的在一个等效势场中的运动。其出发点为电子不再束缚于个别的原子,

而在整个固体内运动和共有化电子。

能带——在形成分子时,原子轨道构成具有分立能级的分子轨道。晶体是由大量的原子有序

堆积而成的。由原子轨道所构成的分子轨道的数量非常之大,以至于可以将所形成的分子轨

道的能级看成是准连续的,即形成了能带。

3.允带和禁带(能隙)----允带指能带结构中允许电子能量状态取值的能量范围;禁带(能隙)

是能带结构中电子能量状态不能取值的能量范围。

4.带底,带顶,能带宽度----带底指允带中能量的最小值处;带顶指允带中能量的最大值处,

带顶能量与带底能量之差为能带宽度

5. 近自由电子模型----晶体中原子间距离较近时,电子的平均能量比较大,但其势能随位置

的变化(起伏)比较小,电子的运动几乎是自由的,称为近自由电子模型,相当于金属中的

价电子。 自由电子可视为其零级近似,而势能中较小的周期性起伏可视为微扰。 近自由电

子模型得到的结果是:

1)远离布区边界处,电子的能量仅在自由电子能量上稍加修正(二级修正),其波函数为

Bloch 函数,是自由电子波函数叠加上较小的散射波成份。

2)在布区边界处,电子能谱将发生突变,产生能隙(禁带),禁带宽度为势函数在该边界处

的傅里叶展式的系数的两倍。

6. 紧束缚模型----晶体中原子间距离较大时,其势能随位置的变化(起伏)比较大,但原子

之间相互作用较弱,电子的运动几乎是被束缚在一个原子周围,称为紧束缚模型,相当于金

属的内层电子、绝缘体和半导体的价电子。孤立原子的解可视为其零级近似,而较弱的原子

间相互作用可视为微扰。 紧束缚电子模型得到的结果是:

112233123,,0,1,2l l i e u u u R l a l a l a l l l u r r u r u r u r u r r r r r u r

r r r r L L k r k k k k r r r r R max min

E E k E k r r 0122a gn n n nx E U ,U U x exp i dx a a

0exp s

j s s E J J i

近邻

R k R k R

7. 能态密度----电子的能量状态按能量的分布函数,其值为单位能量间隔内的电子状态数:

8. 费米面-----K 空间中能量值等于费米能的等能面。

第五章

1. 波包----以准经典语言描述晶体中电子时,可将电子视为波矢k0附近Δk 范围的含时Bloch

函数叠加形成的波包,波包能量集中在k0附近尺度为 的范围内,波包中心即

为电子位置。

2. 相速度----波的相位的传播速度: 群速度----波的能量的传播速度:

3.Bloch 电子运动速度----波包中心的群速度 。

4. 准动量----晶体中电子的动量。

5. 有效质量----晶体中电子的表观质量,它体现了周期场对电子运动的影响。其物理意义:1)

有效质量的大小仍然是惯性大小的量度;2)有效质量反映了电子在晶格与外场之间能量和

动量的传递,因此可正可负。

6.满带----能带内所有能态均被电子填充。

7.导带----能带内部分能态被电子填充。

8.价带----价电子填充的能带。

9.禁带(能隙)----电子不能具有的能量范围。

10.空穴-----是一种准粒子,代表半导体近满带(价带)中少量空着的状态,相当于具有正的

电子电荷和正的有效质量的粒子,空穴描述了近满带中大量电子的运动行为。

11.回旋共振----固体中的电子在恒定磁场中受洛仑兹力作用将作回旋运动,此时在固体上再

加垂直于磁场的交变磁场,当交变磁场的频率等于电子的回旋频率时,发生强烈的共振吸收

现象,称为回旋共振。

12.德?哈斯-范?阿尔芬效应---固体磁化率随磁场的倒数1/B 作周期振荡的现象称为De

Haas-Van Alphen 效应。

13.隧道效应——隧道效应由微观粒子波动性所确定的量子效应。又称势垒贯穿。考虑粒子

运动遇到一个高于粒子能量的势垒,按照经典力学,粒子是不可能越过势垒的;按照量子力

学可以解出除了在势垒处的反射外,还有透过势垒的波函数,这表明在势垒的另一边,粒子

具有一定的概率,粒子贯穿势垒。P250

第六章

1. Drude-Lorentz 模型----自由电子气体的经典模型,模型要点:1)自由电子假设:电子除了

在与晶格原子碰撞的瞬间外,其余时间的运动完全是自由的,平均自由时间可采用弛豫时间

近似; 2)独立电子假设:电子-电子间的相互作用忽略不计;3)电子运动行为由经典力学

和电磁学描述;4)电子遵从麦克斯韦-玻尔兹曼统计规律。

2. Sommerfeld 模型----自由电子气体的量子模型。模型要点:1)自由电子假设:电子除了在

与晶格原子碰撞的瞬间外,其余时间的运动完全是自由的,平均自由时间可采用弛豫时间近

似; 2)独立电子假设:电子-电子间的相互作用忽略不计;3)电子运动行为由量子力学描 dZ g E dE 2k p V k

g V d dk 1k d E d V E k dk dk r r r h r r h

h

k k K r r r h h 2

20()()2k k V r E r m

r r h r r

述;

4)电子按能量的分布服从Fermi-Dirac 统计规律。

3. 自由电子的波函数-----

4. 自由电子的能量-----

5. 费米统计----电子占据能量为E 的状态的几率,或能量为E 的状态上的平均电子数。

6. 费米能量----F-D 分布中的EF 称为费米能量,其值等于电子系统的化学势,物理意义:费

米能量是T=0 K 时电子占据态和未占据态的分界线,或T=0 K 时系统中电子所具有最高能量。

费米面——电子填充区域和未填充区域的分界面,k 空间的费米面 E=E F 。

7.费米波矢,费米速度,费米温度----与费米能相应的电子波矢、速度和温度。所有与费米能

相关的物理量均可冠以“费米”的名称。

8. 功函数----电子脱离金属或半导体的束缚成为自由电子所需的最低能量

V0:真空能级 9. 接触电势----两块不同的的金属相接触时,其表面分别出现正负电荷,两金属表面间的电

势差称接触电势差。

10. 分布函数-----F-D 分布是电子系统处于平衡态时的分布函数。一般情况下分布函数是 的函数,即

分布函数的物理意义:在t 时刻,电子处于r 处k 态附近单位相空间体积元的几率是 。 11. 玻尔兹曼方程-----分布函数满足的运动方程:

第七章晶体缺陷

1.点缺陷-----晶格周期性被破坏的程度在一个点周围一至几个晶格周期范围。

2.热缺陷----晶体中原子的无规则热运动引起的点缺陷。热缺陷的主要类型是空位(肖特基缺

陷)和填隙原子,或空位和夫仑克尔缺陷(空位-填隙原子对)。

3.杂质缺陷-----是一种点缺陷,指晶体中极少量的外来原子。根据杂质在晶格中所占位置分

为替位式杂质和填隙式杂质。

222ik r k r k

E m r

r

r r h 1)exp(1 T k E E f B F D F 0F W V E 1212211211F F V V V W W E E e e f f u r u r r ,k ,t

f u r u r r ,k ,t d c df f f f dt t t t

4.色心-----引起晶体颜色发生改变的点缺陷(元素化学计量比失配)。

5.极化子-----完整晶格中引入的多余电子是一种点缺陷,称极化子。这个多余电子的存在会引起周围晶格发生畸变,使正离子内移而负离子外移,是一种电子的自陷状态,电子走到哪里就把这种缺陷带到哪里。

