文档库 最新最全的文档下载
当前位置:文档库 › 血糖升高指数

血糖升高指数

血糖升高指数
血糖升高指数

Artificial sweeteners –a review

Sanchari Chattopadhyay &Utpal Raychaudhuri &Runu Chakraborty

#Association of Food Scientists &Technologists (India)2011

Abstract Now a days sugar free food are very much popular because of their less calorie content.So food industry uses various artificial sweeteners which are low in calorie content instead of high calorie sugar.U.S.Food and Drug Administration has approved aspartame,acesulfame-k,neotame,cyclamate and alitame for use as per acceptable daily intake (ADI)value.But till date,breakdown products of these sweeteners have controversial health and metabolic effects.On the other hand,rare sugars are monosaccharides and have no known health effects because it does not metabolize in our body,but shows same sweet taste and bulk property as sugar.Rare sugars have no such ADI value and are mainly produced by using bioreactor and so inspite of high demand,rare sugars cannot be produced in the desired quantities.

Keywords D-allose .D-psicose .Low calorie sweetener .Stevia .Sugar alcohols

Introduction

Obesity is a major problem throughout the world.Surveys consistently show that people are concerned by weight and its health related implications,and for that most individuals are making a concerted effort to either maintain or lose weight.(Serdula et al.1999;Scott et al.2006).

Today the major goal of diabetes management is control of blood glucose.So the consumers have a free choice of

food products.They must choose the right food to comply with dietary recommendations and at the same time the food industry can considerably contribute to this change by providing adapted food products.This led food industry to discover several forms of alternative intense sweeteners,which have made possible to offer consumer the sweet taste without the calories.

Sugar cannot simply be replaced by these type of intense sweetener because the question of bulk,quality,intensity of sweetness and physical characteristics.Due to these features,rare sugars are desirable for low calorie,as well as bulk sweetener.These sugars tend to have desirable sweetness but are not metabolized in the human body and therefore do not provide calorie intake.

Artificial sweetener

The sensory properties of food is highly influenced by the sensory properties like taste smell texture and appearance (Sorensen et al.2003).The selection and consumption of food in man play a crucial role in the regulation of human appetite and nutrient intake.A sweetener is a food additive,which mimics the effect of sugar on taste.Therefore,they are called sugar substitutes.Consumers often select those foods,which are composed of low calorie sweetener because they want the taste of sweetness without added calories.The dietary option that such product provides may be especially helpful in the management of obesity or diabetes mellitus.

One group of such sweeteners consists of substances with a very intense sweet taste and is used in small amount to replace the sweetness of a much higher amount of sugar.The sweeteners of this type currently approved for use in the United States are-Aspartame,Acesulfane-K,Neotame,

S.Chattopadhyay :U.Raychaudhuri :R.Chakraborty (*)Department of Food Technology and Biochemical Engineering,Jadavpur University,Kolkata 700032,India

e-mail:crunu@https://www.wendangku.net/doc/083820297.html,

DOI 10.1007/s13197-011-0571-1

J Food Sci Technol (April 2014)51(4):611–621Revised:7September 2011/Accepted:10October 2011/Published online:21October 2011

Saccharin,Sucralose,Cyclamate and Alitame.Table1 summarizes some information about high intensity sweet-eners(Godshall2007).

Aspartame

Aspartame(Fig.1a)was discovered in1965by James Schlatter a chemist(Mazur et al.1970).It is an artificial, non-saccharide sweetener,L-aspertyl-L phenylalanine methyl ester that is a methyl ester of the dipeptide of the amino acids aspartic acid and phenylalanine.Under strongly acidic or alkaline conditions,aspartame may generate methanol by hydrolysis.Under more severe conditions,the peptide bonds are also hydrolyzed,resulting in the free amino acids.It is slightly soluble in water,(about 3gm per100ml,pH3at room temp.).The solubility increases with higher or lower pH as well as with increased temperature.In aqueous solution the relationship between pH and stability of aspartame is a bell-shaped curve with the maximum stability at pH4.3(Mazur and Ripper1979).

This sweetener is marketed under a number of trademark names including Equal,Nutrasweet,and Candere and has a good clean sweet taste but its time-intensity profile differs from sucrose.

Synthesis

Chemical synthesis of aspartame involves the coupling of the two amino acid units having appropriate functional group protection with conventional synthetic reagents.The two major processes are known as the Z-and F-processes named after the protecting group used on the aspartyl group.Both of these processes produce someβ-coupled products together with the desiredα-aspartame.

The Z-process mainly involves the dehydration of the benzyloxycarbonyl-L-aspartic acid with acetic anhydride.The anhydride is then coupled with the methyl ester of L-phenylalanine in toluene to give a mixture of benzyloxy carbonylα-andβaspartames.The protecting groups are removed by hydrogenolysis and resulting mixture of aspartame isomer yield aspartame upon crystallization (Ager et al.1998).

The F-process involves the protection of the amino group of aspartic acid with a formyl group and concomitant dehydration to form anhydride.The anhydride is then coupled either with L-phynylalanine or its methyl ester (Hill et al.1991)and the formyl group removed by acid hydrolysis.The resultant mixture ofαandβproducts are subjected to the esterification conditions of aqueous methanol and preferentially crystallizes out from this mixture and is then neutralized to yield aspartame.

The application of biotechnology and biocatalysts towards the synthesis of the aspartame has been extensively explored.Due to the presence of its dipeptide structure many variations of reverse proteolysis that employ both kinetically and thermodynamically con-trolled approaches has been investigated with different enzymes and under various reaction condition.Two Japanese companies have reported one formation route to produce aspartame directly by incubating microorgan-isms with L-aspartic acid and methyl ester of phenyl-alanine(Ager et al.1998).

Metabolism and health aspect

Aspartame is a low calorie sweetener used to sweeten a variety of low and reduced calorie foods and beverages including low calorie tabletop sweetener as well as for use in gum,breakfast cereal and other dry products.

Aspartame provides energy of4calories per gram. Aspartame is unstable if subjected to prolong heating and therefore cannot be used in baking or cooking.It also decomposes in liquids during storage.

Table1Properties of high intensity sweeteners*

Sweetener Other Names Sweetness**Comments

Acesulfame K Ace K;Sunette;Sweet&

Safe;SweetOne

200N-sulfonyl amide structure;approved2003.

Alitame–2000Aspartame amide analog(GRAS pending since1986);limited approval in4

countries(Mexico,Australia,New Zealand,China)

Aspartame NutraSweet;Equal180–200Aspartyl-phenylalanine methyl ester;approved1981.

Cyclamate Sucaryl,Sugar Twin30–50Sulfamic acid Na or Ca salt;approved in50countries;not USA Neotame–7,000–13,000

Avg8,000

Derivative of aspartame,more stable than aspartame;approved2002 Saccharin Sweet’n’Low300N-sulfonyl amide structure;the first low-cal sweetener

Sucralose Splenda600Trichlorinated derivative of sucrose;approved1998.

**Sucrose=1(Relative to a10%sucrose solution)Different numbers indicate effect in different foods

[Source:Godshall M A(2007)]

Upon ingestion,aspartame breaks down into natural residual components,including aspartic acid,phenylalanine, methanol and further break down products including formal-dehyde,formic acid and diketopiperazine(George et al.2010; Trocho et al.1998).Each of which then metabolized just as it would be if derived from other dietary sources and are safe as consumed in normal diets.

Aspartame has been the subject of controversy regarding its safety since its initial approval by the U.S.Food and Drug Administration(FDA)in1974(Magnuson et al. 2007).

High level of the naturally occurring essential amino acid phenylalanine is a health hazard to those born with phenylketonuria(PKU)a rare inherited disease.So the phenylalanine level statement or aspartame—sweeten prod-ucts is for their benefit and has no relevance for general population.Various scientific researches concluded that the effects of aspartame are likely to be attributable to methanol or its metabolites,evidence indicating that fruits and vegeta-bles also contain high level of methanol than aspartame sweetened food and beverage do.But high intake of fruits and vegetables are associated with decrease rather than increase in cancer risk(Heber2004).Carcinogenicity studies of aspar-tame were conducted by Nalt Toxicological Programme (NTP)in2strains of transgenic mice,and it was concluded that aspartame exposure was associated with increase in cancer in either male or female mice(NTP2005).Based on government research reviews and recommendations from advisory bodies such as European Commissions Scientific Committee on Food and joint FAO/WHO expert committee on food additives,aspartame has been found to be safe for human consumption by more than ninety countries world-wide(Magnuson et al.2007).

Acesulfame—k

Acesulfame—k(Fig.1b)has been developed as sweetener by Hoechst(Clauss and Jensen1970).This high intensity sweetener is potassium salt of6-methyl-123-axathiazine-4 (3H)-one2,2-dioxide with molecular formulaC4H4KNO4S and molecular weight of201.24.It is a white crystalline powder,approximately120times sweeter than sucrose and has high water solubility(Rymon Lipinski1991).

Acesulfame—k is heat stable,so can be used in cooking and baking(Nabors2002).It may have a bitter after taste when used alone to sweeten food or beverage(Horne et al. 2002)Ace-k is often blended with other sweetener(usually sucralose or aspartame)whereby each sweetener masks the other’s after taste and exhibit a synergistic effects by which the blend is sweeter than its components.

Synthesis

Early methods for Ace-k synthesis used chlorosulfonyl or flurosulfonyl isocyanate with propyne acetone(Clauss and Jensen1970)and with other chemicals give N-chloro or N-(fluro-sulfonyle)acetoacetamide,which is then cyclized by metabolic potassium hydroxide to give Ace-k.Alternative method involves the treatment of acetoacetamide with at least two equivalents of sulfur trioxide.This results in formation of N-sulfoacetoacetamide,which is then

a.Aspartame

b. Acesulfame -K

c.Sucralose

d.Saccharin

e.Sodium Cyclamate

f.Neotame

g.Alitame

h.D-psicose

i.Xylitol

j.Tagatose

k.D-allose

Fig.1Chemical structure of low calorie Sweeteners

dehydrated by sulfur trioxide to form oxathiaazinone dioxide.Neutralization with potassium hydroxide gives Ace-k.(Clauss et al.1993).

Metabolism and health aspect

Acesulfame—k is not metabolized in the human body,thus it provides no calories and does not influence potassium intake despite its potassium content(ADA2004).In1988 USFDA approved the use of Ace-k in a variety of dry food products and in alcoholic beverages.In2003the agency approved its use as a general-purpose sweetener(USFDA 2003).One breakdown product of ace-k is acetoacetamide (George et al.2010)known to be toxic if consumed in very large doses because human exposure to this breakdown product would be negligible.The USFDA concluded that no further testing of it was necessary.

Sucralose

Sucralose(Fig.1c)was discovered in1976.This non-nutritive sweetener is made from sucrose by a process that substitutes3chloride atoms for3hydroxyl groups on the sucrose molecule(FDA2006).Sucralose is450–650 times sweeter than sucrose,has a pleasant sweet taste and its quality and time intensity profile is very close to that of sucrose(Arora et al.2009).It has a moderate synergy with other nutritive and non-nutritive sweeteners.(Beyts et al.1995).

It is very much soluble in water and is stable over a wide range of pH and temperature.It does liberate HCl when stored at high temperature and produce some kind of discoloration(Beyts et al.1995).

Synthesis

The synthesis of sucralose involves a series of selective protection and deprotection steps so that the4-hydroxyl group can be converted to a chloro atom with inversion of configuration.Treatment of the free hydroxyl groups with sulfuryl chloride produce trichlorodisaccharide which is then deprotected to give the sucralose(Ager et al.1998).The use of enzymes or microbial cultures to augment synthetic organic chemistry and carry our selected functionalization of complex molecule has been widely documented in the growing field of biocatalysis(Wong and Whitesides1994).

