文档库 最新最全的文档下载
当前位置:文档库 › 焊接强度及结构

焊接强度及结构

焊接强度及结构
焊接强度及结构

焊接工艺问答(强度及结构) 焊接工艺问答(强度及结构)
各种焊接接头都有不同程度的应力集中,当母材具有足够的塑性时,结构在静开车破坏之前就有显著的塑性变形,应力集中对 强度无影响。 其强度 强度 例如,侧面搭接接头在加载时,如果母材和焊缝金属都有较好的塑性,其切应力的分布是不均匀的,见图 29。继续加载,焊缝 的两端点达到屈服点 σs,则该处应力停止上升,而焊缝中段各点的应力因尚未达到 σs,故应力随加载继续上升,到达屈服点 的区域逐渐扩大,应力分布曲线变平,最后各点都达到 σs。如再加载,直至使焊缝全长同时达到强度 强度极限,最后导致破坏。 强度
什么是工作焊缝?什么是联系焊缝? 36 什么是工作焊缝?什么是联系焊缝? 焊接结构上的焊缝,根据其载荷的传递情况,可分为两种:一种焊缝与被连接的元件是串联的,承担着传递全部载荷的作用, 一旦断裂,结构就立即失效,这种焊缝称为工作焊缝,见图 30a、图 30b,其应力称为工作应力。另一种焊缝与被连接的元件是 并联的,仅传递很小的载荷,主要起元件之间相互联系的作用,焊缝一旦断裂,结构不会立即失效,这种焊缝称为联系焊缝, 见图 30c、图 30d,其应力称为联系应力。设计时,不需计算联系焊缝的强度 强度,只计算工作焊缝的强度 强度。 强度 强度 举例说明对接接头爱拉(压)时的静载强度计算。 时的静载强度计算。 37 举例说明对接接头爱拉 时的静载强度计算 全焊透对接接头的各种受力情况 见图 31。图中 F 为接头所受的拉(压)力,Q 为切力,M1 为平面内弯矩, M2 为垂平面弯矩。

受拉时的强度 强度计算公式为 强度
F σt= ─── Lδ1 ≤〔σ′t 〕
F 强度计算公式为 σα= ─── ≤〔σ′α 〕 受压时的强度 强度 Lδ1
式中
F——接头所受的拉力或压力(N); L——焊缝长度(cm); δ1——接头中较薄板的厚度(cm); σ——接头受拉(σt) 或受压(σα)时焊缝中所承受的应力(N/cm2)㈠
〔σ′t 〕——焊缝受拉时的许用应力(N/cm2) 〔σ′α 〕——焊缝受压时的许用应力(N/cm2) 强度。 计算例题 两块板厚为 5mm、宽为 500mm 的钢板对接焊在一起,两端受 28400N 的拉力,材料为 Q235-A 钢,试校核其焊缝强度 强度 解:查表得〔σ′t 〕=14200 N/cm2。 根据已知条件,在上述公式中,F=28400N,L=500mm=50cm,δ1=5mm=0.5cm,代入计算为 F 28400
σt= ─── = ───── = 1136N/cm2<14200N/cm2 Lδ1 50×0.5

该对接接头焊缝强度 强度满足要求,结构工作安全。 强度
举例说明对接接头受剪切时的静载强度计算。 强度计算 38 举例说明对接接头受剪切时的静载强度计算。 强度计算公式为 受剪切时的强度 强度

Q τ= ─── ≤〔τ′〕 Lδ1
式中 Q——接头所受的切力(N); L——焊缝长度(cm); δ1——接头中较薄板的厚度(cm); τ——接头焊缝中所承受的切应力(N/cm2); 〔τ′〕——焊缝许用切应力(N/cm2) 计算例题 两块板厚为 10mm 的钢板对接焊,焊缝受 29300N 的拉力,材料为 Q235-A 钢,试设计焊缝的长度(钢板宽度)。 解:查表得〔τ′〕=9800 N/cm2。 根据已知条件,在上述公式中,Q=29300N,δ1=10mm=1cm,代入计算为
Q
28400
L≥ ────── = ────── = 2.99cm = 29.9mm δ1〔τ′〕 1×9800
取 L = 30mm。即当焊缝长度(板宽)为 30mm 时,该对接接头焊缝强度 强度能满足要求。 强度
举例说明对接接头受弯矩时的静载强度计算。 强度计算 39 举例说明对接接头受弯矩时的静载强度计算。 受水平板面内弯矩的强度 强度计算公式为 强度
6M1 σ= ──── ≤〔σ′t 〕 δ1 L2
受垂直板面内弯矩的强度 强度计算公式为 强度
6M2 σ= ──── ≤〔σ′t 〕 δ12 L
式中
M1——水平板面内弯矩(N/cm2); M2——垂直板面弯矩(N/cm2); L ——焊缝长度(cm);

δ1——接头中较薄板的厚度(cm); σ——接头受弯矩作用时焊缝中所承受的应力(N/cm2); 〔σ′t 〕——焊缝受弯时的许用应力(N/cm2)。 计算例题 两块厚度相同钢板的对接接头,材料为 16MnR 钢,钢板宽度为 30mm,受垂直板面弯矩 300000N·cm,试计算焊缝所 需的厚度(板厚)。 解:查表得〔σ′t 〕=20100 N/cm2。 根据已知条件,在上述公式中,M2=300000N·cm,L=300mm=30cm,代入计算为
强度能满足要求。 取 δ1=18mm,即当焊缝厚度(板厚)为 18mm 时,该对接接头焊缝强度 强度 举例说明搭接接头受拉(压)时的静载强度计算。 时的静载强度计算 40 举例说明搭接接头受拉 时的静载强度计算。 各种搭接接头的受力情况,见图 32。
三种焊缝的计算公式为 ⑴正面搭接焊缝受拉(压)的计算公式为

F τ= ──── ≤〔τ′〕 1.4KL
⑵侧面搭接焊缝受拉(压)的计算公式为
F τ= ──── ≤〔τ′〕 1.4KL
⑶联合搭接焊缝受拉(压)的计算公式为
F τ= ──── ≤〔τ′〕 0.7KΣL
式中
F——搭接接头受的拉(压)力(N); K——焊脚尺寸(cm); L——焊缝长度(cm); ΣL——正、侧面焊缝总长(cm); τ——搭接接头角焊缝受的切应力(N/cm2);
〔τ′〕——焊缝金属许用切应力(N/cm2); 计算例题 将 100mm×10mm 的角钢用角焊缝搭接在一块钢板上见图 33。受拉伸时要求与角钢等强度 强度,试计算接头的合理尺寸 K 强度 和 L 应该是多少?
解:从材料手册查得角钢断面积 S=19.2cm2;许用应力〔σ〕=16000 N/cm2,焊缝许用应力〔τ′〕=10000 N/cm2。 角钢的允许载荷为 〔F〕=S〔σ〕=19.2×16000=307200N 假定接头上各段焊缝中的切应力都达到焊缝许用切应力值,即て=〔τ′〕。若取 K=10mm,采用手弧焊,则所需的焊缝总长为

〔F〕
307200 ΣL = ─────── = ───────── =43.9cm
0.7K〔て′〕
0.7×1×10000
角钢一端的正面角焊缝 L3=100mm,则两侧焊缝总长度为 339mm。根据材料手册查得角钢的拉力作用线位置 e=28.2mm,按杠杆 原理,则侧面角焊缝 L2 应承受全部侧面角焊缝载荷的 28.3%。
28.3 ∴ L2 = 339 × ─── = 96mm 100
另外一侧的侧面角焊缝长度 L1 应该为
100-28.3 L1 = 339 × ────── = 243mm 100
取 L1=250mm,L2=100mm。 举例说明搭接接头受弯矩时的静载强度计算。 41 举例说明搭接接头受弯矩时的静载强度计算。 强度计算 搭接接头受弯矩的情况,见图 34a。计算公式为
式中
M——作用在接头上的外加弯矩(N/cm2); K——焊脚尺寸(cm); H——搭接板宽度(cm);
〔τ′〕——焊脚的许用切应力(N/cm2))。 (图 34)当焊缝总长为 500mm, , K=10mm 时, 在梁的端头作用一弯矩 M=2800000N·cm, 计算例题 由三面焊缝组成的悬臂搭接接头 试验计算接头是否安全?已知焊缝作用切应力〔τ′〕=10000 N/cm2。

举例说明搭接接头受偏心载荷时的静载强度计算。 强度计算 42 举例说明搭接接头受偏心载荷时的静载强度计算。 如果搭接接头承受的载荷是垂直 X 轴方向的偏心载荷 F 见图 35, 此时焊缝中既有由弯矩 M=FL 引起的切应力 τM(由来 1 公式 计算),又是有由切力 Q=F 引起的切应力 τQ 为
计算例题
一偏心受载的搭接接头(图 35),已知焊缝长 h=400mm,l0=100mm,焊脚尺寸 K=10mm,外加载荷 F=30000N,
强度。焊缝的许用切应力〔τ′〕=10000N/cm2。 梁长 L=100cm,试校核焊缝强度 强度

解:分别计算 τM 、τQ:
形接头受平行于焊缝载荷时的静载强度计算。 强度计算 43 举例说明 T 形接头受平行于焊缝载荷时的静载强度计算。 T 形接头及其受载荷的情况,见图 36a。

如果接头开坡口并焊透,其强度 强度按对接接头计算,焊缝金属截面等于母材截面(S=δh)。 强度 如果接头开 I 形坡口, 此时产生最大切应力的危险点在焊缝的最上端, 该点同时作用有两个切应力: 一个是由 M=FL 引起的 τM; 另一个是由 Q=F 引起的 τQ。τM、τQ 的