6.位错-----线缺陷的主要类型是位错。晶体中位错线周围一至几个晶格周期内晶格周期遭到破坏,在晶体中形成一畸变的管道。位错的类型有刃型位错和螺型位错。

7.柏格斯回路-----用于描述位错的几何图象,是晶体中沿基矢方向行走形成的闭合回线,此闭合回线的矢量和称为柏格斯矢量,柏格斯矢量不等于零的晶体中存在位错。

8. 刃型位错----柏格斯矢量垂直于位错线的位错。其特点是:1)柏格斯矢量垂直于位错线;2)晶体中存在多余的半截原子面;3)有固定的滑移面。

9.螺位错----柏格斯矢量平行于位错线的位错。其特点是:1)柏格斯矢量平行于位错线;2)整个晶体形成一螺旋卷面;3)没有固定的滑移面,所有包含位错线的平面均为滑移面。9.层错----密堆积结构中堆砌层发生错误所引起的一个面周围一至几个晶格周期内晶格的周期性遭到破坏,是一种面缺陷。

10. 晶粒间界-----多晶体的晶粒与晶粒之间的交界区域,晶格周期性遭到破坏,称为晶粒间界;晶粒间交角小于10度时称小角度晶界;小角度晶界可视为面缺陷,还可看作是一系列刃位错堆砌形成。

11.弗伦克缺陷、肖脱基缺陷P543

12.滑移——滑移(slip)晶体中产生范性形变的主要方式。滑移是某些晶面沿一定晶向发生的晶面间的相对平移。平移的量是布拉维点阵沿该晶向最小周期的整倍数。在滑移时晶体结构和位向保持不变。

固体物理学概念和习题答案

《固体物理学》概念和习题 固体物理基本概念和思考题: 1.给出原胞的定义。 答:最小平行单元。 2.给出维格纳-赛茨原胞的定义。 答:以一个格点为原点,作原点与其它格点连接的中垂面(或中垂线),由这些中垂面(或中垂线)所围成的最小体积(或面积)即是维格纳-赛茨原胞。 3.二维布喇菲点阵类型和三维布喇菲点阵类型。 4. 请描述七大晶系的基本对称性。 5. 请给出密勒指数的定义。 6. 典型的晶体结构(简单或复式格子,原胞,基矢,基元坐标)。 7. 给出三维、二维晶格倒易点阵的定义。 8. 请给出晶体衍射的布喇格定律。 9. 给出布里渊区的定义。 10. 晶体的解理面是面指数低的晶面还是指数高的晶面?为什么? 11. 写出晶体衍射的结构因子。 12. 请描述离子晶体、共价晶体、金属晶体、分子晶体的结合力形式。 13. 写出分子晶体的雷纳德-琼斯势表达式,并简述各项的来源。 14. 请写出晶格振动的波恩-卡曼边界条件。 15. 请给出晶体弹性波中光学支、声学支的数目与晶体原胞中基元原子数目之间的关系以及光学支、声学支各自的振动特点。(晶体含N个原胞,每个原胞含p个原子,问该晶体晶格振动谱中有多少个光学支、多少个声学支振动模式?)

16. 给出声子的定义。 17. 请描述金属、绝缘体热容随温度的变化特点。 18. 在晶体热容的计算中,爱因斯坦和德拜分别做了哪些基本假设。 19. 简述晶体热膨胀的原因。 20. 请描述晶体中声子碰撞的正规过程和倒逆过程。 21. 分别写出晶体中声子和电子分别服从哪种统计分布(给出具体表达式)? 22. 请给出费米面、费米能量、费米波矢、费米温度、费米速度的定义。 23. 写出金属的电导率公式。 24. 给出魏德曼-夫兰兹定律。 25. 简述能隙的起因。 26. 请简述晶体周期势场中描述电子运动的布洛赫定律。 27. 请给出在一级近似下,布里渊区边界能隙的大小与相应周期势场的傅立叶分量之间的关系。 28. 给出空穴概念。 29. 请写出描述晶体中电子和空穴运动的朗之万(Langevin)方程。 30. 描述金属、半导体、绝缘体电阻随温度的变化趋势。 31. 解释直接能隙和间接能隙晶体。 32. 请说明本征半导体与掺杂半导体的区别。 33. 请解释晶体中电子的有效质量的物理意义。 34. 给出半导体的电导率。 35. 说明半导体的霍尔效应与那些量有关。 36. 请解释德哈斯-范阿尔芬效应。

最新人教版初中物理知识点总结归纳(特详细)最新最全

初中物理知识点 第一章声现象知识归纳 1 . 声音的发生:由物体的振动而产生。振动停止,发声也停止。 2.声音的传播:声音靠介质传播。真空不能传声。通常我们听到的声音是靠空气传来的。 3.声速:在空气中传播速度是:340米/秒。声音在固体传播比液体快,而在液体传播又比空气体快。 4.利用回声可测距离:S=1/2vt 5.乐音的三个特征:音调、响度、音色。(1)音调:是指声音的高低,它与发声体的频率有关系。(2)响度:是指声音的大小,跟发声体的振幅、声源与听者的距离有关系。 6.减弱噪声的途径:(1)在声源处减弱;(2)在传播过程中减弱;(3)在人耳处减弱。 7.可听声:频率在20Hz~20000Hz之间的声波:超声波:频率高于20000Hz 的声波;次声波:频率低于20Hz的声波。 8.超声波特点:方向性好、穿透能力强、声能较集中。具体应用有:声呐、B超、超声波速度测定器、超声波清洗器、超声波焊接器等。 9.次声波的特点:可以传播很远,很容易绕过障碍物,而且无孔不入。一定强度的次声波对人体会造成危害,甚至毁坏机械建筑等。它主要产生于自然界中的火山爆发、海啸地震等,另外人类制造的火箭发射、飞机飞行、火车汽车的奔驰、核爆炸等也能产生次声波。 第二章光现象知识归纳 1. 光源:自身能够发光的物体叫光源。 2. 太阳光是由红、橙、黄、绿、蓝、靛、紫组成的。 3.光的三原色是:红、绿、蓝;颜料的三原色是:红、黄、蓝。 4.不可见光包括有:红外线和紫外线。特点:红外线能使被照射的物体发热,具有热效应(如太阳的热就是以红外线传送到地球上的);紫外线最显著的性质是能使荧光物质发光,另外还可以灭菌。 1. 光的直线传播:光在均匀介质中是沿直线传播。 2.光在真空中传播速度最大,是3×108米/秒,而在空气中传播速度也认为是3×108米/秒。 3.我们能看到不发光的物体是因为这些物体反射的光射入了我们的眼睛。 4.光的反射定律:反射光线与入射光线、法线在同一平面上,反射光线与入射光线分居法线两侧,反射角等于入射角。(注:光路是可逆的)5.漫反射和镜面反射一样遵循光的反射定律。 6.平面镜成像特点:(1) 平面镜成的是虚像;(2) 像与物体大小相等;(3)像与物体到镜面的距离相等;(4)像与物体的连线与镜面垂直。另外,平面镜里成的像与物体左右倒置。 7.平面镜应用:(1)成像;(2)改变光路。 8.平面镜在生活中使用不当会造成光污染。 球面镜包括凸面镜(凸镜)和凹面镜(凹镜),它们都能成像。具体应用有:车辆的后视镜、商场中的反光镜是凸面镜;手电筒的反光罩、太阳灶、医术