Metabolism and health aspect

Although sucralose is made from sugar,the human body does not recognize it as a sugar and does not metabolize it therefore it provides no calories.The bulk of sucralose ingested does not leave the gastrointestinal tract and is directly excreted in the feces while11–27%of it is absorbed(Knight1993).The amount that is absorbed from the gastro intestinal tract is largely removed from the blood stream by the kidneys and eliminated in the urine.As it is an organo chloride and some of which are known to have significant toxicity(Patel et al.2006)but sucralose is not known to be toxic.In addition sucralose does not breakdown or dechlorinate.In determining the safety of sucralose,the FDA reviewed data from more than110 studies in human and animals.Many of the studies were designed to identify possible toxic effects including carcinogenic reproductive and neurological effects but no such effects were found.Food and Drug Administration (FDA)approval is based on the findings that sucralose is safe for human consumption.U.S.Food and Drug Administration(USFDA)approved sucralose as a general-purpose sweetener.The acceptable daily intake(ADI)for sucralose in US is5mg/kg body weight/day.The estimated daily intake for percentile consumers as calculated by USFDA is1.6mg/kg body weight/day(USFDA1999). Saccharin

Saccharin(Fig.1d)was discovered by Remson and Fahlberg in1878at the Johns Hopkings University,Baltimore.It is a non-nutritive sweetener of1,2-benzoisothiazol-3-(2H)on1,1 dioxide.Saccharin has an unpleasant bitter or metallic off taste.As the parent compound is only sparingly soluble in water,the sweetener is usually used as the sodium or calcium salt.Both salts are highly water soluble,0.67gms/ml.of water at room temperature(Priebem and Kauffman1980).It is about300times sweeter than sucrose.

Synthesis

Chemical synthesis of saccharin involves the oxidation of the o-toluenesulfonamide with variety of agents like potassium permanganate(Tarbell and Tarbell1978),chro-mic acid,electrochemically(Bennett et al.1992)etc.to the corresponding carboxylic acid.The ortho isomer is dehy-drated to give the sweetener.(Bennett et al.1992;Drasar et al.1972).Another process involves diazotization of methyl anthranilate and then treatment of the diazonium salt with sulfur dioxide and chloride gas to give the sulfonyl chloride which is then treated with ammonia to give saccharin (Tarbell and Tarbell1978).

Metabolism and health aspect

The FDA tried to ban saccharin in1977because animal studies had showed that it caused cancer in rat(mainly bladder

cancer).Many studies have since been performed on saccharin.No study has ever shown a clear casual relationship between saccharin consumption and health risks in human at normal doses.Though some studies have shown a correlation between consumption and cancer incidence(Weihrauch and Diehl2004).Saccharin is currently permitted for use under an interim regulation that specifies the amounts of saccharin permitted in beverages,processed food,and sugar substitute and requires that the product level must state saccharin in the ingredient declaration and specify the amount used(Kroger et al.2006).

Cyclamate

Cyclamate(Fig.1e)was discovered in1937.It was used as a low calorie sweetener in the United States in1950s and 1960s.It is a salt of cyclohexylsulfamic acid.Sodium cyclamate is used as non-nutritive sweetener and the analogous calcium salt used specially in low sodium diets. Cyclamate is30times sweeter than sucrose.It has a bitter off taste,but has good sweetness synergy with saccharin.It is soluble in water and its solubility can be increased by preparing the sodium or calcium salt(Bopp et al.1986).

Synthesis

This process begins with the trisaccharide raffinose fol-lowed by chemical chlorination to form tetrachloro raffi-nose TCR.This TCR is then enzymatically treated with a galactosidase to move the6-chloro-6-deoxygalactosyl moi-eties from the6th position to yield cyclamate(Bennett et al. 1992).There are another two methods available for synthesis of saccharin like bioorganic synthesis(Drasar et al.1972)and regioselective deacylation. Metabolism and health aspect

Cyclamate itself shows very low toxicity but is metabolized by the gut bacteria to cyclohexylamine which shows greater toxicity(Bopp et al.1986)because of the nature of cyclamate metabolism.It would be inappropriate to assume that the total daily intake of cyclamate is metabolized to cyclohexylamine. The acceptable daily intake(ADI)for cyclamate was calculated by both the scientific committee of food(SCF) and the joint expert committee on food additives(JECFA) based on the“no observed adverse effect level”(NOAEL). For cyclohexylamine in rats assuming that18.9%of the daily intake of cyclamate is metabolized to cyclohexylamine each day(SCF2000).The plasma concentrations of cyclohexyl-amine following cyclamate intake will depend on both the extent of metabolism by the intestinal flora and the extent of elimination of cyclohexylamine from the circulation.

Scientific research on cyclamate is continuing.Recent studies have provided new data on the extent to which individuals convert cyclamate to cyclohexylamine during long term consumption(Renwick et al.2004).This study gives first true indication of possible exposure to cyclo-hexylamine from cyclamate metabolism in humans over a period that is toxicologically relevant to the establishment of ADI for cyclamate.

Neotame

Neotame(Fig.1f)is a derivative of a dipeptide compound of the amino acids-aspertic acid and phenylalanine. Neotame has been developed as a sweetener with a high degree of sweetness and is obtained by N-alkylating aspartame.Its degree of sweetness varies according to the kind of food and blend composition.It is7000to13,000 times and about30to60times sweeter than sugar and aspartame respectively(Prakash et al.2002).

Neotame is an odorless white to gray-white powder with a strong sweetness and is readily soluble in alcohols and slightly soluble in water.The0.5%aqueous solution of neotame is weakly acidic(pH5.8)(Prakash et al.2002).

Synthesis

A chemoenzymatic method used for preparing N-[N-(3-3dimethylbutyl)-L-a aspertyl]-L-phenylamine1-methyl ester via the enzymatic regioselective hydrolysis of neotame ester using lipases or estarages(Prakash and Zhao2001).

Another method involve the hydrogenation of L-α-aspartyl–L-phenylalanine I methyl ester and3–3dimethyl-butyraldehyde produced insitu by the hydrolysis or cleavage of a3-3-dimethylbutyraldehyde precursor(Prakash2007). Metabolism and health aspect

Neotame is rapidly metabolized,completely eliminated and does not accumulate in the body.The major metabolic pathway of neotame is hydrolysis of the methyl ester by esterase which is present throughout the body.This yields deesterified neotame,the major metabolite and a significant amount of methanol.Due to the presence of the3-3-di-methylbutyl group, peptidases which would typically break the peptide bond between the aspartic acid and phenylalanine moieties are essentially blocked,thus reducing the availability of phenylalanine.The amount of methanol derived from neotame is exceedingly small(Neotame 2002).Neotame was approved by the USFDA as a general purpose sweetener in July2002(USFDA2002). It has also been favorably evaluated by JECFA(JFECFA

2004)which established an ADI of2mg/kg body weight/ day.The ADI for neotame in the US is18mg/person/day (USFDA2002).

Alitame

Alitame(Fig.1g)is an intense sweetener with sweetness potency200times greater than that of sucrose.It is a dipeptide of L-aspartic acid and D-alanine with a terminal N-substituted tetra methylthietanyl-amine moiety.

Synthesis

Alitame is prepared by a multi step synthesis involving the reaction between two intermediates(S)-[2-5-dioxo-(4-thiazolidine)]acetic acid and(R)–2-amino-N-(2,2,4-4-tetramethyl-3-thietanyl)propanamides.The final product is isolated and purified by crystallization of an alitame ?4-methylbenzenesulfonic acid adduct followed by additional purification steps and finally recrystallization from water (Peter et al.2002).

Metabolism and health aspect

Alitame is readily absorbed in the GI tract and then rapidly metabolized and excreted.It has two main components, aspartic acid and alanine amide.The aspartic acid compo-nent is metabolized normally and the alanine amide passes through the body with minimal metabolic changes.In humans the glucoronic derivative of D-alanine tetrame-thylthietane amide is the major urinary metabolite.JEFCA reviewed safety data on alitame in2002.The committee concluded that there was no evidence that alitame is carcinogenic.An ADI of0–1mg/kg body weight was allocated on the basis of the NOAEL of100mg/kg body weight/day to an18month study in dogs.Alitame has already been approved in Mexico,Colombia and China as well as Australia and New Zealand(Kroger et al.2006). Rare sugar

Rare sugars,which are defined as monosaccharides and their derivatives that are rare in nature(Izumori2002)have recently attracted a great deal of attention mainly concerning their application.This could provide an alter-native to the other sweetener due to its lack of calories. Rare sugars are either not metabolized by the body or metabolized to a lesser extent than natural sugar.Due to these features,rare sugars are well tolerated by diabetes patients.Other advantage of rare sugar is the absence of any objectionable after taste(Zakaria2001).D-psicose

D-psicose(Fig.1h)(D-ribo-2hexulose),a C-3epimer of D-fructose is a rare sugar present in small quantities in commercial mixtures of D-glucose and D-fructose obtained from the hydrolysis of sucrose or isomerization of D-glucose(Green and Perlin1968).D-psicose has70%of the sweetness of sucrose and has a higher solubility that makes it easy to use for food processing.

It has been reported that the addition of D-psicose in food products improve the gelling behavior and flavor as well as it increases the antioxidant property of the food products(Sun et al.2006;Sun et al.2007).Furthermore, food products containing D-psicose maintain a high level of antioxidant effect over a long period of storage,which is able to delay the onset of lipid auto-oxidation and extend the food storage time(Sun et al.2008).It gives proper sweetness,smooth texture,desirable mouthfeel and great self-stability to food products.

Synthesis

D-psicose has previously been produced by chemical methods from D-fructose using catalytic action of molyb-date ions in an acidic aqueous solution(Bilik and Tihlarik 1973)it is also sometimes prepared by boiling D-fructose in ethanol and triethylamine(Doner1979).All the chemical methods are insufficient in terms of large-scale production.

An improved process for the mass production of D-psicose was developed using D-tagatose?3epimerase bioreactor.D fructose solution(60%,pH7.0)was passed at45°C through a column filled with immobilized D-tagatose-3-epimerage(D-TE)which was produced using recombinant E.Coli.and25%of the substrate was converted to D-psicose.After epimerization,the substrate D-fructose was removed by treatment with baker’s yeast. The supernatant was concentrated to syrup by evaporation under vacuum and D-psicose was crystallized with ethanol (Takeshita et al.2002).

Another work was done for mass production of D-psicose using a non characterized gene from Agrobacterium tumifaciens which increase the production586fold higher than that of D-TE.The enzyme is D-psicose-3-epimerase. This finding has considerable importance in D-psicose production(Kim et al.2006).

Metabolism and health aspect

An animal study on the suppression of increase in plasma glucose concentration with D-psicose found significant drop in plasma glucose concentration when maltose and sucrose were used as substrates,but no significant drop when glucose and soluble starch were

used as substrate(Matsuo2006).Another animal study proposed that D-psicose inhibited the hydrolysis of maltose withα-glucosidase in rats(Matsuo and Izumori 2006).The doses of D-psicose at5g(around1/15of carbohydrate intake)would be the minimum effective dose for suppressing the elevation of plasma glucose and insulin concentration for75g maltodextrin.This study confirmed the improving effects of glucose tolerance.D-psicose is expected to serve as a food material with low glycemic index.

Another study demonstrated that D-psicose inhibits intestinal sucrase and maltase activities in an uncompetitive manner and suppress the plasma glucose increase after sucrose and maltose ingestion.Thus D-psicose may be useful in preventing postprandial hyperglycemia in diabetic patient when food containing sucrose and maltose are ingested(Lida et al.2008).

Xylitol

Xylitol(Fig.1i)is a naturally occurring sugar.Xylitol is a five carbon sugar that tastes and looks exactly like sugar.

Synthesis

The synthesis of xylitol from natural product is based on the pentosans occurring in many plants.Xylan,a constit-uent of pentosan,is a polysaccharide that can be hydrolyzed in to D-xylose.Xylitol can be synthesized by hydrogena-tion of xylose(Zakaria2001).Xylitol also can be produced from D-glucose by three steps(Povelainen and Miasnikov 2006).Xylitol production from yeast is an alternative to chemical studies(Lachke and Jeffries1986).

Metabolism and health aspect

Xylitol metabolises easily and independently from insulin in humans and produces very low amount energy.Xylitol has a recognized glycemic index of8and have a caloric value of2.4calories/gm.(Sellman2003)

Xylitol is non-fermentable and therefore cannot be converted to acids by oral bacteria,thus it helps to restore a proper alkaline/acid balance in mouth.Several clinical trials have indicated that xylitol products(chewing gum) are more effective in reducing dental caries.

In1996,the joint expert committee on Food Additive (JECFA)confirmed the safety of xylitol for human consumption and allocated xylitol an ADI of‘Not speci-fied’.The scientific committee for food of the European Union(EU)also determined xylitol‘acceptable’for dietary uses(Xylitol2009).Tagatose

The ketohexose D-tagatose(Fig.1j)is structurally similar to D-fructose except for an inverted optically active center. Because of its excellent taste and bulk properties,combined with a possibly very low energy value,D-tagatose has potential for use as a sweetener(Livesey and Brown1996; Szepesi and Michaelis1986).

Synthesis

D-tagatose is produced from lactose in two-step.Firstly, lactose is converted to glucose and galactose by hydrolysis and then galactose is isomerizd to D-tagatose by adding calcium hydroxide(Calorie control council2007).