什么是焊接结构的疲劳断裂? 44 什么是焊接结构的疲劳断裂?
疲劳断裂的过程由三个阶段所组成: 1)在承受重复载荷的结构的应力集中部位产生疲劳裂纹(此时结构所受应力低于弹性极限)。 2)疲劳裂纹稳定扩展。 3)结构断裂。 据统计,由于疲劳而失效的金属结构,约占失效结构的 90%。 焊接结构较其它结构(如铆接结构)更容易产生疲劳断裂,这是因为: 1)铆接结构的疲劳裂纹发展遇到钉孔或板层间隔会受 阻,焊接结构由于其整体性,一旦产生裂纹,裂纹扩展不受阻止,直至整个构件断裂。 2)焊接连接不可避免地存在着产生应 力集中的夹渣、气孔、咬边等缺陷。3)焊缝区存在着很大的残余拉应力。几个典型的焊接结构疲劳断裂事例见图 37。
图 37a 为直升飞机起落架的疲劳断裂。裂纹从应力集中很高的角接板尖端开始,该机飞行着陆 2118 交后发生破坏,属于低周疲 劳。 图 37b 为载重汽车底架纵梁的疲劳断裂。该梁板厚 5mm,承受反复的弯曲应力,在角钢和纵梁的焊接处,因应力集中很高而产生 疲劳裂纹而破坏,此时该车已运行 30000km。 试述焊接接头形式对疲劳极限的影响 的影响。 45 试述焊接接头形式对疲劳极限的影响。 焊接结构中,在接头部位由于具有不同的应力集中,将对接头的疲劳极限产生程度不同的不利影响。 ⑴对接接头 对接接头从焊缝至母材的形状变化不大,应力集中比其它接头要小,所以在所有的接头形式中具有最高的疲劳极
限。但是过大的余高会增加应力集中,使疲劳极限下降。 ⑵T 形接头 这种接头由于在焊缝向基本金属过渡处有明显的截面变化, 应力集中系数比对接接头的应力集中系数高, 因此其疲 劳极限远低于对接接头。 提高 T 形接头疲劳极限的根本措施是开坡口焊接和加工焊缝过渡区使之圆滑过渡。 ⑶搭接接头 这是一种疲劳极限最低的接头形式,特别是在原来对接接头的基础上,增加盖板来进行“加强”,其结果适得其
反,这种盖板非但没有起到“加强”作用,反而使原来疲劳极限较高的对接接头被大大地削弱了。 试述焊接缺陷对疲劳极限的影响。 46 试述焊接缺陷对疲劳极限的影响。 焊接缺陷对焊接接头的疲劳极限产生重大的不利影响,这种不利影响与焊接缺陷的种类、尺寸、方向和位置有关。

片状缺陷(如裂纹、未熔合、未焊透)比带圆角的缺陷(如气孔、点状夹渣)影响大。表面缺陷比内部缺陷影响大。与作用力 方向垂直的片状缺陷的影响比其它方向大。位于残余拉应力区内的缺陷的影响比在残余应力区内的大;位于应力集中区内的缺 陷(如焊趾裂纹)的影响比在均匀应力区中同样缺陷影响大。咬边和未焊透在不同位置、不同载荷下对接头疲劳极限的影响, 见图 38,其中 A 组的影响最大,B 组的影响较小。
如何选用合理的结构形式来提高接头的疲劳极限? 47 如何选用合理的结构形式来提高接头的疲劳极限? 选用应力集中较小的结构形式是提高疲劳极限的重要措施,几种设计方案的正误比较,见图 39。

如何利用电弧整形的方法来提高接头的疲劳极限? 48 如何利用电弧整形的方法来提高接头的疲劳极限? 电弧整形的方法,是用钨极氩弧在焊接接头焊缝与母材之间的过渡区重熔一次,使焊缝与基本金属能平滑地过渡,同时减少该 部位的微小非金属夹杂物,使接头部位的疲劳极限得以提高,见图 40。电弧整形提高接头疲劳极限的效果,见表 10。

表 10 电弧整形后焊接接头疲劳极限提高的效果
2×106 次循环下的 钢 接头形式 (MPa 级) (1mm) 原始状态 σs=340 80 整形后 120 50 - 种 试件截面 循环特性 疲劳强度 强度极限(MPa) 强度 提高(%) 相比 疲劳极限 与基本材料
对接
σs=450
70×12
-1
115
158
35

σs=674 低碳钢 对接 低合金钢 7×2.5 0
80 52
150 116
90 120
- 0.96
64
181
280
0.86
2×106 次循环下的 钢 接头形式 (MPa 级) 原始状态 HT60 对接 σs=534 搭接并具有加 低合金钢 长的端面焊缝 周边焊的加强 σs=312 板横加强肋板 σs=341 的连接 横加强肋板的 80×12 连接纵加强 80×12 肋板的连接 0.3 137 158 15 - 0.3 188 219 16 - 70×12 -1 50 90 80 - 70×12 -1 95 150 60 - - 0 86 101 30 - 25×25 - 185 250 34 0.67 整形后 种 试件截面(1mm) 循环特性 疲劳强度 强度极限(MPa) 强度 疲劳极限提高(%) 与基本材料相比
提高焊接接头疲劳极限的常用方法有哪些? 49 提高焊接接头疲劳极限的常用方法有哪些?

常用提高焊接接头疲劳极限的方法,见表 11。
表 11 常用提高焊接接头疲劳极限的方法

法 电弧气刨
技术说明
适用范围及优点


适用于有很大的内部缺陷 后补焊法 费用高,焊补可能产生新的缺 改 砂 轮 修 磨 用碳弧气刨吹掉熔化金属后再补焊 善 法 几 何 钻孔法 费用低,不要求特别的设备。 仅用于穿透裂纹,延长其疲劳 形 状 适用于角焊缝 用锥形砂轮打磨焊趾磨去基材 0.5mm。 这是打磨法中最有效的方法 锥 形 砂 轮 用 30~200 级硅砂轮分 3 次连续磨光。 磨光法 方 6mm 深的缺陷。 法 件和横向焊缝 表面硬化 对高强钢,当裂纹起始寿命较 TIG 重 熔 大时,改善效果更大 法 射水冷却 法 将焊缝加热至 500℃保持 3min,然后 射水使表面快速冷却 不需知道裂纹起始位置,不需 严格控制温度 高温 (500℃) 限制冷却位置。 , 不适用于大接头和小接头。 过热可能引起冷却时的马氏体变 化 残 余 点加热法 在距焊缝一定位置加热至 280℃,引 适用于大板 起局部屈服 用~ф2 钢丝组成束状锤头,对焊趾 适用于中等严重的缺口 应 多 丝 锤 击 表面进行冷作加工,压缩空气压力为 力 法 方 法 喷丸锤击 法 500~100kMa 喷铁 加工 用直径 6~12mm 球形锤头对焊趾进行 适用于较严重的缺口,无损耗 冷加工,可用电锤或气压锤。 在距焊缝一定位置局部加压至屈服 单 点 锤 击 (2~3 倍压应力) 适用于铝合金 或玻璃 对焊趾表面进行冷作 适用于平板和轻微缺口 要求有操作经验,仅适于水平位 置 要求有操作经验 制技术 必须知道开裂位置,对横向焊缝 无效 引起较小的缺口,未建立质量控 用 TIG 焊不填充焊丝重熔焊趾,能消除 适用于在车间制造的小机械部 要求焊缝表面清洁,引起焊缝 消耗多,耗用高,难于确保质量 寿命 用 100cm 直径砂轮,60~150 级硅砂 适用于侧面节点板和个别有裂 孔径一般为 12~25mm 纹的细节 不能磨掉所有缺陷 容易 适用于对接焊缝余高,快速、 陷


用拉伸法预先加载使焊缝区局部屈服 在炉内加热至 600℃,缓冷 24h 以上, 适用于薄板 加热速度为每 10mm 板厚 1h 不适用于很大结构
局部加压 法
适用于小构件的纵向角焊缝
大构件常常不成功,冷却速度慢
初始超载 法
热应力消 除法 易检查 涂 装 均分负载 表面清洁,易凝固开裂 层 油漆 方 法 镀锌 纹扩展速率大于 10-5mm 周的严 阴极防护 重腐蚀环境 费用高 塑料、油漆、钎焊、逐层涂装 适用于腐蚀环境 适用于发生应力腐蚀裂纹和裂 费用高
什么是延性断裂?什么是脆性断裂? 50 什么是延性断裂?什么是脆性断裂? 根据金属材料断裂前塑性变形的大小,断裂可分为延性断裂和脆性断裂两种形式。 ⑴延性断裂 断裂过程是:金属材料在载荷作用下,首先产生弹性变形。当载荷继续增加到某一数值,材料即发生屈服,产生
塑性变形。继续加大载荷,金属将进一步变形,继而发生微裂口或微空隙,这些微裂口或微空隙一经形成,便在随后的加载过 程中逐步汇合起来,形成宏观裂纹。宏观裂纹发展到一定尺寸后,扩展而导致最后断裂。 ⑵脆性断裂 在应力低于材料的设计应力和没有显著的塑性变形情况下,金属结构发生瞬时、突然破坏的断裂(裂纹扩展速度
可高达 1500~200m/s)称为脆性断裂。 脆性断裂的裂口平整,与正应力垂直,没有可以觉察到的塑性变形,断口有金属光泽。 试述应力状态对焊接结构产生脆性断裂的影响。 51 试述应力状态对焊接结构产生脆性断裂的影响。 当物体受外载时,在主平面上作用有最大正应力 σmax(另一个与之相垂直的平面上作用有最小正应力 σmin)与主平面成 45° 的平面上作用有最大切应力て max。 如果在て max 达到屈服点前, σmax 先达到抗拉强度 则结构发生脆性断裂;反之, 强度, 如て max 强度 先达到屈服点,则发生塑性变形及形成延性断裂。 实验证明,当材料处于单向或双向拉应力作用下,呈现塑性;在三向拉应力作用下,呈现脆性。三向拉应力可能由三向载荷产 生,但更多的情况下是由于几何不连续性所引起。虽然此时整个结构处于单向、双向拉应力状态下,但其局部地区由于设计不 佳、工艺不当或产生焊接缺陷(如裂纹),往往会出现形成局部三向应力状态的缺口效应,见图 41。在三向拉应力的作用下, 材料的屈服点较单向应力时提高,结果在缺口根部形成很高的局部应力而材料尚不发生屈服,使材料的塑性下降,脆性增加, 成为脆断的发源地。因此,焊接结构的脆断事故一般都起源于具有严重应力集中效应的缺口处。