中学物理前概念研究

中学生物理学习中的前概念及其转变 陈雪梅 摘要:物理前概念是学生在学习科学物理概念之前对周围世界的一些看法和观点。国内外许多研究表明:物理前概念广泛存在而且根深蒂固,并对物理学习有着不可低估的影响。分析了物理前概念的来源,阐述了错误概念形成的原因,讨论了概念转变发生的条件。在此基础上提出了纠正错误前概念,进行科学物理概念教学的策略。 关键词:物理学习;前概念;科学概念;概念转变;图式 学生对物理现象的直观认识在他们接受正规的物理课程学习之前就已经存在了,并在这些认识的基础上形成了他们自己的思维体系。这种在学生系统地学习科学知识之前所具有的想法被人们称之为“前概念”(preconception)。需要指出的是,这里所指的“概念”和心理学中的一般狭义理解不同,它是指关于某一对象的观点或看法。比如“地球绕着太阳转”便是一个概念。这些前概念中,有些与科学概念有相通之处,但是学生对这种概念的理解大多还是相当肤浅的,停留在表面上而不能深入到概念的本质,更多的则是与科学的概念相悖的,因此前概念又常常被称为“错误概念”(misconception)或者“相异构想”(alternative framework)。关于前概念的研究早已有之,从80年代开始得到迅猛发展,已经召开了多届有关自然科学与数学教育中的学生错误观念的国际研讨会,至今仍是热点[1]。科学教学及科学学习心理研究,都将学生前概念及其对于科学学习和科学认识的形成与建构的作用和影响问题作为自己研究的重要领域。对于学生的前概念,美国、加拿大、新西兰等国家已经进行了深入的研究,但我国在这方面的研究还比较缺乏,本文将对有关前概念的几个问题作一些探讨。 一、错误概念的来源及其心理学归因 自七十年代中期以来,学术界涌现出大量有关学生错误前概念的研究。芬德等(Pfundt & Duit,1991)的文献目录中列出了1,100多个这类研究,其中物理学方面的错误概念占总数的70%[2]这些错误概念从何而来呢?研究者发现,每个学生头脑中形成的先入错误都有它的客观条件,但从宏观分析也有一般的共性,这些共性主要体现在以下几个方面:1、直观感觉带来的错误。学生在日常生活中,从大量的物理现象中获得了不少物理方面的感性知识。这些凭直观感觉学习到的东西不一定正确,相反,它很容易成为错误的根源。例如,铁比棉花重;冬天室外的铁块比木块温度低;车不拉就不走等等。2、知识迁移的负效应。这主要是由于数学工具运用不当所引起的。比如看到电阻的定义式R=U/I,初学者往往理所当然地认为电阻的大小与电压成正比,与电流成反比。3、由语言带来的曲解。学生常用生活语言来理解物理概念,并由此产生对概念的曲解。例如,匀加速运动就是速度逐渐增加的运动;“裂变”就是把整体分为部分,因此把一些放射性元素的衰变也都归为裂变。4、不正确的课外渠道。学生在课堂教学以外,通过广播、电视、报刊杂志等渠道获得的不少信息是不正确的。例如,重量、重力和质量三者不分;路程和距离互相混淆;电容器概念与描述电容器容纳电荷本领的电容不分等等。 这些前概念的核心特点是[3]:(1)是学生头脑中强烈具有的一种稳定的认知结构;(2)不同于专家的概念;(3)会对学生如何理解自然现象并做出科学的解释产生重要影响;(4)必须被克服、避免和消除,以使学生接受科学的理解。 霍华德(Howard,1987)曾经以皮亚杰的认知发展理论为基础分析了错误概念的形成并且在学生头脑中根深蒂固的原因。皮亚杰的认知发展理论体系中的一个核心概念就是图式。(schema,在他后期著作中用scheme一词)。图式是指个体对世界的知觉、理解和思考的方式。我们可以把它看作

(完整版)固体物理概念(自己整理)

1.晶体-----内部组成粒子(原子、离子或原子团)在微观上作有规则的周期性重复排列构成的固体。 晶体结构——晶体结构即晶体的微观结构,是指晶体中实际质点(原子、离子或分子)的具体排列情况。金属及合金在大多数情况下都以结晶状态使用。晶体结构是决定固态金属的物理、化学和力学性能的基本因素之一。 2.晶体的通性------所有晶体具有的共通性质,如自限性、最小内能性、锐熔性、均匀性和各向异性、对称性、解理性等。 3.单晶体和多晶体-----单晶体的内部粒子的周期性排列贯彻始终;多晶体由许多小单晶无规堆砌而成。 4.基元、格点和空间点阵------基元是晶体结构的基本单元,格点是基元的代表点,空间点阵是晶体结构中等同点(格点)的集合,其类型代表等同点的排列方式。 倒易点阵——是由被称为倒易点或倒易点的点所构成的一种点阵,它也是描述晶体结构的一种几何方法,它和空间点阵具有倒易关系。倒易点阵中的一倒易点对应着空间点阵中一组晶面间距相等的点格平面。 5.原胞、WS原胞-----在晶体结构中只考虑周期性时所选取的最小重复单元称为原胞;WS原胞即Wigner-Seitz原胞,是一种对称性原胞。 6.晶胞-----在晶体结构中不仅考虑周期性,同时能反映晶体对称性时所选取的最小重复单元称为晶胞。 7.原胞基矢和轴矢----原胞基矢是原胞中相交于一点的三个独立方向的最小重复矢量;晶胞基矢是晶胞中相交于一点的三个独立方向的最小重复矢量,通常以晶胞基矢构成晶体坐标系。 8.布喇菲格子(单式格子)和复式格子------晶体结构中全同原子构成的晶格称为布喇菲格子或单式格子,由两种或两种以上的原子构成的晶格称为复式格子。 9.简单格子和复杂格子(有心化格子)------一个晶胞只含一个格点则称为简单格子,此时格点位于晶胞的八个顶角处;晶胞中含不只一个格点时称为复杂格子,其格点除了位于晶胞的八个顶角处外,还可以位于晶胞的体心(体心格子)、一对面的中心(底心格子)和所有面的中心(面心格子)。 10.密堆积和配位数-----晶体组成原子视为等径原子时所采取的最紧密堆积方式称为密堆积,晶体中只有六角密积与立方密积两种密堆积方式。晶体中每个原子周围的最近邻原子数称为配位数。由于晶格周期性限制,晶体中的配位数只能取:12,8,6、4、3(二维)和2(一维)。 11.晶列、晶向(指数)和等效晶列-----晶列是晶体结构中包括无数格点的直线,晶列上格点周期性重复排列,相互平行的晶列上格点排列周期相同,一簇相互平行的晶列可将晶体中所有格点包括无遗;晶向指晶列的方向,晶向指数是晶列的方向余旋的互质整数比,表为[uvw];等效晶列是晶体结构中由对称性相联系的一组晶列,表为。 12.晶面、晶面指数和等效晶面----晶面是晶体结构中包括无数格点的平面,相互平行的晶面的面间距相等,一簇相互平行的晶面可将晶体中所有格点包括无遗;晶面指数是晶面法线方向的方向余旋的互质整数比,表为(hkl);等效晶面是晶体结构中由对称性相联系的一组晶面,表为{hkl}。密勒指数特指晶胞坐标系中的晶面指数。 13.晶体衍射----晶体的组成粒子呈周期性规则排列,晶格周期和X-射线波长同数量级,因此光入射到晶体上会产生衍射现象,称为X-射线晶体衍射。 14.劳厄方程和布拉格公式----晶体衍射时产生衍射极大的条件。劳厄将晶体X-射线衍射看作是晶体中原子核外的电子与入射X-射线的相互作用,而布拉格父子则将晶体X-射线看作是晶面对X-射线的选择性反射,分别得到衍射加强条件为劳厄方程和布拉格公式,两者其实是