Metabolism and health aspect

The metabolism of tagatose is identical as fructose but it is incompletely absorbed.The study on small-bowel absorp-tion of tagatose concludes that15g tagatose/day had a high apparent absorption in the small intestine of humans (Normen et al.2001).The major part of ingested tagatose is fermented in the colon by indigenous microflora, resulting in the production of short chain fatty acid.The short chain fatty acids are absorbed almost completely and metabolized.

Thus it can be concluded that D-tagatose a carbohydrate with physiological properties potentially valuable for the control of both body weight and symptoms of the metabolic syndrome as seen in diabetics(Livesey and Brown1996).

Substances such as glucose and especially fructose that promote lopogenesis(Szepesi and Michaelis1986)and have high glycosylation indices(Mc Phearson et al.1988) could be replaced with D-tagatose with lower fat accumu-lation(Levin et al.1995),lower glycosylation index(Bunn and Higgins1994)and strong antidiabetic effects founds in rats(Szepsi1996).

D-allose

D-allose(Fig.1k),a cis-aldohexose is a non caloric sweetening and bulking agent which have good antiox-idant properties.The mass production of D-allose mainly achieved from D-psicose in a batch reaction by crude recombinant L-rhamnose isomerase cross linked with gluteraldehyde(Menavuvu et al.2006).Studies on D-allose supplementation on Dahl salt sensitive hyperten-sive rats and spontaneously hypertensive rats suggests the possibility of D-allose supplementation for preven-tion of salt sensitive hypertension.D-allose has been reported to inhibit segmented neutrophil production and

lower platelet count in vivo without other significant detrimental clinical effects in rats(Arnold and Silady 1997).D-allose is also used as potential inhibitor of various glycosides.

Other sweetener

Table2summarizes the information about some nutritive sweetener known as sugar alcohol.They are highly soluble and non hygroscopic.The sugar alcohols are non-reducing, temperature stable and more resistant to browning reactions than sucrose(Godshall2007).

Erythritol and other polyols

Erythritol is four carbon sugar alcohol(or polyol).It is manufactured by fermentation from glucose and sucrose by Trichosporonoides megachiliensis.It has a sweetness approximately60–80%of sucrose.Polyols are low digest-ible carbohydrates which are poorly absorbed from the small intestine.These are also used for their humectant and bulking properties.Excessive consumption has a laxative effect due to unabsorbed polyol increasing the osmotic potential of the gut lumen and other gastrointestinal effect. Erythritol is considered to be of low toxicity.It has been assessed by JECFA which assigned it an‘ADI not specified’.Studies with human have shown them that ingested doses of erythritol is absorbed from the small intestine and excreted in the urine unchanged(Munro et al. 1998).Another polyol like sorbitol show property close to sugar(Chetana et al.2010).

Trehalose

Trehalose is a non-reducing disaccharide that consists of two glucose units linked by a1,1-glycosidic bond.It is with a relative sweetness of40–45%that of sucrose. Trehalose is produced directly from food-grade starch by a multienzymatic process.This disaccharide is enzymat-ically hydrolyzed by the enzyme trehalase in the small intestine in to two glucose subunits which are subse-

Table2Properties of nutritive sweeteners

Sweetener Sweetness Cal/g GI*Type Source

Erythritol0.70.20Sugar alcohol Fermentation of glucose by Moniliella pollinis,a fungus Glucose0.5 4.0100Monosaccharide Hydrolyzed starch

Fructose 1.5–1.8 4.019–23Monosaccharide Enzymatically isomerized glucose

HF CS1–1.2 4.060–65Mixed glc/fru Hydrolysis of corn starch and isomerization of glucose HSH0.5–0.72–4varies Mixed polyols Hydrogenated partially hydrolyzed starch

Isomalt/Isomaltitol/ Palatinit?0.45–0.65 2.02Sugar alcohol Hydrogenated isomaltulose;equal mixture of gluco-sorbitol

and gluco-mannitol

somaltulose/ Palatinose?0.3–0.4 2.032Disaccharide Enzymatic isomerization of sucrose with Protoaminobacter

rubrum;GRAS March2006;a sucrose isomer

Lactitol0.35–0.4 2.46Sugar alcohol Hydrogenated lactose

Lactose0.2–0.4 4.046Disaccharide Milk sugar

Lactulose0.60.20Disaccharide Alkaline isomerization of lactose when milk is heated;prebiotic Leucrose0.5 2.0Disaccharide Dextransucrase action on sucrose and fructose;dextran

by-product;a sucrose isomer

Maltitol0.5–0.9 3.035–52Sugar alcohol Catalytic hydrogenation of high maltose corn syrup

Maltose0.4 4.0105Disaccharide Enzymatic hydrolysis of starch;long time use

Maltulose0.3–0.42Disaccharide Alkaline isomerization of maltose;a sucrose isomer;little used Mannitol0.5–0.72 1.60Sugar alcohol Hydrogenation of invert or fructose;new fermentation process Sorbitol0.6 2.69Sugar alcohol Hydrogenated glucose

Sucrose 1.0 4.061–65Disaccharide Cane and beet

Tagatose0.92 1.50Galactose isomer Hydrolyzed lactose;galactose converted by alkali;GRAS2001 Trehalose0.5–0.7 3.645–50Disaccharide Patented2-enzyme process from corn starch;GRAS2000 Trehalulose0.5–0.7Disaccharide Sucrose isomer;by-product of palatinose production

Xylitol 1.0 3.07–13Sugar alcohol Hydrogenated xylose

*GI=Glycemic Index

[Source:Godshall M A(2007)]

quently absorbed and metabolized in a manner similar to maltose.Present study reports that adding trehalose to dehydrated pear cubes could improve aroma retention by 15%(Komes et al.2006).It has also added advantage of being an antioxidant.

Several safety studies on trehalose have been evaluated by JECFA,2001and allocated an ADI of‘not specified’. Trehalose is approved in Japan,Korea,Taiwan,and UK (Kidd and Devorak1994).

Stevia rebaudiana

Stevia is a natural herb.This zero calorie sweetener mainly containing steviol glycoside which is10–15times sweeter than sucrose.Human body does not metabolize these sweet glycosides,so obtains no-calories from stevia.Unlike artificial sweetener,the sweet glycoside does not break down in heat which makes stevia an excellent sweetener for cooking and baking.Studies have indicated that stevia tends to lower the elevated blood pressure.It also significantly improves nutritional status of diabetic patients (Kochhar et al.2008).

Conclusion

The number of people suffering from diabetes,obesity, hypertension,and heart disease is increasing every year. Increasing amounts of sugars in food,sweets,soft drinks and so on have raised some concern about their health effects.So nowadays artificial sweetener are receiving much more attention.But it gets bad reputation due to their safety issue.On the other hand in spite of demand for rare sugars,their commercial availability,application and usefulness is negligible as they are expensive to prepare and unavailable in nature.So research is required to make natural sugars having the desired quantities of sweetness,low caloric value,and least observed physi-ological effects.

Acknowledgement The research work is financially supported by the Centre for Advanced studies(CAS I)programme under University Grants Commission(UGC),Govt.of India and Dept.of Food Processing Industries&Horticulture,Govt.of West Bengal,India, Some facilities have been provided by the centre for Medicinal Food &Applied Nutrition of Jadavpur University,India.

References

[ADA]American Dietetic Association,(2004)Position of the American Dietetic Association:use of nutritive and nonnutritive sweeteners.J Am Diet Assoc104:255–275Ager DJ,Pantaleone DP,Henderson SA,Katritzky AR,Prakash I, Walters DE(1998)Commercial,Synthetic Nonnutritive Sweet-eners.Angew Chem Int Edit37:1802–1817

Arnold E C,Silady P J(1997)Use of D-allose as an immunosup-pressive agent.Patentgenious US Patent5620960.http://www.

https://www.wendangku.net/doc/083820297.html,/patent/5620960.html.Accessed5March2010 Arora S,Singh VP,Sharma V,Wadhwa BK,George V,Singh AK, Sharma GS(2009)Analysis of sucralose and its storage stability in barfi.J Food Sci Technol46:114–117

Bennett C,Dordick JS,Hacking AJ,Cheetham PSJ(1992)Bio-catalytic synthesis of disaccharide high-intensity sweetener sucralose via a tetrachlororaffinose intermediate.Biotechnol Bioeng39:211–217

Bilik V,Tihlarik K(1973)Reaction of Saccharides catalyzed by molybdate ions.Epimerization of ketohexoses.Chem Zvesti 28:106–109

Bopp BA,Sonders RC,Kesterson JW(1986)Toxicological aspects of cyclamate and cyclohexylamine.Crit Rev Toxicol16:213–306 Bunn HF,Higgins PL(1994)Reactions of monosaccharides with proteins-possible evolutionary significances.Science213:222–224 Beyts P K,Lillard D W,Batterman C K(1995)A sucralose compositon.

Patentstrom US patent5380541.https://www.wendangku.net/doc/083820297.html,/patents/ 5380541/fulltext.html.Accessed21August2009

Calorie control Council(2007)https://www.wendangku.net/doc/083820297.html,/tagatose.

html.Accessed12February2009

Chetana R,Ravi R,Yella Reddy S(2010)Effect of processing variables on quality of milk burfi prepared with and without sugar.J Food Sci Technol47:114–118

Clauss K,Jensen H(1970)Cycloadditionen von halogensulfonyliso-cyanaten an acetylene.Tetrahedron Lett11:119–122

Clauss J,Schmidt RK,Spiess HW(1993)Determination of domain sizes in heterogeneous polymers by solid-state NMR.Acta Polym44:1–17

Doner LW(1979)Isomerization of D-fructose by base-lequid-cromatographic evaluation and the isolation of D-psicose.

Carbohyd Res70:209–216

Drasar BS,Renwick AG,Williams RT(1972)The role of the gut flora in the metabolism of cyclamate.Biochem J129:881–890 [FDA]Food and Drug Administration(2006)Food labeling:health claims;

dietary noncariogenic carbohydrate sweeteners and dental caries.Fed Reg71:15559–15564https://www.wendangku.net/doc/083820297.html,/cgi-bin/ getpage.cgi?position=all&page=15559&dbname=2006_register.

Accessed10June2010

George V,Arora S,Wadhwa BK,Singh AK(2010)Analysis of multiple sweeteners and their degradation products in lassi by HPLC and HPTLC plates.J Food Sci Technol47:408–413 Godshall MA(2007)The Expanding World of Nutritive and Non-Nutritive Sweeteners.Sugar J69:12–20

Green GM,Perlin AS(1968)O-Isopropylidene derivatives of D-allose (D-psicose)and D-erythro-hexopyranose-2,3-dilulose.Can J Biochem Cell B46:765–770

Heber D(2004)Vegetables,fruits and phytoestrogens in the prevention of diseases.J Postgrad Med50:145–149

Hill J B,Gelman Y,Dryden Jr HL,Erickson R,Hsu K,Johnson MR (1991)One-pot process for the preparation ofα-L-aspartyl-L-phenylalanine methyl ester hydrochloride.JustiaPatents US Patent5053532.https://www.wendangku.net/doc/083820297.html,/1991/05053532.html.

Accessed15June2010

Horne J,Lawless HT,Speirs W,Sposato D(2002)Bitter taste of saccharin and acesulfame-K.Chem Senses31:8–27

Izumori K(2002)Bioproduction strategy for rare hexose sugars.

Naturwissenschaften89:120–124

[JFECFA]Joint FAO/WHO Expert Committee on Food Additives (2004)Sixty-third meeting8to17June.Geneva WHO.http:// www.who.int/ipcs/publications/jecfa/en/Summary63final.pdf.

Accessed3January2006

Kim HJ,Hyun EK,Kim YS,Lee YJ,Oh DK(2006)Characterization of an Agrobacterium Tumifaciens D-psicose3-epimerase that converts D-fructose to D-psicose.Appl Environ Microbiol 72:981–985

Komes D,Lovric T,Ganic KK(2006)Aroma of dehydrated pear products.Food Sci Technol40:1578–1586

Kochhar A,Dhindsa S,Sachdeva R(2008)Effect of Stevia Leaf (Stevia rebaudiana)Powder Supplementation and Nutrition Counselling on Anthropometric Parameters and Gain in Knowl-edge of the Subjects.Ethno-Med2:107–113

Kroger M,Meister K,Kava R(2006)Low-calorie Sweeteners and Other Sugar Substitutes:A Review of the Safety https://www.wendangku.net/doc/083820297.html,pr Rev Food Sci F5:35–47

Kidd G,Devorak J(1994)Trehalose is a sweet target for agrobiotech.

