文档库 最新最全的文档下载
当前位置:文档库 › FM调制解调原理

FM调制解调原理

FM调制解调原理
FM调制解调原理

频率调制信号的表示式为:()cos[()]t

m c S t A t kfm d ωττ-∞

=+

?

其中,kf 为

调频灵敏度,m(t)为调制信号。从公式出发即可完成频率调制的程序。 调频信号的解调方法通常是采用鉴频法。方框图如图所示

其中鉴频器包括微分电路和包络检波。

在模拟信号的调频程序中,先对输入参量的个数做出判断,少于则运行默认的。然后对信号进行调制,这里采样的调制信号是最简单的正弦信号,当然也可以为其他信号。调制过程中,积分是根据积分的定义编写的一段程序。在对已调信号进行解调前加入了噪声。解调过程中的微分同样的根据定义编写的,当然也可以采用MATLAB 里自带的函数diff 。在经过包络检波后对幅值做出了一定的修正。

下图是调频信号的时域频域波形。经过调频之后的信号频谱不仅发生了频谱搬移还增加了频率分量。

下图绿色的是小信噪比条件下的解调波形,可以发现信噪比对解调的影响。

而在语音信号的调频中,积分采用cumsum来完成,微分采用diff。因为经过调试发现,采用根据定义编写的程序由于循环运行需

要很多时间。另外,在经过微分器后,包络检波和低通这段和幅度调制的非相干解调一样,所以也可以在经过微分后调用AM包络检波的程序。对于调频信号来说,都会存在门限效应,使之在小信噪比情况下无法恢复出原来的调制信号。所以语音信号的调制解调是在很大信噪比情况下。

下面是语音信号调制解调的时域频域图。观看频谱可以看到调制信号的频谱相对于输入信号,发生了频谱搬移,还有在fc处多了一个冲激。

另外还有一个需要注意的问题,读入语音信号时所输入的路径必须和存放语音信号的路径相同。否则无法打开。

参考文献:

[1]樊昌信,曹丽娜。通信原理。国防工业出版社。2006.9

[2] Santosh, the LNM IIT Jaipur (India).santosh_am_fm.m.2002.4

[3]陈丽丹。FM调制解调系统设计与仿真

GFSK的调制解调原理

G F S K的调制和解调原理 高斯频移键控GFSK(GaussfrequencyShiftKeying),是在调制之前通过一个高斯低通滤波器来限制信号的频谱宽度,以减小两个不同频率的载波切换时的跳变能量,使得在相同的数据传输速率时频道间距可以变得更紧密。它是一种连续相位频移键控调制技术,起源于FSK(Frequency-shiftkeying)。但FSK带宽要求在相当大的程度上随着调制符号数的增加而增加。而在工业,科学和医用433MHz频段的带宽较窄,因此在低数据速率应用中,GFSK调制采用高斯函数作为脉冲整形滤波器可以减少传输带宽。由于数字信号在调制前进行了Gauss 预调制滤波,因此GFSK调制的信号频谱紧凑、误码特性好,在数字移动通信中得到了广泛使用(高斯预调制滤波器能进一步减小调制频谱,它可以降低频率转换速度,否则快速的频率转换将导致向相邻信道辐射能量)。 GFSK调制 1、直接调制:将数字信号经过高斯低通滤波后,直接对射频载波进行模拟调频。由于通常调制信号都是加在PLL频率合成器的VCO上(图一),其固有的环路高通特性将导致调制信号的低频分量受到损失,调制频偏(或相偏)较小。因此,为了保证调制器具有优良的低频调制特性,得到较为理想的GFSK调制特 另一部分则加在PLL的主分频器一端(基于PLL技术的频率合成器将增加两个分频器:一个用于降低基准频率,另一个则用于对VCO进行分频)。由于主分频器不在控制反馈环内,它能够被信号的低频分量所调制。这样,所产生的复合GFSK信号具有可以扩展到直流的频谱特性,且调制灵敏度基本上为一常量,不受环路带宽的影响。但是,两点调制增加了GFSK调制指数控制的难度。

