文档库 最新最全的文档下载
当前位置:文档库 › STM32 产品唯一身份标识寄存器(96位) 闪存容量寄存器

STM32 产品唯一身份标识寄存器(96位) 闪存容量寄存器

STM32 产品唯一身份标识寄存器(96位) 闪存容量寄存器

STM32 产品唯一身份标识寄存器(96 位) 闪存容量寄存

产品唯一的身份标识非常适合:●用来作为序列号(例如USB 字符序列号

或者其他的终端应用)●用来作为密码,在编写闪存时,将此唯一标识与软件

加解密算法结合使用,提高代码在闪存存储器内的安全性。●用来激活带安全

机制的自举过程96 位的产品唯一身份标识所提供的参考号码对任意一个

STM32 微控制器,在任何情况下都是唯一的。用户在何种情况下,都不能修改

这个身份标识。这个96 位的产品唯一身份标识,按照用户不同的用法,可以

以字节(8 位)为单位读取,也可以以半字(16 位)或者全字(32 位)读取。

un=(*( u16 *)0x1FFFF7E0); //闪存容量寄存器printf(“The Flash size: %d KB\r\n”,un);

printf(“Unique device ID”);un=(*( u16 *)0x1FFFF7E8); //产品唯一身份标识寄存器(96 位)printf(“ U_ID[15:0]: %d\r\n”,un);

un=(*( u16 *)0x1FFFF7EA);printf(“ U_ID[31:16]: %d\r\n”,un);

un=(*( u32 *)0x1FFFF7EC);printf(“ U_ID[63:32]]: %d\r\n”,un);

un=(*( u32 *)0x1FFFF7EF);printf(“ U_ID[95:64]: %d\r\n”,un);

串口输出如下

tips:感谢大家的阅读,本文由我司收集整编。仅供参阅!

寄存器和存储器的区别

https://www.wendangku.net/doc/0417378381.html,/p-20032411.html

寄存器和存储器的区别

如果仅是讨论CPU的范畴 寄存器在cpu的内部,容量小,速度快 存储器一般都在cpu外部,容量大,速度慢 回答者:athlongyj - 高级经理六级6-1 08:52 从根本上讲,寄存器与RAM的物理结构不一样。 一般寄存器是指由基本的RS触发器结构衍生出来的D触发, 就是一些与非门构成的结构,这个在数电里面大家都看过; 而RAM则有自己的工艺,一般1Bit由六MOS管构成。所以, 这两者的物理结构不一样也导致了两者的性能不同。寄存器 访问速度快,但是所占面积大。而RAM相反,所占面积小, 功率低,可以做成大容量存储器,但访问速度相对慢一点。 1、 寄存器存在于CPU中,速度很快,数目有限; 存储器就是内存,速度稍慢,但数量很大; 计算机做运算时,必须将数据读入寄存器才能运算。 2、 存储器包括寄存器, 存储器有ROM和RAM 寄存器只是用来暂时存储,是临时分配出来的,断电,后,里面的内容就没了`````

寄存器跟存储器有什么区别? 一般数据在内存里面,要处理(或运算)的时候, 独到寄存器里面。 然后CPU到寄存器里面拿值,拿到运算核内部, 算好了在送到寄存器里面 再到内存 寄存器跟存储器有什么区别? 寄存器跟存储器有什么区别? 寄存器上:“一个操作码+一个操作数”等于一条微指令吗?一条微指令是完成一条机器指令的一个步骤对吗?cpu是直接跟寄存器打交道的对吗?也就是说寄存器是运算器、控制器的组成部分对不? 设计一条指令就是说把几条微指令组合起来对吗? 刚开始学硬件相关知识,学的晕头转向的!! 存储器与寄存器区别 2009-06-09 12:27 寄存器是CPU内部存储单元,数量有限,一般在128bit内,但是速度快,CPU访问几乎没有任何延迟。分为通用寄存器和特殊功能寄存器。 通常说的存储器是独立于cpu之外的,比如内存,硬盘,光盘等。 所有数据必须从存储器传入寄存器后,cpu才能使用。

STM32库函数操作和寄存器操作

STM32库函数操作和寄存器操作 首先,两个都是C语言。从51过渡过来的话,就先说寄存器操作。每个MCU都有自己的寄存器,51是功能比较简单的一种,相应的寄存器也比较少,我们常用的就那么几个,像P0 P1 SMOD TMOD之类的,这些存在于标准头文件reg.h里面,因为少,所以大家就直接这么去操作了,每一位对应的意义随便翻一下手册就看得到,甚至做几个小项目就记的很清楚了。所以做51开发的时候大多数都是直接操作寄存器。 到了STM32,原理一样,也是有自己的寄存器,但是作为一款ARM 内核的芯片,功能多了非常多,寄存器自然也就多了很多,STM32的手册有一千多页,这时候想去像51那样记住每个寄存器已经不现实了,所以ST的工程师就给大家提供了库函数这么一个东西。这是个神器。库函数里面把STM32的所有寄存器用结构体一一对应并且封装起来,而且提供了基本的配置函数。我们要去操作配置某个外设的时候不需要再去翻眼花缭乱的数据手册,直接找到库函数描述拿来就可以用,这样就能把精力放在逻辑代码的开发上,而不是去费力的研究一个芯片的外设要怎么配置寄存器才能驱动起来。简单讲就是这些了,库函数是为了让开发者从大量繁琐的寄存器操作中脱离出来的一个文件包,在使用一个外设的时候让开发者直接去调用相应的驱动函数而不是自己去翻手册一个一个配置寄存器。有人说用库函数掌握不到芯片的精髓,见仁见智了。熟悉一款芯片是在不断的开发使用中逐渐了解并掌握的,调试的过程中会遇到很多问题,会要求我们去跟踪相关寄存器的状态,在整个框架都已经建立起来的基础上再去对照手册做具体到寄存器每一位的分析,代码对照现象,很快就能积累起来经验,祝成功。