试述温度对焊接结构产生脆性断裂的影响?什么是脆性转变温度? 52 试述温度对焊接结构产生脆性断裂的影响?什么是脆性转变温度? 如果把一组开有相同缺口的试样在不同温度下进行试验,则随着温度的降低,其破坏方式会发生变化,即从塑性破坏变为脆性 破坏,见图 42。当温度降到某一临界值时,将出现塑性到脆性断裂的转变,这个温度称之为脆性转变温度。脆性转变温度高, 材料的脆性倾向严重。应当注意,同一材料采用不同试验方法,将会得到不同的脆性转变温度值。
试述加载速度对焊接结构产生脆性断裂的影响。 53 试述加载速度对焊接结构产生脆性断裂的影响。 随着加载速度的增加,材料的屈服点提高,因而促使材料向脆性转变,其作用相当于降低温度,使材料的脆性转变温度升高, 见图 43。

应当指出,在同样加载速率下,当结构中有缺口时,应变速率可呈现出加倍的不利影响。因为此时有应力集中的影响,应变速 率比无缺口高得多,从而大大地降低了材料的局部塑性。因此,结构钢一旦开始脆性断裂,就很容易产生扩展现象。当缺口根 部小范围金属材料发生断裂时,在新裂纹前端的材料立即突然受到高应力和高应变载荷,即一旦缺口根部开裂,就有高的应变 速率,而不管其原始加载条件是动载还是静载,此时随着裂纹加速扩展,应变速率更急剧增加,致使结构最后破坏。 试述材料状态对焊接结构产生脆性断裂的影响。 54 试述材料状态对焊接结构产生脆性断裂的影响。 ⑴厚度的影响 厚板在缺口处容易形成三向拉应力,因此容易使材料变脆。曾经把厚度为 45mm 的钢板,通过加工制成板厚分别 为 10、20、30、40mm 的试件,研究不同板厚所造成不同应力状态对脆性破坏的影响,发现在预制 40mm 长的裂纹和施加应力等 于 1/2 屈服点的条件下,当厚度小于 30mm 时,发生脆断的脆性转变温度随板厚增加面直线上升;当板厚超过 30mm 时,脆性转 变温度的增加较为缓慢。 ⑵晶粒度的影响 低碳钢和低合金钢的晶粒越细,其脆性转变温度越低。 ⑶化学成分的影响 钢中的 C、N、O、H、S、P 等元素会增加钢的脆性;另一些元素如 Mn、Ni、Cr、V,如果加入量适当,有助 于减少钢的脆性。 55、如何正确地测定材料的脆性转变温度? 55、如何正确地测定材料的脆性转变温度? 材料的脆性转变温度通常用冲击试验进行测定,试验方法是在不同温度下对一系列试件进行冲击试验,试件采用 V 形缺口。实 践证明,随着温度上升,打断试件所需的冲击吸收功也显著上升,材料冲击韧度和温度的关系见图 44。图中锁眼 V 形的缺口根 部为圆形孔。

从图 44 可知,冲击韧度只是在一定温度区间内逐渐变化,并没有一个确定的脆性温度值,通常是取某一固定冲击韧度、例如 20J/cm2、41J/cm2 时的温度作为脆性转变温度,有的标准取对应最大冲击韧度时一半的温度作为脆性转变温度。对低合金高强 钢,常取冲击韧度为 34.3~51J/cm2 时对应的温度为脆性转变温度值。 试述预防焊接结构脆性断裂的措施。 56 试述预防焊接结构脆性断裂的措施。 ⑴尽量减少焊接接头部位的应力集中 1) 在一些构件截面改变的地方, 必须设计成平滑过渡, 不要形成尖角, 以防产生应力集中, 见图 45。
2)尽量采用应力集中系数较小的对接接头见图 46,图中 a 为应力集中系数较大的搭接接头,应尽量避免。
3)不同厚度构件的对接接头应尽可能地采用圆滑过渡见图 47。其中以 a 形式为最好,b 其次,c 最差,因而焊缝部位仍有相当 大的应力集中。

4)避免和减少焊缝的缺陷,应将焊缝布置在便于焊接和检验的地方,一些不易施焊的焊缝部位,见图 48。
5)避免焊缝密集,两条焊缝间应保证有最小距离,见图 49。

⑵减少结构刚度
在满足结构的使用条件下,应当尽量减少结构的刚度,以降低应力集中和附加应力的影响,在容器上开缓和
槽减少刚性的实例,见图 50。
⑶重视次要焊缝的设计 对于附件或不受力焊缝,应和主要焊缝一样给予足够重视,因为脆性裂纹一旦由这些不受到重视的接 头部位产生,就会扩展到主要受力元件中,使结构破坏。因此,不要在受力构件上随意加焊附件,见图 51。图 51a 中所示的支 架被焊接到受力构件上,焊缝质量不易保证,极易产生裂纹,图 51b 中的方案采用了卡箍就避免上述缺点,有助于防止脆断。

动载焊接结构设计Ⅲ(疲劳强度寿命计算)

****动载焊接结构的设计 1、 焊接结构疲劳强度设计的一般原则 设计过程可分为以下三个步骤: ⑴ 考虑实用性,进行功能设计 根据结构未来的工作情况,合理地提出结构的承载能力、强度、刚度、耐蚀度、使用寿命等比较具体的要求。考虑安全性,这些要求不能太低;考虑经济性,这些要求也不能过高。 ⑵ 进行方案设计 根据上述要求,选择确定结构材料、结构构造形式、传动形式、自动化程度、控制方式、生产制造工艺等综合设计方案,它们互相联系,又互相制约; ⑶ 进行具体的施工图设计 绘图前,进行必要的计算,以便确定结构的重要尺寸。我们要讲的是如何合理选择动载焊接结构、焊接接头的结构形式和怎样进行必要的计算。 设计动载焊接结构必须特别强调两点:① “动载”,对应力集中非常敏感;②焊接接头属于刚性连接形式,对应力集中也比较敏感。而且“焊接结构”难免有焊接残余应力、变形、焊接缺陷等,存在应力集中现象。 因此,设计动载焊接结构时,必须注意以下几点: ⑴ 承受拉伸、弯曲、扭转的构件,截面面积变化时,尽量保持平顺、圆滑的过渡,尽量防止或减小构件截面刚度突然变化,避免造成较大的附加应力和应力集中。 ⑵ 对接、角接、丁字、十字接头等,均应优先采用对接焊缝,少用角焊缝; ⑶ 单面搭接接头角焊缝的焊根、焊趾处,既有偏心弯矩的作用,又有严重的应力集中,承受疲劳载荷的能力很低,必须尽量避免采用这种接头形式; ⑷ 承受疲劳载荷的角焊缝(未焊透的对焊缝,也看作角焊缝),危险点在应力集中比较严重的焊缝根部或焊趾处。应采用如下措施:① 开坡口,加大熔深,减小焊缝根部的应力集中;② 将焊趾处加工成圆滑过渡的形状,减小焊趾的应力集中; ⑸ 处于拉应力场中的焊趾、焊缝端部或其它严重的应力集中处(如裂纹),应设置缓和槽、孔,以便降低应力集中的影响。 总之,应采取一切措施,排除或减小应力集中的影响。 2、疲劳强度的许用应力设计法 我国钢结构标准,原设计规范基本金属及连接的疲劳计算中,采用疲劳许用应力。 ⑴ 许用应力的确定 先通过实验测定材料、结构的疲劳强度或疲劳极限,再按存活率(一般结构97.7%,特重要结构99.99%)和疲劳循环次数(如2×106次)确定疲劳强度r σ;疲劳强度的许用应力 [] n r p r σσ= 式中: n - 安全系数; ⑵ 设计原则 最大疲劳工作应力m ax σ≤许用应力[] p r σ ⑶ 缺点 ① 没有考虑疲劳载荷的累积效应; ② 没有考虑过载峰对疲劳寿命的影响; ③ 没有考虑千变万化的不确定因素。过去把这些不确定因素的影响,涵盖在安全系数里,加以考虑。电站两例 3、 焊接结构的疲劳寿命设计 ⒊1 疲劳裂纹的亚临界扩展 一个初始裂纹0a 的构件,只有载荷应力达到临界值C σ时(图1),亦即当裂纹尖端 图1 亚临界裂纹扩展与 临界尺寸

钢构焊缝计算(受力)