FM调制解调原理

频率调制信号的表示式为:()cos[()]t m c S t A t kfm d ωττ-∞ =+ ? 其中,kf 为 调频灵敏度,m(t)为调制信号。从公式出发即可完成频率调制的程序。 调频信号的解调方法通常是采用鉴频法。方框图如图所示 其中鉴频器包括微分电路和包络检波。 在模拟信号的调频程序中,先对输入参量的个数做出判断,少于则运行默认的。然后对信号进行调制,这里采样的调制信号是最简单的正弦信号,当然也可以为其他信号。调制过程中,积分是根据积分的定义编写的一段程序。在对已调信号进行解调前加入了噪声。解调过程中的微分同样的根据定义编写的,当然也可以采用MATLAB 里自带的函数diff 。在经过包络检波后对幅值做出了一定的修正。 下图是调频信号的时域频域波形。经过调频之后的信号频谱不仅发生了频谱搬移还增加了频率分量。

下图绿色的是小信噪比条件下的解调波形,可以发现信噪比对解调的影响。 而在语音信号的调频中,积分采用cumsum来完成,微分采用diff。因为经过调试发现,采用根据定义编写的程序由于循环运行需

要很多时间。另外,在经过微分器后,包络检波和低通这段和幅度调制的非相干解调一样,所以也可以在经过微分后调用AM包络检波的程序。对于调频信号来说,都会存在门限效应,使之在小信噪比情况下无法恢复出原来的调制信号。所以语音信号的调制解调是在很大信噪比情况下。

下面是语音信号调制解调的时域频域图。观看频谱可以看到调制信号的频谱相对于输入信号,发生了频谱搬移,还有在fc处多了一个冲激。 另外还有一个需要注意的问题,读入语音信号时所输入的路径必须和存放语音信号的路径相同。否则无法打开。 参考文献: [1]樊昌信,曹丽娜。通信原理。国防工业出版社。2006.9 [2] Santosh, the LNM IIT Jaipur (India).santosh_am_fm.m.2002.4 [3]陈丽丹。FM调制解调系统设计与仿真

GFSK的调制解调原理

GFSK 的调制和解调原理 高斯频移键控GFSK (Gauss frequency Shift Keying),是在调制之前通过一个高斯低通滤波器来限制信号的频谱宽度,以减小两个不同频率的载波切换时的跳变能量,使得在相同的数据传输速率时频道间距可以变得更紧密。它是一种连续相位频移键控调制技术,起源于FSK(Frequency- shift keying)。但FSK 带宽要求在相当大的程度上随着调制符号数的增加而增加。而在工业,科学和医用433MHz 频段的带宽较窄,因此在低数据速率应用中,GFSK 调制采用高斯函数作为脉冲整形滤波器可以减少传输带宽。由于数字信号在调制前进行了Gauss 预调制滤波,因此GFSK 调制的信号频谱紧凑、误码特性好,在数字移动通信中得到了广泛使用(高斯预调制滤波器能进一步减小调制频谱,它可以降低频率转换速度,否则快速的频率转换将导致向相邻信道辐射能量)。 GFSK 调制 1、直接调制:将数字信号经过高斯低通滤波后,直接对射频载波进行模拟调 频。由于通常调制信号都是加在PLL 频率合成器的VCO 上(图一),其固有的环路高通特性将导致调制信号的低频分量受到损失,调制频偏(或相偏)较小。因此,为了保证调制器具有优良的低频调制特性,得到较为理想的GFSK 调制特性,提出了一种称为两点调制的直接调频技术。 uc 图一 两点调制:调制信号被分成2部分,一部分按常规的调频法加在PLL 的VCO 端,另一部分则加在PLL 的主分频器一端(基于PLL 技术的频率合成器将增加两个分频器:一个用于降低基准频率,另一个则用于对VCO 进行分频 )。由于主分频器不在控制反馈环内,它能够被信号的低频分量所调制。这样,所产生的复合GFSK 信号具有可以扩展到直流的频谱特性,且调制灵敏度基本上为一常量, 鉴频器 PD 环路低通滤波器LF 压控振荡器VCO 载波信号 调制信号ui 调频信号uo 主分频器

