文档库 最新最全的文档下载
当前位置:文档库 › 能量饲料和蛋白饲料

能量饲料和蛋白饲料

能量饲料和蛋白饲料
能量饲料和蛋白饲料

能量饲料和蛋白饲料

(一)能量饲料:能量饲料是指每千克饲料干物质中消化能大于等于10.45兆焦以上的饲料,其粗纤维小于18%,粗蛋白小于20%。能量饲料可分为禾本科籽实、糠麸类加工副产品。

1.禾本科籽实:禾本科籽实是牛的精饲料的主要组成部分。常用的有玉米、大麦、燕麦和高梁等。

(1)禾木科籽实的饲料的营养特点:

①淀粉含量高:禾本科籽实饲料干物质中无氮浸出物的含量很高,占70%~80%,而且其中主要成分是淀粉,只有燕麦例外(61%),其消化能达12.5兆焦/千克干物质。

②粗纤维含量低:一般在6%以下,只有燕麦粗纤维含量较高(17%)。

③粗蛋白含量中等:一般在10%左右,含氮物中85%~90%是真蛋白质,但其氨基酸组成不平衡,必需氨基酸含量低。

④脂肪含量少:一般在2%~5%之间,大部分脂肪存在于胚芽中,占总量的5%。脂肪中的脂肪酸以不饱和脂肪酸为主,易酸败,使用时应特别注意。

⑤矿物质含量不一:一般钙含量较低,小于0.1%;而磷较高,在0.31%~0.45%之间,但多以植酸磷的形式存在。钙磷比例不适宜。

⑥适口性好,易消化。

另外,禾本科籽实中含有丰富的VB1和VE,而缺乏V天,除黄玉米外,均缺乏胡萝卜素。

(2)几种常见的禾本科籽实饲料:

①玉米:玉米是禾本科籽实中淀粉含量最高的饲料;70%的无氮浸出物,且几乎全是淀粉。粗纤维含量极少,故容易消化,其有机物质消化率达90%。玉米的蛋白质含量少,且主要为醇溶蛋白和谷蛋白,氨基酸平衡差,必需氨基酸含量低。饲喂玉米时,须与蛋白质饲料搭配,并补充矿物质、维生素饲料。

②大麦:其蛋白质含量略高于玉米,品质也较玉米好,粗纤维含量高,但脂肪含量低,所以总能值比玉米低。由于大麦含较多纤维,质地疏松,喂乳牛能得到品质优良的牛乳和黄油。

③高梁:其营养价值稍低于玉米,含无氮浸出物68%,其中主要是淀粉,蛋白质含量稍高于玉米,但品质比玉米还差,脂肪含量低于玉米。高梁含有单宁,适口性差,而且容易引起牛便秘。

2.糠麸类饲料:它们是磨粉业的加工副产品,包括米糠、麸皮、玉米皮等。一般无氮浸出物的含量比籽实少,为40%~62%,粗蛋白含量10%~15%,高于禾本科籽实而低于豆科籽实,粗纤维10%左右,比籽实稍高。

米糠中含较多的脂肪,达12.7%左右,因此易酸败,不易贮藏,如管理不好,夏季会变质而带有异味,适口性降低。但由于其脂肪含量较高,其用量不能超过30%,否则使乳牛生长过肥,影响奶牛正常的生长发育和泌乳机能。

麸皮的营养价值与出粉率呈负相关。麸皮粗纤维含量高,质地疏松,容积大,具有轻泻性,是奶牛产前及产后的好饲料,饲喂时最好用开水冲稀饮用。

玉米皮的营养价值低,不易消化,饲喂时应经过浸泡、发酵,以提高消化率。

(二)蛋白质饲料:蛋白质饲料中粗纤维低于18%,粗蛋白大于20。包括植物性蛋白质饲料、动物性蛋白质饲料和微生物蛋白质饲料。

1.植物性蛋白质饲料:常用的有豆粕、棉籽饼、花生饼、菜籽饼、亚麻饼、葵花饼、椰子饼等。

(1)饼粕类蛋白质饲料的营养特点:其可消化蛋白质含量达30%~40%,且氨基酸组成较完全。因加工方法不同,粗脂肪含量差别较大。一般压榨生产的饼粕脂肪含量高5%左右,而浸提法生产的饼粕脂肪含量低,1%~2%。无氮浸出物含量少,约占干物质的30%。粗纤维含量与加工时是否带壳有关,不带壳加工,其粗纤维含量仅6%~7%,消化率高。维生素B丰富,胡萝卜素含量少,钙低磷高。

(2)几种常用的饼粕类饲料:

①大豆饼:是饼类饲料中数量最多的一种,一般粗蛋白质含量大于40%,其中必需氨基酸含量比其它植物性饲料都高,如赖氨酸含量是玉米的10倍。因此,它是植物性蛋白饲料中生物学价值最高的一种。豆饼适口性好,营养全面,饲喂生长牛、泌乳牛和种公牛都具有良好的生产效果。

②花生饼:脱壳花生饼粗蛋白含量高,营养价值与豆饼相似,但赖氨酸和蛋氨酸比豆饼少,色氨酸比豆饼高。喂花生饼时,最好添加动物性蛋白饲料,或与豆饼、棉籽饼混饲效果好。

③棉籽饼:其粗蛋白含量仅次于豆饼,赖氨酸缺乏,蛋氨酸、色氨酸高于豆饼。棉籽饼虽含有棉酚,但喂牛(成年牛)之间不必脲毒,对生产无不利影响。

④菜籽饼:其营养价值不如豆饼,含粗蛋白34%~38%,可消化蛋白质为27.8%,赖氨酸含量丰富,因含有芥籽毒等,初喂时可与适口性好的饲料混合使用,而且喂量不宜多,每日每头可喂1千克左右,否则会使牛乳有苦味。

⑤亚麻饼:赖氨酸含量很低。这种饲料含有一种粘性胶质,可吸收大量水分而膨胀,从而使饲料在瘤胃停留时间延长,有利于微生物对饲料进行消化。但麻饼中含有亚麻苷配糖体,经亚麻酶的作用,产生氰氢酸,引起奶牛中毒。用时可将亚麻饼在开水中煮几分钟,使亚麻酸被破坏,就可防止其中毒。

2、动物性蛋白质饲料:这类饲料蛋白质含量高,品质好,所含必需氨酸酸较全,特别是赖氨酸和色赖酸含量丰富。因此,蛋白质生物学价值高,属优质蛋白质料。这类饲料不含纤维素、消化率高。钙磷比例恰当,维生素B族丰富。牛常用蛋白质饲料有鱼粉、血粉等。

①鱼粉:鱼粉是奶牛生产中最好的蛋白质补充饲料,一般粗蛋白50%~65%,含有各种必需氨基酸,鱼粉中含ω-3脂肪酸,其蛋白质的过瘤胃值高,在高产奶牛的饲养中是很理想的蛋白质饲料。