Biotechnol12:1328–1329

Knight I(1993)The development and applications of sucralose,a new high-intensity sweetener.Can J Physiol Pharmacol72:435–439 Lachke AH,Jeffries TW(1986)Levels of the enzymes of the pentose phosphate pathway in Pachysolen tannophilus Y-2460and selected mutants.Enzyme Microb Technol8:353–359

Levin GV,Zehner LR,Saunders JP,Beadle IR(1995)Sugar substitutes,their energy values,bulk characteristics and potential health benefits.Am J Clin Nutr62:1161–1168

Lida T,Kishimoto Y,Yoshikawa Y,Hayashi N,Okuma K,Tohi M, Yagi K,Matsuo T,Izumori K(2008)Acute D-psicose Administra-tion Decreases the Glycemic Responses to an Oral Maltodextrin Tolerence Test in Normal Adults.J Nutr Sci Vitaminol54:511–524 Livesey G,Brown JC(1996)D-Tagatose Is a Bulk Sweetener with Zero Energy Determined in Rats.J Nutr126:1601–1609 Magnuson BA,Burdock GA,Doull J(2007)Aspartame:a safety evaluation based on current use levels,regulations,and toxicological and epidemiological studies.Crit Rev Toxicol37:629–727 Matsuo T,Izumori K(2006)D-psicose inhibits intestinalα-glucosidase and suppresses glycemic response after carbohydrate ingestion in rats.Tech Bull Fac Agr,Kagawa Univ58:27–32

Matsuo T(2006)Inhibitary effects of D-psicose on glycemic responses after oral carbohydrate tolerance test in rats.J Jpn Soc Nutr Food Sci59:247–253

Mazur RH,Goldkamp AH,James PA,Schlatter JM(1970)Structure-taste relationships of aspartic acid amides.J Med Chem6:1217–1221

Mazur RH,Ripper A(1979)Peptide-based sweeteners.Applied Science Publishers,London

Mc Phearson JD,Shilton BH,Walton DJ(1988)Role of fructose in glycosylation and cross-linking of proteins.Biochemistry-US 27:1901–1907

Menavuvu BT,Poonperm W,Leang K,Noguchi N,Okada H, Morimoto K,Granstrom TB,Takada G,Izumori K(2006) Efficient biosynthesis of D-allose from D-psicose by cross-linked recombinant L-rhamnose Isomerase:Separation of product by ethanol crystallization.J Biosci Bioeng101:340–345 Munro IC,Berndt WO,Borzelleca JF,Flamm G,Lynch BS, Kennepohl E,Bar EA,Modderman J(1998)Erythritol:An interpretive summary of biochemical,metabolic,toxicological and clinical data.Food Chem Toxicol36:1139–1174

Nabors LO(2002)Sweet choices:sugar replacements for foods and beverages.Food Technol56:28–32

Normen L,Laerke HN,Jensen BB,Langkilde AM,Andersson H (2001)Small-bowel absorption of D-tagatose and related effects on carbohydrate digestibility:an ileostomy study.Am J Clin Nutr 73:105–110

[NTP]Natl Toxicology Program(2005)NTP report on the toxicology studies of aspartame in genetically modified(FVB Tg.AC hemizygous)and B6.129-Cdkn2atm1Rdp(N2)deficient mice and carcinogenicity studies of aspartame in genetically modified [B6.129-Trp53tm1Brd(N5)haploinsufficient]mice.October NIH

Pub No.06–4459.https://www.wendangku.net/doc/083820297.html,/files/GMM2_Web.pdf.

Accessed9February2006

Neotame:Stability overview(2002)https://www.wendangku.net/doc/083820297.html,/pdf/ neotame_stability_overview_US.pdf.Accessed27February 2009

Patel RM,Sharma R,Grimsley E(2006)Popular Sweetener Sucralose as a Migraine Trigger.J Head Face Pain46:1303–1304

Peter J A,Walker R,Leclercq C(2002)Alitame.WHO Food Additives Series.https://www.wendangku.net/doc/083820297.html,/documents/jecfa/jecmono/v50je02.

htm.Accessed6March2009

Povelainen M,Miasnikov AN(2006)Production of xylitol by metabolically engineered strains of Bacillus subtilis.J Biotechnol 128:24–31

Prakash I(2007)Synthesis of N-[N-(3,3-dimethylbutyl)-L-α-aspartyl]-L-phenylalanine1-methyl ester using3,3-dimethylbutyraldehyde https://www.wendangku.net/doc/083820297.html, US Patent7288670.https://www.wendangku.net/doc/083820297.html,/patent/ US7288670.Accessed2June2010

Prakash I,Corliss G,Ponakala R,Ishikawa G(2002)Neotame:the next-generation sweetener.Food Technol56:36–40

Prakash I,Zhao R Y(2001)Chemoenzymatic synthesis of neotame, Pub No.WO/2001/085977.http://www.wipo.int/pctdb/en/wo.

jsp?wo=2001085977.Accessed6March2009

Priebem PM,Kauffman GB(1980)Making governmental policy under conditions of scientific uncertainty:A century of contro-versy about saccharin in congress and the laboratory.Minerva 18:556–574

Renwick AG,Thompson JP,Shaughnessy M,Walter EJ(2004)The metabolism of cyclamate to cyclohexylamine in humans during long-term administration.Toxicol Appl Pharmacol196:367–80 Rymon Lipinski GW(1991)Sensory Properties of Acesulfame-K.

Marcel Dekker,New York

[SCF]Scientific Committee on Food(2000)Revised opinion of the Scientific Committee on Food on cyclamic acid and its sodium and calcium salts http://ec.europa.eu/food/fs/sc/scf/out53_en.pdf.

Accessed5May2000

Scott SK,Rabito F,Price PD,Butler NN,Schwartzbaum JA,Jackson BM,Love RL,Harris RE(2006)Comorbidity among the morbidity obese:a comparative study of2002U.S hospital patient discharge.Surg Obes Relat Dis2:105–111

Serdula MK,Mokdad AH,Williamson DF,Galuska DA,Mendlein JM,Heath GW(1999)Prevalence of attempting weight loss and strategies for controlling weight.J Am Med Assoc282:1353–1358

Sellman S(2003)Xylitol:Our Sweet Salvation?Nexus New Times: Jan-Feb https://www.wendangku.net/doc/083820297.html,/dentlib/nihcdc/abstracts/ hayes.html.Accessed16March2009

Sorensen LB,Mella P,Flint A,Martens M,Raben A(2003)Effect of sensory perception of food in appetite and food intake.A review of studies on humans.Int J Obes27:1152–1166

Sun Y,Hayakawa S,Jiang H,Ogawa M,Izumori K(2006) Rheological characteristics of heat-induced custard pudding gels with high antioxidative activity.Biosci Biotech Biochem 70:2859–2867

Sun Y,Hayakawa S,Ogawa M,Izumori K(2007)Antioxidant properties of custard pudding dessert containing rare hexose,D-psicose.Food Control18:220–227

Sun Y,Hayakawa S,Ogawa M,Fukada K,Izumori K(2008) Influence of a Rare Sugar,d-Psicose,on the Physicochemical and Functional Properties of an Aerated Food System Containing Egg Albumen.J Agricult Food Chem56:4789–4796

Szepesi B,Michaelis OE(1986)Disaccharide effect-comparison of metabolic effects of the intake of disaccharide and of their monosaccharide equivalents.In:Macdonald I,Vrana A(eds) Metabolic Effects of Dietary Carbohydrates,4th edn.Karger S Basel,Switzerland,pp192–219

Szepsi B(1996)Carbohydrates.ILSI Press,Washington

Tarbell DS,Tarbell AT(1978)The discovery of saccharin.J Chem Educ55:161–162

Takeshita K,Suga A,Takada G,Izumori K(2002)Mass production of D-psicose from D-fructose by a continuous bioreaction system using immobilized D-tagatose3epimerage.J Biosci Bioeng 90:453–455

Trocho C,Pardo R,Rafecas I,Virgili JX,Remesar X,Fernandez-Lopez JA,Alemany M(1998)Formaldehyde derived from dietary aspartame binds to tissue components in vivo.Life Sci63:337–349 [USFDA]US Food and Drug Administration(2003)Food additives permitted for direct addition to food for human consumption;

acesulfame potassium Final rule.FedReg68:75411–75413.http:// https://www.wendangku.net/doc/083820297.html,/cgi-bin/getpage.cgi?position=all& page=75411&dbname=2003_register.Accessed22May2006 [USFDA]US Food and Drug Administration(2002)Food additives permitted for direct addition to food for human consumption;

Neotame.Fed Reg67:45300–45310http://frwebgate.access.

https://www.wendangku.net/doc/083820297.html,/cgi-bin/getpage.cgi?position=all&page=45300& dbname=2002_register.Accessed22May2006

[USFDA]US Food and Drug Administration(1999)Food additives permitted for direct addition to food for human consumption: sucralose.Fed Reg64:43908–43909.https://www.wendangku.net/doc/083820297.html,/ohrms/ dockets/98fr/081299b.txt.Accessed7March2009 Weihrauch MR,Diehl V(2004)Artificial sweeteners-do they bear a carcinogenic risk.Ann Oncol15:1460–1465

Wong CH,Whitesides GM(1994)Enzymes in Synthetic Organic Chemistry.Elsevier,Oxford

Xylitol(2009)Polyols information sourace.https://www.wendangku.net/doc/083820297.html,/ fap/fap_xylitol.html.Accessed5February2009

Zakaria A(2001)Production of natural and rare pentoses using microorganisms and their enzymes.Electron J Biotechnol 4:103–111

升糖指数(血糖生成指数)食物表

升糖指数(血糖生成指数)食物表 升糖指数(GI) 又名血糖生成指数,指的是,食物进入人体两个小时内血糖升高的相对速度。低升糖指数食物对于肥胖、糖尿病等特殊群体,在指导科学饮食及控制营养平衡方面具有非常重要的意义在几十年前科学家就已经知道,糖类食物吸收很快,导致血糖迅速增加, 直到近代,人们还以为土豆、米饭、面团一类的淀粉提高血糖的速度更缓慢。 但是,1981年,多伦多大学营养学教授大卫·约金斯博士发现这一观点未必正确。 他发现有些食物--比如土豆--实际上会导致血糖迅速升高,而有些含糖高的食物提高血糖的速度似乎反而更缓慢。 这一发现导致升糖指数(GI)的提出,升糖指数是测定吃了碳水化合物食物之后血糖即时升高的指标。消化很快并且导致酮基已糖很快释放的食物被称为高升糖指数食物;消化较慢的食物被称为低升糖指数食物。 一般说来,糖尿病患者是不提倡吃任何水果的,日常可以用西红柿和青瓜来代替。 余主任指出,糖尿病人选择食物可以根据“血糖生成指数”来选择食物, 而不能单看食物的含糖量高低,这样才能做到平衡膳食,合理控制血糖。 例子: 西瓜含糖量只有4%,但是升糖指数高达72,远远超过其他水果,不建议食用 糖尿病病人最需要警惕的就是空腹血糖和餐后血糖,尤其是餐后血糖剧烈波动将影响血糖控制的效果,因此,在食物中选择低升糖指数食物对糖尿病患者来说至关重要。高升糖指数食物中,有些水果因为含糖量比较高也需要糖尿病患者特别注意。 葡萄糖GI值=100 低升糖指数食物:GI值<46(0—45)

低升糖指数食物:GI值<46(0—45)

中升糖指数食物:GI值46—70

高升糖指数食物:GI值>70 注意一:食物原料不要求精求细,越是粗粮,升糖指数越低。比如吃糙米、糙面比精米、精面要好。吃生香蕉要比吃熟香蕉更好。 注意二:尽量减少烹调食物,生吃比熟吃好,烹调时间越短越好。比如长时间煮成的稀饭升糖指数高,而米饭的升糖指数则低于稀饭。 注意三:食物带皮吃更好,注意量的控制,消化越慢对血糖影响越小。比如常见的水果蔬菜,尽量不要削皮,能带着皮吃就越能减少吸收速度。 注意四:饮食中适当增加蛋白质和素食,每日碳水化合物占总热量55%—60%。对于饮食总热量的控制,要根据糖尿病患者BMI指数决定。 注意五:各类食物应尽量选择含水含汁液少的食物,有助于控制升糖指数。比如豆腐干的升糖指数就要比鲜豆腐的升糖指数更低。

