文档库 最新最全的文档下载
当前位置:文档库 › DNA_RNA比值

DNA_RNA比值

DNA_RNA比值
DNA_RNA比值

DNA/RNA的定量与纯度的测定OD260 OD280 OD230 一、实验目的

学习、掌握紫外吸收法检测DNA浓度和纯度的原理和方法。

二、实验原理

DNA/RNA在260nm处有最大的吸收峰,蛋白质在280nm处有最大的吸收峰,盐和小分子则集中在230nm处。因此,可以用260nm波长进行分光测定DNA浓度,OD值为1相当于大约50μg/ml双链DNA。如用1cm光径,用H2O稀释DNA/RNA 样品n倍并以H2O为空白对照,根据此时读出的OD260值即可计算出样品稀释前的浓度:DNA(mg/ml)=50×OD260读数×稀释倍数/1000。RNA(mg/ml)=40×OD260读数×稀释倍数/1000。DNA/RNA纯品的OD260/OD280为1.8或2.0,故根据OD260/OD280的值可以估计DNA的纯度。若比值较高说明含有RNA,比值较低说明有残余蛋白质存在。OD230/OD260的比值应在0.4-0.5之间,若比值较高说明有残余的盐存在.本实验室机器显示是OD260\OD230,则比值应在2-2.5之间,偏小则说明有残余盐剩余。

三、实验步骤

1. 将制备的DNA悬浮溶解于TE缓冲液中[pH8.0, 10mmo1/L 的Tris缓冲液,内含〈1mmol/L EDTA〉]或悬浮溶解在灭菌水中(依据DNA含量加水)。

2. 用可扫描的紫外分光光度计测定制备的DNA/RNA的紫外吸收曲线,测定OD260和OD280,并计算比值:OD260/OD280,纯DNA的此比值约为1.8~2.0。纯RNA的此比值约为大于2.0。

3. 根据:每毫升1微克的纯DNA的OD260值= 0.020,计算所得DNA的纯度;

每毫升1微克的纯RNA的OD260值= 0.025,计算所得RNA的纯度;

并讨论纯度较低的原因和解决办法。

260、320、230、280nm下的吸光度分别代表了核酸、背景(溶液浑浊度)、盐浓度和蛋白等有机物的值。一般的,只看OD260/OD280(Ratio,R)。

DNA: OD260/OD280比值应接近1.80,若R值大于1.8。说明存在RNA,可重新用RNaseA处理,酚:氯仿:异戊醇(23:24:1)抽提。若R值小于1.8,则说明有蛋白质等杂质存在,需再用蛋白酶K、SDS及盼、氯仿、异戊醇重新对DNA进行纯化(也可加入1/8体积的3M NaAc(pH5.2)与冷乙醇一同促使DNA沉淀析出。

RNA: OD260/OD280比值在1.8-2.0时,认为RNA中蛋白或者时其他有机物的污染是可以容忍的,不过要注意,当你用Tris作为缓冲液检测吸光度时,R值可能会大于2(一般应该是<2.2的)。当R<1.8时,溶液中蛋白或者时其他有机物的污染比较明显,你可以根据自己的需要决定这份RNA的命运。当R>2.2时,说明RNA已经水解成单核酸了

注意事项

1. 有用品均需要高温高压,以灭活残余的DNA酶/RNA酶。

2. 所有试剂均用高压灭菌双蒸水配制,RNA均用DEPC处理的水。

定量测定DNA或RNA,其中260nm读数用来估算样品中核酸浓度,1个OD260值相当于40μg/mLRNA或50μg/mLDNA。OD260/OD280的比值用于估计核酸的纯度,OD260/OD230估计去盐的程度。对于RNA纯制品,其OD260/OD280≈1.8-2.0,OD260/OD230应大于2。OD260/OD280<2.0可能是蛋白污染所致,可以增加酚抽提;OD260/OD230<2说明去盐不充分,可能是GIT污染所致,可以再次沉淀和70%乙醇洗涤。

DNA或RNA链上碱基的苯环结构在紫光区具有较强吸收,其吸收峰在260nm处。波长为260nm时,DNA或RNA的光密度OD260不仅与总含量有关,也随构型而有差异。

对标准样品来说,浓度为1μg / ml时,DNA钠盐的OD260=0.02

当OD260=1时,dsDNA浓度约为50μg / ml

ssDNA浓度约为37μg / ml

RNA浓度约为40μg / ml

寡核苷酸浓度约为30μg / ml(youyu底物不同有差异)