②血粉:血粉含蛋白质80%以上,粗脂肪1.4%~1.5%,血粉也是过瘤胃值高的蛋白质饲料。

3.微生物蛋白质饲料:这类饲料蛋白质含量很高,在40%~50%之间。主要是菌体蛋白,其中真蛋白质占到80%,蛋白质的品质介于动物性蛋白饲料与植物性蛋白饲料之间。目前应用较多的是石油酵母、其蛋白质消化率很高,达95%左右,但其利用率却不高,为50%~59%。如添加0.3%消旋蛋氨酸,可起到氨基酸平衡的作用,大大提高石油酵母的消化率和利用率。

常用饲料工业术语.doc饲料基础知识

常用饲料工业术语 饲料:能提供动物所需营养素,促进动物生长、生产和健康,且在合理使用下安全,有效的可饲物质。 配合饲料:根据饲养动物的营养需要,将多种饲料原料和饲料添加剂按饲料配方经工业化加工的饮料,又名全价料。 浓缩饲料:主要由蛋白质饲料,矿物质饲料和饲料添加剂按一定比例配制的均匀混合物,与能量饲料按规定比例配合即可制成配合饲料。一般使用比例5%以上。 复合预混合饲料:由微量元素、维生素、氨基酸中任何两类或两类以上的组分与其他饲料添加剂及载体和(或)稀释剂按一定比例配制的均匀混合物。一般使用比例1%——4%。 水分:饲料在105±2°C烘至恒重所失去的游离水等物质。 粗脂肪:饲料中可溶于石油醚或乙醚的物质的总称,包括脂肪、类脂等。 粗蛋白质:饲料中含氮量乘以6.25. 粗纤维:饲料经稀酸、稀碱处理后剩下的不溶性有机物,包括纤维素、半纤维素和木质素等。 无氮浸出物:饲料中可溶于水或稀酸的碳水化合物。通常由干物质总量减去粗蛋白质、粗脂肪,粗纤维和粗灰分后所得。 必需氨基酸:在动物体内不能合成或能合成但不能满足需要,必须通过外源提供的氨基酸。

非必需氨基酸:动物生命过程必需,但可在动物体内合成,无需从外源提供即能满足动物需要的氨基酸。 限制性氨基酸:饲料中蛋白质供给的氨基酸量与动物的需要量之比值小于1的必需氨基酸,比值最小的必需氨基酸为第一限制性氨基酸,其次为第二限制性氨基酸等。 氨基酸平衡:饲料中的各种氨基酸之间在数量和比例上与动物特定需要相协调的状态。 常用元素:正常情况下,占动物体活重大于或等于0.01%的矿物元素。 微量元素:正常情况下,占动物体活重小于0.01%的矿物元素。 维生素:动物代谢必需且需要量极少的一类低分子有机化合物,以辅酶或催化剂的形式参与体内代谢,缺乏时动物会产生缺乏症。分为水溶性维生素和脂溶性维生素两类。 饲料添加剂:为满足特殊需要而在饲料加工、制作、使用过程中添加的少量或者微量物质,包括营养性饲料添加剂和非营养性饲料添加剂。 抗氧化剂:为防止饲料中某些成分被氧化变质而加入饲料的添加剂。 稀释剂:与高浓度组分混合以降低其浓度的可饲物质。 酶制剂:为提高动物对饲料的消化,利用效率或改善动物体内的代谢效能而加入饲料中的酶类物质。

微生物发酵蛋白饲料项目概述

微生物发酵蛋白饲料 项目概述 (一)微生物发酵蛋白产品: 发酵蛋白饲料是以微生物、复合酶为生物饲料发酵剂菌种,将饲料原料转化为微生物菌体蛋白、生物活性小肽类氨基酸、微生物活性益生菌和复合酶制剂为一体的生物发酵蛋白饲料。 (二)微生物发酵蛋白产品生产背景: 生物技术特别是微生物发酵技术来开发新型蛋白饲料资源,具有广泛的应用前景。利用微生物生产的饲料蛋白、酶制剂、氨基酸、维生素、抗生素和益生菌等相关产品,可以弥补常规饲料中容易缺乏的氨基酸等物质,而且能使其他粗饲料原料营养成分迅速转化,达到增强消化吸收利用效果。 饲料和粮食生产一直是我国国民经济的薄弱环节。由于受人口增长、耕地减少和肉食品消费增加的影响,我国粮食供需平衡十分脆弱。我国人均占有粮食一直在400k以下其中粮食总产量的40%左右用于饲料生产。在耕地和水资源长期紧缺的情况下,我国粮食产量已很难提高。饲料资源短缺的问题长期制约着我国农牧业的发展,尤其是蛋白质饲料的严重不足已经成为全球性问题。发展高效饲料工业,提高粮食向畜牧产品的转化效率和饲料利用率、开发新型蛋白饲料是满足人民对肉、禽、鱼、蛋越来越大的需求量的最佳途径。 (三)微生物发酵的分类: 微生物发酵根据获得产品的不同可分为微生物酶发酵、微生物菌体发酵、微生物代谢产物发酵、微生物的转化发酵、生物工程细胞的发酵。根据微生物

的种类不同可分为厌氧发酵和好氧发酵,厌氧发酵在发酵时不需要供给空气,如利用乳酸杆菌进行的丙酮、丁醇发酵等;好氧发酵需要在发酵过程中不断的通入一定量的空气,如利用黑曲霉进的柠檬酸发酵,利用棒状杆菌进行的谷氨酸发酵利用黄单胞菌进行的多糖发酵等。根据培养基的同可分为固体发酵和液体发酵,根据设备不同可分为敞口发酵、密闭发酵、浅盘发酵和深层发酵。 (四)微生物发酵的优越性 4.1发酵脱毒 多数情况下微生物的代谢产物可以降低饲料毒素含量,甘露聚糖可以有效地降解黄曲霉B 1 等。有研究表明,曲霉属,串珠霉属等 5个菌株能效的降低发酵棉籽粕中游离棉酚的含量。 4.2改变蛋白质的品质 微生物可以分解品质较差的植物性或动物性蛋白质,合成品质较好的微生物蛋白质,例如活性肽、寡肽等。微生物能把15%以上的糖、半纤维粗纤维3%及以上的粗脂肪转化为30%以上的粗蛋白、赖氨酸和蛋氨酸,有利于畜禽的消化吸收。 4.3 产生促生长因子 不同的菌种发酵饲料后所产生的促生长因子量不同,这些促生长因子主要有有机酸族维B素和未知生长因子等。 4.4降低粗纤维 一般发酵水平可使发酵基料的粗纤维含量降低12%~16%,增加适口性和消化率等研究。Carlson报道,发酵后饲料中的植酸磷或无机磷酸盐被降解或析出,变成了易被动物吸收的游离磷。

饲料生产发酵技术

饲料生产发酵技术 饲料生产发酵技术引言:

微生物发酵饲料生产形式多种多样。应用微生物可利用廉价 农业 和轻工副产物生产高质量饲料蛋白原料,同时使饲料富含高活性有益微生物及其活性代谢产物。笔者所在微生物发酵课题研究小组经过8年多研究,在前人微生物发酵生产研究基础上不断获得突破进展,最终形成独特的可移动式饲料发酵生产技术,本文即对传统发酵及该课题组最新发酵技术成果分述于下。