食物升糖指数及血糖负荷表格

食物升糖指数及血糖负荷表格 各种食物的血糖生成指数对糖尿病人的影响较大,如果盲目的吃,会造成血糖大幅度波动。为了糖尿病人的健康,根据《中国食物成分表第2版》、《食物血糖生成指数》等资料。总结了一些食物的血糖生成指数(GI),但其不如血糖生成负荷有代表性(GL)。本文所列数据中的血糖生成负荷均按100g食物的可食用部分(已经去掉不可以食用的部分)计算。 注:热量(Kcal);碳水化合物(g)。 1 谷类及其制品 食物热量碳水化合物GI GL 糯米饭350 78.3 87 68.1 黑米341 72.2 80 57.8 米线356 81.5 70 57.1 面条286 61.9 81.6 50.5 油条388 51.0 74.9 50.5 烧饼298 62.7 79 49.5 烙饼259 52.9 79.6 41.4 馒头223 47.0 88.1 41.4 花卷214 45.6 88 40.1 荞麦337 43.0 54.0 39.4 粉条339 84.2 31 26.1 粉丝338 83.7 31 25.9 米饭116 25.9 83.2 21.5 薏米 36171.1 30 21.3 土豆77 17.2 62 10.7 大米粥47 9.9 70 6.9 小米粥46 8.4 61.5 5.2 玉米112 22.8 12 2.7 2 水果类 食物热量碳水化合物GI GL 干枣276 67.8 103 69.8 猕猴桃61 14.5 53 7.7 菠萝44 10.8 66.0 7.1 蓝莓57 14.5 34 5.4 杏 38 9.1 57 5.2 苹果54 13.5 36.0 4.9 橙子48 11.1 43 4.8 梨 50 13.3 36.0 4.8 芒果35 8.3 55.0 4.6 葡萄44 10.3 43.0 4.4

问血糖高一般是什么原因引起的

问血糖高一般是什么原因引起的?? 浏览次数:876次悬赏分:0|解决时间:2010-12-20 17:20 |提问者:guangxiwjzlk 最佳答案 一般情况下,血糖高的原因我们大致上可以分为四类:饮食习惯、胰岛素、情绪波动以及睡眠质量。血糖高的原因之一:饮食习惯是引起高血糖的原因。饮食习惯毫无疑问的是造成血糖高的主要原因之一。血糖高或者说高血糖病人在饮食方面,无时无刻都在严格地进行着控制,因为他们清楚地知道,饮食稍不恰当,就会成为血糖高的原因。血糖高的原因之二:胰岛素是引起高血糖的原因。显然,胰岛素也是引起血糖高的原因之一。只要略懂糖尿病知识的人都清楚,胰岛素与血糖之间的关系。由于胰岛素具有促进糖原分解的作用,所以一旦胰岛素出现任何问题,那么血糖高也将随即而至了。血糖高的原因之三:情绪波动也是引起高血糖的原因。有人觉得纳闷。难道情绪也是引起血糖高的原因么?确然如此。情绪的异常波动同样是血糖高的原因之一。那么哪种类型的情绪波动会导致血糖高呢?通常情况下,焦燥易怒这类过于激动的情绪,最容易导致血糖升高。血糖高的原因之四:睡眠不足同样是引起高血糖的原因。权威糖尿病治疗机构研究表明,血糖高的原因还有一种,那就是由于睡眠不足而引起的高血糖。倘若一个糖尿病患者连续几日睡眠质量不好,或者睡眠不足的话,就很容易引起血糖高或者说血糖不稳定的情况发生。所以说,睡眠质量与血糖高的原因也是密不可分的。 血糖高有什么症状 造成高血糖发生原因: 1.胰岛素的用量不足。 2.未遵照医疗食谱,热量摄取太多。 3.生病发炎感染。 4.糖尿病的初症,病人常不自知。 5自行停止使用降血糖药、或药量不足。 6.不当饮食、或吃得太多。 7.其他疾病,如重感冒、中风、有伤口或感染等。 8.情绪压力。 9.不知道有糖尿病未治疗,或知道有糖尿病却未适当的治疗 二、高血糖的症状: 1.尿多,皮肤乾燥,脱水。 2.极度口渴。 3.恶心,呕吐,腹部不适。 4.厌食,体重减轻,虚弱无力。 5.心跳快速,呼吸缓而深。

导致血糖升高的因素有哪些

导致血糖升高的因素有哪些?空腹血糖≥7.8毫摩/升,或餐后2小时血糖≥11.1毫摩/升,称为高血糖状态。在日常生活中,糖尿病患者易引发高血糖,非糖尿病高血糖也很常见。而长期血糖升高会导致糖尿病并发症的发生,危害糖尿病患者的身体健康,所以要避免血糖升高。下面我们就看看导致血糖升高的因素有哪些吧。 导致血糖升高的因素1. 应激性高血糖,强烈的应激因素,如严重烧伤、大手术、脑血管意外、急性心肌梗死、感染性休克等所致应激状态,使体内升糖激素分泌增加,拮抗胰岛素,而出现血糖升高。一般应激后7~10天空腹血糖恢复正常。 导致血糖升高的因素2.药物性高血糖,能引起血糖升高的药物很多,包括利尿剂、抗癌药、降压药、女性避孕药、三环类抗抑郁药、糖皮质激素、苯妥英钠、消炎痛、氨茶碱、甲氰咪胍、甲状腺素等。 导致血糖升高的因素3. 妊娠性高血糖,胎盘分泌生长泌乳激素可使血糖增高,分娩后血糖逐渐恢复正常,但仍有30%左右的产妇发展为真性糖尿病。 导致血糖升高的因素4. 垂体性高血糖,由于生长激素分泌过多,拮抗胰岛素的作用而引起糖代谢异常,发生高血糖,主要表现为身材高大、肢端肥大。 导致血糖升高的因素5.甲亢性高血糖,由于甲状腺激素过多,胃肠吸收葡萄糖增加,交感神经兴奋性增强导致胰岛素分泌减少,肝糖原产生增加,组织吸收葡萄糖减少,糖原分解增加等原因而致血糖升高。 导致血糖升高的因素6. 肝源性高血糖,急慢性肝炎、肝硬化,肝脏广泛性损害,使肝脏合成糖原功能障碍,肝糖原储备能力下降,易发生餐后高血糖。 导致血糖升高的因素7. 胰原性高血糖,由于胰腺切除、胰癌、胰腺急性炎症反应等,直接使胰岛受损,抗体应激反应大,胰高血糖素过度释放,都可以导致一过性高血糖。 导致血糖升高的因素8. 内分泌肿瘤引起高血糖,柯兴氏综合征、胰高血糖素瘤、胰岛A细胞瘤、胰岛D细胞瘤、嗜铬细胞瘤等,都可引起血糖升高,主要与各种激素使体内糖代谢异常有关。 导致血糖升高的因素9. 血色病古铜色面容、肝硬化、心血管病变、性功能减退患者血糖增高,应怀疑血色病。系铁沉着于胰腺,胰岛β细胞受破坏所致继发性高血糖。

常见食物的血糖指数表

常见食物的血糖指数表: 关注食物血糖指数,合理安排膳食,对于调节和控制人体血糖大有好处。一般来说只要一半的食物从高血糖生成指数替换成低血糖生成指数,就能获得显著改善血糖的效果。当血糖生成指数在55以下时,可认为该食物为低GI食物;当血糖生成指数在55~75之间时,该食物为中等GI食物;当血糖生成指数在75以上时,该食物为高GI食物。 混合膳食 1、猪肉炖粉条 16.7 2、饺子(三鲜) 28.0 米饭+菜 3、米饭+鱼 37.0 4、米饭+芹菜+猪肉 57.1 5、米饭+蒜苗 57.9 6、米饭+蒜苗+鸡蛋 67.1 7、米饭+猪肉 73.3 8、硬质小麦粉肉馅馄饨 39.0 9、包子(芹菜猪肉) 39.1 馒头+菜 10、馒头+芹菜炒鸡蛋 48.6 11、馒头+酱牛肉 49.4 12、馒头+黄油 68.0 13、饼+鸡蛋炒木耳 52.2 14、玉米粉+人造黄油 69.0 15、牛肉面 88.6 谷类杂粮 大麦 16、大麦粒(煮) 25.0 17、大麦粉(煮) 66.0 18、整粒黑麦(煮) 34.0 19、整粒小麦(煮)荞麦 41.0 20、荞麦方便面 53.2 21、荞麦(煮) 54.0 22、荞麦面条 59.3 23、荞麦面馒头 66.7 玉米 24、甜玉米 55.0

25、(粗磨)玉米粉(煮) 68.0 26、二合面窝头 64.9 米饭 27、黑米 42.3 大米(即食大米) 28、即食大米(煮1分钟) 46.0 29、即食大米(煮6分钟) 87.0 半熟大米 30、含支链淀粉低的半熟大米 (煮,粘米类) 50.0 31、含支链淀粉低的半熟大米(煮) 白大米 87.0 32、含支链淀粉高的白大米 (煮,粘米类) 59.0 33、含支链淀粉低的白大米 88.0 34、大米饭 88.0 35、小米(煮) 71.0 36、糙米(煮) 87.0 37、糯米饭 87.0 谷类食物-面条 意大利式细面条(通心面粉,实心,1.5-2.8mm粗) 38、强化蛋白质的意大利式细面条 27.0 39、意大利式全麦粉细面条 37.0 40、白的意大利式细面条 (煮15-20分钟) 41.0 41、意大利式硬质小麦细面条 (煮12-20分钟) 55.0 42、线面条(通心面粉,实心,约1.5mm) 35.0 43、通心面(管状、空心、约6.35mm粗) (煮5分钟) 45.0 硬质小麦扁面条 44、粗的硬质小麦扁面条 46.0 45、加鸡蛋的硬质小麦扁面条 49.0 46、细的硬质小麦扁面条 55.0 47、面条(一般的小麦面条) 81.6 谷类食物-面包 大麦面包 48、75%-80%大麦粒面包 34.0

空腹高血糖的三个原因分析 文档

导致空腹高血糖的三个原因分析 核心提示:有“黎明现象”的糖尿病患者可以在白天口服降糖药物的基础上,睡前加用皮下注射中效胰岛素,可收到良好疗效,使清晨空腹血糖高的现象得到控制。但要注意的是,注射前需要加食睡前小吃,如半杯牛奶和两片饼干等,以避免注射胰岛素后的低血糖发生。 有一些糖尿病患者会发现,自己不仅仅在吃过东西以后血糖会高,有时即使是空腹,血糖也居高不下。我们都知道,所谓的空腹血糖是指人在禁 食8~12小时后测定的血糖,即清晨空腹状态下的血糖。而理想的糖尿病治疗结果是将空腹血糖控制在3.9~6.0mmoI/L之间,但是糖尿病患者在实际生活中却难以做到。于是很多糖尿病患者就疑惑了,我的空腹血糖也那么高是怎么回事啊? 糖尿病专家解释,空腹的血糖值实际上在生活中很难控制。但了解空腹血糖高的原因才能知道如何预防空腹血糖高。具体说来,导致空腹高血糖的原因常见的有三个: 一、清晨空腹高血糖 临床研究表明,清晨时空腹血糖升高,主要有两种情况: 第一、夜间血糖控制良好,也无低血糖发生,仅仅于清晨一段时间内血糖很高,称为“黎明现象”。(黎明现象”是指糖尿病患者在夜间血糖控制尚可且平稳,即无低血糖的情 况下,于黎明时分(清晨3~9时)由各种激素间不平衡分泌所引起的 一种清晨高血糖状态。)黎明现象主要由皮质醇、生长激素等拮抗胰岛素作用的激素分泌增多引起。(其治疗方法诸多,以晚餐前及晚睡前SC中效INS和应用生长抑素即SMS、选择性胃窦迷走神经阻断剂哌吡氮平疗效较好,易为广大患者所接受。) 第二、夜间出现低血糖后,反跳性地引起清晨血糖升高,称为“苏木杰反应”。 有“黎明现象”的糖尿病患者可以在白天口服降糖药物的基础上,睡前加用皮下注射中效胰岛素,可收到良好疗效,使清晨空腹血糖高的现象得到控制。但要注意的是,注射前需要加食睡前小吃,如半杯牛奶和两片饼干等,以避免注射胰岛素后的低血糖发生。一旦清晨空腹血糖得到满意控制,白天餐后血糖也易于控制。 而对于有“苏木杰反应”的糖尿病患者来说,应减少作用于晚餐前的口 服降糖药物或胰岛素剂量,增加睡前小吃。睡前小吃是晚餐的分餐,