通信原理2DPSK调制与解调实验报告

通信原理课程设计报告

一. 2DPSK基本原理 1.2DPSK信号原理 2DPSK方式即是利用前后相邻码元的相对相位值去表示数字信息的一种方式。现假设用Φ表示本码元初相与前一码元初相之差,并规定:Φ=0表示0码,Φ=π表示1码。则数字信息序列与2DPSK信号的码元相位关系可举例表示如2PSK信号是用载波的不同相位直接去表示相应的数字信号而得出的,在接收端只能采用相干解调,它的时域波形图如图2.1所示。 图1.1 2DPSK信号 在这种绝对移相方式中,发送端是采用某一个相位作为基准,所以在系统接收端也必须采用相同的基准相位。如果基准相位发生变化,则在接收端回复的信号将与发送的数字信息完全相反。所以在实际过程中一般不采用绝对移相方式,而采用相对移相方式。 定义?Φ为本码元初相与前一码元初相之差,假设: ?Φ=0→数字信息“0”; ?Φ=π→数字信息“1”。 则数字信息序列与2DPSK信号的码元相位关系可举例表示如下: 数字信息: 1 0 1 1 0 1 1 1 0 1

DPSK信号相位:0 π π 0 π π 0 π 0 0 π 或:π 0 0 π 0 0 π 0 π π 0 2. 2DPSK信号的调制原理 一般来说,2DPSK信号有两种调试方法,即模拟调制法和键控法。2DPSK 信号的的模拟调制法框图如图1.2.1所示,其中码变换的过程为将输入的单极性不归零码转换为双极性不归零码。 图1.2.1 模拟调制法 2DPSK信号的的键控调制法框图如图1.2.2所示,其中码变换的过程为将输入的基带信号差分,即变为它的相对码。选相开关作用为当输入为数字信息“0”时接相位0,当输入数字信息为“1”时接pi。 图1.2.2 键控法调制原理图 码变换相乘 载波 s(t)e o(t)

FSK调制解调原理及设计

一.2FSK 调制原理: 1、2FSK 信号的产生: 2FSK 是利用数字基带信号控制在波的频率来传送信息。例如,1码用频率f1来传输,0码用频率f2来传输,而其振幅和初始相位不变。故其表示式为 式中,假设码元的初始相位分别为1θ和2θ;112 f π=ω和222f π=ω为两个不同的码元的角频率;幅度为A 为一常数,表示码元的包络为矩形脉冲。 2FSK 信号的产生方法有两种: (1)模拟法,即用数字基带信号作为调制信号进行调频。如图1-1(a )所示。 (2)键控法,用数字基带信号)(t g 及其反)(t g 相分别控制两个开关门电路,以此对两个载波发生器进行选通。如图1-1(b )所示。 这两种方法产生的2FSK 信号的波形基本相同,只有一点差异,即由调频器产生的2FSK 信号在相邻码元之间的相位是连续的,而键控法产生的2FSK 信号,则分别有两个独立的频率源产生两个不同频率的信号,故相邻码元的相位不一定是连续的。 (a) (b) 2FSK 信号产生原理图 由键控法产生原理可知,一位相位离散的2FSK 信号可看成不同频率交替发送的两个2ASK 信号之和,即 其中)(t g 是脉宽为s T 的矩形脉冲表示的NRZ 数字基带信号。 其中,n a 为n a 的反码,即若1=n a ,则0=n a ;若0=n a ,则1=n a 。 2、2FSK 信号的频谱特性: 由于相位离散的2FSK 信号可看成是两个2ASK 信号之和,所以,这里可以直接应用2ASK 信号的频谱分析结果,比较方便,即 2FSK 信号带宽为 s s F S K R f f f f f B 2||2||21212+-=+-≈ 式中,s s f R =是基带信号的带宽。 二.2FSK 解调原理: 仿真是基于非相干解调进行的,即不要求载波相位知识的解调和检测方法。 其非相干检测解调框图如下 M 信号非相干检测解调框图 当k=m 时检测器采样值为: 当k ≠m 时在样本和中的信号分量将是0,只要相继频率之间的频率间隔是,就与相移值无关了,于是其余相关器的输出仅有噪声组成。 其中噪声样本{}和{}都是零均值,具有相等的方差 对于平方律检测器而言,即先计算平方包络