1、生产菌种选用基本原则 1.1、安全性 ①菌体本身不产生有毒有害物质; ②不会危害环境固有的生态平衡。 1.2、有效性 ①菌体本身具有很好生长代谢活力,能有效地降解大分子 和抗营养因子,合成小肽和有机酸等小分子物质; ②能保护和加强动物体微生物区系平衡,促进动物健康。 这种功效主要指能有效地提高和维护有益微生物在动物消 化道中数量优势。它可以通过2种方式来达到目标:发酵饲料所用菌种本身就是从目标动物消化道中分离出来的有益菌,通过饲喂高比例发酵饲料可以直接提高动物消化道中有益微生物数量,使有益微生物形成优势。另一种方式是生产菌种或代谢产物可以选择性地杀灭或者抑制有害微生物,从而造成有益菌数量优势。实现这种途径的方式可以多种多样,比较. 常用的有:耗尽氧气,降低体系氧化还原电位;降低环境pH 值;代谢物中含有能选择性杀灭大肠杆菌和沙门氏菌等有害微生物的抗菌物质。

2、发酵饲料生产技术 除了生产菌种以外,生产工艺也是决定发酵技术成败的要素。到目前为止,国内外关于发酵饲料生产技术或生产工艺的内容主要包括以下几种: 2.1、青储

有利因素:传统工艺,历史悠久,技术成熟。 限制因素:季节性强,原料必须新鲜;只能就地利用,基本不能远距离运输;开窖后必须在短时间内用完;目前仅限应用于反刍动物领域。 青储饲料研究历史很长,有专门论著,笔者在此不再赘述,有兴趣的读者可以参考曹利军和韩鹏主编的“青储饲料标准化生产技术”,针对生产实际提出了很好的技术方法,有很 好参考价值。 2.2、利用有机废水生产单细胞蛋白或蛋白原料 这种技术主要是用于有机废水净化处理。有机废水主要来源于造纸、酒精、氨基酸和有机酸工业所产生的废水。 在20世纪60年代,国外曾选用生长速度很快的热带假丝酵母,采用液体连续培养处理造纸废水,但是生产的酵母有苦味,很难在饲料中应用。80年代末,我国工程院院士伦世仪先生领导的课题组用热带假丝酵母连续培养处理酒精废水,生产的酵母有较好适口性,但是 由于废水中有机物含量比较低,培养液中干物质得率不超过1.0%,基本没有商业价值。 西欧和北美等发达国家,特别是日本、荷兰和芬兰等国,在有机废水处理方面投入了大量研究和生产处理费用。可以说,

玉米是主要的能量饲料

玉米是主要的能量饲料集团公司文件内部编码:(TTT-UUTT-MMYB-URTTY-ITTLTY-

玉米是主要的能量饲料,在配方中占的比重较大,一般在60%以上,所以玉米价格上涨大大提高了饲料成本。玉米能否被小麦部分替代呢?答案是肯定的。小麦部分替代玉米,并不会影响畜禽的生长和生产性能,但需要控制替代的量,并额外添加复合酶。我们对小麦替代玉米提出如下推荐方案,供您参考。 一、小麦和玉米的营养价值比较 (一)能量 就本身的能量来说,玉米和小麦相差不是很大,但畜禽对玉米和小麦的能量消化率有所不同,但差别不是很大。 (二)蛋白质 小麦比玉米中的蛋白质含量高(小麦13.5%,而玉米8.7%),如果替代可以提高配方的蛋白水平。 (三)其它营养成分 小麦的总磷含量高(小麦0.41%,而玉米0.27%),小麦替代玉米后可提高配方的总磷水平。另外,玉米中叶黄素的含量要显着高于小麦。 (四)抗营养因子 玉米中的非淀粉多糖含量很低,在配方中可大量使用。而小麦中的非淀粉多糖的含量很高,其中主要是木聚糖。木聚糖是构成植物细胞壁的成分,而细胞壁包裹淀粉颗粒后,会阻碍畜禽对淀粉的消化。非淀粉多糖在胃肠道中会产生粘度,影响胃肠道的正常蠕动,并能减少消化液和食糜的接触,从而影响消化吸收。非淀粉多糖会被后肠道微生物利用,导致微生物增殖,从而产生腹泻等问题。而畜禽的消化道不能分泌内源性木聚糖酶,因此,必须通过外源的复合酶制剂才能提高猪对小麦的消化率。 二、小麦替代玉米的时机 根据小麦和玉米的主要营养素含量的比较,在小麦和玉米价格

相等或者相差不大的情况下,小麦相对玉米是有性价比优势的,这时可以用小麦替代部分玉米。 三、小麦替代玉米的方案 由于小麦含有非淀粉多糖,会影响营养物质的消化吸收,所以小麦替代玉米一定要有针对性的添加复合酶。 16.5%玉米+3.5%豆粕=20%小麦。按照上述比例关系替代,配方的营养水平变化不大。按照上述比例关系,如果配方有60%玉米,20%豆粕,用小麦替代玉米后配方改为,43.5%玉米,16.5%豆粕,20%的小麦。 小麦可以替代保育猪、生长猪、育肥猪和母猪日粮中玉米的30%~70%。保育猪能替代30%~40%,生长猪40%~50%,育肥猪60%~70%。 四、小麦替代玉米注意的问题 (一)由于不同厂家的复合酶在产品的稳定性和效果方面差异较大,所以要选择国内知名厂家或国外厂家的产品。复合酶的组成要选择含有以木聚糖酶为主,并含有葡聚糖酶、果胶酶等非淀粉多糖酶的复合酶,添加量按照厂家的指导用量。 (二)用玉米替代小麦要先以较小的比例替代,如果没有拉稀或生产性能下降现象,再逐渐增加小麦用量。 (三)小麦要进行粉碎。一粒小麦粉碎成4~5碎粒为宜,这样既可获得较高的消化率,又可获得较高的饲料报酬,还会具有较好的饲料流动性。

年产600吨薯渣固态发酵生产单细胞蛋白饲料工厂设计

摘要 马铃薯渣污染问题一直困扰着马铃薯淀粉行业广大厂家,以马铃薯渣固态通风培养单细胞蛋白的技术在解决此问题上有良好的应用前景。 本方案设计了年产600吨以马铃薯渣为原料固态通风培养生产单细胞蛋白工厂,方案对工艺及主要设备进行了设计论证,并绘制了全厂工艺、主要设备及厂区平面布置图等图纸。

Abstract The potato residue pollution problem has been perplex the potato starch factorys. The technique of fermenting potato residue into single cell protein(SCP) was considered a good way to solve the prblem. This project designed a factory to produce 600t SCP per year ,using potato residue as the raw material well ventilated to produce SCP. the project carried on the design argument to the craft and the main equipments, and draw diagram papers such as whole factory craft,main equipments and the factory area flat surface diagram etc. 第1章绪论 我国马铃薯种植面积达7000万亩,居世界第一位,有数据显示,2005年全国总产量为7086.5万吨。目前,马铃薯生产淀粉及利用淀粉进一步深加工是马铃薯增值的主要途径,但是马铃薯淀粉生产在产生巨大经济效益的同时,也带来了马铃薯渣污染这个不可忽视的环境问题,如何妥善解决此问题,达到马铃薯产业经济效益环境效益双丰收,是行业内一个重大课题。 统计显示,我国马铃薯淀粉企业每年产生的薯渣大约有800万吨。由于马铃薯渣蛋白质含量低,粗纤维含量较高,营养价值不高,适口性不好,饲喂效果差,将薯渣作为饲料应用并不是解决问题的方法,即使应用,也只能消化部分薯渣,不能完全解决问题。 菌体蛋白是一种营养价值很高的饲料,某些特殊菌种生产的蛋白饲料由于菌种原因,还具有特殊香味。实验表明,菌体蛋白饲料的饲喂效果比玉米、豆粕要好,与鱼粉饲喂效果相当。在多种禽畜及水产养殖动物的饲喂实验中均有优良的表现。