钢结构的焊接连接 钢结构的连接方法可分为焊缝连接、螺栓连接和铆钉连接三种。焊接连接是现代钢结构最主要的连接方法。它的优点是:(1)焊件间可直接相连,构造简单,制作加工方便;(2)不削弱截面,用料经济;(3)连接的密闭性好,结构刚度大;(4)可实现自动化操作,提高焊接结构的质量。缺点是:(1)在焊缝附近的热影响区内,钢材的材质变脆;(2)焊接残余应力和变形使受压构件承载力降低;(3)焊接结构对裂纹很敏感,低温时冷脆的问题较为突出。 一、焊缝的形式 1.角焊缝 图 1 直角角焊缝截面 图 2 斜角角焊缝截面 角焊缝按其截面形式可分为直角角焊缝和斜角角焊缝。两焊脚边的夹角为90°的焊缝称为直角角焊缝,直角边边长h f 称为角焊缝的焊脚尺寸,h e =0.7h f 为直角角焊缝的计算厚度。斜角角焊缝常用于钢漏斗和钢管结构中。对于夹角大于135°或小于60°的斜角角焊缝,不宜用作受力焊缝(钢管结构除外)。 2.对接焊缝 对接焊缝的焊件常需加工成坡口,故又叫坡口焊缝。焊缝金属填充在坡口内,所以对接焊缝是被连接件的组成部分。 坡口形式与焊件厚度有关。当焊件厚度很小(手工焊≤t 6mm ,埋弧焊≤t 10mm )时,可用直边缝。对于一般厚度(t=10~20mm )的焊件可采用具有斜坡口的单边V 形或V 形焊缝。斜坡口和离缝c 共同组成一个焊条能够运转的施焊空间,使焊缝易于焊透;钝边p 有托

住熔化金属的作用。对于较厚的焊件(t>20mm),则采用U形、K形和X形坡口。对于V形缝和U形缝需对焊缝根部进行补焊。对接焊缝坡口形式的选用,应根据板厚和施工条件按现行标准《建筑结构焊接规程》的要求进行。 凡T形,十字形或角接接头的对接焊缝称之为对接与角接组合焊缝。 图3 对接焊缝的坡口形式 3.焊缝质量检验 《钢结构工程施工质量验收规范》规定焊缝按其检验方法和质量要求分为一级、二级和三级。三级焊缝只要求对全部焊缝作外观检查且符合三级质量标准;一级、二级焊缝则除外观检查外,还要求一定数量的超声波检验并符合相应级别的质量标准。焊缝质量的外观检验检查外观缺陷和几何尺寸,内部无损检验检查内部缺陷。 二、直角角焊缝的构造与计算 角焊缝按其与作用力的关系可分为正面角焊缝、侧面角焊缝和斜焊缝。正面角焊缝的焊缝长度方向与作用力垂直,侧面角焊缝的焊缝长度方向与作用力平行,斜焊缝的焊缝长度方向与作用力倾斜,由正面角焊缝、侧面角焊缝和斜焊缝组成的混合,通常称作围焊缝。 侧面角焊缝主要承受剪力,塑性较好,强度较低。应力沿焊缝长度方向的分布不均匀,呈两端大而中间小的状态。焊缝越长,应力分布不均匀性越显著。 正面角焊缝受力复杂,其破坏强度高于侧面角焊缝,但塑性变形能力差。斜焊缝的受力性能和强度值介于正面角焊缝和侧面角焊缝之间。 1.角焊缝的构造要求 (1)最小焊脚尺寸 t(1) h f≥1.5 2 式中t2—较厚焊件厚度,单位为mm。

低合金高强度焊接结构钢扩散氢的研究进展

基金项目::国防预研项目(590MPa 级船用高强钢配套焊接材料研究) 作者简介:王晓东(1977-),男,浙江省平湖市人,硕士生 收稿日期:2002-01-28 文章编号:1000-5080(2002)02-0016-05低合金高强度焊接结构钢扩散氢的研究进展 王晓东1,文九巴1,魏金山2 (1.洛阳工学院材料科学与工程系,河南洛阳471003;2.洛阳船舶材料研究所,河南洛阳471003) 摘要:综述了国内外船用低合金高强度焊接结构钢扩散氢的研究现状和发展趋势,对扩散氢的作用、扩散氢的测量方法、扩散氢的影响因素等方面的研究成果进行了介绍和评价,并在此基础上提出了扩散氢今后的研究重点应放在焊缝有效扩散氢、扩散氢逸出特性以及影响扩散氢逸出特性的因素研究上。 关键词:低合金钢;焊接;结构钢;焊缝 中图分类号:TG457.11 文献标识码:A 0 前言 现代造船业中为了减轻船体重量,提高构件的承载能力,普遍使用低合金高强度舰船结构钢[1]。传统典型的船用高强度钢如美国的HY 系列,日本的NS 系列以及俄罗斯的AK 系列钢等都是经正火或淬火回火处理强化基体的高强钢,此类钢碳当量比较高,而焊件的焊接性及韧性与碳当量成反比[2],所以这些钢的焊接性能差,尤其是焊接HAZ 区容易淬硬,并且对氢致裂纹(HIC )敏感,在拘束应力较大时易出现冷裂纹。冷裂纹产生的原因主要是由于焊缝金属及HAZ 区的淬硬性,有足够的扩散氢含量和较大的拘束应力,而且冷裂纹一般均出现在焊接热影响区[3~5]。因此,防止冷裂纹的一个主要措施就是严格控制焊缝和HAZ 区中的氢含量。早在20世纪40年代,人们就已经开始对钢中氢的行为进行研究,但由于焊接过程本身是一个非平衡过程,焊后焊缝组织是非平衡组织,焊缝中的氢扩散行为属于非平衡条件下的动态耗散结构,因而使得其扩散行为更为复杂[6]。目前,关于焊接时氢的行为仍是国际上的重点研究课题之一。1 国内外研究现状 1.1 扩散氢的作用 钢中氢的行为一般是指氢在钢中的扩散和聚集、溶解和逸出过程。钢中的氢可分为扩散氢和残余氢两部分,扩散氢是指溶于金属晶格中的原子态以及离子态的、在金属中具有自由扩散能力以及被可逆陷阱所捕获的那部分氢[7]。 大部分体心立方金属与合金焊接时,进入焊缝和热影响区中的氢将会对接头产生极大危害。主要是在焊缝中形成氢气孔和白点、在焊缝和热影响区中产生氢脆或氢致裂纹[6~8]。 (1)形成氢气孔、白点 氢气孔是焊缝中常见的气孔之一,其主要原因是焊接时熔池吸收了大量的氢,在凝固时由于氢溶解度的突然下降,使氢在焊缝中处于过饱和状态,促使产生如下反应:2[H]=H 2,反应所生成的分子态氢不溶于金属而在液态金属中形成气泡,当焊缝金属晶粒的长大速度大于气泡的长大速度时,形成的气泡来不及逸出,便在焊缝中产生氢气孔。显然在凝固温度,氢在固液相中的溶解度差别越大,则越容易产生氢气孔,在平衡状态下氢在铁中的溶解度凝固后为凝固前的1/3(凝固前后分别为25ml/100g 和8ml/100g ),若在焊接非平衡条件下,凝固前后的溶解度差别会更大,因而更利于氢气孔的生成[6]。 碳钢或低合金钢焊缝,若含氢量高,则常常在其拉伸或弯曲断面上出现银白色圆形局部脆断点,即所谓的白点[6]。焊缝金属对白点的敏感性与含氢量、金属组织以及变形速度等因素有关。一般来说,碳钢和用Cr 、Ni 、Mo 等合金化的焊缝对白点较敏感,焊缝中的气孔或夹杂物周围易形成白点,焊缝含氢量越多,出 第23卷第2期 2002年 6月洛 阳 工 学 院 学 报JournalofLuoyangInstituteofTechnology Vol.23 No.2June2002

焊接强度及结构

焊接工艺问答(强度及结构) 焊接工艺问答(强度及结构)
各种焊接接头都有不同程度的应力集中,当母材具有足够的塑性时,结构在静开车破坏之前就有显著的塑性变形,应力集中对 强度无影响。 其强度 强度 例如,侧面搭接接头在加载时,如果母材和焊缝金属都有较好的塑性,其切应力的分布是不均匀的,见图 29。继续加载,焊缝 的两端点达到屈服点 σs,则该处应力停止上升,而焊缝中段各点的应力因尚未达到 σs,故应力随加载继续上升,到达屈服点 的区域逐渐扩大,应力分布曲线变平,最后各点都达到 σs。如再加载,直至使焊缝全长同时达到强度 强度极限,最后导致破坏。 强度
什么是工作焊缝?什么是联系焊缝? 36 什么是工作焊缝?什么是联系焊缝? 焊接结构上的焊缝,根据其载荷的传递情况,可分为两种:一种焊缝与被连接的元件是串联的,承担着传递全部载荷的作用, 一旦断裂,结构就立即失效,这种焊缝称为工作焊缝,见图 30a、图 30b,其应力称为工作应力。另一种焊缝与被连接的元件是 并联的,仅传递很小的载荷,主要起元件之间相互联系的作用,焊缝一旦断裂,结构不会立即失效,这种焊缝称为联系焊缝, 见图 30c、图 30d,其应力称为联系应力。设计时,不需计算联系焊缝的强度 强度,只计算工作焊缝的强度 强度。 强度 强度 举例说明对接接头爱拉(压)时的静载强度计算。 时的静载强度计算。 37 举例说明对接接头爱拉 时的静载强度计算 全焊透对接接头的各种受力情况 见图 31。图中 F 为接头所受的拉(压)力,Q 为切力,M1 为平面内弯矩, M2 为垂平面弯矩。