各类食物血糖生成指数表

各类食物血糖生成指数表 表1 糖类 麦芽糖 105 葡萄糖 100 绵白糖 83.5 胶软糖 80 蜂蜜 73 蔗糖 65 巧克力 49 乳糖 46 果糖 23 表2 水果 西瓜 72 波罗 66 葡萄干 64 芒果 55 熟香蕉 52 猕猴桃 52 柑 43 葡萄 43 梨 36 苹果 36 干杏 31 生香蕉 30 鲜桃 28 柚子 25 李子 24 樱桃 22 表3 粮食类 法国棍子面包 95 馒头(富强粉) 88.1 糯米饭 87 大米饭 83.2 桂格燕麦片 83 烙饼 79.6 油条 74.9 玉米片 73 小米饭 71

大米粥 69.4 小米粥 61.5 汉堡包 61 比萨饼 60 玉米(甜,煮) 55 爆玉米花 55 面条(硬质小麦粉,细) 55 玉米面粥 50.9 50%大麦粒面包 46 面条(小麦粉,硬,扁,粗) 46 混合谷物面包 45 小麦(整粒,煮) 41 面条(全麦粉,细) 35 表4 大豆及豆制品类 黄豆挂面 66.6 炖鲜豆腐 31.9 豆腐干 23.7 冻豆腐 22.3 大豆 18 表5 根茎类 煮红薯 76.7 土豆泥 73 胡萝卜 71 煮土豆 66.4 蒸土豆 65 土豆 62 油炸土豆片 60.3 烤土豆 60 山药 51 蒸芋头 47.9 藕粉 32.6 魔芋 17 土豆粉条 13.6 表6 其他 蚕豆 79 南瓜 75 扁豆 38 绿豆挂面 33.4

豌豆粉丝汤 31.6 绿豆 27.2 四季豆 27 扁豆 18.5 五香豆 16.9 花生 14 表7 混合膳食 牛肉面 88.6 米饭+猪肉 73.3 二合面窝头(玉米面+面粉)64.9 米饭+蒜苗 57.9 米饭+芹菜+猪肉 57 馒头+酱牛肉 49.4 芹菜炒鸡蛋+馒头 48.6 芹菜猪肉包子 39.1 西红柿汤 38 米饭+鱼 37 三鲜饺子 28 猪肉炖粉条 16.7 各种食物的血糖指数 血糖生成指数简称血糖指数,是指食物进入人体后,形成血液中葡萄糖浓度上升的速率和程度。测定食物的血糖指数时,先确定一种标准食物(一般以葡萄糖为标准食物),规定它的血糖指数是100,其他食物对血糖的影响,与标准食物进行比较,得出其他食物的血糖指数。 由于食物的加工精细程度和烹调方法不同,血糖指数可能有些变化,在一定范围内变化,仍然有参考价值。血糖指数高的食物,摄入体内后,血液的葡萄糖浓度上升的快,血糖浓度高。血糖指数低的食物,摄入体内后,血液的葡萄糖浓度上升的慢,血糖浓度低。 食物血糖指数对糖尿病人有一定的参考价值。糖尿病人的血糖浓度受许多因素的影响。摄取食物的种类只是其中的一个因素。即使这样,选择血糖指数适中或较低的食物,对控制血糖浓度也有一定的积极作用。 糖尿病人在使用血糖指数选择食物时,千万不要误认为血糖指数低的食物是好的食物;血糖指数越高的食物是坏的食物。正确的认识是:“没有完全好的食物或完全坏的食物。只有完全好的饮食或完全坏的饮食。”关键是食物要合理搭配。既要保证把血糖控制在合适的水平上,又要保证人体营养平衡的需求。

食物含糖量和糖转化率对照表

含糖量排排队 水果、蔬菜含糖量列表如下: 1%:南瓜紫菜生菜 2%:小白菜、小油菜、波菜、芹菜、青韭、蒜黄、窝笋、黄瓜西红柿、西葫芦、冬瓜、菜瓜茴香、卷白菜。3%:大白菜、黄韭、鲜雪里红、茄子、小红萝卜、角瓜、瓠子、鲜蘑菇、豌豆苗酸菜塌棵菜 4%:洋白菜、韭菜、绿豆芽、豆角、西瓜、甜瓜、菜花扁豆荚茭白春笋油菜空心菜臭豆腐。 5%:丝瓜、小葱、金花菜、青椒、青蒜、青梅酱豆腐韭菜花。 6%:白萝卜、青水萝卜、心青、大葱、韭菜苔、冬笋、草梅桃枇杷豆腐干黄豆芽 7%:香椿、香菜、毛豆、黄桃子、黄胡萝卜。 8%:生姜、洋葱头、红胡萝卜樱桃柠檬 9%:橙子、波萝、李子、莲蓬榨菜蒜苗 10%:葡萄、杏 11%:柿子、沙果 12%:梨子、桔子豌豆橄榄 13%:柚子、苹果 14%:荔枝山药 15%:苹果 16%:土豆 17%:石榴

20%:香蕉、藕 22%:红果 25.17-38.31%罗汉果干果 50%:柿饼 85%:粉条 低糖水果:(含糖量<10%)包括青瓜、西瓜、橙子、柚子、柠檬、桃子、李子、杏、枇杷、菠萝、草莓、樱桃等。此类水果每100克可提供20-40千卡的能量。 中糖水果:(含糖量11%-20%)包括香蕉、石榴、甜瓜、橘子、苹果、梨、荔枝、芒果等。此类水果每100克可提供50-90千卡能量。 高糖水果:(含糖量>20%)包括红枣、红果,特别是干枣、蜜枣、柿饼、葡萄干、杏干、桂圆、罗汉果等干果,果脯。含糖量特别高的新鲜水果,如红富士苹果、柿子、莱阳梨、肥城桃、哈密瓜、玫瑰香葡萄、冬枣、甘蔗、黄桃等。此类水果每100克提供的能量超过100千卡。

食物热量及GI值含量表 各种食物的GI值(升糖指数GlycemicIndex)与热量表GI值的定义: GI值是以食用纯葡萄糖(pureglucose)100克后2小时内的血糖增加值为基准(GIT=100),其他食物则以食用后2小时内血糖增加值与食用纯葡萄糖的血糖增加值作比较得到的升糖指数。意思就是说低GI的食物引起血糖变化小,相反高GI的食物引起血糖升高幅度大。促使胰岛素分泌增加。 目前己经公布了五百六十五种常见食物的升糖指数,一般含糖分较高或是消化吸收快的食物,如精制米、面粉制品,水果中的西瓜、芒果、凤梨、香蕉、荔枝、龙眼等升糖指数较高,而含纤维质较多的食物,如糙米、燕麦或全麦食品,以及蕃茄、葡萄柚及大部分蔬菜,升糖指数较低。 采用低GI饮食应避开GI值60以上与热量200以上的食物,一般定义GI值60以上为高GI值食物,GI值30以下为低GI值食物 ※双红字的食物为对某些人要禁忌※单红字的食物需节制 我收集整理相关资料制成表格,方便大家阅读: 食物详细GI值可以参考下面资料: 混合膳食 1、猪肉炖粉条16.7

当心!7种可引起血糖升高的药物

当心!7种可引起血糖升高的药物 药物引起的高血糖通常是指药物在治疗非血糖相关性疾病时,损害胰岛β细胞分泌功能,导致胰岛素分泌不足,或者靶组织对胰岛素的敏感性降低,进而导致血糖升高。 引起高血糖的常用药物有:抗高血压药物、调脂药、喹诺酮类药物、免疫调节药物等。 01噻嗪类利尿剂:氢氯噻嗪等。 导致高血糖的机制主要与细胞内失钾有关。用药后,到达肾单位远曲小管的钠离子量增加,其可与小管细胞钾离子交换,以致失钾增多;另一方面,用药后机体血容量减少,导致醛固酮分泌增加,促进远曲小管钠钾交换,尿钾排出增多。上述原因导致的细胞内钾离子水平下降可影响胰岛β细胞膜极化状态而致胰岛素分泌障碍。可与保钾类降压药联合使用(如ACEI及ARB),减少体内失钾。 02β受体阻滞剂:美托洛尔、普萘洛尔、奈比洛尔等。 导致高血糖的主要机制是抑制胰岛β细胞分泌胰岛素,使组织对胰岛素的敏感性降低。其他机制还包括肌肉脂蛋白酶减少、体重增加、胰岛素清除率下降及外周血流减少等。 胰岛β细胞上存在β2肾上腺素受体,可兴奋胰岛素分泌,使用β受体阻滞剂后易致胰岛素分泌减少,α1阻滞剂可增加脂蛋白脂肪酶的活性,从而降低甘油三酯水平,有助于提高胰岛素敏感性。因此选用高选

择性β1受体阻滞剂及α,β受体阻滞剂或可减弱对血糖的不良影 响。 03他汀类药物:阿托伐他汀、瑞舒伐他汀、匹伐他汀、辛伐他汀等。 诱发糖尿病的主要机制包括:①影响胰岛素分泌:他汀类药物能阻断电压门控L形钙通道开放并抑制钙离子内流,进而抑制胰岛素分泌; ②影响胰岛素的敏感性:脂肪细胞摄取葡萄糖显著减少,引起胰岛素抵抗。 他汀类药物有明确的致糖尿病风险,但是其对心血管疾病的总体益处远大于新增糖尿病危险,因此有他汀类治疗适应证者均应坚持服用此类药物。 04烟酸类药物:烟酸。 诱导高血糖的机制主要是大剂量烟酸导致脂肪组织甘油三酯分解反跳性增强,循环游离脂肪酸水平增加,致骨骼肌摄取葡萄糖减少以及肝糖异生增加。 因此,在应用烟酸药物时,应加强对血糖的监测力度,以降低发生高血糖的风险。 05喹诺酮类药物可引起血糖紊乱,即症状性高血糖和低血糖,尤其正在使用胰岛素和胰岛素类似物或降糖药治疗者。 ①左氧氟沙星、莫西沙星、加替沙星可引起低血压,临床表现以多汗、乏力、心悸、震颤、意识模糊等为特征,停药后立即静注50%葡萄糖注射液或静滴10%葡萄糖注射液予以治疗。

部分常见食物血糖生成指数(GI)

部分常见食物血糖生成指数(GI) 食物类序号食物名称GI 1 葡萄糖100.0 2 绵白糖83.8 3 蔗糖65.0 4 果糖23.0 5 乳糖46.0 6 麦芽糖105.0 7 蜂蜜73.0 8 胶质软糖80.0 9 巧克力49.0 10 MM巧克力32.0 11 方糖65.0 谷类及制品 12 小麦(整粒,煮)41.0 13 面条(小麦粉,湿)81.6 14 面条(强化蛋白质,细,煮)27.0 15 面条(全麦粉,细)37.0 16 面条(白,细,干)41.0 17 面条(硬质小麦粉,细,煮)55.0 18 线面条(实心,细)35.0 19 通心面(管状,粗)45.0 20 面条(小麦粉,干,扁,粗)46.0 21 面条(硬质小麦粉,干,加 鸡蛋,粗) 49.0

22 面条(硬质小麦粉,干,细)55.0 23 馒头(富强粉)88.1 24 粗麦粉65.0 25 烙饼79.6 26 油条74.9 27 大米粥(普通)69.4 28 大米饭83.2 29 粘米饭(含直链淀粉高)50.0 30 粘米饭(含直链淀粉低)88.0 31 糙米饭70.0 32 黑米饭55.0 33 速食米饭87.0 34 稻麸19.0 35 糯米饭87.0 36 大米糯米饭65.3 37 黑米粥42.3 38 大麦(整粒,煮)25.0 39 大麦粉66.0 40 黑麦(整粒,煮)34.0 41 玉米(甜,煮)55.0 42 玉米面(粗粉,煮粥)68.0 43 玉米面粉(粗粉)50.9 44 玉米糁粥51.8 45 玉米片(市售)78.5 46 玉米片(高纤维标签,市售)74.0 47 小米(煮饭)71.0