当DNA样品中含有蛋白质、酚或其他小分子污染物时,会影响DNA吸光度的准确测定。一般情况下同时检测同一样品的OD260、OD280和OD230,计算其比值来衡量样品的纯度。

经验值:

纯DNA:OD260/OD280≈1.8(>1.9,表明有RNA污染;

<1.6,表明有蛋白质、酚等污染)

纯RNA:1.7 <OD260/OD280<2.0(<1.7时表明有蛋白质或酚污染;>2.0时表明可能有异硫氰酸残存)

若样品不纯,则比值发生变化,此时无法用分光光度法对核酸进行定量,可使用方案二的方法或其他方法进行估算

正项级数的常用审敛法和推广比值审敛法的比较

正项级数的常用审敛法和推广比值审敛法的比较 摘 要 数项级数是数的加法从有限代数和到无限和的自然推广.由于无限次相加,许多有限次相加的性质便在计算无限和时发生了改变.首先,有限次相加的结果总是客观存在的,而无限次相加则可能根本不存在有意义的结果。 这就是说,一个级数可能是收敛或发散的.因而,判断级数的敛散性问题常常被看作级数的首要问题。 在通常的微积分学教程中,审敛正项级数的敛散性有许多有效的方法,比如达朗贝尔审敛法,拉贝审敛法等,本文就达朗贝尔审敛法和拉贝审敛法与几个新审敛法进行一些适当的比较总结,另对其应用做一些举例验证。 关键词 数学分析 正项级数 推广比值审敛法 一.预备知识 1.正项级数的定义 如果级数1n n x ∞ =∑的各项都是非负实数,即0,1,2,, n x n ≥= 则称 此级数为正项级数 2..收敛定理 正项级数收敛的充分必要条件是它的部分和数列有上界。 若正项级数的部分和数列无上界,则其必发散到+∞ 例 级数22(1)(1) n n n n ∞ =??-+? ∑是正项级数。它的部分和数列的通项 21 12212ln ln ln 2ln ln 2(1)(1)11n n n k k k k k n s k k k k n ++==?++??=<- =-,若1 lim n n n U L U +→∞=,当 L<1,级数收敛,当L>1,级数发散,L=1,不能审敛。

正项级数敛散性地判别方法

正项级数敛散性的判别方法 摘要:正项级数是级数容中的一种重要级数,它的敛散性是其基本性质。正项级数敛散性的判别方法虽然较多,但是用起来仍有一定的技巧,归纳总结正项级数敛散性判别的一些典型方法,比较这些方法的不同特点,总结出一些典型判别法的特点及其适用的正项级数的特征。根据不同级数的特点分析、判断选择适宜的方法进行判别,才能事半功倍。 关键词:正项级数;收敛;方法;比较;应用 1引言 数项级数是伴随着无穷级数的和而产生的一个问题,最初的问题可以追溯到公元前五世纪,而到了公元前五世纪,而到了公元17、18世纪才有了真正的无穷级数的理论。英国教学家Gregory J (1638—1675)给出了级数收敛和发散两个术语从而引发了数项级数敛散性广泛而深入的研究,得到了一系列数项级数的判别法。因而,判断级数的敛散性问题常常被看作级数的首要问题。我们在书上已经学了很多种正项级数敛散性的判定定理,但书上没有做过多的分析。我们在实际做题目时,常会有这些感觉:有时不知该选用哪种方法比较好;有时用这种或那种方法时,根本做不出来,也就是说,定理它本身存在着一些局限性。因此,我们便会去想,我们常用的这些定理到底有哪些局限呢?定理与定理之间会有些什么联系和区别呢?做题目时如何才能更好得去运用这些定理呢?这就是本文所要讨论的。 2正项级数敛散性判别法 2.1判别敛散性的简单方法 由级数收敛的基本判别定理——柯西收敛准则:级数 1 n n u ∞ =∑收敛 ?0,,,,N N n N p N ε+?>?∈?>?∈有12n n n p u u u ε+++++ +<。取特殊的1p =,可 得推论:若级数 1 n n u ∞ =∑收敛,则lim 0n n u →∞ =。 2.2比较判别法 定理一(比较判别法的极限形式): 设 1 n n u ∞=∑和1 n n v ∞ =∑为两个正项级数,且有lim n n n u l v →∞=,于是 (1)若0l <<+∞,则 1 n n u ∞ =∑与 1 n n v ∞ =∑同时收敛或同时发散。 (2)若0l =,则当 1 n n v ∞ =∑收敛时,可得 1 n n u ∞ =∑收敛。