固体物理学》概念和习题 答案

《固体物理学》概念和习 题答案 The document was prepared on January 2, 2021

《固体物理学》概念和习题固体物理基本概念和思考题: 1.给出原胞的定义。 答:最小平行单元。 2.给出维格纳-赛茨原胞的定义。 答:以一个格点为原点,作原点与其它格点连接的中垂面(或中垂线),由这些中垂面(或中垂线)所围成的最小体积(或面积)即是维格纳-赛茨原胞。 3.二维布喇菲点阵类型和三维布喇菲点阵类型。 4. 请描述七大晶系的基本对称性。 5. 请给出密勒指数的定义。 6. 典型的晶体结构(简单或复式格子,原胞,基矢,基元坐标)。 7. 给出三维、二维晶格倒易点阵的定义。 8. 请给出晶体衍射的布喇格定律。 9. 给出布里渊区的定义。 10. 晶体的解理面是面指数低的晶面还是指数高的晶面为什么 11. 写出晶体衍射的结构因子。 12. 请描述离子晶体、共价晶体、金属晶体、分子晶体的结合力形式。 13. 写出分子晶体的雷纳德-琼斯势表达式,并简述各项的来源。 14. 请写出晶格振动的波恩-卡曼边界条件。 15. 请给出晶体弹性波中光学支、声学支的数目与晶体原胞中基元原子数目之间的关系以及光学支、声学支各自的振动特点。(晶体含N个原胞,每个原胞含p个原子,问该晶体晶格振动谱中有多少个光学支、多少个声学支振动模式)

16. 给出声子的定义。 17. 请描述金属、绝缘体热容随温度的变化特点。 18. 在晶体热容的计算中,爱因斯坦和德拜分别做了哪些基本假设。 19. 简述晶体热膨胀的原因。 20. 请描述晶体中声子碰撞的正规过程和倒逆过程。 21. 分别写出晶体中声子和电子分别服从哪种统计分布(给出具体表达式) 22. 请给出费米面、费米能量、费米波矢、费米温度、费米速度的定义。 23. 写出金属的电导率公式。 24. 给出魏德曼-夫兰兹定律。 25. 简述能隙的起因。 26. 请简述晶体周期势场中描述电子运动的布洛赫定律。 27. 请给出在一级近似下,布里渊区边界能隙的大小与相应周期势场的傅立叶分量之间的关系。 28. 给出空穴概念。 29. 请写出描述晶体中电子和空穴运动的朗之万(Langevin)方程。 30. 描述金属、半导体、绝缘体电阻随温度的变化趋势。 31. 解释直接能隙和间接能隙晶体。 32. 请说明本征半导体与掺杂半导体的区别。 33. 请解释晶体中电子的有效质量的物理意义。 34. 给出半导体的电导率。 35. 说明半导体的霍尔效应与那些量有关。 36. 请解释德哈斯-范阿尔芬效应。

传播学重点理论

传播学的主要流派 一.法兰克福学派 法兰克福学派是欧洲批判学派的理论渊源之一,是马克思主义与弗洛伊德理论的一种理智结合。1932年成立于德国,代表人物有马克思.霍克海默,西奥多.w.阿多诺等。这一学派从马克主义理论出发,从哲学和社会学的角度研究和批判现代资本主义社会中的文化危机和现代西方文明。德国法西斯势力上台后,社会研究所迁至美国。因此,法兰克福学派最终对美国的社会研究形成了直接的影响。二战后又迁回法兰克福,成为欧洲新马克思主义和新左翼运动的研究据点。 1)法兰克福学派基本学说的形成: 1.批判实证主义,声称社会科学是一种虚伪意识 2.批判马克思主义,因为它没有完全摆脱实证主义 3.批判社会,因为社会具有引导个体对其状况采取虚假接受的态度的非理 性因素 在最近几十年中,法兰克福大学的社会研究所的思想影响逐渐暗淡。随着早先一批法兰克福学派的学者的退休和去世,批判理论的精神力量延伸开来,吸引不同国家的众多学者。 二.芝加哥学派 20世纪起一二十年代,芝加哥大学的社会学家开始研究城市,移民,犯罪等一系列偏离常规的亚文化。 1)芝加哥学派对于传播理论与研究的影响: 1.芝加哥学派的学者构建了一个以人类传播为中心的人格社会化的理论体系 2.认为大众传播是美国民主社会面临各种城市问题而能继续生存下去的一个可 能手段 3.芝加哥学派构筑了后来一媒体效果为重点的大众传播的研究模型 2)代表人物: 1.杜威:实证主义倡导者,后出于愤怒离开芝加哥大学前往哥伦比亚任教 2.帕克:最能代表芝加哥学派的学者,大众传播的第一个大学研究者 3)芝加哥学派为何衰落?哥伦比亚学派为何兴起? 1.它的博士生离开,到其他大学教书,造就了它的竞争者 2.芝加哥社会学系的教师不和,偏离了学术工作 3.社会领域本身发生了变化 4.诸如M.韦伯等欧洲学者来到美国 5.1935,职业社会学家的反叛结束了芝加哥学派对于主导性的社会杂志和专业 协会总部的垄断控制 三.哥伦比亚学派 产生于哥伦比亚大学的应用社会研究所。在美国旧的社会学中心舞台上,芝加哥学派衰落而哥伦比亚学派兴起了。应用社会研究所是迄今为止最有影响的形成定量研究方法的研究机构。它还是大众传播研究的诞生地。 应用社会研究所的鼎盛时期出现在20世纪40年代末期直至60年代中期,在这一期间,拉扎斯菲尔德带领研究者对人们在选举中如何决定投票给谁的问题研究,首次提出了意见领袖等观点。哥伦比亚大学应用社会研究所的社会科学家在40年代也开始关注媒介对个人的直接效果,以及这些效果可能给民主进程带来的得失。