食物热量升糖指数表

220种食物的血糖生成指数(GI)表 健康报记者王晶珠 GI值越高,则这种食物升高血糖的效应越强,反之亦然 食品种类GI(%)食品种类GI(%)混合膳食谷类食物-面条 1、猪肉炖粉条意大利式细面条 (通心面粉,实心,-粗) 2、饺子(三鲜)38、强化蛋白质的意大利式细面条米饭+菜39、意大利式全麦粉细面条 3、米饭+鱼40、白的意大利式细面条(煮15-20分钟) 4、米饭+芹菜+猪肉41、意大利式硬质小麦细面条(煮12-20分钟) 5、米饭+蒜苗42、线面条(通心面粉,实心,约) 6、米饭+蒜苗+鸡蛋43、通心面(管状、空心、约粗)(煮5分钟) 7、米饭+猪肉硬质小麦扁面条 8、硬质小麦粉肉馅馄饨44、粗的硬质小麦扁面条 9、包子(芹菜猪肉)45、加鸡蛋的硬质小麦扁面条馒头+菜46、细的硬质小麦扁面条 10、馒头+芹菜炒鸡蛋47、面条(一般的小麦面条) 11、馒头+酱牛肉 12、馒头+黄油谷类食物-面包 13、饼+鸡蛋炒木耳大麦面包 14、玉米粉+人造黄油48、75%-80%大麦粒面包 15、牛肉面49、50%大麦粒面包 50、80%-100%大麦粉面包谷类杂粮51、混合谷物面包 大麦 16、大麦粒(煮)小麦面包 17、大麦粉(煮)52、含有水果干的小麦面包 18、整粒黑麦(煮)53、50%-80%碎小麦粒面包 19、整粒小麦(煮)荞麦54、粗面粉面包 20、荞麦方便面55、汉堡包(加拿大) 21、荞麦(煮)56、新月形面包(加拿大) 22、荞麦面条57、白高纤维小麦面包 23、荞麦面馒头58、全麦粉面包 玉米59、白小麦面面包 24、甜玉米60、去面筋的小麦面包 25、(粗磨)玉米粉(煮)61、法国棍子面包 26、二合面窝头62、白小麦面包

导致高血糖上升的五大因素

血糖控制绝不仅仅是糖尿病患者的事情,很多空腹血糖正常的人,餐后血糖也会过高,而长期餐后高血糖水平会升高糖化血红蛋白水平,大幅度提高患糖尿病、冠心病的危险,也会升高患部分癌症的风险。同时,把餐后血糖控制在正常范围里,也是预防肥胖和减肥的重要措施。研究表明,那些餐后血糖控制不好的人,实施同样节食措施时,减肥难度会比别人更大。要想控制好餐后血糖的水平,就要弄清楚血糖上升到底和什么有关系。 1、血糖从哪里来:血糖是糖和淀粉(统称为碳水化合物)带来的。碳水化合物总量越大,升糖的潜力就越大。所以,控血糖的第一项,就是不要吃过多的甜食和淀粉类食物。如果做饭做菜做点心做汤的时候加入糖,看起来好像什么都没有多,其实已经增加了碳水化合物的量,而且还会令人食欲大开,不利于控制体重。因此,要革除对甜味的癖好,尽量不吃加糖的食物。同时,还要限制淀粉类主食的数量,除了米饭馒头面条之类食物限量吃之外,如果吃了甘薯、土豆、山药、芋头、藕、甜玉米、甜豌豆、嫩蚕豆之类含有淀粉的食物,都要相应扣减主食的量,保证一餐当中碳水化合物总量不过多。 2、吃进的是何种淀粉食物:吃进去的到底是什么淀粉食物,含有什么抗营养成分,也同样地重要。由于淀粉的成分不同,消化难易会很不一样。比如说,大米淀粉中支链淀粉含量高,比较容易消化。而相比之下,绿豆淀粉粒直链淀粉含量高,消化速度就比较慢。除了粘性食物之外,大部分杂粮、杂豆、薯类,都比白米白面的血糖反应低。另外,淀粉类食物中所含的膳食纤维和抗消化物质的数量不同,也会影响到消化的速度。比如,豆类中含较高的单宁、植酸等物质,虽然人们往往会担心它们妨碍矿物质的吸收,但适当摄入时,它们和人体消化酶结合后会降低消化酶活性,起到延缓餐后血糖上升的作用,对糖尿病、高血脂患者是有益的。 3、烹调加工方法是怎样:一般来说,食物加工得越精白、打得越碎、烹煮得越软烂,消化就越容易,餐后的血糖上升速度就越快。比如说,白馒头、白面包的餐后血糖上升速度比白糖有过之而无不及。相反,那些不够软烂、需要细细咀嚼的烹调方法,比如弹性很强的通心粉,有利于保持餐后血糖水平的稳定。陶世强主任称遗憾的是,大部分糖尿病人都只爱吃精白细软的食物,连在白米饭中掺入一点杂粮都不肯。 4、用其他食材抑制血糖:用其他食材来延缓淀粉消化,减慢消化出来的葡萄糖进入血液的速度,也能有效地平缓餐后的血糖水平。比如昨天的文章提到,先吃一碗蔬菜,配些鱼肉,再开始吃米饭,而且一口饭配一口菜肴,血糖的波动就要比先吃米饭,大口吃饭小口吃菜要小得多。还有很多研究证明,用牛奶、豆浆、坚果等配合主食一起吃,都能有效地降低餐后血糖的波动。 5、加强运动:最后要忠告的是,在控制饮食之外,增加运动,强化肌肉,是提高胰岛素敏感性,改善血糖控制能力的最重要方法。

食物血糖生成指数表

食物血糖生成指数表

食物血糖生成指数表 食物类食物名称GI 食物类食物名称GI 糖类35 大麦粉66.0 1 葡萄糖100.0 36 黑麦(整粒,煮)34.0 2 绵白糖83.8 37 玉米(甜,煮)55.0 3 蔗糖65.0 38 玉米面(粗粉,煮)68.0 4 果糖23.0 39 玉米面粥50.9 5 乳糖46.0 40 玉米面糁粥51.8 6 麦芽糖105.0 41 玉米片78.5 7 蜂蜜73.0 42 玉米片(高纤维)74.0 8 胶质软糖80.0 43 小米(煮)71.0 9 巧克力49.0

44 小米粥61.5 谷类及制品45 米饼82.0 10 小麦(整粒,煮)41.0 46 荞麦(黄)54.0 11 粗麦粉(蒸)65.0 47 荞麦面条59.3 12 面条(小麦粉)81.6 48 荞麦面馒头66.7 13 面条(强化蛋白质,27.0 49 燕麦麸55.0 细,煮)薯类淀粉及制品 14 面条(全麦粉,细)37.0 50 马铃薯62.0 15 面条(白,细,煮)41.0 51 马铃薯(煮)66.4 16 面条(硬质小麦粉,55.0 52 马铃薯(烤)60.0 细,煮)53 马铃薯(蒸)65.0 17 线面条(实心,细)35.0 54 马铃薯(用微波炉烤)82.0

18 通心面(管状,粗)45.0 55 马铃薯(烧烤,无油脂)85.0 19 面条(小麦粉,硬,46.0 56 马铃薯泥73.0 扁,粗)57 马铃薯粉条13.6 20 面条(硬质小麦粉,49.0 58 甘薯[山芋] 54.0 加鸡蛋,粗)59 甘薯(红,煮)76.7 21 面条(硬质小麦粉,细)55.0 60 藕粉32.6 22 馒头(富强粉)88.1 61 苕粉34.5 23 烙饼79.6 62 粉丝汤(豌豆)31.6 24 油条74.9 豆类及制品 25 大米粥69.4 63 黄豆(浸泡,煮)18.0 26 大米饭83.2 64 黄豆(罐头)14.0 27 粘米饭(含直链淀粉,50.0

影响血糖的28个因素

影响血糖的28个因素 众所周知,血糖波动与糖尿病并发症的发生与发展有较大关系。有些糖尿病患者总体血糖水平不高,血糖波动幅度却很大,同样会导致并发症的发生。糖尿病患者出现血糖波动的时候,要迅速分析原因,短时间内将血糖控制平稳。常见的影响血糖的因素,我们归纳了28条,患者可以对照自己的情况分析原因。 1、没按规定服药:服药需要定时、定量,减药过快、随意停药等因素都会导致血糖升高。注射胰岛素的患者,应注意调药使用。 2、饮食:如果每餐饮食量过饱,会导致血糖升高,建议每餐饮食七八分饱。高脂肪、高盐分、高油脂的食品要尽最大努力控制。 3、运动不够或长期卧床不起:运动有利于降低体重,改善胰岛素抵抗。运动量过小时起不到相应的降糖作用,运动量过,血糖也会因为应激、体内激素的变化,引起血糖升高。建议锻炼应在早晚饭后1小时开始,时间坚持30分钟,避免剧烈运动,且要持之以恒。 4、天气和季节:天气突变,突然受冷热刺激,交感神经处于兴奋状态,可使血糖升高。主要是寒冷因素,会引起身体的应激反应,抑制胰岛素的分泌,引起血糖升高;另外,此时身体的脂肪储藏速度加快,诱发高血糖。 5、失眠、嗜睡或早醒:失眠或嗜睡各占50%的比例导致血糖升高,失眠越重血糖越高。 6、精神压力过大、情绪不稳定:过度紧张、悲伤、愤怒等异常心态都会使肾上腺素水平增高,导致血糖的升高。 7、应激:人体处在应激状态下时会产生大量激素,包括有肾上腺皮质激素、胰高血糖素等,这些激素分泌水平升高,都会促使血糖水平随之升高。 8、便秘:便秘时,胃肠排空迟缓,食物成分的吸收增多,会导致血糖升高。 9、高脂血症:合并有高脂血症的糖尿病人下降较慢,建议糖尿病人应保持胆固醇小于4.5,甘油三酯小于1.6,低密度脂蛋白小于2.0. 10、脂肪肝、肝炎、肝硬化:各种肝脏疾病引起肝糖原储备减少时,可出现餐后血糖一过性升高: 11、向心性肥胖:即常说的啤酒肚,建议男性腰围小于0.82米,女性臀围小于0.73米。 12、肥胖或超重:身体肥胖或超重均会使患者胰岛素受体数量减少,使血糖居高不下。 13、感冒:感冒、发烧等会让患者的血糖水平有较大幅度的升高,再有,某些治疗咳嗽及感冒的药物中,有些成分可以升高血糖水平及血压水平。 14、吸烟:一般在服药30分钟内吸烟者的药物吸收率为1.2-1.8%,在服药60分钟内吸烟者药物吸收率为7-10%,不吸烟者为24-30%,建议糖尿病患者限烟并逐步戒烟。 15、喝酒:酒精可以降低血糖水平,在正常情况下,当人体血糖水平过低时,肝脏就会将所储存的糖原转换成葡萄糖,以供人体所需,而酒精有可能影响肝脏中肝糖原向葡萄糖的转换,因而血糖水平突然大幅度的下降。当然,糖尿病患者适量饮酒并不会带来任何严重后果,但是当您饮酒后,需要对您的血糖水平进行较为频繁的监测,以防止低血糖的发生。16、各类炎症:如果患者本身长期患有前列腺炎、关节炎、牙龈炎、胃炎、肠炎、角膜炎、结膜炎、空腔溃疡等慢性炎症,均会导致血糖升高,难以控制。 17、慢性疾病体力下降:慢性疾病体力下降可引起糖耐量减低,使血糖升高 18、各类慢性疾病的急性发作:比如常见的高血压、冠心病、皮肤瘙痒等的急性发作,会导致血糖的暂时升高。 19、内分泌性疾病: 患肢端肥大症、皮质醇增多症、甲状腺机能亢进症等,可引起继发性血糖升高。

升糖指数(血糖生成指数)食物表

升糖指数(血糖生成指数)食物表升糖指数(GI) 又名血糖生成指数,指的是,食物进入人体两个小时内血糖升高的相对速度。低升糖指数食物对于肥胖、糖尿病等特殊群体,在指导科学饮食及控制营养平衡方面具有非常重要的意义在几十年前科学家就已经知道,糖类食物吸收很快,导致血糖迅速增加, 直到近代,人们还以为土豆、米饭、面团一类的淀粉提高血糖的速度更缓慢。 但是,1981年,多伦多大学营养学教授大卫·约金斯博士发现这一观点未必正确。 他发现有些食物--比如土豆--实际上会导致血糖迅速升高,而有些含糖高的食物提高血糖的速度似乎反而更缓慢。 这一发现导致升糖指数(GI)的提出,升糖指数是测定吃了碳水化合物食物之后血糖即时升高的指标。消化很快并且导致酮基已糖很快释放的食物被称为高升糖指数食物;消化较慢的食物被称为低升糖指数食物。 一般说来,糖尿病患者是不提倡吃任何水果的,日常可以用西红柿和青瓜来代替。 余主任指出,糖尿病人选择食物可以根据“血糖生成指数”来选择食物, 而不能单看食物的含糖量高低,这样才能做到平衡膳食,合理控制血糖。 例子: 西瓜含糖量只有4%,但是升糖指数高达72,远远超过其他水果,不建议食用 糖尿病病人最需要警惕的就是空腹血糖和餐后血糖,尤其是餐后血糖剧烈波动将影响血糖控制的效果,因此,在食物中选择低升糖指数食物对糖尿病患者来说至关重要。高升糖指数食物中,有些水果因为含糖量比较高也需要糖尿病患者特别注意。 葡萄糖GI值=100 低升糖指数食物:GI值<46(0—45)