Bland-Altman方法判定测量一致性

运用Bland-Altman分析水稻测量方法一致性 摘要:在农业生产中,对水稻穗长进行测量的数据是预测水稻产量,观测农作物生长情况的重要指标。在实际测量中,经常会遇到评价两种或多种检测、测量方法结果一致性的问题。一般情况下,其中一种方法是目前广泛应用的或被称为“金标准”的方法,在对水稻穗长进行测量的过程中,水稻穗长的手动测量方法即人工对每棵水稻的穗长进行测量,此测量数据可作为“金标准”。而另一种方法则是更先进、更便于应用、更经济的方法,在对水稻穗长进行测量的过程中,水稻穗长的自动测量方法即使用机器视觉采集水稻穗长图像,然后用图像识别的方法获得每个水稻的穗长。本文将通过运用Bland-Altman方法对水稻穗长测量实例的分析,来判断这两种方法是否可以互相替代。 一、原理和方法 Bland-Altman方法的基本思想是计算出两种测量结果的一致性界限,并用图形的方法直观地反映这个一致性界限。最后结合水稻穗长的实际状况,得出两种测量方法是否具有一致性的结论。 1.一致性界限 在进行两种方法的测定时,通常是对同一批受试对象同时进行测量。这两种方法一般不会获得完全相同的结果,总是存在着有一定趋势的差异,如一种方法的测量结果经常大于(或小于)另一种方法的结果,这种差异被称为偏倚。偏倚可以用两种方法测定结果的差值的均数d进行估计,均数d的变异情况则用差值的来描述。如果差值的分布服从正态分布,则95%的差值应该位于标准差S d 和d+1.96Sd之间。我们称这个区间为95%的一致性界限,绝大多数d-1.96S d 差值都位于该区间内。如果两种测量结果的差异位于一致性界限内在实际上是可以接受的,则可以认为这两种方法具有较好的一致性,这两种方法可以互换使用。当样本量较小时,抽样误差会相对较大,因此还要给出95%一致性界限的上下限的置信区间。差值均数的标准差SE(d),一致性界限的上、下限的标准误近似等于1.71SE(d),则可以分别计算出一致性界限上限的95%置信区间和下限的95%置信区间。

级数判别法

级数判别法 基本定理:正项级数收敛的充要条件是: ∑∞ =1 n n a 的部分和数列 }{n S 有界。 1、 比较判别法:设 ∑∞=1 n n a 和∑∞ =1 n n b 是两个正项级数,且存在 0>N ,使当N n >时,有不等式n n b a ≤,则: ○ 1:∑∞ =1n n b 收敛 ∑∞ =?1 n n a 收敛。 ○ 2:∑∑∞ =∞ =?10 1 n n n n b a 发散发散。 2、 比较判别法极限形式:设 ∑∞ =1 n n a 和 ∑∞ =1 n n b 是两个正项级数,且 λ=+∞→n n n b a lim ,则: ○ 1:当+∞<<λ0时,∑∞ =1 n n a 和 ∑∞ =1 n n b 具有相同的敛散性。 ○ 2:当0=λ时,∑∞=1 n n b 收敛∑∞ =?1n n a 收敛。 ○ 3:当+∞=λ时,∑∞=1 n n b 发散∑∞ =?1 n n a 发散。 3、 比较判别法II :设有两正项级数 ∑∑∞ =∞ =10 1 n n n n b a 和,)0,0(≠≠n n b a 满足: n n n n b b a a 1 1++≤,则: ○ 1:∑∞ =1 n n b 收敛 ∑∞ =?1 n n a 收敛。 ○ 2:∑∞ =1 n n a 发散∑∞ =? 1 n n b 发散。 4、 比值判别法(达朗贝尔):设 ∑∞ =1 n n a 为正项级数,则: 1°若当n 充分大时有: 11 <≤+q a a n n ,则级数∑∞ =1n n a 必收敛。 2°若当n 充分大时有: 11 ≥+n n a a ,则级数∑∞=1 n n a 必发散。 5、 达朗贝尔判别法的极限形式:设 ∑∞ =1 n n a 为正项级数,且 2111lim lim λλ==+∞→+∞→n n n n n n a a ,a a ,+∞≤2,1λ,则: 1°:当11 <λ时,级数∑∞ =1n n a 收敛。 2°:当 12>λ时,级数∑∞ =1 n n a 发散。 6、 根值判别法(Cauchy ):设 ∑∞ =1 n n a 为正项级数,则:

浅谈达朗贝尔判别法

浅谈达朗贝尔判别法 郑媛媛 (渤海大学数学系 辽宁 锦州 121000 中国) 摘要:通过学习了达朗贝尔判别法及其推论,我们了解到达朗贝尔判别法在判别正项级数的敛散性中是非常简便适用的。但这种判别法仍存在着一些弊端,给我们在学习中造成了许多不便,为了便于我们今后的学习,本文简单的介绍和研究了几种达朗贝尔判别法的推广方法,主要解决了达朗贝尔判别法在n lim a a n n 1+=1失效的情况下敛散性的判别。文中提到的方法,不但使用简便, 具有广泛的适用性,而且更为精细。为正项级数敛散性的判定提供了更有力的工具。 关键词:正项级数 敛散性 TALK ABOUT J.D ‘ALEMBERT ‘S PRINCIPLE Zheng Yuanyuan (Department of Mathsmatic Bohai University Liaoning Jinzhou 121000 China) Abstract :The study of the D`Alembert Discrimination Act and its corollary,We understand that d`Alembert Discrimination in the series Conwergence Divergence is very simple application.This Criterion there are still some drawbacks to the study,we created a lot of inconvenience.In order to facilitate our future study,this brief introduction and study of several d`Alembert Criterion promotional measures,mainly to solve the D`Alembert`s Test=failure in the case of convergence and divergence of discremination.The article mentions the method not only easy to use,with broad applicability,but more subtly.For the positive series fugitive convicted of a more powerful tool. Key words :positive series ; conbergence anddivergence.

比较几种判定正项级数收敛性的方法

比较几种判定正项级数收敛性的方法 【摘要】通过对:1:比较判别法;2:根植判别法3:达朗伯耳判别法的应用范围的比较,加以对其分析, 找出若干类型题加以分类,确定哪类适合这两种判定法,归纳其特点,以便以后做题能够快速入手,遇到题目以后具体运用哪种方法更便捷提供了途径. 【关键词】比较判别法 根植判别法 达朗贝尔 例题 一:比较判别法. 1:定义 若从某一项起11n n n n n n a b a kb a b ++≤≤(或者) (k >0),则由1 n n b ∞ =∑的收敛性可推出1 n n a ∞ =∑收敛,若从某一项起n n a kb ≥11()n n n n a b a b ++≥ 或者 (k >0),则由1 n n b ∞ =∑发散可推出1 n n a ∞ =∑发散. 2:比较判别法的极限形势 设lim n n n a b →∞ =λ(+λ∞为有限数或)则: (i ):0λ<<+∞时,n n a b 则和收敛性相同. (ii ):1 1 =0b n n n n a λ∞ ∞ ==∑∑时,由收敛可推出收敛. (iii ):1 1 b n n n n a λ∞ ∞ ===+∞∑∑时,由发散课推出发散. 3:例题 (1):证明:若级数1 n n a ∞ =∑收敛,则把该级数的项通过组合而不改变其先后顺序所得的级 数1 n n A ∞ =∑其中 1 1 n n p n i i p A a -+==∑ (11p =,12p p <<…)也收敛且具有相同的和,反之不真,举 出例子. 证 设级数1 n n A ∞ =∑的部分和序列为1,2l l ,…,n l ,…,则

06第六讲 正项级数的比式判别法

数学分析第十二章数项级数正项级数的比式判别法 第六讲

数学分析第十二章数项级数比式判别法和根式判别法 本段所介绍的两个方法是以等比级数作为比较对象而得到的,特征就能作出判断,不需要与已知级数进行比较.但在使用时只要根据级数一般项本身的

数学分析第十二章数项级数 定理12.7(达朗贝尔判别法,或比式判别法) 则级数n u ∑收敛; >0(ii),n N 若对一切成立不等式 11,(6) n n u u +≥. n u ∑则级数发散1,(5)n n u q u +≤>0(i),n N 若对一切成立不等式0n u N ∑设为正项级数,且存在某正整数及常数01. q q <<()