STM32单片机GPIO寄存器的功能解析

STM32单片机GPIO寄存器的功能解析 1、GPIO的寄存器按照功能可以分为以下几类: A、配置寄存器 B、数据寄存器 C、位寄存器 D、锁定寄存器 2、对于GPIO端口,每个端口有16个引脚,每个引脚的模式由寄存器的四个位控制,每四位又分为两位控制引脚配置(CNFy[1:0]),两位控制引脚的模式及最高速度(MODEy [1:0]),其中y表示第y个引脚。配置GPIO引脚模式的一共有两个寄存器,CRH是高寄存器,用来配置高8位引脚,还有CRL配置低八位引脚。 3、端口位设置\清除寄存器(GPIOx_BSRR) 一个引脚y的输出数据由GPIOx_BSRR寄存器位的2个位来控制分别为BRy (Bit Reset y)和BSy (Bit Set y),BRy位用于写1清零,使引脚输出低电平,BSy位用来写1置1,使引脚输出高电平。而对这两个位进行写零都是无效的。 4、Cortex-M3有32根地址线,所以它的 寻址空间大小为2 bit=4GB。ARM公司设计时,预先把这4GB的寻址空间大致地分配好了。它把地址从0x4000 0000至0x5FFF FFFF(512MB )的地址分配给片上外设。 5、stm32f10x.h这个文件中重要的内容就是把STM32的所有寄存器进行地址映射。如同51单片机的头文件一样,stm32f10x.h像一个大表格,我们在使用的时候就是通过宏定义进行类似查表的操作。 6、STM32总线有AHB总线、APB2总线、APB1总线 7、时钟系统。 A、从时钟频率来说分为告诉时钟和低速时钟,高速时钟是提供给芯片主体时钟,而低速时钟只是提供给芯片中的RTC及独立看门狗使用。 B、从芯片角度来说,时钟源分为内部时钟与外部时钟源,内部时钟是在芯片内部RC振

STM32f103寄存器说明

CRC寄存器 (一种算法,用以确认发送过程中是否出错)数据寄存器:CRC_DR 可读写,复位值:0xFFFF FFFF; 独立数据寄存器:CRC_IDR 临时存放任何8位数据; 控制寄存器:CRC_CR 只零位可用,用于复位CRC,对其写1复位,由硬件清零; PWR电源控制(控制和管理电源) 电源控制寄存器:PWR_CR 控制选择系统的电源 电源控制/状态寄存器:PWR_CSR 睡眠或待机模式电源控制 BKP备份寄存器(用以控制和管理备份数据) 备份数据寄存器x:BKP_DRx (x = 1 … 10) 10个16位数据寄存器用以存储用户数据 RTC时钟校准寄存器:BKP_RTCCR 控制实时时钟的运行 备份控制寄存器:BKP_CR 控制选择清除备份数据的类型

备份控制/状态寄存器:BKP_CSR 对侵入事件的控制 RCC寄存器(时钟的选择、复位、分频) 时钟控制寄存器(RCC_CR) 各时钟状态显示 时钟配置寄存器(RCC_CFGR) 时钟分频 时钟中断寄存器(RCC_CIR) 控制就绪中断使能与否 APB2外设复位寄存器(RCC_APB2RSTR) APB1外设复位寄存器(RCC_APB1RSTR) 复位APB各功能寄存器 AHB外设时钟使能寄存器(RCC_AHBENR) AHB时钟使能控制 APB2外设时钟使能寄存器(RCC_APB2ENR) APB1外设时钟使能寄存器(RCC_APB1ENR) APB1时钟使能控制 备份域控制寄存器(RCC_BDCR) 备份域时钟控制 控制/状态寄存器(RCC_CSR) 复位标志寄存器 AHB外设时钟复位寄存器(RCC_AHBRSTR) 复位以太网MAC模块 时钟配置寄存器2(RCC_CFGR2) 时钟选择与分频

STM32使用BSRR和BRR寄存器快速操作

STM32使用BSRR和BRR寄存器快速操作 GPI0端口STM32的每个GPIO端口都有两个特别的寄存器,GPIOx_BSR和GPIOx_BRF寄存器,通过这两个寄存器可以直接对对应的GPIOx端口置“或置“ 0。“ GPIOx_BSRR勺高16位中每一位对应端口x的每个位,对高16位中的某位置“狈『端口x的对应位被清“0;“寄存器中的位置“0, “则对它对应的位不起作 用。 GPIOx_BSRR的氐16位中每一位也对应端口x的每个位,对低16位中的某位置“1则“它对应的端口位被置“1;“寄存器中的位置“0,“则对它对应的端口不起作用。 简单地说GPIOx_BSR的高16位称作清除寄存器,而GPIOx_BSR的低氐16 位称作设置寄存器。另一个寄存器GPIOx_BRfl只有低16位有用,与GPIOx_BSR 的高16位具有相同功能。 举个例子说明如何使用这两个寄存器和所体现的优势。例如GPIOE的16个IO都被设置成输出,而每次操作仅需要改变低8位的数据而保持高8位不变,假设新的8 位数据在变量Newdata 中, 这个要求可以通过操作这两个寄存器实现,STM32的固件库中有两个函数GPIO_SetBits和GPIO_ResetBits使用了这两个寄存器操作端口。 上述要求可以这样实现: GPI0_SetBits(GPI0E, Newdata & 0xff); GPI0_ResetBits(GPI0E, (~Newdata & 0xff)); 也可以直接操作这两个寄存器: GPI0E->BSRR = Newdata & 0xff; GPI0E->BRR = ~Newdata & 0xff; 当然还可以一次完成对8位的操作:

stm32 BKP寄存器操作操作寄存器+库函数

stm32 BKP 寄存器操作操作寄存器+库函数 BKP 是BACKUP 的缩写,stm32f103RCTE 的内部配备了10 个16 位宽度 的BKP 寄存器。在主电源切断或系统产生复位时间时,BKP 寄存器仍然可以 在备用电源的支持下保持其内容。BKP 在实际应用中可以存入重要数据,防止 被恶意查看,或用于断电等。本例实现对BKP 寄存器的读写操作,和入侵检 测和处理。主程序中写入寄存器后,依次打印出10 个BKP 寄存器数据,然后 触发GPIOC13 的入侵中断(输入低电平),在中断中打印出入侵事件发生后的 寄存器内容(复位为0 )。直接操作寄存器用到的寄存器描述如下:备份数据 寄存器x(BKP_DRx) (x = 1 10):低16 位[15:0]有效,用来写入或读出备份数据。备份控制寄存器(BKP_CR):低两位有效。TPAL[1]:侵入检测TAMPER 引脚有效电平(TAMPER pin active level)0:侵入检测TAMPER 引脚上的高电平会清除所有数据备份寄存器(如果TPE 位为1) 1:侵入检测TAMPER 引脚 上的低电平会清除所有数据备份寄存器(如果TPE 位为1)TPE[0]:启动侵入检 测TAMPER 引脚(TAMPER pin enable)0:侵入检测TAMPER 引脚作为通用IO 口使用1:开启侵入检测引脚作为侵入检测使用备份控制/状态寄存器 (BKP_CSR): TIF[9]:侵入中断标志(Tamper interrupt flag) 0:无侵入中断1:产生侵入中断当检测到有侵入事件且TPIE 位为1 时,此位由硬件置1。通过向CTI 位 写1 来清除此标志位(同时也清除了中断)。如果TPIE 位被清除,则此位也会被 清除。TEF[8]:侵入事件标志(Tamper event flag) 0:无侵入事件1:检测到侵入事件当检测到侵入事件时此位由硬件置1。通过向CTE 位写1 可清除此标 志位TPIE[2]:允许侵入TAMPER 引脚中断(TAMPER pin interrupt enable)0:禁止侵入检测中断1:允许侵入检测中断(BKP_CR 寄存器的TPE 位也必须被置1)注

寄存器概念整理

寄存器、RAM、ROM、Flash相关概念区别整理 寄存器 寄存器是中央处理器内的组成部份。它跟CPU有关。寄存器是有限存贮容量的高速存贮部件,它们可用来暂存指令、数据和位址。在中央处理器的控制部件中,包含的寄存器有指令寄存器(IR)和程序计数器(PC)。在中央处理器的算术及逻辑部件中,包含的寄存器有累加器(ACC)。 存储器 存储器范围最大,它几乎涵盖了所有关于存储的范畴。你所说的寄存器,内存,都是存储器里面的一种。凡是有存储能力的硬件,都可以称之为存储器,这是自然,硬盘更加明显了,它归入外存储器行列,由此可见——。 内存 内存既专业名上的内存储器,它不是个什么神秘的东西,它也只是存储器中的沧海一粟,它包涵的范围也很大,一般分为只读存储器和随即存储器,以及最强悍的高速缓冲存储器(CACHE),只读存储器应用广泛,它通常是一块在硬件上集成的可读芯片,作用是识别与控制硬件,它的特点是只可读取,不能写入。随机存储器的特点是可读可写,断电后一切数据都消失,我们所说的内存条就是指它了。 CACHE 高速缓冲存储器(Cache)其原始意义是指存取速度比一般随机存取记忆体(RAM)来得快的一种RAM,一般而言它不像系统主记忆体那样使用DRAM技术,而使用昂贵但较快速的SRAM技术,也有快取记忆体的名称。 CACHE是在CPU中速度非常块,而容量却很小的一种存储器,它是计算机存储器中最强悍的存储器。由于技术限制,容量很难提升,一般都不过兆。 ROM、RAM的区别: ROM(只读存储器或者固化存储器) RAM(随机存取存储器) ROM和RAM指的都是半导体存储器,ROM是Read Only Memory的缩写,RAM是Random Access Memory的缩写。ROM在系统停止供电的时候仍然可以保持数据,而RAM通常都是在掉电之后就丢失数据,典型的RAM就是计算机的内存。 RAM有两大类,一种称为静态RAM(Static RAM/SRAM),当数据被存入其中后不会消失。SRAM速度非常快,是目前读写最快的存储设备了。当这个SRAM 单元被赋予0 或者1 的状态之后,它会保持这个状态直到下次被赋予新的状态或者断电之后才会更改或者消失。但是存储1bit 的信息需要4-6 只晶体管。因此它也非常昂贵,所以只在要求很苛刻的地方使用,譬如CPU的一级缓冲,二级缓冲。另一种称为动态RAM(Dynamic

(整理)基于STM32的LCD操作

嵌入式系统》课程报告 基于 STM32的 LCD 操作 组长:曾昭智 组员:邓 宁、张小扬、牛洪澄 光电学院 电信 2班、3 班 2014.05.29 姓名 学院 班级 完成日期

目录 1、原理方案(功能框图介绍) (1) 2、电路连线及资源分配. (2) 3、所用主要器件或模块说明. (3) 4、程序流程图. (4) 5、调试心得. (5) 6、源代码 (6)