能量饲料和蛋白饲料

能量饲料和蛋白饲料 (一)能量饲料:能量饲料是指每千克饲料干物质中消化能大于等于10.45兆焦以上的饲料,其粗纤维小于18%,粗蛋白小于20%。能量饲料可分为禾本科籽实、糠麸类加工副产品。 1.禾本科籽实:禾本科籽实是牛的精饲料的主要组成部分。常用的有玉米、大麦、燕麦和高梁等。 (1)禾木科籽实的饲料的营养特点: ①淀粉含量高:禾本科籽实饲料干物质中无氮浸出物的含量很高,占70%~80%,而且其中主要成分是淀粉,只有燕麦例外(61%),其消化能达12.5兆焦/千克干物质。 ②粗纤维含量低:一般在6%以下,只有燕麦粗纤维含量较高(17%)。 ③粗蛋白含量中等:一般在10%左右,含氮物中85%~90%是真蛋白质,但其氨基酸组成不平衡,必需氨基酸含量低。 ④脂肪含量少:一般在2%~5%之间,大部分脂肪存在于胚芽中,占总量的5%。脂肪中的脂肪酸以不饱和脂肪酸为主,易酸败,使用时应特别注意。 ⑤矿物质含量不一:一般钙含量较低,小于0.1%;而磷较高,在0.31%~0.45%之间,但多以植酸磷的形式存在。钙磷比例不适宜。 ⑥适口性好,易消化。 另外,禾本科籽实中含有丰富的VB1和VE,而缺乏V天,除黄玉米外,均缺乏胡萝卜素。 (2)几种常见的禾本科籽实饲料: ①玉米:玉米是禾本科籽实中淀粉含量最高的饲料;70%的无氮浸出物,且几乎全是淀粉。粗纤维含量极少,故容易消化,其有机物质消化率达90%。玉米的蛋白质含量少,且主要为醇溶蛋白和谷蛋白,氨基酸平衡差,必需氨基酸含量低。饲喂玉米时,须与蛋白质饲料搭配,并补充矿物质、维生素饲料。 ②大麦:其蛋白质含量略高于玉米,品质也较玉米好,粗纤维含量高,但脂肪含量低,所以总能值比玉米低。由于大麦含较多纤维,质地疏松,喂乳牛能得到品质优良的牛乳和黄油。 ③高梁:其营养价值稍低于玉米,含无氮浸出物68%,其中主要是淀粉,蛋白质含量稍高于玉米,但品质比玉米还差,脂肪含量低于玉米。高梁含有单宁,适口性差,而且容易引起牛便秘。 2.糠麸类饲料:它们是磨粉业的加工副产品,包括米糠、麸皮、玉米皮等。一般无氮浸出物的含量比籽实少,为40%~62%,粗蛋白含量10%~15%,高于禾本科籽实而低于豆科籽实,粗纤维10%左右,比籽实稍高。 米糠中含较多的脂肪,达12.7%左右,因此易酸败,不易贮藏,如管理不好,夏季会变质而带有异味,适口性降低。但由于其脂肪含量较高,其用量不能超过30%,否则使乳牛生长过肥,影响奶牛正常的生长发育和泌乳机能。 麸皮的营养价值与出粉率呈负相关。麸皮粗纤维含量高,质地疏松,容积大,具有轻泻性,是奶牛产前及产后的好饲料,饲喂时最好用开水冲稀饮用。 玉米皮的营养价值低,不易消化,饲喂时应经过浸泡、发酵,以提高消化率。

玉米是主要的能量饲料

玉米是主要的能量饲料 Document number:BGCG-0857-BTDO-0089-2022

玉米是主要的能量饲料,在配方中占的比重较大,一般在60%以上,所以玉米价格上涨大大提高了饲料成本。玉米能否被小麦部分替代呢?答案是肯定的。小麦部分替代玉米,并不会影响畜禽的生长和生产性能,但需要控制替代的量,并额外添加复合酶。我们对小麦替代玉米提出如下推荐方案,供您参考。 一、小麦和玉米的营养价值比较 (一)能量 就本身的能量来说,玉米和小麦相差不是很大,但畜禽对玉米和小麦的能量消化率有所不同,但差别不是很大。 (二)蛋白质 小麦比玉米中的蛋白质含量高(小麦13.5%,而玉米8.7%),如果替代可以提高配方的蛋白水平。 (三)其它营养成分 小麦的总磷含量高(小麦0.41%,而玉米0.27%),小麦替代玉米后可提高配方的总磷水平。另外,玉米中叶黄素的含量要显着高于小麦。 (四)抗营养因子 玉米中的非淀粉多糖含量很低,在配方中可大量使用。而小麦中的非淀粉多糖的含量很高,其中主要是木聚糖。木聚糖是构成植物细胞壁的成分,而细胞壁包裹淀粉颗粒后,会阻碍畜禽对淀粉的消化。非淀粉多糖在胃肠道中会产生粘度,影响胃肠道的正常蠕动,并能减少消化液和食糜的接触,从而影响消化吸收。非淀粉多糖会被后肠道微生物利用,导致微生物增殖,从而产生腹泻等问题。而畜禽的消化道不能分泌内源性木聚糖酶,因此,必须通过外源的复合酶制剂才能提高猪对小麦的消化率。 二、小麦替代玉米的时机 根据小麦和玉米的主要营养素含量的比较,在小麦和玉米价格

相等或者相差不大的情况下,小麦相对玉米是有性价比优势的,这时可以用小麦替代部分玉米。 三、小麦替代玉米的方案 由于小麦含有非淀粉多糖,会影响营养物质的消化吸收,所以小麦替代玉米一定要有针对性的添加复合酶。 16.5%玉米+3.5%豆粕=20%小麦。按照上述比例关系替代,配方的营养水平变化不大。按照上述比例关系,如果配方有60%玉米,20%豆粕,用小麦替代玉米后配方改为,43.5%玉米,16.5%豆粕,20%的小麦。 小麦可以替代保育猪、生长猪、育肥猪和母猪日粮中玉米的30%~70%。保育猪能替代30%~40%,生长猪40%~50%,育肥猪60%~70%。 四、小麦替代玉米注意的问题 (一)由于不同厂家的复合酶在产品的稳定性和效果方面差异较大,所以要选择国内知名厂家或国外厂家的产品。复合酶的组成要选择含有以木聚糖酶为主,并含有葡聚糖酶、果胶酶等非淀粉多糖酶的复合酶,添加量按照厂家的指导用量。 (二)用玉米替代小麦要先以较小的比例替代,如果没有拉稀或生产性能下降现象,再逐渐增加小麦用量。 (三)小麦要进行粉碎。一粒小麦粉碎成4~5碎粒为宜,这样既可获得较高的消化率,又可获得较高的饲料报酬,还会具有较好的饲料流动性。