受拉时的强度 强度计算公式为 强度
F σt= ─── Lδ1 ≤〔σ′t 〕
F 强度计算公式为 σα= ─── ≤〔σ′α 〕 受压时的强度 强度 Lδ1
式中
F——接头所受的拉力或压力(N); L——焊缝长度(cm); δ1——接头中较薄板的厚度(cm); σ——接头受拉(σt) 或受压(σα)时焊缝中所承受的应力(N/cm2)㈠
〔σ′t 〕——焊缝受拉时的许用应力(N/cm2) 〔σ′α 〕——焊缝受压时的许用应力(N/cm2) 强度。 计算例题 两块板厚为 5mm、宽为 500mm 的钢板对接焊在一起,两端受 28400N 的拉力,材料为 Q235-A 钢,试校核其焊缝强度 强度 解:查表得〔σ′t 〕=14200 N/cm2。 根据已知条件,在上述公式中,F=28400N,L=500mm=50cm,δ1=5mm=0.5cm,代入计算为 F 28400
σt= ─── = ───── = 1136N/cm2<14200N/cm2 Lδ1 50×0.5

该对接接头焊缝强度 强度满足要求,结构工作安全。 强度
举例说明对接接头受剪切时的静载强度计算。 强度计算 38 举例说明对接接头受剪切时的静载强度计算。 强度计算公式为 受剪切时的强度 强度

钢结构焊接规范要点

钢结构焊接规范 钢结构从下料、组对、焊接、检验等工艺 钢结构手工电弧焊焊接施工工艺标准 依据标准: 《建筑工程施工质量验收统一标准》GB50300-2001 《钢结构工程施工质量验收规范》GB50205-2001 《钢焊缝手工超声波探伤方法和探伤结果分级法》GB11345 《钢熔化焊对接接头射线照相和质量分级》GB3323 《焊接球节点钢网架焊缝超声波探伤方法及质量分级法》JBJ/T3034.1 《螺栓球节点钢网架焊缝超声波探伤方法及质量分级法》JBJ/T3034.2 《建筑钢结构焊接技术规程》JGJ81 1、范围 本工艺标准适用于一般工业与民用建筑工程中钢结构制作与安装手工电弧焊焊接工程。 2、施工准备 2.1材料及主要机具 2.1.1电焊条:其型号按设计要求选用,必须有质量证明书。按要求施焊前经过烘焙。严禁使用药皮脱落、焊芯生锈的焊条。设计无规定时,焊接Q235 钢时宜选用E43系列碳钢结构焊条;焊接16Mn钢时宜选用E50系列低合金结构钢焊条;焊接重要结构时宜采用低氢型焊条(碱性焊条)。

按说明书的要求烘焙后,放入保温桶内,随用随取。酸性焊条与碱性焊条不准混杂使用。 2.1.2引弧板:用坡口连接时需用弧板,弧板材质和坡口型式应与焊件相同。 2.1.3主要机具:电焊机(交、直流)、焊把线、焊钳、面罩、小锤、焊条烘箱、 焊条保温桶、钢丝刷、石棉条、测温计等。 2.2作业条件 2.2.1熟悉图纸,做焊接工艺技术交底。 2.2.2施焊前应检查焊工合格证有效期限,应证明焊工所能承担的焊接工作。 2.2.3现场供电应符合焊接用电要求。 2.2.4环境温度低于0℃,对预热,后热温度应根据工艺试验确定。 3、操作工艺 3.1工艺流程: 作业准备→电弧焊接(平焊、立焊、横焊、仰焊)→焊缝检查。3.2钢结构电弧焊接 3.2.1平焊 3.2.1.1选择合格的焊接工艺,焊条直径,焊接电流,焊接速度,焊接电弧长度等,通过焊接工艺试验验证。 3.2.1.2清理焊口:焊前检查坡口、组装间隙是否符合要求,定位焊是否牢固,焊缝周围不得有油污、锈物。 3.2.1.3烘焙焊条应符合规定的温度与时间,从烘箱中取出的焊条,

焊接强度计算知识.

各种焊接接头都有不同程度的应力集中,当母材具有足够的塑性时,结构在静开车破坏之前就有显著的塑性变形,应力集中对其强度无影响。 例如,侧面搭接接头在加载时,如果母材和焊缝金属都有较好的塑性,其切应力的分布是不均匀的,见图29。继续加载,焊缝的两端点达到屈服点σs,则该处应力停止上升,而焊缝中段各点的应力因尚未达到σs,故应力随加载继续上升,到达屈服点的区域逐渐扩大,应力分布曲线变平,最后各点都达到σs。如再加载,直至使焊缝全长同时达到强度极限,最后导致破坏。 36 什么是工作焊缝?什么是联系焊缝? 焊接结构上的焊缝,根据其载荷的传递情况,可分为两种:一种焊缝与被连接的元件是串联的,承担着传递全部载荷的作用,一旦断裂,结构就立即失效,这种焊缝称为工作焊缝,见图30a、图30b,其应力称为工作应力。另一种焊缝与被连接的元件是并联的,仅传递很小的载荷,主要起元件之间相互联系的作用,焊缝一旦断裂,结构不会立即失效,这种焊缝称

为联系焊缝,见图30c、图30d,其应力称为联系应力。设计时,不需计算联系焊缝的强度,只计算工作焊缝的强度。 37 举例说明对接接头爱拉(压)时的静载强度计算。 全焊透对接接头的各种受力情况见图31。图中F为接头所受的拉(压)力,Q为切力,M1为平面内弯矩,M2为垂平面弯矩。 受拉时的强度计算公式为 F σt=───≤〔σ′t 〕 Lδ1 F 受压时的强度计算公式为σα=───≤〔σ′α 〕 Lδ1 式中F——接头所受的拉力或压力(N); L——焊缝长度(cm); δ1——接头中较薄板的厚度(cm);

σ——接头受拉(σt)或受压(σα)时焊缝中所承受的应力(N/cm2)㈠ 〔σ′t 〕——焊缝受拉时的许用应力(N/cm2) 〔σ′α〕——焊缝受压时的许用应力(N/cm2) 计算例题两块板厚为5mm、宽为500mm的钢板对接焊在一起,两端受28400N的拉力,材料为Q235-A钢,试校核其焊缝强度。 解:查表得〔σ′t 〕=14200 N/cm2。 根据已知条件,在上述公式中,F=28400N,L=500mm=50cm,δ1=5mm=0.5cm,代入计算为 F 28400 σt=─── =───── =1136N/cm2<14200N/cm2 Lδ1 50×0.5 ∴该对接接头焊缝强度满足要求,结构工作安全。 38 举例说明对接接头受剪切时的静载强度计算。 受剪切时的强度计算公式为 Q τ= ───≤〔τ′〕 Lδ1 式中Q——接头所受的切力(N); L——焊缝长度(cm);

钢结构焊接中的常见问题及处理方法

传统的时效方法有:热时效、振动时效、自然时效、静态过载时效、热冲击时效等。 机架焊接焊接后进行去应力处理,有自然时效处理(时间长,去应力不彻底,)、震动时效(效率高,费用低,只能去除焊接应力的70%左右)人工加热时效(时间短费用较高,能100%去除焊接应力,同时能进行去氢处理)。 在冷热加工过程中,产生残余应力,高者在屈服极限附近。构件中的残余应力大多数表现出很大的有害作用;如降低构件的实际强度,降低疲劳极限,造成应力腐蚀和脆性断裂。并且由于残余应力的松弛,使零件产生翘曲,大大的影响了构件的尺寸精度。因此降低构件的残余应力,是十分必要的。 采用大型燃油退火炉,进行机架焊后退火处理。采用多点加热、多点温度控制方式,温控采用热电偶自动控制仪表控制加热,使炉内各部温度均匀的控制在退火温度,保证工件的退火,同时能去除焊接过程中渗入焊缝中的H原子,消除了机架焊接件的氢脆。这种工艺具有耗能少、时间短、效果显著等特点。近年来在国内外都得到迅速发展和广泛应用。 焊前预热和焊后热处理的范围、目的和方法?? 焊前预热和后热是为了降低焊缝的冷却速度,防止接头生成淬硬组织,产生冷裂纹。焊前预热温度一般在100-200度,后热不属于热处理,也是一种缓冷措施,后热的温度在200-300度,有的单纯是为了缓冷,有的是针对消氢处理的,一定的后热温度,能使焊缝中氢扩散出来,不至于集聚导致裂纹。后热保温时间要根据工件厚度来确定,一般不会低于0.5小时的。焊后热处理的就多了,主要分为四种:1低于下转变温度进行的焊后热处理,如消除应力退火,温度一般在600-700之间,主要目的是消除焊接残余应力,2高于上转变温度进行的焊后热处理,如正火,温度在950-1150之间,细化晶粒,改善材料的力学性能,再如不锈钢的固熔、稳定化处理,温度在1050左右,提高不锈钢的耐蚀性能。尤其是抗晶间腐蚀的能力。再如淬火,不同的淬火工艺能得到不同的效果,提高钢的耐磨性,硬度等。3先高于上转变温度进行处理再进行低于下转变温度下的热处理。比如正火加回火,淬火加回火等。4在上下转变温度之间进行的焊后热处理。750-900之间,一些材料的实效强化重结晶退火等。想详细的了解,建议找些书看看。不好讲的太详细。错误之处,大家多多批评!谢谢! 钢结构焊接中的常见问题及处理方法 (一)产生原因 (1)加工件的刚性小或不均匀,焊后收缩,变性不一致。(2)加工件本身焊缝布置不均,导致收缩不均匀,焊缝多的部位收缩大、变形也大。(3)加工人员操作不当,未对称分层、分段、间断施焊,焊接电流、速度、方向不一致,造成加工件变形的不一致。(4)焊接时咬肉过大,引起焊接应力集中和过量变形。5)焊接放置不平,应力集中释放时引起变形。 (二)预防措施 (1)设计时尽量使工件各部分刚度和焊缝均匀布置,对称设置焊缝减少交叉和密集焊缝。(2)制定合理的焊接顺序,以减少变形。如先焊主焊缝后焊次要焊缝,先焊对称部位的焊缝后焊非对称焊缝,先焊收缩量大的焊缝后焊收缩量小的焊缝,先焊对接焊缝后焊角焊