数学分析第十二章数项级数把前n -1个不等式按项相乘后,得到 --???≤132121 ,n n n u u u q u u u 或者由于当0 < q < 1时,-∑1,n q 等比级数收敛根据比较 原则及上述不等式可得. n u ∑级数收敛证+≤≥1(i)1n n u q n u 不妨设不等式对一切成立,于是有21,u q u ≤32u q u ≤,, 1,.n n u q u -≤ 11. n n u u q -≤

数学分析第十二章数项级数 0n N ≥因为当时,(ii )1n n u u +≥1n u -≥00, N u ≥≥> 从而 因此所以级数发散.00lim ,n N n u u →∞ ≥>

数学分析第十二章数项级数 推论1(比式判别法的极限形式) 若n u ∑为正项级数,且1lim ,(7) n n n u q u +→∞=则(i)1,; n q u <∑当时级数收敛(ii)1,. n q q u >=+∞∑当或时级数发散证由(7)式, 对任意取定的正数<-(1),q ε存在正数当n > N 时, 有+-<<+1.n n u q q u εεN ,

正项级数收敛及其应用公式版

公式为正常公式,不是图片版 正项级数收敛性判别法的比较及其应用 一、引言 数学分析作为数学专业的重要基础课程。级数理论是数学分析的重要组成部分,在实际生活中的运用也较为广泛,如经济问题等。而正项级数又是级数理论中重要的组成部分,级数的收敛性更是级数理论的核心问题,要想解决正项级数的求和问题必须先解决正项级数收敛性判断。正项级数收敛性判断的方法虽然较多,但使用起来仍有一定的技巧,根据不同的题目特点分析、判断选择适宜的方法进行判断,能够最大限度的节约时间,提高效率,特别是一些典型问题,运用典型方法,才能事半功倍。 二、预备知识 1、正项级数收敛的充要条件 部分和数列{}n S 有界,即存在某正数M ,对0>n ?,有n S N 都有n n v u ≤, 那么 (1)若级数∑∞ =1n n v 收敛,则级数∑∞ =1n n u 也收敛; (2)若级数∑∞ =1 n n u 发散,则级数∑∞ =1 n n v 也发散; 即∑∞ =1 n n u 和∑∞ =1 n n v 同时收敛或同时发散。 比较判别法的极限形式 : 设∑∞ =1 n n u 和∑∞ =1 n n v 是两个正项级数。若l v u n n n =+∞ →lim ,则 (1)当 时,∑∞ =1 n n u 与∑∞ =1 n n v 同时收敛或同时发散;

(2)当0=l 且级数∑∞=1n n v 收敛时,∑∞ =1 n n u 也收敛; (3)当∞→l 且∑∞ =1 n n v 发散时,∑∞ =1 n n u 也发散。 2.2 比值判别法 设∑∞ =1n n u 为正项级数,若从某一项起成立着 11 ,成立不等式 q u u n n ≤+1,则级数∑∞ =1i n u 收敛; (2)若对一切0N n >,成立不等式11≥+n n u u ,则级数∑∞ =1 i n u 发散。 比值判别法的极限形式: 若∑∞ =1 n n u 为正项级数,则 (1) 当1lim ,成立不等式1,成立不等式1≥n n u ,则级数∑∞ =1 i n u 收敛 根式判别法的极限形式: 设∑∞ =1 n n u 是正项级数,且l u n n n =+∞ →lim ,则 (1)当1l 时,级数∑∞ =1 n n u 发散; (3)当1=l 时,级数的敛散性进一步判断。

正项级数的根式判别法和比式判别法

重庆三峡学院毕业设计(论文) 题目:对正项级数敛散性判别法应用性的探讨 目录 摘要 ............................................................................................................................................................... I Abstract: ..................................................................................................................................................... I I 1 引言 . (3) 2正项级数相关概念 (3) 2.1 定义 (3) 2.2 正项级数敛散性判别的充要条件 (3) 2.3 三个重要比较级数 (4) 2.3.1 几何级数 (4) 2.3.2 调和级数 (5) 2.3.3 P-级数 (5) 3 正项级数敛散性判别法 (6) 3.1 判别发散的简单方法 (6) 3.2 比较判别法 (7) 3.2.1 定理及其推论 (7) 3.2.2 活用比较判别法 (9) 3.2.3 归纳总结 (11) 3.3 柯西判别法与达朗贝尔判别法 (12) 3.3.1 柯西判别法 (12) 3.3.2 达朗贝尔判别法 (13) 3.3.3 比值判别法和根值判别法失效的情况 (15) 3.4 拉贝判别法 (17)