能量饲料的特点

能量饲料的特点 Jenny was compiled in January 2021

能量饲料的特点、开发及加工 2010-03-26 22:18:43阅读12评论0字号:大中小订阅 (一)能量饲料的特点 所谓能量饲料,是指饲料干物质中粗纤维少于18%,粗蛋白少于20%的一类饲料。主要指禾本科谷实类粮食和糠麸类,占主导地位的是玉米和麦麸。 (二)能量饲料的开发 在畜禽全价配合饲料中,能量饲料可占到60%~85%。所以,玉米等能量饲料价格的高低,决定着配合饲料的成本和畜禽养殖的效益,当玉米价格上涨居高不下时,可以开发利用一些非常规能量饲料,以降低饲料成本,提高经济效益。 1.次粉:我国生产的次粉又称黑面、三等粉等,是以小麦为原料磨制面粉后,除去小麦麸及合格面粉以外的部分,与小麦麸的性质完全不同。次粉的颜色从灰白色到淡褐色,取决于麸皮所占的比例,颜色深者含麸皮多。 次粉的营养价值高于麦麸,尤其是其有效能值远高于麦麸,如猪的消化能为13.43兆焦/千克,与玉米14.20兆焦/千克很接近,比麦麸9.37兆焦/千克提高40%以上。次粉粗蛋白含量一般为13%~17%,粗纤维3%左右,粗灰分2%左右,后二者均比麦麸少。赖氨酸含量0.60%左右,比麦麸高。所以,从蛋白含量与能量等方面综合考虑,次粉是值得开发的优良的能量饲料。次粉用于肥育畜禽的效果优于麦麸,可以与玉米价值相等;也是很好的颗粒黏结剂,故较适用于颗粒饲料,特别是猪的颗粒料。试验结果表明,在仔猪颗粒料中加20%的次粉,仔猪的生产性能与市场名牌551料相当,60日龄仔猪平均体重超过20千克。 2.玉米胚芽饼:玉米胚芽饼是用玉米制造淀粉过程中生产的胚芽,经榨油后的副产品。这类饲料,粗蛋白含量一般为10%~17%,属能量饲料。玉米胚芽饼对猪的消化能为14.69兆焦/千克,粗纤维6%左右,氨基酸较平衡,赖氨酸含量较高,一般为0.7%~0.8%。另外,

黑龙江蛋白饲料生产加工项目实施方案

黑龙江蛋白饲料生产加工项目 实施方案 规划设计/投资分析/产业运营

黑龙江蛋白饲料生产加工项目实施方案 新型蛋白饲料行业的原料来源、生物培养技术、发酵酶解加工工艺及营养价值增值等方向将迎来大发展。 该蛋白饲料项目计划总投资4408.80万元,其中:固定资产投资3933.50万元,占项目总投资的89.22%;流动资金475.30万元,占项目总投资的10.78%。 达产年营业收入4445.00万元,总成本费用3421.63万元,税金及附加81.58万元,利润总额1023.37万元,利税总额1246.10万元,税后净利润767.53万元,达产年纳税总额478.57万元;达产年投资利润率 23.21%,投资利税率28.26%,投资回报率17.41%,全部投资回收期7.24年,提供就业职位82个。 报告根据我国相关行业市场需求的变化趋势,分析投资项目项目产品的发展前景,论证项目产品的国内外市场需求并确定项目的目标市场、价格定位,以此分析市场风险,确定风险防范措施等。 ...... 大力发展畜牧业,对促进农业结构优化升级,增加农民收入,改善国民膳食结构,提高国民体质具有重要意义。党的十九大对我国农业现代化

和乡村振兴又提出了新的要求,而推动畜牧业在农业中率先实现现代化,是畜牧业助力“农业强、农村美、农民富”的重大责任和使命。

黑龙江蛋白饲料生产加工项目实施方案目录 第一章申报单位及项目概况 一、项目申报单位概况 二、项目概况 第二章发展规划、产业政策和行业准入分析 一、发展规划分析 二、产业政策分析 三、行业准入分析 第三章资源开发及综合利用分析 一、资源开发方案。 二、资源利用方案 三、资源节约措施 第四章节能方案分析 一、用能标准和节能规范。 二、能耗状况和能耗指标分析 三、节能措施和节能效果分析 第五章建设用地、征地拆迁及移民安置分析 一、项目选址及用地方案