通信原理实验QPSK调制解调实验

HUNAN UNIVERSITY 课程实验报告 题目:十QPSK调制解调实验 指导教师: 学生: 学生学号: 专业班级:

实验10 QPSK调制解调实验 一、实验目的 1. 掌握QPSK调制解调的工作原理及性能要求;了解IQ调制解调原理及特性 2. 进行QPSK调制、解调实验,掌握电路调整测试方法了解载波在QPSK相干及非相干时的解调特性 二、实验原理 1、QPSK调制原理 QPSK又叫四相绝对相移调制,它是一种正交相移键控。QPSK利用载波的四种不同相位来表征数字信息。由于每一种载波相位代表两个比特信息,因此,对于输入的二进制数字序列应该先进行分组,将每两个比特编为一组,然后用四种不同的载波相位来表征。 用调相法产生QPSK调制原理框图如图所示,QPSK的调制器可以看作是由两个BPSK调制器构成,输入的串行二进制信息序列经过串行变换,变成两路速率减半的序列,电平发生器分别产生双极性的二电平信号I(t)和Q(t),然后对Acosωt和Asinωt进行调制,相加后即可得到QPSK信号。

二进制码经串并变换后的码型如图所示,一路为单数码元,另外一路为偶数码元,这两个支路互为正交,一个称为同相支路,即I支路;另外一路称为正交支路,即Q支路 2、QPSK解调原理 由于QPSK可以看作是两个正交2PSK信号的合成,故它可以采用与2PSK信号类似的解调方法进行解调,即由两个2PSK信号相干解调器构成,其原理框图如图 三、实验步骤 在实验箱上正确安装基带成形模块(以下简称基带模块)、IQ调制解调模块(以下简称

IQ模块)、码元再生模块(以下简称再生模块)和PSK载波恢复模块。 1、QPSK调制实验 a、关闭实验箱总电源,用台阶插座线完成连接 * 检查连线是否正确,检查无误后打开电源。 b、按基带成形模块上“选择”键,选择QPSK模式(QPSK指示灯亮)。 c、用示波器观察基带模块上“NRZ-I,I-OUT,NRZ-Q,Q-OUT”的信号;并分别与“NRZ IN”信号进行对比,观察串并转换情况。 NRZ-I 与NRZ IN I-OUT与NRZ IN NRZ-Q 与NRZ IN Q-OUT与NRZ IN d、观测IQ调制信号矢量图。 e、观测IQ调制载波信号。