初中物理概念汇总资料

初中物理概念汇总 物理量名称物理量符号单位名称单位符号公式 质量m 千克kg m=ρv 温度t 摄氏度°C 速度v 米/秒m/s v=s/t 密度p 千克/米3 kg/m3 p=m/v 力(重力)F 牛顿(牛)N G=mg 压强P 帕斯卡(帕)Pa P=F/S 功W 焦耳(焦)J W=Fs 功率P 瓦特(瓦)w P=W/t 电流I 安培(安) A I=U/R 电压U 伏特(伏)V U=IR 电阻R 欧姆(欧)Ω R=U/I 电功W 焦耳(焦)J W=UI t 电功率P 瓦特(瓦)w P=W/t=UI 热量Q 焦耳(焦)J Q=cm△t 比热c 焦每千克摄氏度J/(kg?°C) c=Q/m△t 常用数据: 真空中光速3×10^8米/秒 g 9.8牛顿/千克 15°C空气中声速340米/秒 安全电压不高于36伏 ------------------------------------------- 初中物理基本概念 一、测量 ⒈长度L:主单位:米;测量工具:刻度尺;测量时要估读到最小刻度的下一位;光年是长度单位。 ⒉时间t:主单位:秒;测量工具:钟表;实验室中用停表。1时=3600秒,1秒=1000毫秒。 ⒊质量m:物体中所含物质的多少叫质量。主单位:千克;测量工具:秤;实验室用托盘天平。 二、机械运动 ⒈机械运动:物体位置发生变化的运动。

参照物:判断一个物体运动必须选取另一个物体作标准,这个被选作标准的物体叫参照物。 ⒉匀速直线运动: ①比较运动快慢的两种方法:a 比较在相等时间里通过的路程。 b 比较通过相等路程所需的时间。 ②公式:v=s/t ③单位换算:1米/秒=3.6千米/时。 三、力 ⒈力F:力是物体对物体的作用。物体间力的作用总是相互的。 力的单位:牛顿(N)。测量力的仪器:测力器;实验室使用弹簧秤。 力的作用效果:使物体发生形变或使物体的运动状态发生改变。 物体运动状态改变是指物体的速度大小或运动方向改变。 ⒉力的三要素:力的大小、方向、作用点叫做力的三要素。 力的图示,要作标度;力的示意图,不作标度。 ⒊重力G:由于地球吸引而使物体受到的力。方向:竖直向下。 重力和质量关系:G=mg m=G/g g=9.8N/kg。读法:9.8牛每千克,表示质量为1千克物体所受重力为9.8牛。重心:重力的作用点叫做物体的重心。规则物体的重心在物体的几何中心。 ⒋二力平衡条件:作用在同一物体;两力大小相等;方向相反。 物体在二力平衡下,可以静止,也可以作匀速直线运动。 物体的平衡状态是指物体处于静止或匀速直线运动状态。处于平衡状态的物体所受外力的合力为零。 ⒌同一直线二力合成:方向相同:合力F=F1+F2;合力方向与F1、F2方向相同;方向相反:合力F=F1-F2;合力方向与大的力方向相同。 ⒍相同条件下,滚动摩擦力比滑动摩擦力小得多。 滑动摩擦力与正压力,接触面材料性质和粗糙程度有关。【滑动摩擦、滚动摩擦、静摩擦】 7.牛顿第一定律也称为惯性定律其内容是:一切物体在不受外力作用时,总保持静止或匀速直线运动状态。 惯性:物体具有保持原来的静止或匀速直线运动状态的性质叫做惯性。 四、密度 ⒈密度ρ:某种物质单位体积的质量,密度是物质的一种特性。 公式:m=ρV 国际单位:千克/米3,常用单位:克/厘米3, 单位换算:1克/厘米3=1×103千克/米3;ρ水=1×103千克/米3; 读法:103千克每立方米,表示1立方米水的质量为103千克。 ⒉密度测定:用托盘天平测质量,量筒测固体或液体的体积。 面积单位换算:

怎样讲解物理概念

怎样讲解物理概念 在中学物理教学中,使学生形成概念、掌握规律,并在此过程中发展认识能力是教学的核心问题,其中物理概念的教学又是整个物理教学的基础。因此,物理概念的教学是中学物理教师最重要的基本功之一。本讲主要阐述物理概念教学中的特点和过程。 一、物理概念教学的重要性 物理概念是一类物理现象和物理过程的共同性质和本质特征在人们头脑中的反映,是对物理现象和物理过程的抽象化和概括化的思维形式。一方面,物理概念反映着人类对物理世界漫长而艰难的智力活动历程,是人类智慧的结晶;另一方面,它又使人们在纷繁复杂的物理世界中,把握了事物的本质特征,成为物理思维的基本单位和有力工具。借助于这种简约、概括的思维形式,人们找到了支配复杂的物理世界的简单规律,建立了假说、模型和测量方法体系,从而筑起了规模宏大的物理学理论大厦。因而,在某种意义上说,物理学基本概念是物理学理论的根基和精髓,是物理学大厦的砖石。没有精确、严密的物理概念,也就没有定量的物理学。因此,在物理教学中,物理概念的教学是首要的任务,是进一步进行物理规律、物理理论教学的基础。如果学生没有建立起一系列清晰、准确的物理概念,不能理解特定的词所代表的物理概念的含义,就失去了进一步学习的基础。可见,建立起科学的物理概念是物理教学成功的关键。 二、物理概念教学的复杂性 物理概念教学的基本要求是:①使学生建立牢固、清晰的物理概念。即要求学生明确概念的内涵、外延,弄清概念之间的区别与联系,并能熟练、准确地运用概念。②在概念教学过程中,使学生学会科学的思维方法,形成良好的思维习惯,从而发展智力,培养能力。但是,由于教学过程是由教师、学生、教材等组成的复杂的系统过程,在物理概念教学过程中,系统中诸要素相互作用、相互影响,使得物理概念教学过程十分复杂,给物理概念教学任务的完成造成了许多困难。下面分别从辩证唯物主义认识论、学习心理和教学过程的实际等不同角度,对这一问题加以分析。 (一)从辩证唯物主义认识论角度分析 辩证唯物主义认识论认为,任何事物都是相互联系的。在形形色色的联系中,有本质的、必然的联系,也有非本质的、偶然的联系。非本质的联系常常是丰富多彩的,而本质的联系往往是单一的、内在的。内在的东西往往不能直接感知,容易被纷繁复杂的现象所掩盖,使之变得模糊不清,造成人们掌握事物本质的困难。当主体与环境发生作用时,客观事物和过程总是作为一个综合性刺激物出现,且在很多情况下,本质特征的刺激并不是最强烈的,而非本质特征的刺激不仅是形形色色的,而且还是很强烈的,在这种情况下,非本质特征的强刺激往往掩盖了本质特征的弱刺激,导致人们形成片面的,甚至是错误的认识。 例如,在“用力推桌子则桌子移动,停止用力则桌子也停止运动”这类现象中,强烈的表面联系的刺激��“力使物体运动”掩盖了“物体具有保持原有运动状态的属性”和“力是改变物体运动状态的原因”这些本质联系的刺激,在“高速行驶的汽车比慢行的汽车难刹车”这一现象中,“速度大则惯性大”这种非本质联系的刺激掩盖了“惯性是物体的客观属性,与速度无关”这种本质特征的弱刺激。正是由于物理现象的复杂性和物理概念的深刻性、抽象性,在人类对物理世界的探索历程中,物理概念的形成往往要经历漫长而艰难的过程。 (二)从学习心理的角度分析 由学习心理可知,学习可分为两大类,一类是意义学习,一类是机械学习。当一些词、符号出现时,学生头脑中唤起了其代表的认知内容,这些符号对学生而言获得了心理意义。反之若未能理解符号代表的意义,而只是强记内容的学习是机械学习。