发酵苹果渣生产菌体蛋白饲料工艺的研究

果品深加工每年排放苹果废渣几百万t,除少量直接利用外,绝大部分因为水分含量高(80%左右)、蛋白质含量低(干基中约5%)、营养价值低、不易保存而被遗弃,严重污染环境,同时又是纤维素资源的浪费[1-2]。利用微生物发酵苹果渣转化为高蛋白饲料能够变废为宝,提高蛋白质含量,而且避免了二次排渣,从而减少果渣利用时的二次环境污染。利用微生物发酵苹果渣生产蛋白饲料不仅解决了长期困扰果汁加工企业的环境问题,而且为畜牧业的发展提供了蛋白资源[3]。大量的试验证明,发酵后的果渣不仅蛋白质含量有了显著的提高,而且含有丰富的氨基酸等营养成分,具有良好的饲用价值。因此,试验对利用苹果渣为主要原料发酵生产蛋白饲料的适宜条件进行了研究。 1材料与方法 1.1试验材料 1.1.1菌种 经试验筛选的热带假丝酵母菌、啤酒酵母菌等:新疆农业大学食品科学学院微生物实验室提供。 1.1.2发酵原料 苹果渣:鲜苹果选用阿克苏红富士,经榨汁机压榨取其果渣后干燥(温度为60℃~65℃),再用粉碎机粉碎、过筛、冷藏。1.1.3主要试验仪器 生化培养箱(LRH-250):上海一恒科技有限公司;振荡培养箱(HZQ-F):哈尔滨东明医疗器械厂;洁净工作台(CJ-B):北京冠鹏净化设备有限公司;分析天平(FA2004):上海精科天平;电热鼓风干燥箱(DHG-9023A):上海精宏公司。 1.2试验方法 1.2.1菌种培养 斜面培养:采用麦芽汁琼脂培养基和PDA固体斜面培养基。其中,前者用于啤酒酵母菌的活化,后者用于活化黑曲霉菌及热带假丝酵母菌,均在28℃~30℃培养3d。 糖化菌种曲培养:以麦麸为原料,制成三角瓶固体扩大菌种,27℃~29℃培养3d,直至孢子成熟为止,备用。 发酵菌种子培养:热带假丝酵母液体菌种培养:10°P 麦芽汁(经糖化、过滤)为培养基,接种斜面菌种后小三角瓶摇床在25℃~27℃、100r/min~150r/min振荡培养24h备用。 啤酒酵母液体菌种培养:10°P麦芽汁(经糖化、过滤)为培养基,接种斜面菌种,小三角瓶摇床25℃~27℃、100r/min~150r/min振荡培养24h备用。 1.2.2发酵工艺流程的确定 工艺流程: 苹果→苹果渣→配料→蒸料→冷却→黑曲霉培养→果胶酶→糖化,液化→灭菌→冷却→接种单种或混合种→固态发酵→发酵产物 发酵苹果渣生产菌体蛋白饲料工艺的研究 武运,李焕荣,陶咏霞,李仙,古丽娜孜 (新疆农业大学食品科学学院,新疆乌鲁木齐830052) 摘要:以热带假丝酵母菌和啤酒酵母菌为发酵剂,研究了发酵果渣生产菌体蛋白饲料的影响条件,混合菌种发酵生产的蛋白质含量优于单菌发酵,加入氮源处理较无氮源处理的蛋白质含量高。发酵初步确定了果渣固态发酵的适宜条件,即发酵温度为32℃,物料质量比(果渣:麸皮)为85∶15(水分含量在660g/kg),发酵料投放量为100g,采用自然pH值,发酵周期为60h左右。发酵产品的粗蛋白含量由20.10%提高到29.30%,粗脂肪和灰分含量也大幅提高,营养价值得到了全面改善。 关键词:苹果渣;菌体蛋白饲料;发酵条件 中图分类号:TQ920.9文献标识码:A文章编号:0254-5071(2009)01-0083-04 Fermentation conditions of cell protein feed produced by apple pomace WU Yun,LI Huanrong,TAO Yongxia,LI Xian,GULINAZI (College of Food Sicence,Xinjiang Agricultrue University,Urumchi,830052,China) Abstract:The production conditions of cell protein feed from pomace were studied using Candida tropicalis and Sacchromyces cerevisiae as starters. The yield of protein by mixed strains was higher than one by single-strain fermentation and the protein.content was enhanced by adding nitrogen source compared to one without nitrogen source.The optimal conditions of solid-state fermentation were determined as followed:fermentation tem-perature32℃,materials mass ratio(pomace:bran)85:15(moisture content660g/kg),the content of fermented materials100g,natural pH,fermenta-tion period60h.Under these optimal conditions,the crude protein content of product was increased from20.10%to29.30%,and the fat and ash con-tent were also greatly enhanced.Consequently,the nutrition of product were improved. Key words:apple pomace;cell protein feed;fermentation conditions 收稿日期:2008-09-27 基金项目:自治区科技攻关(含重大专项)重点项目(200731136) 作者简介:武运(1965-),女,副教授,主要从事食品生物技术的研究与教学工作。

生物发酵饲料相关资料

生物发酵饲料相关资料 一、生物发酵饲料技术 1、菌种的溶解: A、在桶中放入20到30斤温水(温度为30度); B、加入红糖一公斤搅拌均匀; C、先加入固体菌种搅拌均匀,然后再加入液体菌种搅拌均匀; D、放置一小时。 2、在将搅拌均匀的菌种加水稀释至三百公斤; 3、和七百公斤饲料混合均匀; 4、放入缸中或者袋子(薄膜袋)中进行发酵; 5、3到5天后,闻到酒香味为发酵成熟生物发酵饲料含有较多的纤维分解菌、半纤维分解菌、微生物酶的有益微生物制剂,在动物机体内发酵过程中不但能将畜禽难以消化吸收的粗蛋白质、淀粉中的大分子物质,加工分解转变成易消化吸收的葡萄糖、氨基酸和维生素等小分子营养物质,而且能大大降解粗纤维,产生大量的生物活性物质,从而提高饲料的消化吸收率和营养价值。另外,生物发酵饲料中的有益微生物还能杀死病原菌,维持动物体内微生态平衡,增强机能的免疫力,具有一定的防病治病作用。 二、生物发酵饲料的制作方法 (一) 生物发酵饲料配方。 统糠或草粉55%、麦麸16%、玉米15%、饼粕10%、糖蜜或红糠2%、有益微生物制剂2%(含纤维素分解菌类、芽胞杆菌类、乳酸菌类、双歧杆菌类、酵母菌类等五大类菌群几十个菌种)。 (二) 生物发酵饲料的制作方法 1.按照上述配方分别称取原料,粉碎后过筛(1mm孔),然后搅拌均匀备用。 2.有益微生物制剂有固体型和液体型两种,若使用固体型有益微生物制剂,则可将其直接加入到上述原料中搅拌均匀即可;若使用液体型有益微生物制剂,则可先将其倒入无漂白粉的自来水或深进水中溶解后,再将红糖或糖蜜掺入,制成均一的含糖菌水。 3.将含糖菌水或糖水(指用固体型有益微生物制剂者)均匀喷洒在发酵料中,边拌边洒,使发酵料的含水量达到手捏成团、落地即散的程度,一般料、水重量

蛋白饲料生产制造项目投资分析报告

蛋白饲料生产制造项目投资分析报告 规划设计/投资分析/产业运营

报告说明— 新型蛋白饲料行业的原料来源、生物培养技术、发酵酶解加工工艺及营养价值增值等方向将迎来大发展。 该蛋白饲料项目计划总投资20034.59万元,其中:固定资产投资14435.99万元,占项目总投资的72.06%;流动资金5598.60万元,占项目总投资的27.94%。 达产年营业收入50444.00万元,总成本费用38067.39万元,税金及附加408.37万元,利润总额12376.61万元,利税总额14492.10万元,税后净利润9282.46万元,达产年纳税总额5209.64万元;达产年投资利润率61.78%,投资利税率72.34%,投资回报率46.33%,全部投资回收期 3.66年,提供就业职位705个。 蛋白质饲料和能量饲料一样均属于精饲料的范畴,它在配合饲料中所起的作用主要是提供蛋白质。凡是干物质中粗蛋白质含量达20%以上、粗纤维在18%以下的都属于蛋白质饲料,蛋白质饲料在配合饲料中的用量比能量饲料少得多,一般在日粮中占10%~20%。但蛋白质饲料是满足畜禽蛋白质需要的关键性饲料,同时必须明确,由于蛋白质与无氮浸出可利用能值相差不大,而蛋白质饲料粗纤维含量较低,所以在给动物提供或评价蛋白质饲料的同时,不能忽视蛋白质饲料含有相当高的可利用能量。蛋白质饲料主

要包括植物性蛋白饲料、动物性蛋白饲料、昆虫性蛋白饲料、单细胞蛋白饲料与非蛋白氮饲料。

目录 第一章项目概述 第二章项目建设单位说明 第三章项目建设背景 第四章项目市场前景分析 第五章项目规划分析 第六章项目选址规划 第七章土建方案 第八章工艺说明 第九章项目环境保护分析 第十章项目职业安全管理规划第十一章风险应对评价分析 第十二章节能方案分析 第十三章项目计划安排 第十四章投资方案 第十五章经济评价分析 第十六章项目综合结论 第十七章项目招投标方案