低升糖指数食物:GI值<46(0—45)

中升糖指数食物:GI值46—70

高升糖指数食物:GI值>70 注意一:食物原料不要求精求细,越是粗粮,升糖指数越低。比如吃糙米、糙面比精米、精面要好。吃生香蕉要比吃熟香蕉更好。 注意二:尽量减少烹调食物,生吃比熟吃好,烹调时间越短越好。比如长时间煮成的稀饭升糖指数高,而米饭的升糖指数则低于稀饭。 注意三:食物带皮吃更好,注意量的控制,消化越慢对血糖影响越小。比如常见的水果蔬菜,尽量不要削皮,能带着皮吃就越能减少吸收速度。

各类食物血糖生成指数表

各类食物血糖生成指数表 表一糖类 麦芽糖105 葡萄糖100 绵白糖83.5 胶软糖80 蜂蜜73 蔗糖65 巧克力49 乳糖46 果糖23 表二水果 西瓜72 波罗66 葡萄干64 芒果55 熟香蕉52 猕猴桃52 柑43 葡萄43 梨36 苹果36 干杏31 生香蕉30 鲜桃28 柚子25 李子24 樱桃22 表三粮食类 法国棍子面包95 馒头(富强粉)88.1 糯米饭87 大米饭83.2 桂格燕麦片83 烙饼79.6 油条74.9 玉米片73 小米饭71 大米粥69.4 小米粥61.5 汉堡包61 比萨饼60 玉米(甜,煮)55 爆玉米花55 面条(硬质小麦粉,细) 55 玉米面粥50.9 50%大麦粒面包 46 面条(小麦粉,硬,扁, 粗)46 混合谷物面包45 小麦(整粒,煮)41 面条(全麦粉,细) 35 表5 根茎类 煮红薯76.7 土豆泥73 胡萝卜71 煮土豆66.4 蒸土豆65 土豆62 油炸土豆片60.3 烤土豆60 山药51 蒸芋头47.9 藕粉32.6 魔芋17 土豆粉条13.6 表6 其他 蚕豆79 南瓜75 扁豆38 绿豆挂面33.4 豌豆粉丝汤31.6 绿豆27.2 四季豆27 扁豆18.5 五香豆16.9 花生14 表4大豆及豆制品类 黄豆挂面66.6 炖鲜豆腐31.9 豆腐干23.7 冻豆腐22.3 大豆18 表7 混合膳食 牛肉面88.6 米饭+猪肉73.3 二合面窝头(玉米面+ 面粉)64.9 米饭+蒜苗57.9 米饭+芹菜+猪肉 57 馒头+酱牛肉49.4 芹菜炒鸡蛋+馒头 48.6 芹菜猪肉包子39.1 西红柿汤38 米饭+鱼37 三鲜饺子28 猪肉炖粉条16.7 糖尿病人在使用血糖指数选择食物时,千万不要误认为血糖指数低的食物是好的食物;血糖指数越高的食物是坏的食物。正确的认识是:“没有完全好的食物或完全坏的食物。只有完全好的饮食或完全坏的饮食。”关键是食物要合理搭配。既要保证把血糖控制在合适的水平上,又要保证人体营养平衡的需求。 食物血糖生成指数主要受三方面因素影响: 1).食物类别食物血糖生成指数依食物种类不同而有所差异,如蔬菜、豆类、肉类、奶类的血糖生成指数较低。而精制糖类、谷类、少数水果血糖生成指数较高。 2).食物加工方式食物加工方式也能影响血糖。比如同样是淀粉,粗制大米要比磨

晨起高血糖常见原因

苏木杰现象会引起晨起高血糖 医生:苏木杰现象是指糖尿病患者夜间低血糖,早餐前高血糖的现象,简单地说,也就是“低后高”现象。当夜间发生低血糖反应后,机体为了保护自身,使具有升高血糖作用的激素(如胰高血糖素、皮质醇等)分泌增加,导致晨起血糖出现反跳性升高。 医生:糖友出现苏木杰现象大多见于胰岛素用量过大,或没有按时加餐,或病情控制较好时体力活动增加,在这些情况下,糖友很容易发生夜间低血糖,继而出现反跳性的血糖升高。陈大妈您的晨起血糖升高就是发生了苏木杰现象,出现这种现象是因为您注射胰岛素过量造成的。 医生:如果是怀疑苏木杰现象引起的晨起高血糖,要严格监测血糖,尤其是夜间血糖,如果在夜间2~3点检测发现低血糖,可证实存在苏木杰现象,要在医生的指导下调整饮食和降糖药的用量。睡前血糖接近正常水平的患者,可增加睡前小吃(如饼干、牛奶),防止夜间低血糖发生,当然睡前小吃要包括在每日饮食总热量的计算中。 黎明现象会引起晨起高血糖 医生:黎明现象夜间并无低血糖发生,主要是由于体内升糖激素如生长激素等在凌晨开始有规律分泌增加,这是机体在为迎接新的一天的工作生活做准备。正常人可以分泌相应的胰岛素来保持血糖在正常范围,但对于血糖调节能力降低的糖尿病患者来说,就会导致晨起血糖的升高。

医生:黎明现象需要增加睡前基础胰岛素的用量,以控制清晨出现的高血糖现象。另外,在睡前加用二甲双胍对控制黎明现象效果也比较好。 胰岛素用量不足会引起高血糖 医生:一些糖友打胰岛素的剂量不够或者剂量足够时存在一些操作错误,使胰岛素不能完全发挥作用,导致睡觉前或夜间血糖持续控制不佳,并伴有口渴、夜尿多等现象,空腹检测血糖也会升高。 医生:对,如果是胰岛素剂量不够造成的高血糖,要在医生指导下加大胰岛素注射剂量。要是由于打胰岛素方法不对,造成的药效不能完全发挥,要纠正错误的注射方式,如避免注射出血、使用胰岛素笔注射后要停留10秒等。 早上空腹运动会引起高血糖 医生:一些糖友认为空腹运动会更好地控制血糖,所以选择早上空腹运动。实际上这样会造成血糖波动,有时还会出现高血糖。 医生:有研究表明,空腹运动前血糖较低时,运动可能引起血糖升高即便是低强度运动,尤其血糖控制较好的女性,男女差异目前原因不清楚。血糖升高的机制是:晨起升高血糖的激素如胰高血糖素、皮质醇、生长激素水平处于高峰,而运动会兴奋交感神经,使激素水平进一步增高,促使肝糖输出增加,超过运动过程中肌肉组织对葡萄糖的摄取量时,会导致血糖升高。 医生:如果糖尿病患者空腹运动时血糖较高,运动过程中组织对葡萄糖的利用可能会超过神经、体液因素的影响,导致血糖下降。空腹运

常见食物的升糖指数表

常见食物的升糖指数表 升糖指数食物名称升糖指数食物名称升糖指数食物名 称 干枣102±1马铃薯56±1梨36±3葡萄糖100±0爆米花55±1苹果36±2精米87±2芒果55±0面条36±1南瓜75±9燕麦饼干54±1豌豆32±1面粉/小米74±2香蕉53±6草莓32±0蜂蜜73±15甜玉米53±2扁豆29±1西瓜72±13荞麦53±1桃子28±0硬面包圈70±2甘薯52±2全脂奶27±7胡萝卜71±22猕猴桃52±0刀豆27±5白百包68±2蛋糕50±10葡萄柚25±0菠萝66±0玉米饼47±2李子24±0蔗糖65±4乳糖46±3大麦23±2葡萄干62±2葡萄43±0果糖23±1冰激凌61±7橘子43±0樱桃22±0汉堡包60±1全麦麦片40±2黄豆18±3木瓜58±0全麦40±2花生米13±2

糙米56±2玉米39±1?? 现指出按“指数”吃饭应避免三个倾向:低“指数”食物多多益善按“指数”选择食物的前提是平衡膳食,而不能因为低“指数”食物好而不加限制,否则很可能造成饮食控制失衡。对大多数患者来说,首先应解决如何做到平衡膳食、合理安排饮食。 1。低“指数”食物也应加以限制 “指数”越低的食物越好应该说,不同类食品的营养价值没有可比性。选择食物的关键是平衡膳食、食物多样化,如果认为“指数”越低越好,并主要食用少数几类食物,结果必然会导致食物单一化,对人体健康不利。 2。不能仅吃几种低“指数”食物 事实上,不同食物混合进食后对血糖的影响也不同,而食物血糖生成指数表所列数据不能体现各种搭配的结果。因此,在选用不同种类食物安排饮食时,若特别喜欢食用某些高“指数”食物,此时可搭配食用低“指数”食物,这样既达到食物多样化目的,又有效控制血糖。 低“指数”食物能减肥低“指数”食物不是减肥食品,但因其含有较多的膳食纤维,食用后可产生饱腹感,并促进排便,因此有一定的保健作用。真正要达到减肥目的,关键是要控制摄入的总热量。 ※3。什么是血糖生成指数(GI)? GI表示某种食物升效应与标准食品(通常为葡萄糖)升高血糖效应之比。GI 值越高,说明这种食物升高血糖的效应越强。 碳水化合物含量相同的食物进入人体后,为什么会引起完全不同的血糖应答呢?这是由于不同的碳水化合物食物在肠胃内消化吸收的速度不同所致,而消化

肾上腺素引起的血糖高

肾上腺素有增加血糖的原因 肾上腺素 肾上腺髓质分泌两种激素:肾上腺素和去甲肾上腺素,总称为儿茶酚胺,是酪氨酸的衍生物。生理功能 1.对代谢的影响肾上腺素对糖代谢的影响与胰岛素的作用相拮抗。它促进糖元分解及酵解,故增加血糖及血中乳酸,这是由于肾上腺素活化肝脏与肌肉中的磷酸化酶所致(见《糖代谢》章)。去甲肾上腺素也有上述作用,但较弱。肾上腺素还能促进蛋白质分解,并促进脂肪氧化,使血及尿中酮体增加。 2.与交感神经兴奋相同的作用肾上腺素能使血压升高,心率加速,心输出量增加等。去甲肾上腺素对心脏的兴奋性比肾上腺素弱,但能使冠状动脉以外的全身小动脉收缩,故有较强的升高血压的作用。 肾上腺素还能舒张内脏平滑肌,临床上常用能上腺素松弛支气管平滑肌,扩张支气管,以治疗支气管哮喘。去甲肾腺素扩张支气管作用较弱。 我国特产的生药麻黄所含的麻黄素和肾上腺素结构相似,具有与肾上腺素相似的药理作用。 肾上腺皮质激素 肾上腺皮质激素是由肾上腺皮质分泌的甾体类激素,它们是由胆固醇转化来的。 (一)分类肾上腺皮质激素按其生理作用可分为糖皮质激素、盐皮质激素和氮皮质激素三组。(二)调节肾上腺皮质激素受促肾上腺皮质激素(ACTH)的作用加速合成和分泌,而ACTH 受下丘脑促肾上腺皮质激素释放激素的促进,血浆皮质激素对垂体也有反馈作用。 (三)生理功能 1.糖皮质激素在C11上均有氧原子,又称11-氧皮质类固醇。正常人体肾上腺皮质分泌入血的主要是皮质醇(氢化可的松)和皮质酮。而皮质酮的含量很少,约只有氢化可的松的1/3。此类激素对糖代谢的作用很强,而对钠、钾代谢作用很小,故有糖皮质激素之称 典型糖尿病人在发病前后,面色并无异常改变。但有人调查过千例隐匿性糖尿病病人,发现绝大多数患者颜面色泽较红,有%的患者呈不同程度红面容。下面就介绍一下引起糖尿病血糖升高的原因 糖尿病(Diabetes)分1型糖尿病和2型糖尿病。在糖尿病患者中,2型糖尿病所占的比例约为95%。其中1型糖尿病多发生于青少年,因胰岛素分泌缺乏,依赖外源性胰岛素补充以维持生命。2型糖尿病多见于中、老年人,其胰岛素的分泌量并不低,甚至还偏高,临床表现为机体对胰岛素不够敏感,即胰岛素抵抗(Insulin Resistance,IR)。

相关文档
相关文档 最新文档