钢构焊缝计算受力

《钢结构》网上辅导材料二 钢结构的焊接连接 钢结构的连接方法可分为焊缝连接、螺栓连接和铆钉连接三种。焊接连接是现代钢结构最主要的连接方法。它的优点是:(1)焊件间可直接相连,构造简单,制作加工方便;(2)不削弱截面,用料经济;(3)连接的密闭性好,结构刚度大;(4)可实现自动化操作,提高焊接结构的质量。缺点是:(1)在焊缝附近的热影响区内,钢材的材质变脆;(2)焊接残余应力和变形使受压构件承载力降低;(3)焊接结构对裂纹很敏感,低温时冷脆的问题较为突出。 一、焊缝的形式 1.角焊缝 图 1 直角角焊缝截面 图 2 斜角角焊缝截面 角焊缝按其截面形式可分为直角角焊缝和斜角角焊缝。两焊脚边的夹角为90°的焊缝称为直角角焊缝,直角边边长h f称为角焊缝的焊脚尺寸,h e=0.7h f 为直角角焊缝的计算厚度。斜角角焊缝常用于钢漏斗和钢管结构中。对于夹角大于135°或小于60°的斜角角焊缝,不宜用作受力焊缝(钢管结构除外)。

2.对接焊缝 对接焊缝的焊件常需加工成坡口,故又叫坡口焊缝。焊缝金属填充在坡口内,所以对接焊缝是被连接件的组成部分。 坡口形式与焊件厚度有关。当焊件厚度很小(手工焊≤ t10mm) t6mm,埋弧焊≤ 时,可用直边缝。对于一般厚度(t=10~20mm)的焊件可采用具有斜坡口的单边V形或V形焊缝。斜坡口和离缝c共同组成一个焊条能够运转的施焊空间,使焊缝易于焊透;钝边p有托住熔化金属的作用。对于较厚的焊件(t>20mm),则采用U形、K形和X形坡口。对于V形缝和U形缝需对焊缝根部进行补焊。对接焊缝坡口形式的选用,应根据板厚和施工条件按现行标准《建筑结构焊接规程》的要求进行。 凡T形,十字形或角接接头的对接焊缝称之为对接与角接组合焊缝。Array 图3 对接焊缝的坡口形式 3.焊缝质量检验 《钢结构工程施工质量验收规范》规定焊缝按其检验方法和质量要求分为一级、二级和三级。三级焊缝只要求对全部焊缝作外观检查且符合三级质量标准;一级、二级焊缝则除外观检查外,还要求一定数量的超声波检验并符合相应级别的质量标准。焊缝质量的外观检验检查外观缺陷和几何尺寸,内部无损检验检查内部缺陷。 二、直角角焊缝的构造与计算

gr60低合金高强结构钢焊接施工工法

Gr60低合金高强结构钢焊接施工工法 Gr60级低合金高强度结构钢为国内首次在建筑钢结构上使用钢材,符合美国材料标准ASTM903/913M一97 Gr60标准,相当于国内钢材标准中的Q420级钢。由于Gr60钢为国内首次使用,目前尚无成熟的规范及焊接工艺参数作参照,焊接不确定性因素多,难度较大。探索总结Gr60级钢的使用,对于推动Q420低合金高强度结构钢在国内建筑钢结构的应用,从节约资源的角度上符合我国的可持续发展国策,对于本企业乃至国内建筑钢结构行业的良性发展,均具有积极的创新意义。 1工法特点 1.1Gr60属低合金高强度结构钢,能大幅度提高结构杆件的承载力,减小了杆件截面面 积,从而减小自重,增加建筑空间。 1.2 Gr60钢对于需验算疲劳的焊接结构具有一40℃冲击韧性的合格保证,使其应用范围和结构可靠度得以扩大。 1.3 Gr60级钢的焊接性能优于国内工程中正在大量使用的Q345钢。现场安装施焊操作较易控制。在常温及低温下,Gr60级钢的预热温度较之同条件下的Q345钢低;并且,在负温下,只需对板厚在lOOmm以上的钢材采取低温度的后热措施。 1.4焊接施工过程须严格按照既定的焊接工艺指导书的工艺参数及焊接规定进行施工,对焊接速度、预热温度、层问温度、后热温度、保护气体的气压与流速等严格控制,方能保证焊接质量。 1.5已经过一15℃条件下冬期施工焊接工艺评定和一7℃下冬期施工实践,寒冷地区冬期也可施工。 1.6本工法是在完成北京新保利大厦工程基础上总结编写的,因此实用性很强。 2适用范围 适用于Gr60级低合金高强度结构钢进行CO2气体保护焊的各种焊缝连接形式。 3工艺原理 根据Gr60钢化学成分及力学性能进行可焊性分析与试验,在依据国外规范标准对此类钢材的焊接性的指导意见基础上,结合国内在高强钢CO2气体保护焊方面的焊接施工工艺,按照国内焊接规范的规定,进行常温及负温下典型焊缝形式的现场工艺评定试验,以取得指导现场焊接操作的适用的工艺参数。 Gr60钢的焊接性分析与试验包括下述内容: 3.1焊接性计算与分析:采用碳当量和冷裂纹敏感指数评估钢材的焊接性和确定预热温度; 3.2焊接性的直接试验:z向拉伸性能试验、Cramfield层状撕裂试验; 3.3焊接接头性能试验:对焊评试件进行外观、无损探伤、横向拉伸、横向弯曲、全焊缝拉伸、冲击(焊缝、热影响区)、熔敷金属化学成分分析及力学性能试验; 3.4焊缝的残余应力检测与有限元分析:采用国际先进的钢弦应变计进行杆件焊接残余应力监测,对于H型截面构件的残余应力,为验证测量结果,采用大型有限元软件ANSYS来分析H型截面构件的残余应力分布。 4.1工艺流程 4工艺流程

钢结构计算题(焊接)

*、某节点钢板厚12mm ,用对接和角接组合焊缝焊于端板上,承受静力荷载标准值F k =250kN ,其中20%为永久荷载,80%为可变荷载,如下图所示。采用Q235钢,手工焊,焊条为E43型,焊缝强度设计值为2185/w t f N mm =,未用引弧板施焊。试验算此焊缝强度是否满足设计要求。 解:(组合焊缝的计算和对接焊缝的一样) 拉力设计值 1.20.2250 1.40.8250340G GK Q QK F F F kN γγ???=?=+=+ 该拉力为偏心力,与x 轴的间距为偏心距e=100,焊缝所受的弯矩为 353401010034010M Fe N mm ==??=?? 焊缝的有效厚度为节点板厚t ; 由于未用引弧板,焊缝有效长度为l w =b -2t 节点板和焊缝所受的力是轴向力+弯矩,焊缝应力分布如下图所示。 最大正应力(拉)为 max 2 35 2 2 /6 340103401012(400212)12(400212)/675.4120.2195.6185/w w w t F M F M A W tl tl f N mm σ=+=+??=+?-??-?=+=>= 焊缝强度不满足要求。 端板

*、某节点钢板用角焊缝焊于端板上,承受静力荷载设计值F =340kN ,。采用Q235钢,手工焊,焊条为E43型,焊脚厚度h f =10mm ,焊缝强度设计值为2160/w f f N mm =。试验算此焊缝强度是否满足设计要求。 解: 偏心拉力与x 轴的间距为偏心距e=100,焊缝所受的弯矩为 353401010034010M Fe N mm ==??=?? 焊缝有两条,每条焊缝的有效厚度为0.7h f ; 由于焊缝两端都无绕角焊,每条焊缝有效长度为l w =b -2h f 。 节点板和焊缝所受的力是轴向力+弯矩,焊缝应力分布如下图所示。 最大正应力(拉)为 max 23522 20.720.7/6 340103401020.710(40020)20.710(40020)/663.9100.9164.8 1.22160195.2/f w f w w f f F M A W F M h l h l f N mm σβ= +=+????=+ ???-???-=+=<=?= 焊缝强度满足要求。