1.TFT-LCD 原理 1.1 TFT-LCD 简介 TFT-LCD即薄膜晶体管液晶显示器。其英文全称为:Thin Film Transistor-Liquid Crystal Display 。TFT-LCD与无源TN-LCD、STN-LCD 的简单 矩阵不同,它在液晶显示屏的每一个象素上都设置有一个薄膜晶体管(TFT),可有效地克服非选通时的串扰,使显示液晶屏的静态特性与扫描线数无关,因此大大提高了图像质量。TFT-LCD也被叫做真彩液晶显示器。 上一节介绍了OLED模块,这一节,我们给大家介绍ALIENTEK TFTLC模D 块,该模块有如下特点: 1,2.4 '/2.8 '两种大小的屏幕可选。 2,320×240的分辨率。 3,16位真彩显示。 4,自带触摸屏,可以用来作为控制输入。 5,通用的接口,除了ALIENTEK MiniSTM32开发板,该液晶模块还可以使用在优异特、STMSK、Y 红牛等开发板上。 本节,我们以 2.8 寸的ALIENTEKT FTLCD模块为例介绍,该模块采用的是显尚光电的DST2001PHT FTLCD,DST2001PH的控制器为ILI9320 ,采用26 万色的TFTLCD 屏,分辨率为320×240,采用16 位的80并口。 1.2 80 并口 ALIENTEK TFTLCD 模块采用80并口口方与外部链接,采用16位数据线(低了速度太慢,用彩色就没什么效果了)。该模块的80并口有如下一些信号线:CS:TFTLCD 片选信号。 WR:向TFTLCD 写入数据。 RD:从TFTLCD 读取数据。 D[15:0] :16位双向数据线。 RST:硬复位TFTLCD 。 RS:命令/数据标志(0,读写命令;1,读写数据)。 TFTLCD 模块的RST信号线和OLED 模块一样,也是直接接到STM32 的复位脚上,并 不由软件控制,这样可以省下来一个IO 口。另外我们还需要一个背光控制线来控制TFTLCD 的背光。所以,我们总共需要的IO 口数目为21 个。 1.3 ILI9320 模块的控制器为ILI9320 ,该控制器自带显存,其显存总大小为172820 (240*320*18/8 ),即18位模式(26万色)下的显存量。模块的16位数据线与显寸的对应关系为565 方式,如下图所示: 1.4 GRAM显示方向设置

通用寄存器存储器实验

计算机组成原理 实验报告 学号: 姓名: 提交日期: 成绩: 东北大学秦皇岛分校 实验三通用寄存器存储器实验 1、实验目的与要求 实验目的: 熟悉通用寄存器的数据通路; 掌握通用寄存器的构成和运用; 熟悉和了解存储器组织与总线组成的数据通路

实验要求: 在掌握了AX、BX运算寄存器的读写操作后,继续完成CX、DX通用寄存器的数据写入与读出; 按照实验步骤完成实验项目,掌握存储部件在原理计算机中的运用。 2、实验原理 通用寄存器: 通用寄存器数据通路如下图所示。由四片8位字长的74LS574组成CX、DX通用寄存器组。途中X1 X2 X0定义为输出选通使能,SI、XP控制位为源选通选择。RXW为寄存器数据写入使能,Q2 Q1 Q0及OP、DI为目的寄存器选择。T4信号为寄存器、对战数据写入脉冲,上升沿有效。准双向I/O 输入输出端口用于置数操作,经2片74LS245三态门与数据总线相连。 存储器: 存储器是计算机的存储部件,用于存放程序和数据。存储器是计算机信息存储的核心,是计算机必不可少的部件之一,计算机就是按存放在存储器中的程序自动有序不间断地进行工作。 本系统从提高存储器存储信息效率的角度设计数据通路,按现代计算机中最为典型的分段存储理念把存储器组织划分为程序段、数据段等,由此派生了数据总线(DBus)、指令总线(IBus)、微总线(μBus)等与现代计算机设计规范相吻合的实验环境。 实验所用的存储器电路原理如图3-1所示,该存储器组织由二片6116构成具有奇偶概念的十六位信息存储体系,该存储体系AddBus由IP指针和AR指针分时提供,E/M控位为“1”时选通IP,反之选通AR。该存储体系可随机定义总线宽度,动态变更总线结构,把我们的教学实验提高到能与现代计算机设计规范相匹配与接轨的层面。