生物发酵饲料完整版

生物发酵饲料 HEN system office room 【HEN16H-HENS2AHENS8Q8-HENH1688】

1. 微生物发酵饲料的目的及主要方法 微生物发酵饲料的主要目的是:在人为的可控制的条件下,以植物性农副产品为主要原料,通过微生物的代谢作用,降解部分多糖、蛋白质、和脂肪等大分子物质,生成有机酸、可溶性多肽等小分子物质,形成营养丰富、适口性好、有益活菌含量高的生物饲料或饲料原料,从而使饲料成分变得丰富、营养易于动物吸收,使动物更好的成长。同时将廉价的农业或轻工业副产物变废为宝,生产出高质量的饲料蛋白原料,并且还可以通过微生物发酵饲料获得高活性的有益微生物。 微生物发酵饲料的主要方法有四类: 第一,固态发酵饲料,就是利用微生物的发酵作用来改变饲料原料的理化性状,或提高消化吸收率、延长贮存时间,或变废为宝,将秕壳残渣变为饲料,或解毒脱毒,将有毒饼粕转变为无毒、低毒的饲料,这一类发酵饲料包括青贮、微贮、粗饲料与担子菌发酵、畜禽粪与动物性下脚料发酵、饼粕类发酵脱毒饲料以及固态菌体发酵蛋白饲料; 第二,利用微生物在液态基质中大量生长繁殖的菌体以及生产单细胞蛋白(SCP)如酵母饲料、细菌饲料,以及菌体蛋白(MBP),如丝状真菌菌体、食用菌菌丝体及光合细菌、微型藻饲料等; 第三,利用现代化的微生物工程,发酵积累微生物有用的中间代谢产物或特殊代谢产物,以此生产饲用氨基酸、酶制剂以及抗生素、维生素等;

第四,是培养繁殖可以直接饲用的微生物,制备活菌制剂(又称微生态制剂、益生素等)。有益菌通过竞争性抑制作用(包括定殖位点和夺取营养物质)阻止有害微生物在肠粘膜附着与繁殖。 微生物发酵饲料大体有以下几步: (1)选育优良的菌种,如菌体本身不产生有毒有害物质,菌体本身有很好的生长代谢活力,能有效降解大分子合成有机酸、小肽等小分子物质。 (2)活化菌种、制备种子液。 (3)二次扩大培养或三次扩大培养。将种子液接入二次扩大培养基中进行发酵培养。二次扩大培养结束后再接入三次扩大培养基中培养。 (4)发酵饲料,将扩大培养的培养基接入发酵罐中培养一定时间。 2、饲料的分析与检验项目、方法 饲料分析检验的基本程序: (1)检验采样 (2)饲料感官检验 (3)样品处理及制备 (4)实验测定分析,包括营养分析、有害物质检测等。 (5)数据处理,记录检验报告 发酵饲料的检验项目包括: 1)水分测定:试样在105±2℃烘箱内,在大气压下烘干,直至恒重,逸失的重量为水分。 2)粗蛋白:凯氏定氮法

饲料能量在动物体内的转化

饲料能量在动物体内的转化 动物摄入的饲料能量伴随着养分的消化代谢过程,发生一系列转化,饲料能量可相应划分成若干部分,如图7-1所示。每部分的能值可根据能量守衡和转化定律进行测定和计算。 一、总能( Gross Energy,缩写GE) 总能是指饲料中有机物质完全氧化燃烧生成二氧化碳、水和其他氧化物时释放的全部能量,主要为碳水化合物、粗蛋白质和粗脂肪能量的总和。总能可用弹式测热计(Bomb Calorimeter)测定。 饲料的总能取决于其碳水化合物、脂肪和蛋白质含量。三大养分能量的平均含量为:碳水化合物 17.5 kJ/g ;蛋白质 23.64 kJ/g;脂肪 39.54 kJ/g,其能量含量不同与其分子中C/H比和O、N含量不同有关,因为有机物质氧化释放能量主要取决于C和H同外来O的结合,分子中C、H含量愈高,O含量愈低,则能量愈高,C/H比愈小,氧化释放的能量愈多,因每克C氧化成CO2释放的能量(33.81 kJ )比每克H氧化成H2O释放的热量(144.3 kJ )低。脂肪平均含77% C、12% H、11% O ;蛋白质平均含52% C、7% H、22% O;碳水化合物含44% C、6% H、50% O。脂肪含O最低,蛋白质其次,碳水化合物最高,因此,能值以碳水化合物最低,脂肪最高,约为碳水化合物2.25倍,蛋白质居中。同类化合物中不同养分产热量差异的原因同样可用元素组成解释。如,淀粉产热量高于葡萄糖,主要是每克淀粉的含C量高于每克葡萄糖的含C量。部分营养物质和饲料的能值见表7-1。

二、消化能(Digestible Energy,缩写为DE) 消化能是饲料可消化养分所含的能量,即动物摄入饲料的总能与粪能之差。即: DE = GE - FE 按上式计算的消化能称为表观消化能(Apparent Digestible Energy,缩写为ADE)。式中:FE(Energy in Feces,缩写为FE)为粪中养分所含的总能,称为粪能。正常情况下,动物粪便主要包括以下能够产生能量的物质: (1)未被消化吸收的饲料养分 (2)消化道微生物及其代谢产物 (3)消化道分泌物和经消化道排泄的代谢产物。 (4)消化道粘膜脱落细胞 后三者称为粪代谢物,所含能量为代谢粪能( Fecal Energy from metabolic origin products ,缩写为FmE,m代表代谢来源)。FE中扣除FmE后计算的消化能称为真消化能( True Digestible Energy,缩写为TDE),即: TDE = GE - ( FE - FmE ) 用TDE反映饲料的能值比ADE准确,但测定较难,故现行动物营养需要和饲料营养价值表一般都用ADE。 影响饲料消化率的因素(见本书第二章)均影响消化能值。正常情况下,粪能是饲料能量中损失最大的部分,粪能占总能的比例因动物种类和饲料类型不同而异,吮乳幼龄动物不到10%;马约40%;猪约20%;反刍动物采食精料时为20-30%,采食粗饲料时为40-50%,采食低质粗料时可达60%。 三、代谢能(Metabolizable Energy,缩写为ME)