初二物理所有知识点汇总情况

初二物理所有知识点汇总 第一章:走进物理世界 1、物理学史研究光、热、力、声、电等形形色色物理现象的规律和物质结构的一门科学 2、观察和实验是获取物理知识的重要来源 3、长度测量的工具是刻度尺,长度的国际基本单位是米,符号是m;常用单位还有千米(km)、分米(dm)、厘米(cm)、毫米(mm)、微米(μm)、纳米(nm)等。它们之间的换算关系是 1km=1 000m lm=l0dm ldm=l0 lcm=l0mm 1mm=1 000μn lμm=1 000nm 4、长度测量结果的记录包括准确值、估计值和单位。 5、误差:测量值和真实值之间的差别叫误差。误差产生的原因: ①与测量的人有关;②与测量的工具有关。任何测量结果都有误差,误差只能尽量减小,不能绝对避免;但错误是可以避免的。 减小误差的方法:①选用更精密的测量工具;②采用更合理的测量方法;③多次测量取平均值。 6、测量时间的工具是秒表,时间的国际基本单位是秒,符号是s;常用的单位还有小时(h)、分(min)等。它们之间的换算关系是 1h=60min lmin=60s 7、科学探究的主要过程是:提出问题、猜想与假设、指定计划与设计实验、进行实验与收集数据、分析与论证、评估、交流与合作第二章:声音与环境

1、产生:声音是由物体的振动产生的,振动停止,声音就停止;振动发声的物体叫声源 2、传播:声音的传播需要介质,真空不能传播声音。声音在介质中是以波的形式传播;在不同的介质中传播速度不同,一般在固体中传播最快,气体中传播最慢。15℃的空气中声音传播速度为340m/s。 3、声音的三个特性: (1)音调:人耳感觉到声音的高低叫音调;音调的高低跟发声体振动的频率有关,频率越高,音调越高。 (2)响度:人耳感觉到的声音的强弱,响度的大小跟发声体振动的幅度有关;振幅越大,响度越大;响度还跟距离发声体的远近有关。 (3)音色:又叫音品,不同的发声体发出声音的音色不同。 4、频率的高低决定音调的高低;振幅的大小决定声音的响度。频率的单位是赫兹,符号是Hz,人能感受到的声音频率范围是 20Hz~20000Hz。人们把低于20Hz的声音叫次声,高于20000Hz的声音叫超声。超声的应用有:超声波粉碎结石、声纳探测潜艇、鱼群,B超检查内脏器官。 5、乐音与噪声: 乐音:悦耳动听、使人愉快的声音;是物体做规则振动时发出的声音。 噪声:使人们感到厌烦、有害身心健康的声音;是物体做无规则振动时发出的声音。人们用分贝来划分dB声音的强弱的等级。

固体物理答案

(1) 共价键结合的特点?共价结合为什么有“饱和性”和“方向性”? 饱和性和方向性 饱和性:由于共价键只能由为配对的电子形成,故一个原子能与其他原子形成共价键的数目是有限制的。N<4,有n 个共价键;n>=4,有(8-n )个共价键。其中n 为电子数目。方向性:一个院子与其他原子形成的各个共价键之间有确定的相对取向。 (2) 如何理解电负性可用电离能加亲和能来表征? 电离能:使原子失去一个电子所必须的能量其中A 为第一电离能,电离能可表征原子对价电子束缚的强弱;亲和势能:中性原子获得电子成为-1价离子时放出的能量,其中B 为释放的能量,也可以表明原子束缚价电子的能力,而电负性是用来表示原子得失电子能力的物理量。故电负性可用电离能加亲和势能来表征。 (3) 引入玻恩-卡门条件的理由是什么? 在求解原子运动方程是,将一维单原子晶格看做无限长来处理的。这样所有的原子的位置都是等价的,每个原子的振动形式都是一样的。而实际的晶体都是有限的,形成的键不是无穷长的,这样的链两头原子就不能用中间的原子的运动方程来描述。波恩—卡门条件解决上述困难。 (4) 温度一定,一个光学波的声子数目多呢,还是一个声学波的声子数目多? 对同一振动模式,温度高时的声子数目多呢,还是温度低的声子数目多? 温度一定,一个声学波的声子数目多。 对于同一个振动模式,温度高的声子数目多。 (5) 长声学格波能否导致离子晶体的宏观极化? 不能。长声学波代表的是原胞的运动,正负离子相对位移为零。 (6)晶格比热理论中德拜(Debye )模型在低温下与实验符合的很好,物理原因 是什么?爱因斯坦模型在低温下与实验存在偏差的根源是什么? 在甚低温下,不仅光学波得不到激发,而且声子能量较大的短声学波也未被激发,得到激发的只是声子能量较小的长声学格波。长声学格波即弹性波。德拜模型只考虑弹性波对热容德贡献。因此,在甚低温下,德拜模型与事实相符,自然与实验相符。 爱因斯坦模型过于简单,假设晶体中各原子都以相同的频率做振动,忽略了各格波对热容贡献的差异,按照爱因斯坦温度的定义可估计出爱因斯坦频率为光学支格波。在低温主要对热容贡献的是长声学支格波。 (7)试解释在晶体中的电子等效为经典粒子时,它的有效质量为什么有正、有负、无穷大值?带顶和带底的电子与晶格的作用各有什么特点? m F m m l +=* m F m v F m v F l ?+?=??* ])()[(1 ])()[(1电子给予晶格德外力给予电子德晶格给予电子德外力给予电子德-=+p p m p p m m p ????=?* 当电子从外场获得的动量大于电子传递给晶格的动量时,有效质量为正; 当电子从外场获得的动量小于电子传递给晶格的动量时,有效质量为负; 当电子从外场获得的动量等于电子传递给晶格的动量时,有效质量为无穷。 (8)为什么温度升高,费米能级反而降低?体积膨胀时,费米能级的变化? 在温度升高时,费米面以内能量离约范围的能级上的电子被激发到之上约范围的能级。故费米球体积V 增大,又电子总数N 不变,则电子浓度减小,又,则费米半径变小,费米能级也减小。当体积膨胀时,V 增大,同理费米能级减小。 (9)什么是p 型、N 型半导体?试用能带结构解释。