STM32_IO口操作

1、不使用库函数的IO口操作 Systick 部分内容属于NVIC控制部分,一共有4个寄存器 SysTick_CTRL, 0xE000E010 -- 控制寄存器默认值:0x0000 0004 SysTick_LOAD, 0xE000E014 -- 重载寄存器默认值:0x0000 0000 SysTick_VAL, 0xE000E018 -- 当前值寄存器默认值:0x0000 0000 SysTick_CALIB, 0xE000E01C -- 校准值寄存器默认值:0x0002328 SysTick_CTRL 寄存器内有4个bit具有意义 第0位:ENABLE,Systick 使能位(0:关闭Systick功能;1:开启Systick功能) 第1位:TICKINT,Systick 中断使能位(0:关闭Systick中断;1:开启Systick中断) 第2位:CLKSOURCE,Systick时钟源选择(0:使用HCLK/8 作为Systick时钟;1:使用HCLK 作为系统时钟) 第16位:COUNTFLAG,Systick计数比较标志 IO口的位操作实现 该部分代码实现对STM32各个IO口的位操作,包括读入和输出。当然在这些函数调用之前,必须先进行IO口时钟的使能和IO口功能定义。此部分仅仅对IO口进行输入输出读取和控制。代码如下: #define BITBAND(addr,bitnum) ((addr & 0xF0000000)+0x2000000+((addr &0xFFFFF)<<5)+(bitnum<<2)) #define MEM_ADDR(addr) *((volatile unsigned long *)(addr)) #define BIT_ADDR(addr,bitnum) MEM_ADDR(BITBAND(addr,bitnum)) //IO口地址映射 #define GPIOA_ODR_Addr (GPIOA_BASE+12) //0x4001080C #define GPIOB_ODR_Addr (GPIOB_BASE+12) //0x40010C0C #define GPIOC_ODR_Addr (GPIOC_BASE+12) //0x4001100C #define GPIOD_ODR_Addr (GPIOD_BASE+12) //0x4001140C #define GPIOE_ODR_Addr (GPIOE_BASE+12) //0x4001180C #define GPIOF_ODR_Addr (GPIOF_BASE+12) //0x40011A0C #define GPIOG_ODR_Addr (GPIOG_BASE+12) //0x40011E0C #define GPIOA_IDR_Addr (GPIOA_BASE+8) //0x40010808 #define GPIOB_IDR_Addr (GPIOB_BASE+8) //0x40010C08 #define GPIOC_IDR_Addr (GPIOC_BASE+8) //0x40011008 #define GPIOD_IDR_Addr (GPIOD_BASE+8) //0x40011408 #define GPIOE_IDR_Addr (GPIOE_BASE+8) //0x40011808 #define GPIOF_IDR_Addr (GPIOF_BASE+8) //0x40011A08 55

计算机组成原理存储器读写实验报告

《计算机组成原理》实验报告 实验名称:存储器读写实验班级: 学号:姓名: 一、实验目的 1、掌握存储器的工作特征 2、熟悉静态存储器的操作过程,验证存储器的读取方法 二、实验设备 1、YY—Z02计算机组成原理实验仪一台。 2、排线若干。 3、PC微机一台。 三、实验原理 1.存储器是计算机的主要部件,用来保存程序和数据。从工作方式上分类, 其可分为易失性和非易失性存储器,易失性存储器中的数据在关电后将 不复存在,非易失性存储器中的数据在关电后不会丢失。易失性存储器 又可分为动态存储器和静态存储器,动态存储器保存信息的时间只有 2ms,工作时需要不断更新,既不断刷新数据;静态存储器只要不断电, 信息是不会丢失的。 2.静态存储器芯片6116的逻辑功能: 3.存储器实验单元电路:

存储器实验单元电路控制信号逻辑功能表: 4.存储器实验电路: 存储器读写实验需三部分电路共同完成:存储器单元、地址寄存器单元和输入、输出单元。存储器单元以6116芯片为中心构成,地址寄存器单元主要由一片74LS273组成,控制信号B-AR的作用是把总线上的数据送人地址寄存器,向存储器单元电路提供地址信息,输入、输出单元作用与以前相同。

四、实验结果记录 (1)连线准备 1.连接输入、输出实验的全部连线。 2.按实验逻辑原理图连接M-W、M-R两根信号低电平有效信号线。 3.连接A7—A0 8根地址线。 4.连接B-AR正脉冲有效信号线。 (2)记录结果(包含采集结果前的动作) 地址写入数据读出数据结果说明 01H0010000000100000数据的写入与读取02H0001001100010011数据的写入与读取03H0010011000100110数据的写入与读取04H数据的写入与读取05H0000010100000101数据的写入与读取25H不写存储器一个随机地址 36H0010000100100001数据的写入与读取 0A0H写总线悬空时的数 据总线悬空时表示的数据是FFH,即写入的数据是,所以读出结果为 五、实验总结与心得体会

计算机组成原理实验五-存储器读写实验

实验五 存储器读写实验 一、 实验目的 1. 掌握存储器的工作特性。 2. 数学静态存储器的操作过程,验证存储器的读写方法。 二、 实验原理 存储器是计算机的主要部件,用来保存程序和数据。从工作方式上分类,存储器可分成易失性和非易失性存储器,易失性存储器中的数据在关电后将不复存在,非易失性储器又可分为动态存储器和静态存储器,动态存储器保存信息的时间只有2ms ,工作时需要不断更新,既不断刷新数据;静态存储器只要不断电,信息是不会丢失的。为简单起见,计算机组成实验用的是容量为2K 的镜头存储器6116。 1. 静态存储器芯片6116的逻辑功能 6116是一种数据宽度为8位(8个二进制位),容量为2048字节的态存储器芯片,封在24引脚的封装中,封装型式如图2-7所示。6116芯片有8根双向三态数据线D7-D0,所谓三态是指输入状态、输出状态和高阻状态,高阻状态数据线处于一种特殊的“断开”状态;11根地址线A10-A0, 指示芯片内部2048个存储单元号;3根控制线CS ???片选控制信号,低电平时,芯片可进行读写操作,高电平时,芯片保存信息不能进行读写;WE ???为写入控制信号,低电平时,把数据线上的信息存入地址线A10-A0指示的存储 单元中;OE ???为输出使能控制信号,低电平时,把地址线A10-A0指示的存储单元中的数据读出送到数据线上。芯片控制信号逻辑功能见表2-9。 图2-7 存储器部件电路图 2. 存储器实验单元电力路 因为在计算机组成原理实验中仅用了256个存储单元,所以6116芯片 的三根地址线A11-A8接地也没有多片联用问题,片选信号CS ???接地使芯片总是处于被选中状态。芯片的,WE.和OE ???信号分别连接实验台的存储器写信号M ?W ???????和存储器读写信号M ?R ???????,存储器实验单元逻辑电路如图2-7所示。这