发酵生产蛋白质饲料及其产业化发展措施

废渣固态发酵生产酵母蛋白质饲料及其产业化发展措施 摘要文章综述了近几年来采用废渣固态发酵技术生产酵母蛋白质饲料的研究进展,对其应用前景和产业化发展措施进行了探讨,并提出制订固态发酵产的酵母粉的质量评估指标与质量标准,以规范该产品的生产、品管和销售市场。 传统的饲料生产是在优化饲料配方的基础上,将饲料添加剂、蛋白质饲料原料和能量饲料原料按一定比例配混而成的一定料型饲料,本质上是饲料原料的选择及其优化组合,忽略了饲料原料的处理技术。当今要解决饲料资源短缺、粮食危机、蛋白不足、养殖业排泄物环境污染问题,生物技术具有不可替代的重要作用。解决的办法必须采用生物技术:一是开发非常规饲料资源,二是提高现有常规饲料原料的营养价值及其利用率。因此,生物技术在饲料工业全面渗透和应用的范围涉及到饲料原料抗营养因子钝化或脱除技术。饲料原料防霉和脱毒技术,饲料原料发酵生产生物饲料添加剂技术,新型饲料添加剂营养价值评定,质量标准制订及其应用技术等方方面面,标志着我国饲料工业的发展正进入一个求变创新的历史转折时期。 国内市场对生物饲料添加剂的市场需求与日俱增,按全国配合饲料产量1亿吨计,年需酵母蛋白饲料500万吨以上,饲用复合酶10万吨,益生菌微生态制剂1万吨,目前,国内的生产能力与市场需求量相差甚远;另一方面,生物添加剂的生产具有投资少,生产效率高,原料来源广泛,产品营养丰富,应用范围广,成本低、收益高,不受气侯条件限制和节省耕地面积的特点。一座年产10万吨含50%蛋白的酵母厂所产出的蛋白质相当于150万亩土地产出的大豆中所含的蛋白质,节约相应的耕地面积十分可观。因此,发展潜力巨大。 发展酵母单细胞蛋白产业是提供优质蛋白和解决蛋白不足的一条重要途径。 全球蛋白短缺2亿吨/年,我国年缺口蛋白2000吨,每年还进口鱼粉160万吨左右,目前进口鱼粉价格暴涨,每吨突破1万元。蛋白资源长期短缺态势已成人们共识,联合国蛋白质咨询小组曾召开过三次国际单细胞蛋白会议专题讨论研究,开发生产酵母单细胞蛋白已被世界公认为是解决饲料蛋白紧缺的主要途径。目前,全世界酵母单细胞蛋白年产量达200万吨。 [NextPage] 在单细胞蛋白菌体蛋白中,酵母SCP(单细胞蛋白)与丝状类菌、细菌、藻类等微生物蛋白相比,产品质量更具竞争力。酵母蛋白质含量丰富,氨基酸齐全,配此组成合理、且含丰富B族维生素VD2源,矿物元素、微量元素、酶、碳水化合物、生理活性物质及未明生长促进因子,是一种营养价值高且能替代鱼粉的优质蛋白,具有营养、诱食及其益生多种功能。促进畜禽新陈代谢、增强禽畜抗病能力、提高禽畜生长速度、繁殖能力、肉质和皮毛质量,特别适宜以气味觅食的鱼虾喂养酵母粉其营养。我国水产养殖每年需饲料酵母1.5万吨,其营养价值能大幅度地提高,在配合饲料中使用,每吨酵母粉可多产猪肉0.8吨,家禽2.5吨,鸡蛋3万只,牛奶4500升。

菌体蛋白饲料中作用机制的研究

第18卷第1期2002年1月农业工程学报 T ran sacti on s of the CSA E V o l .18 N o.1Jan . 2002 4320菌体蛋白饲料中双菌作用机制的研究 郭维烈,郭庆华,谢小保,许 虹 (广东省微生物研究所) 摘 要:该文报导新发现的利用粗淀粉料及渣粕类原料不灭菌固体发酵生产4320菌体蛋白饲料时所用的两个菌株—优良黑曲霉选拔株N o .303和白地霉菌A s .2.361间的关系是一种偏利生关系,在利用这种关系进行混菌固体发酵生产4320菌体蛋白饲料时,发现有类似杂交现象的“菌丛”,通过试验,证明“菌丛”是这两个菌间偏利生关系的特殊表现。通过对偏利生作用因子的研究表明,N o .303的菌株分泌的柠檬酸、酶等都是直接或间接或是综合作用的偏利生因子。特别是N o .303分泌的柠檬酸及由蛋白酶分解的谷氨酸等能明显刺激A s .2.361生长。通过正交试验得知,它们是两个最大的作用因子。关键词:菌体蛋白;作用机制;偏利生 中图分类号:S 38 文献标识码:A 文章编号:100226819(2002)0120122204 收稿日期:2001204228 修订日期:2001210211基金项目:广东省委书记资助课题 作者简介:郭维烈,研究员,从事微生物生态育种、工艺研究工作,出版专著4部,发表论译文70多篇,获7项发明专利或成果;广州先烈中路100号 广东省微生物研究所,510070 4320菌体蛋白饲料的生产研究系针对我国蛋白资源紧缺,粗淀粉及其渣料相对丰富的实际情况,为减少鱼粉进口及代替豆饼原料,由广东省科委委托广东省微生物研究所研究成功的一种生物产品,4320是双菌混生的产品,它利用从自然界分离的黑曲霉菌株N o .021为出发菌株,通过各种手段获得优良突变株N o .303(选育论文另报),再与白地霉菌A s .2.361配伍生产,工艺简单,成本低,无毒性和 致畸性。4320原料来源广泛,如薯类、糠麸、渣粕类等,而且原料不需灭菌,并能成功地把淀粉质渣料转 化为紧缺的蛋白质。为了深入了解上述两菌间的实质关系,以便对4320菌体蛋白饲料的研究、生产、应用和发展提供科学依据,开展了4320双菌作用机制的研究。 1 材料和方法 1)菌株来源:Sp .n iger 303为本所4320研究组 选育的突变菌株,A s .2.361为白地霉菌株。 2)培养基:马铃薯蔗糖培养基(PSA ),察氏培养基,常规。麸皮培养基:麸皮∶水=1∶1。 3)用管碟法研究不同浓度的单菌发酵滤液、酶制剂、柠檬酸、氨基酸或其混合液在单菌或混菌生长中的作用。 4)用菌丝定量法研究双菌间的相互作用。 5)用正交试验法研究双菌间作用和关键因子。6)用融合子试验法、异核体试验法、阻断扩散 培养法、培养观察法和显微镜观察法等方法研究“菌丛”生成原因。 2 结果和讨论 2.1 双菌间关系的研究2.1.1 两菌间的偏利生关系 1)白地霉不能利用淀粉和蔗糖,在PSA 斜面 上生长不良。在PSA 平皿上点种N o .303菌,培养后,从远离菌落的地方,打出琼脂柱贴在PSA ×白地霉平皿上,适温培养后,发现空白琼脂柱周围长出更白色生长圈。说明系N o .303菌分泌物扩散到皿内培养基所致。支持这一说法的另一种试验是在PSA 琼脂柱上点种N o .303,待发育成熟后贴入PSA ×白地霉平板,或在PSA ×白地霉平板上点种N o .303,通过适温培养,能看到比第一种试验更明显的生长圈。这一方面说明N o .303的分泌物扩散的程度与菌落的距离成反比例,另一方面也可能是其分泌物不是全部会扩散的。在N o .303菌落周围存在多种且浓度较大的分泌物,促使白地霉菌迅猛生长。根据试验,预测两菌间可能存在偏利生关系。2.1.2 菌丝体定量法试验 1)N o .303菌株对白地霉的影响 采用PSA 液体培养基,接种N o .303,适温培养24h 后滤去菌丝和孢子,取滤液涂于PSA 平皿上培养,确认没有N o .303菌生长。取此滤液10mL 加进50mL PSA 液体中,接入白地霉菌种液1mL ,培养28h ,用定量滤纸过滤、洗涤、烘干后去除定量滤纸质量,实测菌丝质量后进行比较,如表1。 从表中可看出,以普通水+10mL N o .303滤液接种白地霉和以PSA 液体接种白地霉的结果是近似的。这一方面说明白地霉几乎无法利用淀粉和 2 21

相关文档