初二物理上册概念整理复习汇总

初二物理上册概念整理复习汇总 初二物理上册概念整理复习汇总: (一)序言 1.测量的目的:为了准确的进行定量的比较。测量后记录数值和单位。 2.长度的测量是最基本的测量,最常用的工具是刻度尺。 3.国际单位制中长度的主单位是米,一拳的宽度大约为10厘米,大拇指的宽度约为1厘米,一步大约长为1米。 4. 质量:物体所含物质的多少叫质量。质量的符号为m。 5. 质量国际单位是:千克。物体的质量不随形状,温度,状态和位置而改变。是物体的物理属性。一只鸡蛋的质量大约为50克。中学生50千克。 6. 质量测量工具实验室常用托盘天平测质量。 7. 天平的正确使用:(1)把天平放在水平桌面上,把游码放在标尺左端的零刻度处;(2)调节平衡螺母,使指针指在分度盘的中央处,这时天平水平平衡;(3)把物体放在左盘里,用镊子向右盘加减砝码并调节游码在标尺上的位置,直到横梁恢复水平;(4)这时物体的质量等于右盘中砝码总质量加上游码所对的示数。 8.时间本身的符号为t。在国际单位中时间的单位是秒。1h= 60 min=3600 s. 9.打点计时器是测量时间的工具。每两点之间的时间间隔为

0.02秒。 (二)声 1. 声音的发生:由物体的振动而产生。 2. 声音的传播:声音靠介质传播。真空不能传声。通常我们听到的声音是靠空气传来的。 3. 声音在固体传播比液体快,而在液体传播又比气体快。 4. 声音的三个特征:响度、音调、音色。(1)音调:是指声音的高低,它与发声体的振动频率、发声体的结构有关。(2)响度:是指人耳感受到的声音的强弱程度,跟发声体的振动幅度、离发声体的远近有关。(3)音色:是指声音的品质。与发声体的结构有关。不同乐器、不同人之间他们的音色不同。 5. 减弱噪声的途径:(1)在声源减弱;(2)在传播过程中减弱;(3)在人耳处减弱。 (三)光 1. 光的直线传播:小孔成像、影子、看不见不透明物体后面的物体、日食、月食等现象可证明,光在同种均匀介质中是沿直线传播。 2. 最大,是m/s,而在空气中传播速度也认为是8。 8 3. 光的反射定律:反射光线与入射光线、反射光线与入射光线分居法 线两侧,反射角等于入射角。(注:光路是可逆的)。漫反射和镜面反射一样遵循光的反射定律。 4.平面镜成像特点:(1)(3)像与物体的连线与镜面垂直(4)平面镜成的是正立的虚像。

初中物理概念题大全(含答案)

初中物理概念八年级(上) 1.在国际单位制中,长度的单位是米。测量长度的工具是刻度尺。 游标卡尺和螺旋测微器是测量的工具。测量结果由数值和单位组成。 2.使用刻度尺前,首先要观察零刻度线、量程、分度值。 3.使用刻度尺时,要把刻度尺与被测物体平行,读数时视线要正对刻度线,读数时要读到分度值下一位。 4.在国际单位制中,时间的基本单位是秒,测量时间的工具是停表/秒表。5.测量值和真实值的差异叫误差。误差可以减小,但不能消除 .。 6.在物理学中把物体位置随时间的变化叫机械运动,判断一个物体是运动还是静止,取决于所选的参照物,这是运动和静止的相对性。比较物体运动快慢的方法有:相同时间比较路程、相同路程比较时间、比较速度的大小。 7.在物理学中,把路程与时间之比叫速度。 8.速度是表示物体运动快慢的物理量;它等于运动物体在单位时间内通过的路程。.在匀速直线运动中,速度公式为v=S/t ,在国际单位制中,速度单位是m/s 。1m/s= 3.6 km/h。 9.我们把物体沿着直线且速度不变的运动叫匀速运动。 10.测量平均速度的原理是v=S/t ;需要的测量工具是刻度尺和秒表。11.声音由物体振动产生,正在发声的物体叫声源;声音的传播需要介质;声能在气体、液体、固体传播,在不同介质声速不同,常温下空气中声速为340 m/s。 12.回声是声音的反射现象,声音的三要素是音调、响度、音色。13.发声体振动的快慢叫音调,音调与频率有关; 声音的强弱叫响度,响度与振幅 和距离有关。不同的物体发出声音的音色不同,我们能闻其声知其人是根据声音的音

色来辨别。 14.物理学中把每秒振动的次数叫频率,频率的单位Hz 。 15.人的听觉范围是20 Hz至20000 Hz。高于20000Hz的声叫超声波;低于20Hz 的声叫次声波。 16.从物理学的角度看,噪声来源于发声体做无规则振动。人们以分贝为单位来表示声音的强弱。减弱噪声可以从以下三条途径进行:一是防止噪声产生;二是阻断噪声传播;三是防止噪声进入耳朵。 17.声音可以传递信息和能量。 18.我们把物体的冷热程度叫温度,测量温度的工具是温度计。 19.温度计是根据液体热胀冷缩的规律做成的。温度计的℃表示采用的是摄氏温度,它把一个大气压下冰水混合物的温度规定为0℃,把沸水规定为100℃.。 20.温度计的使用:温度计的玻璃泡应该全部浸入被测液体中,不要碰到容器底或容器壁。读数时等示数稳定再读数。 21.物质从固态变成液态叫熔化,熔化要吸热;物质从液态变成固态叫凝固,凝固要放热。晶体熔化时的温度 .叫熔点。 22.固体分晶体和非晶体两种。晶体和非晶体的区别是:晶体有固定熔点,在熔化过程中温度不变;非晶体无固定熔点,在熔化过程中温度改变。 23.物质从液态变为气态叫汽化,汽化有沸腾和蒸发两种方式,汽化要吸热。24.蒸发是液体在任何温度都能发生、并且只在液体表面发生的汽化现象。沸腾是液体在确定温度、发生在液体内部和表面同时发生的剧烈的汽化现象。电冰箱是利用制冷剂在冰箱的冷藏室里汽化、吸热,在冷凝室里液化、放热的原理工作的。 25.物质从气态变为液态叫液化,液化有降低温度和压缩体积两种方式,液化要放

(完整版)固体物理学基础概念

第一章晶体结构 晶体-----内部组成粒子(原子、离子或原子团)在微观上作有规则的周期性重复排列构成的固体。 晶体的通性------所有晶体具有的共通性质,如自限性、最小内能性、锐熔性、均匀性和各向异性、对称性、解理性等。 单晶体和多晶体-----单晶体的内部粒子的周期性排列贯彻始终;多晶体由许多小单晶无规堆砌而成。 基元、格点和空间点阵------基元是晶体结构的基本单元,格点是基元的代表点,空间点阵是晶体结构中等同点(格点)的集合,其类型代表等同点的排列方式。原胞、WS原胞-----在晶体结构中只考虑周期性时所选取的最小重复单元称为原胞;WS原胞即Wigner-Seitz原胞,是一种对称性原胞。 晶胞-----在晶体结构中不仅考虑周期性,同时能反映晶体对称性时所选取的最小重复单元称为晶胞。 原胞基矢和轴矢----原胞基矢是原胞中相交于一点的三个独立方向的最小重复矢量;晶胞基矢是晶胞中相交于一点的三个独立方向的最小重复矢量,通常以晶胞基矢构成晶体坐标系。 布喇菲格子(单式格子)和复式格子------晶体结构中全同原子构成的晶格称为布喇菲格子或单式格子,由两种或两种以上的原子构成的晶格称为复式格子。简单格子和复杂格子(有心化格子)------一个晶胞只含一个格点则称为简单格子,此时格点位于晶胞的八个顶角处;晶胞中含不只一个格点时称为复杂格子,其格点除了位于晶胞的八个顶角处外,还可以位于晶胞的体心(体心格子)、一对面的中心(底心格子)和所有面的中心(面心格子)。 密堆积和配位数-----晶体组成原子视为等径原子时所采取的最紧密堆积方式称为密堆积,晶体中只有六角密积与立方密积两种密堆积方式。晶体中每个原子周围的最近邻原子数称为配位数。由于晶格周期性限制,晶体中的配位数只能取:12,8,6、4、3(二维)和2(一维)。 晶列、晶向(指数)和等效晶列-----晶列是晶体结构中包括无数格点的直线,