STM32中使用GPIO的总结超强

STM32 GPIO使用 操作步骤: 使能GPIO对应的外设时钟 例如://使能GPIOA、GPIOB、GPIOC对应的外设时钟 RCC_APB2PeriphClockCmd(RCC_APB2Periph_GPIOA | RCC_APB2Periph_GPIOB| RCC_APB2Periph_GPIOC , ENABLE); 声明一个GPIO_InitStructure结构体 例如: GPIO_InitTypeDef GPIO_InitStructure; 选择待设置的GPIO管脚 例如:/* 选择待设置的GPIO 7、8、9管脚位,中间加“|”符号*/ GPIO_InitStructure.GPIO_Pin = GPIO_Pin_7 | GPIO_Pin_8 | GPIO_Pin_9; 4. 设置选中GPIO管脚的速率 例如:/* 设置选中GPIO管脚的速率为最高速率2MHz */ GPIO_InitStructure.GPIO_Speed = GPIO_Speed_2MHz; //最高速率2MHz GPIO5. 设置选中管脚的模式*/ 设置选中GPIO管脚的模式为开漏输出模式/* 例如://开漏输出模式GPIO_InitStructure.GPIO_Mode = GPIO_Mode_Out_OD; GPIOX

中指定的参数初始化外设6. 根据GPIO_InitStructureGPIOC */ GPIO_InitStructure中指定的参数初始化外设根据例如:/* 1 / 16 GPIO_Init(GPIOC, &GPIO_InitStructure); 7.其他应用 例:将端口GPIOA的 10、15脚置1(高电平) GPIO_SetBits(GPIOA, GPIO_Pin_10 | GPIO_Pin_15); 例:将端口GPIOA的 10、15脚置0(低电平) GPIO_ResetBits(GPIOA, GPIO_Pin_10 | GPIO_Pin_15); GPIO寄存器: 寄存器描述 端口配置低寄存器CRL 端口配置高寄存器CRH 端口输入数据寄存器IDR 端口输出数据寄存器ODR 端口位设置BSRR /复位寄存器 端口位复位寄存器BRR 端口配置锁定寄存器LCKR 事件控制寄存器EVCR

计算机组成原理实验五存储器读写实验

实验五存储器读写实验 一、实验目的 1.掌握存储器的工作特性。 2.数学静态存储器的操作过程,验证存储器的读写方法。 二、实验原理 存储器是计算机的主要部件,用来保存程序和数据。从工作方式上分类,存储器可分成易失性和非易失性存储器,易失性存储器中的数据在关电后将不复存在,非易失性储器又可分为动态存储器和静态存储器,动态存储器保存信息的时间只有2ms,工作时需要不断更新,既不断刷新数据;静态存储器只要不断电,信息是不会丢失的。 为简单起见,计算机组成实验用的是容量为2K的镜头存储器6116。 1.静态存储器芯片6116的逻辑功能 6116是一种数据宽度为8位(8个二进制位),容量为2048字节的态存储器芯片,封在24引脚的封装中,封装型式如图2-7 所示。6116芯片有8根双向三态数据线D7-D0,所谓三态是指输 入状态、输出状态和高阻状态,高阻状态数据线处于一种特殊的 “断开”状态;11根地址线A10-A0,指示芯片内部2048个存储 单元号;3根控制线CS???片选控制信号,低电平时,芯片可进行读 写操作,高电平时,芯片保存信息不能进行读写;WE???为写入控制 信号,低电平时,把数据线上的信息存入地址线A10-A0指示的存 储单元中;OE???为输出使能控制信号,低电平时,把地址线A10-A0 指示的存储单元中的数据读出送到数据线上。芯片控制信号逻辑 功能见表2-9。 表2-9 6116芯片控制信号逻辑功能表 图2-7 存储器部件电路图 2.存储器实验单元电力路

因为在计算机组成原理实验中仅用了256个存储单元,所以6116芯片的三根地址线A11-A8接地也没有多片联用问题,片选 信号CS ???接地使芯片总是处于被选中状态。芯片的,WE.和OE ???信号分别连接实验台的存储器写信号M ?W ???????和存储器读写信号M ?R ???????,存储 器实验单元逻辑电路如图2-7所示。这种简化了控制过程的实验电路可方便实验进行,存储器实验单元电路控制信号逻辑功能见 3. 存储器实验电路 存储器读/写实验需呀三部分电路共同完成:存储器单元(MEM UNIT )、地址寄存器单元(ADDRESS UNIT )和输入、输出单元(INPUT/OUTPUT UNIT )。存储器单元以6116总线上的数据送入地址寄存器,向存储器单元电路提供地址信息,输入、输出单元作用与以前相同。存储器实验的逻辑原理如图2-8所示。 图2-8 存储器实验电路逻辑图 三、 实验过程 1. 连线 (1) 连接实验一(输入、输出实验)的全部连线。 (2) 按实验逻辑原理图连接M ?W ???????、M ?R ???????两根信号低电平有效信号 线。 (3) 连接A7-A0 8根地址线。 (4) 连接B-AR 正脉冲有效信号线。 2. 顺序写入存储单元实验操作过程 (1) 把B-AR 控制开关拨到0(因此信号是正脉冲有效),把其他控 制开关全部拨到1,使全部控制信号都处于无效状态。 (2) 在输入数据开关上拨一个地址数据(如00000001,即16进制 01H ),拨下,IOR.开关,把地址数据送总线。 (3) 拨动一下B-AR 开关,实现“0-1-0”,产生一个正脉冲,把地 址数据送地址寄存器(AR )保存。 (4) IO ?R ?????????控制开关,把实验数据送到总线。 (5) 拨动M ?W ???????控制开关,即实现“0-1-0”,产生一个负脉冲,把 实验数据存入存储器的01H 号单元。