3.5 积分判别法 (19) 3.6 两种新方法 (20) 3.7 判别正项级数敛散性方法的总结 (23) 4 在判别级数敛散性中的作用 (23) 4.1 证明负项级数的敛散性 (23) 4.2 证明变号级数绝对收敛 (24) 4.3 证明函数级数收敛 (25) 5 结束语 (26) 致谢 (27) 参考文献: (27)

数项级的敛散性判别法

第六讲 数项级数的敛散性判别法 §1 柯西判别法及其推广 比较原理适用于正项级数,高等数学中讲过正项级数的比较原理: 比较原理I :设 1 n n u ∞=∑,1 n n v ∞ =∑都是正项级数,存在0c >,使 (i ) 若 1 n n v ∞ =∑收敛,则 1 n n u ∞ =∑也收敛;(ii ) 若 1 n n u ∞ =∑发散,则 1 n n v ∞ =∑也发散. 比较原理II (极限形式)设 1 n n u ∞ =∑,1 n n v ∞ =∑均为正项级数,若 则 1 n n u ∞ =∑、1 n n v ∞ =∑同敛散. 根据比较原理,可以利用已知其敛散性的级数作为比较对象来判别其它 级数的敛散性.柯西判别法和达朗贝尔判别法是以几何级数作为比较对象而 得到的审敛法.下面用比较判别法推出更宽泛的柯西判别法. 定理1(柯西判别法1)设 1 n n u ∞ =∑为正项级数, (i )若从某一项起(即存在N ,当n N > 1q ≤<(q 为常数) , 则 1 n n u ∞ =∑收敛; (ii 1≥,则1 n n u ∞ =∑发散. 证(i )若当n N > 1q ≤<,即n n u q ≤,而级数 1 n n q ∞ =∑收敛, 根据比较原理I 知级数 1 n n u ∞ =∑也收敛. (ii ) 1≥,则1n u ≥,故lim 0n n u →∞ ≠,由级数收敛的必要条件知1 n n u ∞ =∑发散.定理证毕. 定理2(柯西判别法2) 设 1 n n u ∞ =∑ 为正项级数,n r =,则:(i )当1r <时,1 n n u ∞ =∑

收敛;(ii ) 当1r >(或r =+∞)时,1 n n u ∞ =∑发散; (iii )当1r =时,法则失效. 例1 判别下列正项级数的敛散性 23123(1)()()()35721n n n ++++++L L ;n n n e ∞ -∑n=1 (2) n n x α∞ ∑n=1(3)(α为任何实数,0x >). 解 (1) 因为1 12 n r == <,所以原级数收敛. (2) 因为lim n n n r e →∞===∞,所以原级数发散. (3) 对任意α ,n r x ==.当01x <<时收敛;当1x >时发散;当1x =时, 此时级数是p -级数,要对p α=-进行讨论,当1α->,即1α<-时收敛;当1 α-≤时,即1α ≥-时发散. 例2 判别级数 11[(1)]3 n n n n ∞ =+-∑的敛散性. 解 由于 不存在,故应用定理2无法判别级数的敛散性.又因为 由定理1(柯西判别法1)知原级数收敛. 例3(98考研)设正项数列{}n a 单调减少,且1(1)n n n a ∞ =-∑发散,试问级数111n n n a ∞ =?? ? +?? ∑是否收敛?并说明理由. 解 答案:级数111n n n a ∞ =?? ? +?? ∑收敛,证明如下: 由于{}n a 单调减少且0,n a ≥根据单调有界准则知极限lim n n a →∞ 存在.设lim ,n n a a →∞ =则 0a ≥.如果0,a =则由莱布尼兹判别法知 1 (1)n n n a ∞ =-∑收敛,这与 1 (1)n n n a ∞ =-∑发散矛盾, 故0a >.再由{}n a 单调减少,故0,n a a >>取1 11 q a = <+, 根据柯西判别法1知111n n n a ∞ =?? ? +?? ∑收敛.

相关文档