#传播学必考的几个理论36695

沉默的螺旋理论 1、提出 2、观点 3、评价 1、提出 该理论是德国传播学者诺利—纽曼于1972年在其著作《重归大众传播的强力观》中首次提出的,1980年在《沉默的螺旋:舆论——我们社会的皮肤》中给予全面的概括。她认为:大众传播媒介在影响公众意见的方面有强大的效果,她把舆论生成中起重要作用的因素称为"沉默的螺旋" 2、观点 (1)个人意见的表明是一个社会心理过程,个人在表明观点前要对周围的意见环境进行观察,当发现自己属于"多数"或"优势"意见时,便倾向于积极大胆地表明自己的观点,当发现自己属于"少数"或"劣势"意见时。一般就会屈于环境压力而转向"沉默"或者附和。 (2)意见的表明和"沉默"的扩散是一个螺旋式的社会传播过程,一方的沉默造成另一方的意见增势,受群体压力而改变态度的人越来越多,使得优势意见越来越强,迫使更多持不同意见的人继续保持沉默或者既而转变态度追随支配意见。 (3)媒介通过营造意见环境来制约影响舆论,大众传媒以三种方式影响沉默的螺旋:a.对何者是主导意见形成印象 b.对何种意见正在增强形成印象 c.对何种意见可以公开发表而不会遭到孤立形成印象 对人们确定多数人的意见是什么,大众传媒起重要的作用。 3、评价 意义: 1)为传播学的效果研究提供了新的研究视角,认为舆论的形成是大众传播、人际传播、人们对意见环境的认知心理三者相互作用的结果 2)强调社会心理机制在舆论形成种的作用,是一个突破。 3)强调大众传播对舆论的强大影响,并指出这种影响来自传媒营造的"意见环境" 局限: 1)其理论前提"个人对社会孤立的恐惧",以及由这种"恐惧"所产生的对多数或者有时意见的趋同行为,仍有待于推敲。 2)对社会孤立恐惧,对优势意见趋同行为的动机不应该是一个绝对的常量,而是一个受条件制约的变量。 3)"多数意见"的压力强弱受社会传统、文化以及社会发展阶段等因素的制约,对于不同性质、类型的问题。多数意见压力不同。 4)过于强调"多数"或者"优势"意见的压力,忽略了舆论的变化过程何少数派的作用。实际上,少数派的"中坚分子"往往可以对多数派产生影响。 知识沟假说 1、背景 2、提出 3、基本观点 4、导致"知识沟"原因分析 5、发展与改进 6、现实意义 1、背景

人教版初中物理知识点汇总

初中物理知识点汇总 第一章 声现象知识归纳 1 . 声音的发生:由物体的振动而产生。振动停止,发声也停止。 2.声音的传播:声音靠介质传播。真空不能传声。通常我们听到的声音是靠空气传来的。 3.声速:在空气中传播速度是:340米/秒。声音在固体传播比液体快,而在液体传播又比空气体快。 4.利用回声可测距离:vt 2 1 S 5.乐音的三个特征:音调、响度、音色。(1)音调:是指声音的高低,它与发声体的频率有关系。(2)响度:是指声音的大小,跟发声体的振幅、声源与听者的距离有关系。 6.减弱噪声的途径:(1)在声源处减弱;(2)在传播过程中减弱;(3)在人耳处减弱。 7.可听声:频率在20Hz ~20000Hz 之间的声波:超声波:频率高于20000Hz 的声波;次声波:频率低于20Hz 的声波。 8. 超声波特点:方向性好、穿透能力强、声能较集中。具体应用有:声呐、B 超、超声波速度测定器、超声波清洗器、超声波焊接器等。 9.次声波的特点:可以传播很远,很容易绕过障碍物,而且无孔不入。一定强度的次声波对人体会造成危害,甚至毁坏机械建筑等。它主要产生于自然界中的火山爆发、海啸地震等,另外人类制造的火箭发射、飞机飞行、火车汽车的奔驰、核爆炸等也能产生次声波。 第二章 光现象知识归纳 1. 光源:自身能够发光的物体叫光源。 2. 太阳光是由红、橙、黄、绿、蓝、靛、紫组成的。 3.光的三原色是:红、绿、蓝;颜料的三原色是:红、黄、蓝。 4.不可见光包括有:红外线和紫外线。特点:红外线能使被照射的物体发热,具有热效应(如太阳的热就是以红外线传送到地球上的);紫外线最显著的性质是能使荧光物质发光,另外还可以灭菌 。 1. 光的直线传播:光在均匀介质中是沿直线传播。 2.光在真空中传播速度最大,是3×108米/秒,而在空气中传播速度也认为是3×108米/秒。 3.我们能看到不发光的物体是因为这些物体反射的光射入了我们的眼睛。

黄昆版固体物理学课后答案解析答案

《固体物理学》习题解答 黄昆 原著 韩汝琦改编 (陈志远解答,仅供参考) 第一章 晶体结构 1.1、 解:实验表明,很多元素的原子或离子都具有或接近于球形对称结构。因此,可以把这些原子或离子构成的晶体看作是很多刚性球紧密堆积而成。这样,一个单原子的晶体原胞就可以看作是相同的小球按点阵排列堆积起来的。它的空间利用率就是这个晶体原胞所包含的点的数目n 和小球体积V 所得到的小球总体积nV 与晶体原胞体积Vc 之比,即:晶体原胞的空间利用率, Vc nV x = (1)对于简立方结构:(见教材P2图1-1) a=2r , V= 3 r 3 4π,Vc=a 3,n=1 ∴52.06r 8r 34a r 34x 3 333=π=π=π= (2)对于体心立方:晶胞的体对角线BG=x 3 3 4a r 4a 3=?= n=2, Vc=a 3 ∴68.083)r 3 34(r 342a r 342x 3 3 33≈π=π?=π?= (3)对于面心立方:晶胞面对角线BC=r 22a ,r 4a 2=?= n=4,Vc=a 3 74.062) r 22(r 344a r 344x 3 3 33≈π=π?=π?= (4)对于六角密排:a=2r 晶胞面积:S=62 60sin a a 6S ABO ??=??=2 a 233 晶胞的体积:V=332r 224a 23a 3 8 a 233C S ==?= ? n=1232 1 26112+?+? =6个 74.062r 224r 346x 3 3 ≈π=π?= (5)对于金刚石结构,晶胞的体对角线BG=3 r 8a r 24a 3= ??= n=8, Vc=a 3

相关文档
相关文档 最新文档