STM32的寄存器操作

STM32的寄存器操作和C51的操作有很大的不同。 要操作STM32可以通过库函数操作,也可直接操作寄存器。 下面分析一下寄存器的操作,以控制PE4脚输出高低电平为例: 首先找到GPIOE的寄存器基地址,如下图:(STM32F4xx中文参考手册.pdf) 找到GPIOE的基地址为:0x4002 1000 我们要操作PE4脚,首先找到BSRR位操作寄存器,如下图 BSRR寄存器偏移地址为:0x18 由于我我们要操作PE4,即操作BSRR寄存器的第4位。 下面编写代码: 首先定义一个指向uint32_t型的指针,之后将该指针指向BSRR寄存器地址:

0x4002 1018 = 0x4002 1000 + 0x0000 00018 此时要操作BSRR寄存器,直接向*p赋值就可以了,如下图: 该代码即可实现PE4脚的高低电平输出。 假如不加延时,如下图: 系统也可正常运行,但在这两行处打断点调试,会发现无法进入,分析原因是两行代码中间无延时,实际运行时几乎可以忽略该代码的操作,所以编译器在编译时自动优化了,此时我们只需要在声明变量的时候为其指明__IO类型变量(volatile)即可,如下图: 上面的例子从最基本的寄存器分析操作STM32的,下面来分析下官方库函数是如何操作寄存器的。 首先定义GPIO寄存器组,通过结构体将寄存器组封包,如下图:

由于以上寄存器地址是连续的,所以可以分在一个结构体中 然后定义GPIOE寄存器组 这里的GPIOE_BASE为GPIOE寄存器的基地址:0x4002 1000 定义了GPIO_TypeDef类型指针GPIOE,并指向了GPIOE寄存器的基地址。此时我们要操作PE4脚状态只需要操作GPIOE->BSRR就可以了, 其它寄存器的操作参考上面的分析即可实现。

单片机存储器和寄存器

单片机的存储器、寄存器 单片机的存储器有程序存储器ROM与数据存储器RAM两种。这两种存储器在使用上是严格区分的,不得混用。程序存储器存放程序指令,以及常数,表格等;而数据存储器则存放缓冲数据。 MCS-51单片机存储器的结构共有3部分:一是程序存储器二是内部数据存储器三是外部数据存储器MCS-51单片机的存储器可分为5类:程序存储器、内部数据存储器、特殊功能寄存器、位地址空间、外部数据存储器 程序存储器 程序是控制计算机动作的一系列命令,单片机只认识由“0”和“1”代码构成的机器指令。如前述用助记符编写的命令MOV A,#20H,换成机器认识的代码74H、20H:(写成二进制就是01110100B和00100000B)。在单片机处理问题之前必须事先将编好的程序、表格、常数汇编成机器代码后存入单片机的存储器中,该存储器称为程序存储器。程序存储器可以放在片内或片外,亦可片内片外同时设置。由于PC程序计数器为16位,使得程序存储器可用16位二进制地址,因此,内外存储器的地址最大可从0000H到FFFFH。8051内部有4k字节的ROM,就占用了由0000H~0FFFH的最低4k个字节,这时片外扩充的程序存储器地址编号应由1000H开始,如果将8051当做8031使用,不想利用片内4kROM,全用片外存储器,则地址编号仍可由0000H开始。不过,这时应使8051的第{31}脚(即EA脚)保持低电平。当EA为高电平时,用户在0000H至0FFFH范围内使用内部ROM,大于0FFFH后,单片机CPU自动访问外部程序存储器。 数据存储器 单片机的数据存储器由读写存储器RAM组成。其最大容量可扩展到64k,用于存储实时输入的数据。8051内部有256个单元的内部数据存储器,其中00H~7FH为内部随机存储器RAM,80H~FFH为专用寄存器区。实际使用时应首先充分利用内部存储器,从使用角度讲,搞清内部数据存储器的结构和地址分配是十分重要的。因为将来在学习指令系统和程序设计时会经常用到它们。8051内部数据存储器地址由00H至FFH共有256个字节的地址空间,该空间被分为两部分,其中内部数据RAM的地址为00H~7FH(即0~127)。而用做特殊功能寄存器的地址为80H~FFH。在此256个字节中,还开辟有一个所谓“位地址”区,该区域内不但可按字节寻址,还可按“位(bit)”寻址。对于那些需要进行位操作的数据,可以存放到这个区域。从00H到1FH安排了四组工作寄存器,每组占用8个RAM 字节,记为R0~R7。究竟选用那一组寄存器,由前述标志寄存器中的RS1和RS0来选用。在这两位上放入不同的二进制数,即可选用不同的寄存器组。 特殊功能寄存器 特殊功能寄存器(SFR)的地址范围为80H~FFH。在MCS-51中,除程序计数器PC和四个工作寄存器区外,其余21个特殊功能寄存器都在这SFR块中。其中5个是双字节寄存器,它们共占用了26个字节。各特殊功能寄存器的符号和地址见附表2。其中带*号的可位寻址。特殊功能寄存器反映了8051的状态,实际上是8051的状态字及控制字寄存器。用于CPU PSW便是典型一例。这些特殊功能寄存器大体上分为两类,一类与芯片的引脚有关,另一类作片内功能的控制用。与芯片引脚有关的特殊功能寄存器是P0~P3,它们实际上是4个八位锁存器(每个I/O口一个),每个锁存器附加有相应的输出驱动器和输入缓冲器就构成了一个并行口。MCS-51共有P0~P3四个这样的并行口,可提供32 根I/O线,每根线都是双向的,并且大都有第二功能。其余用于芯片控制的寄存器中,累加