桥梁钢结构焊接技术

1焊接方法及焊接材料 1.1焊接方法 根据设计要求及本产品的实际制造情况,拟采用CO2气体保护焊及电弧螺柱焊完成本项目钢结构的现场焊接工作。 CO2气体保护焊用于埋弧自动焊前的打底焊接和现场安装的所有焊接。 1.2焊接材料 药芯焊丝CO2气体保护焊采用药芯焊丝E501T-1(φ1.2mm);实芯焊丝CO2气体保护焊采用实芯焊丝ER50-6(φ1.2mm),保护气体CO2的纯度≥99.5%(体积法),其含水量不大于0.005%(重量法)。瓶装气体的瓶内压力不低于1Mpa。焊丝熔敷金属化学成份和力学性能应符合《碳钢药芯焊丝》(GB/T 10045-2001)和《气体保护电弧焊用碳钢、低合金钢焊丝》(GB/T 8110-2008)的要求。 2试件母材准备 (1)试件材料选用本结构设计用料Q345qD,试件下料前,应收集核查钢材的炉批号及相应的质量证明书,并根据材质标准对所用材料进行化学成分及机械性能复验,复验结果应满足《桥梁用结构钢》(GB/T 714-2008)的要求。 (2)试件坡口采用机械加工的方法制备,组装前,焊接区母材表面作除锈、除尘处理。 (3)试件组装,两端安装引/熄弧板。 3试件焊接 3.1焊接工艺参数 本工程拟用焊接方法和焊接参数如下表所示: 各种焊接方法应采用的焊接工艺参数 (1)各种焊丝表面的镀铜应均匀致密,焊丝表面应无锈蚀和油污。 (2)焊剂中不允许混入熔渣和杂物,重复使用的焊剂应用钢丝网筛过滤。 (3)焊剂必须按下表的规定烘干使用。 范围内的工作。 (5)焊接前应检查并确认所使用的设备工作状态正常,仪表工具良好、齐全可靠,方可施焊。

(6)施焊应严格执行焊接工艺,焊工应按照焊接试验作业指导书进行作业,不得随意变更参数。 (7)焊接工作宜在室内进行,施焊时,环境温度不应低于5℃,空气相对湿度不应高于80%。环境温度低于5℃时,原不要求预热的接头应进行预热处理,预热温度80~100℃。相对湿度高于80%时,焊前应用烤枪对焊区进行烘烤除湿,焊剂在空气中暴露时间不宜超过2小时。室外作业时,宜在晴天进行,遇到风雨时,应设挡风板和遮雨棚。 (8)焊接选用直流电源,采用反极性连结(即试件接负极)。 (9)焊接前清除焊接区的锈尘。多道焊时应将前道熔渣清除干净,并经检查确认无裂纹等缺陷后再继续施焊。 (10)焊接尽量采用多道焊,手工焊接时,焊条作适当横向摆动。 (11)试件加工及组装,其坡口角度、钝边尺寸和组装间隙应满足试件图要求,并做好检测记录。 (12)焊接时应做好过程记录。 4试件焊缝检验 焊缝检验标准执行《公路桥涵施工技术规范》(JTG/T F50-2011)和设计文件要求。 所有试件焊接后均经焊缝外观检查和内部超声波探伤。焊缝外观成型应良好,无气孔、夹碴、咬边、尺寸不足等缺陷。焊接完成24小时后做超声波探伤检验,超声波按《公路桥涵施工技术规范》(JTG/T F50-2011)规定检测,对接焊缝质量等级应达到Ⅰ级,T型接头熔透角焊缝质量等级应达到Ⅰ级,角焊缝质量等级应达到Ⅱ级。 圆柱头焊钉焊接后应获得完整的360°周边焊缝。圆柱头焊钉焊缝的宽度、高度等尺寸应满足:焊缝沿圆柱头焊钉轴线方向的平均高度h m应不小于0.2d;最小高度h min应不小于0.15d;在钢板侧焊趾的平均直径和应不小于1.25d(d为圆柱头焊钉直径)。

钢结构计算题解答

Q235 用。由于翼缘处的剪应力很小,假定剪力全部由腹板的竖向焊缝均匀承受,而弯矩由整个T 形焊缝截面承受。分别计算a 点与b 点的弯矩应力、腹板焊缝的剪应力及b 点的折算应力,按照各自应满足的强度条件,可以得到相应情况下焊缝能承受的力F i ,最后,取其最小的F 值即为所求。 1.确定对接焊缝计算截面的几何特性 (1)确定中和轴的位置 ()()()()80 10 102401020160)10115(1010240510201601≈?-+?-+??-+??-= y mm 160802402=-=y mm (2)焊缝计算截面的几何特性 ()6232 31068.22)160115(230101014012 151602301014023010121mm I x ?=-??+??++-??+??= 腹板焊缝计算截面的面积: 230010230=?=w A mm 2 2.确定焊缝所能承受的最大荷载设计值F 。 将力F 向焊缝截面形心简化得: F Fe M 160==(KN·mm) F V =(KN )

查表得:215=w c f N/mm 2,185=w t f N/mm 2,125=w v f N/mm 2 点a 的拉应力M a σ,且要求M a σ≤w t f 18552.010 226880101604 31===???==w t x M a f F F I My σ N/mm 2 解得:278≈F KN 点b 的压应力M b σ,且要求M b σ≤w c f 215129.110 2268160101604 32===???==w c x M b f F F I My σ N/mm 2 解得:5.190≈F KN 由F V =产生的剪应力V τ,且要求V τ≤w V f 125435.010 23102 3===??=w V V f F F τ N/mm 2 解得:7.290≈F KN 点b 的折算应力,且要求起步大于1.1w t f () ()()w t V M b f F F 1.1435.03129.132 22 2=?+= +τσ 解得:168≈F KN

碳素结构钢与低合金高强钢焊接工艺分析

碳素结构钢与低合金高强钢焊接工艺分析 摘要:本文主要通过对碳素结构钢与低合金高强钢的焊接性能进行分析,选用适宜的焊接方法、焊接材料,采取相应的质量控制措施,制定了适宜的焊接工艺,确保产品焊接接头性能符合产品技术条件要求,为企业创造更大效益。 关键词:碳素结构钢;低合金高强钢;焊接工艺 Abstract: This paper mainly through the carbon steel and low alloy high strength steel welding performance analysis, the choice of suitable welding method, welding materials, take appropriate quality control measures, the development of a suitable welding process, to ensure that products meet the performance of welded joints product technical conditions for enterprises to create greater efficiency. Keywords: carbon structural steel; low alloy high strength steel; welding process 碳素结构钢与低合金高强钢焊接属于异种金属材料焊接,采用异种钢的焊接结构,不但经济合理而且便于根据材料来分析焊接工艺,而且能提高构件的使用性能。异种金属制成的焊接结构在现代机械、化工、电力、石油及矿山邓领域的应用日益广泛。 碳素结构钢产量大、成本低、杂志较多,且具有一定的力学性能,一般在热轧钢板、钢带、型钢、棒钢、可供焊接、以及栓接构件之用。广泛应用于桥梁、船舶、建筑工程中制作各种静负荷的金属结构件、不需要热处理的一般机械零件盒普通焊接件,是一种用途广泛的工程用钢。 低合金高强钢结构钢是含少量合金元素(一般含合金(质量分数)小于3%)的普通合金钢,它强度高,加工和焊接性能好,具有较好耐磨、耐腐蚀、耐低温性能,生产成本和碳素钢接近。低合金高强钢含碳量低(质量分数)(一般在0.1%-0.25%范围内)。随着钢中合金元素含量的增加,钢的淬硬性增大,焊接性变差。加入的主要合金元素是猛、硅、钒、钛、铌等。锰硅能对钛素体起固溶强化作用,提高强度;钒、钛和铌细化晶粒,提高钢的韧性;加入适量铜、磷可以提高耐蚀能力;加入适量稀土有利于脱氧、脱硫和净化钢中其他杂质和改善钢的性能。低合金高强度结构钢广泛用于船舶、车辆、桥梁、高压容器、钢结构件等。 二、焊接工艺 碳素结构钢与低合金高强钢焊接时焊接工艺(包括焊前准备、焊接材料的选择、预热和层间温度、焊后热处理)应由焊接性相对较差的一侧来确定。 焊接前准备

焊接结构习题库

焊接结构 一、焊接结构的特点 焊接结构的特点包括: (1)焊接结构的应力集中变化范围比铆接结构大。 因为焊接结构中焊缝与基本金属组成一个整体,并在外力作用下与它一起变形。因此焊缝的形状和布置必然影响应力的分布,使应力集中在较大的范围内变化。从而严重影响结构的脆断和疲劳。 (2)焊接结构有较大的残余应力和变形 绝大多数焊接方法采用局部加热,故不可避免会产生内应力和变形。焊接应力和变形不但容易引起工艺缺陷,而且影响结构的承载能力,此外还影响结构的加工精度和尺寸稳定性。 (3)焊接结构具有较大的性能不稳定性 由于焊缝金属的成分和组织与基本金属不同,以及焊接接头所经受的不同热循环和热塑性应变循环,焊接接头不同区域具有不同性能,形成一个不均匀体。(4)焊接接头的整体性 这是区别于铆接结构的一个重要特性,一方面赋予焊接结构高密封性和高刚度,另一方面由带来了问题,例如止裂性能差。 二、影响脆性断裂的因素 (一)应力状态的影响 (1)不同的应力状态:如果最大正应力首先达到正断抗力,则发生脆性断裂,如果剪应力先达到屈服极限,则产生塑性变形,形成塑性断裂,达到剪断抗力时,产生剪断。 (2)不同材料同一应力状态。 (3)缺口效应:虽然整个结构件处于单轴拉伸状态,但由于其局部设计不佳或存在缺陷导致出现三轴应力状态的缺口效应。 (二)温度的影响 随着温度的降低,出现脆性断裂的倾向变大。脆性转变温度越低,可使用温度范围越大,材料抗脆断能力好。 (三)加载速率的影响 提高加载速率会促使材料脆性破坏。当有缺口时,由于缺口处有应力、应变集中,缺口扩展速率增大,导致脆性断裂的发生。 (四)材料状态的影响 (1)厚度的影响:厚度增大,脆断倾向增大。 原因:a、厚板在缺口处易形成三轴拉应力,因为厚度方向的收缩和变形受到限制,形成所谓的平面应变状态,使材料变脆。 b、冶金因素:厚板轧制次数少,终轧温度高,组织疏松,内外层均匀性差。 (2)晶粒度影响:晶粒越细,脆性—延性转变温度越低。 (3)晶格结构:面心立方晶格较好。 (4)化学成分:C、N、O、H、S、P增加脆性,Mn、Ni、Cr、V适量加入有助于减少脆性。

钢结构焊接施工工艺

钢结构焊接施工工艺 14.1.1工艺概述 本工艺适用于桥梁工程中钢结构焊接施工。 14.1.2作业内容 桥梁工程钢结构焊接施工,包括钢板表面处理、焊接等。 14.1.3质量标准及检验方法 《铁路钢桥制造规范》(TB10212-2009) 《栓钉焊接技术规程》(CECS 226:2007) 《钢结构工程施工质量验收规范》(GB50205—2001) 《铁路钢桥保护涂装及涂料供货技术条件》(TB/T 1527-2011) 《铁路桥涵工程质量验收标准》(TB10415—2003) 《高速铁路桥涵工程施工质量验收标准》(TB10752-2010) 14.1.4工艺流程图 14.1.5工艺步骤及质量控制 一、施工准备 1.材料及主要机具 (1)电焊条:其型号按设计要求选用,必须有质量证明书。冬期施工或潮湿环境施焊前应按要求进行烘焙。严禁使用药皮脱落、焊芯生锈的焊条。按说明书的要求烘焙后,放入保温桶内,随用随取。酸性焊条与碱性焊条不准混杂使用。 (2)引弧板:用坡口连接时需用弧板,弧板材质和坡口型式应与焊件相同。 (3)主要机具:电焊机(交、直流)、焊把线、焊钳、面罩、小锤、焊条等(详见 14.10.6)。 2.作业条件 (1)熟悉图纸,做焊接工艺技术交底。 (2)施焊前应检查焊工合格证有效期限,应证明焊工所能承担的焊接工作。 (3)现场供电应符合焊接用电要求。 (4)环境温度低于0℃,应根据工艺试验确定预热,后热温度。 二、工艺步骤与质量控制 1.平焊 (1)选择合格的焊接工艺,焊条直径,焊接电流,焊接速度,焊接电弧长度等,通过焊接工艺评定报告确定。 (2)清理焊口:焊前检查坡口、组装间隙是否符合要求,定位焊是否牢固,焊缝周围不得有油污、锈物。 (3)烘焙焊条应符合规定的温度与时间,从烘箱中取出的焊条,放在焊条保温桶内,随用随取。 (4)焊接电流:根据焊件厚度、焊接层次、焊条型号、直径、焊工熟练程度等因素,选择适宜的焊

低合金高强度钢焊接特点概述

低合金高强度钢焊接概述 低合金高强度结构钢的焊接特点: 1.热影响区的淬硬倾向焊后冷却过程中,易在热影响区中出现低塑性的脆硬组织,这种组织在焊缝扩散氢量较高和接头拘束较大时易产生氢致裂纹。 钢材的碳当量是决定热影响区淬硬倾向的主要因素。碳当量越高,钢材淬硬倾向越大。焊接时热影响区过热区的800-500℃的冷却时间(一般用t8/5表示)是另一个重要参数。该冷却速度越大,则热影响区的淬硬程度越高。焊接方法、板厚、接头形式、焊接规范、预热温度决定了t8/5的大小。 焊接接头中,热影响区的硬度值最高。一般用热影响区的最高硬度来衡量淬硬程度的高低。不同级别的主强度钢热影响区有不同的最高硬度允许值,目前我国还没有明确规定。 2.冷裂纹敏感性低合金高强度钢焊接时出现的裂纹主要是冷裂纹。因此,焊接时对于防止冷裂纹问题必须予以足够的重视。钢的强度级别越高,淬硬倾向越大,冷裂纹敏感性也越大。关于冷裂纹形成机理,是一种比较复杂的现象,一直有人在深入研究。目前多数人认为产生冷裂纹的三大因素是: (1)焊缝凝固以后冷却时,由于焊缝一般含碳量比母材低,所以焊缝的奥氏体向铁素体转变较母材早,此时氢的溶解度急剧降低,大

量的氢向仍处于奥氏体的母材热影响区中扩散,由于氢在奥氏体中扩散速度小,在熔合区附近形成了富氢带,含氢量越高,冷裂纹敏感性越大。 (2)滞后相变的热影响区发生奥氏体向马氏体转变的淬硬组织,氢以过饱和状态残存于马氏体中并逐步晶格缺陷等应力集中处扩散聚集,使该处的金属结合强度降低或脆化。钢的淬硬性倾向越大,冷裂纹倾向也越大。 (3)结构的刚性越大,由于焊接时加热引起的拘束应力也越大。同时热影响区相变组织应力共同构成了产生冷裂纹的应力条件。焊接应力越大,冷裂纹敏感性越大。 冷裂纹一般在焊后冷却过程中发生,也可能在焊后数分钟或数天后发生,具有延迟的性质,这可以理解为是氢从焊缝金属扩散到热影响区淬硬区集聚达到某一临界值的时间。在点固焊时,由于冷却速度快,极易出现冷裂纹,必须特别注意。 3.再热裂纹倾向当焊接厚壁压力容器等结构件时,焊后需进行消除应力热处理,对于含铬、钼、钒、钛、铌等合金元素的钢材,在热处理过程中,易在热影响区的粗晶区产生晶间裂纹。有时不仅在热处理过程中发生,也可能发生于焊后再次高温加热的使用过程中。焊接这类高强度低合金钢时,应重视防止再热裂纹问题。防止再 热裂纹的主要措施是尽量选取对再热裂纹不敏感的材料,选择强度较低的焊接材料,提高预热温度和焊接线能量,以及尽量减少焊接接头中的应力集中等。

焊接结构疲劳强度相关知识

焊接结构疲劳强度相关知识 1.焊接结构疲劳失效的原因 焊接结构疲劳失效的原因主要有以下几个方面:①客观上讲,焊接接头的静载承受能力一般并不低于母材;而承受交变动载荷时,其承受能力却远低于母材,而且与焊接接头类型和焊接结构形式有密切的关系。这是引起一些结构因焊接接头的疲劳而过早失效的一个主要的因素;②早期的焊接结构设计以静载强度设计为主,没有考虑抗疲劳设计,或者是焊接结构疲劳设计规范并不完善,以至于出现了许多现在看来设计不合理的焊接接头;③工程设计技术人员对焊接结构抗疲劳性能的特点了解不够,所设计的焊接结构往往照搬其它金属结构的疲劳设计准则与结构形式;④焊接结构日益广泛,而在设计和制造过程中人为盲目追求结构的低成本、轻量化,导致焊接结构的设计载荷越来越大;⑤焊接结构有往高速重载方向发展的趋势,对焊接结构承受动载能力的要求越来越高,而对焊接结构疲劳强度方面的科研水平相对滞后。 2 影响焊接结构疲劳强度的主要因素 2.1 静载强度对焊接结构疲劳强度的影响 在钢铁材料的研究中,人们总是希望材料具有较高的比强度,即以较轻的自身重量去承担较大的负载重量,因为相同重量的结构可以具有极大的承载能力;或是同样的承载能力可以减轻自身的重量。所以高强钢应运而生,也具有较高的疲劳强度,基本金属的疲劳强度总是随着静载强度的增加而提高。 但是对于焊接结构来说,情况就不一样了,因为焊接接头的疲劳

强度与母材静强度、焊缝金属静强度、热影响区的组织性能以及焊缝金属强度匹配没有多大的关系,也就是说只要焊接接头的细节一样,高强钢和低碳钢的疲劳强度是一样的,具有同样的S-N曲线,这个规律适合对接接头、角接接头和焊接梁等各种接头型式。Maddox研究了屈服点在386—636MPa之间的碳锰钢和用6种焊条施焊的焊缝金属和热影响区的疲劳裂纹扩展情况,结果表明:材料的力学性能对裂纹扩展速率有一定影响,但影响并不大。在设计承受交变载荷的焊接结构时,试图通过选用较高强度的钢种来满足工程需要是没有意义的。只有在应力比大于+0.5的情况下,静强度条件起主要作用时,焊接接头母材才应采用高强钢。 造成上述结果的原因是由于在接头焊趾部位沿溶合线存在有类似咬边的熔渣楔块缺陷,其厚度在0.075mm-0.5mm,尖端半经小于0.015mm。该尖锐缺陷是疲劳裂纹开始的地方,相当于疲劳裂纹形成阶段,因而接头在一定应力幅值下的疲劳寿命,主要由疲劳裂纹的扩展阶段决定。这些缺陷的出现使得所有钢材的相同类型焊接接头具有同样的疲劳强度,而与母材及焊接材料的静强度关系不大。 2.2 应力集中对疲劳强度的影响 2.2.1 接头类型的影响 焊接接头的形式主要有:对接接头、十字接头、T形接头和搭接接头,在接头部位由于传力线受到干扰,因而发生应力集中现象。 对接接头的力线干扰较小,因而应力集中系数较小,其疲劳强度也将高于其他接头形式。但实验表明,对接接头的疲劳强度在很大范围内变化,这是因为有一系列因素影响对接接头的疲劳性能的缘故。如试样的尺寸、坡口形式、焊接方法、焊条类型、焊接位置、焊缝形状、焊后的焊缝加工、焊后的热处理等均会对其发生影响。具有永久

相关文档
相关文档 最新文档