Stm32之寄存器列表

学习STM32,官方提供一个库,但如果刚入手的话,肯定连功能都不太清楚,所以用不太习觉得还是操作寄存器来的直接,所以就整理了STM32的大部分寄存器共大家参考。版权归 基本上都是103的,其中107的RCC,USB,和以太网等一些不太重要的没有,但大部分都有我只是把数据手册中的寄存器整理了一下方便大家看。如果有什么不对的,请通知我,也好联系方式:qq 526083029 小树 PWR电源相关寄存器 PWR_CR(电源控制寄存器) 31302928272625242322212019181716 保留 1514131211109876543210保留DBP PLS[2:0]PVDE CSBF CWUF PDDS LPDS 8位:DBP取消后备区域写保护。复位值为0。定义:0为禁止写入,1为允许写入。注:如果rtc时钟是HSE/128,必须保持为1 7-5位:PVD电源电压检测器的电压阀值。定义:000(2.2v),001(2.3v),010(2.4v),011(2.5v),100(2.6v),101(2.7v),110(2.8v),4位:PVDE电源电压检测器(PVD)使能。定义:0(禁止PVD),1(开启PVD) 3位:CSBF清除待机位(始终输出为0)定义:0(无功效),1(清除SBF待机位(写) 2位:CWUF清除唤醒位(始终输出为0)定义:0(无功效),1(2个系统时钟周期后清除WUF唤醒位(写) 1位:PDDS掉电深睡眠(与LPDS位协同操作)定义:0(当CPU进入深睡眠时进入停机模式,调压器状态由LPDS位控制),1(CPU进入深睡眠时进入待机模0位:LPDS深睡眠下的低功耗(PDDS=0时,与PDDS位协同操作)定义:0(在待机模式下电压调压器开启),1(在待机模式下电压调压器处于低功耗模式 PWR_CSR(电源控制/状态寄存器) 31302928272625242322212019181716 保留 1514131211109876543210保留EWUP保留PVDO SBF WUF 8位:EWUP使能WKUP引脚。定义:0(WKUP为通用IO),1(用于待机唤醒模式,WKUP引脚被强置为输入下拉的配置(WKUP引脚上的上升沿将系统从待机模 注:复位时清除这一位 2位:PVDO-PVD输出(当PVD被PVDE位使能后该位才有效)定义:0(VDD/VDDA高于PLS[2-0]选定的PVD阀值),1(VDD/VDDA低于PLS[2-0]选定的PVD阀值 注:在待机模式下PVD被停止,因此,待机模式后或复位后,直到设置PVDE位之前,该位为0 1位:SBF待机标志位(该位由硬件设置,并只能由POR/PDR(上电/掉电复位)或设置电源控制寄存器(PWR_CR)的CSBUF位清除)定义:0(不在待机 0位:WUF唤醒标志(该位由硬件设置,并只能由POR/PDR(上电/掉电复位)或设置电源控制寄存器(PWR_CR)的CWUF位清除) 定义:0(没有唤醒事件),1(在WKUP引脚上发生唤醒事件或出现RTC脑中事件) 注:当WKUP引脚已经是高电平时,在(通过设置EWUP位)使能WKUP引脚时,会检测到一个额外事件 BKP——DRx(x=1...10)(备份数据寄存器) 1514131211109876543210 15-0位:备份数据由用户来写数据。注:BKP——DRx寄存器不会被系统复位,电源复位,待机唤醒所复位 它可以由备份域复位来复位或(如果入侵检测引脚TAMPER功能被开启时)由浸入引脚事件复位 BKP_RTCCR(RTC时钟校准寄存器) 1514131211109876543210

实验三:存储器读写实验

计算机组成原理实验报告 Computer Organization Lab Reports ______________________________________________________________________________ 班级: __________ 姓名:___________ 学号:__________ 实验日期:_____________ 学院: _____________________________ 专业:__________________________________ 实验顺序:_______ 原创:___________ 实验名称:______________________________ 实验分数:_______ 考评日期:________ 指导教师:张旭 ______________________________________________________________________________ 一、实验目的 熟悉和了解存储器逻辑结构与总线组成的数据通路及其基本的工作原理。 理解AR地址寄存器与PC地址寄存器的各自的作用。 二、实验要求 按照实验步骤完成实验项目,掌握存储部件在原理计算机中的运用。 三、实验原理 存储器是计算机的存储部件,用于存放程序和数据。存储器是计算机信息存储的核心, 是计算机必不可少的部件之一,计算机就是按存放在存储器中的程序自动有序不间断地进行 工作。 本系统从提高存储器存储信息效率的角度设计数据通路,按现代计算机中最为典型的分 段存储理念把存储器组织划分为程序段、数据段等,由此派生了数据总线(DBus)、指令总 线(IBus)、微总线(μBus)等与现代计算机设计规范相吻合的实验环境。 实验所用的存储器电路原理如图3-1所示,该存储器组织由二片6116构成具有奇偶概 念的十六位信息存储体系,该存储体系AddBus由IP指针和AR指针分时提供,E/M控位 为“1”时选通IP,反之选通AR。该存储体系可随机定义总线宽度,动态变更总线结构, 把我们的教学实验提高到能与现代计算机设计规范相匹配与接轨的层面。 图3-1 存储器数据通路

相关文档
相关文档 最新文档