2FSK调制解调原理及设计

一.2F SK 调制原理: 1、2FSK 信号的产生: 2F SK 是利用数字基带信号控制在波的频率来传送信息。例如,1码用频率f 1来传输,0码用频率f2来传输,而其振幅和初始相位不变。故其表示式为 { )cos()cos(21122)(θωθω?++=t A t A FSK t 时 发送时发送"1""0" 式中,假设码元的初始相位分别为1θ和2θ;112 f π=ω和222f π=ω为两个不同的码元的角频率;幅度为A 为一常数,表示码元的包络为矩形脉冲。 ?2FSK 信号的产生方法有两种: (1)模拟法,即用数字基带信号作为调制信号进行调频。如图 1-1(a)所示。 (2)键控法,用数字基带信号)(t g 及其反)(t g 相分别控制两个开关门电路,以此对两个载波发生器进行选通。如图1-1(b)所示。 这两种方法产生的2FSK 信号的波形基本相同,只有一点差异,即由调频器产生的2FSK 信号在相邻码元之间的相位是连续的,而键控法产生的2FS K信号,则分别有两个独立的频率源产生两个不同频率的信号,故相邻码元的相位不一定是连续的。 (a) (b) 2FSK 信号产生原理图 由键控法产生原理可知,一位相位离散的2FS K信号可看成不同频率交替发送的两个2A SK 信号之和,即 ) cos(])([)cos(])([) cos(·)()cos()()(221122112θωθωθωθω?+-++-=+++=∑∑∞ -∞ =∞ -∞ =t nT t g a t nT t g a t t g t t g t n s n n s n FSK 其中)(t g 是脉宽为s T 的矩形脉冲表示的NRZ 数字基带信号。

BPSK和QPSK调制解调原理及MATLAB程序

PSK调制方式 PSK原理介绍(以2-PSK为例) 移相键控(PSK)又称为数字相位调制,二进制移相键控记作2PSK。绝对相移是利用载波的相位(指初相)直接表示数字信号的相移方式。二进制相移键控中,通常用相位0 和π来分别表示“0”或“1”。2PSK 已调信号的时域表达式为s2psk(t)=s(t)cosωct, 2PSK移相键控中的基带信号与频移键控和幅度键控是有区别的,频移键控和幅度键控为单极性非归零矩形脉冲序列,移相键控为为双极性数字基带信号,就模拟调制法而言,与产生2ASK 信号的方法比较,只是对s(t)要求不同,因此2PSK 信号可以看作是双极性基带信号作用下的DSB 调幅信号。 在二进制数字调制中,当正弦载波的相位随二进制数字基带信号离散变化时,则产生二进制移相键控(2PSK)信号。通常用已调信号载波的 0°和 180°分别表示二进制数字基带信号的 1 和 0。二进制移相键控信号的时域表达式为 e2PSK(t)=[ n n a g(t-nT s)]cosw c t 其中, an与2ASK和2FSK时的不同,在2PSK调制中,an应选择双极性。 1, 发送概率为P an= -1, 发送概率为1-P 若g(t)是脉宽为Ts, 高度为1的矩形脉冲时,则有 cosωct, 发送概率为P e2PSK(t)= -cosωct, 发送概率为1-P 由上式可看出,当发送二进制符号1时,已调信号e2PSK(t)取0°相位,发送二进制符号0时,e2PSK(t)取180°相位。若用φn表示第n个符号的绝对相位,则有 0°, 发送 1 符号 φn= 180°, 发送 0 符号 由于在2PSK信号的载波恢复过程中存在着180°的相位模糊,所以2PSK信

GFSK的调制解调原理

GFSK的调制和解调原理 高斯频移键控GFSK (Gauss frequency Shift Keying),是在调制之前通过一个高斯低通滤波器来限制信号的频谱宽度,以减小两个不同频率的载波切换时的跳变能量,使得在相同的数据传输速率时频道间距可以变得更紧密。它是一种连续相位频移键控调制技术,起源于FSK(Frequency- shift keying)。但FSK带宽要求在相当大的程度上随着调制符号数的增加而增加。而在工业,科学和医用433MHz 频段的带宽较窄,因此在低数据速率应用中,GFSK 调制采用高斯函数作为脉冲整形滤波器可以减少传输带宽。由于数字信号在调制前进行了Gauss预调制滤波,因此GFSK调制的信号频谱紧凑、误码特性好,在数字移动通信中得到了广泛使用(高斯预调制滤波器能进一步减小调制频谱,它可以降低频率转换速度,否则快速的频率转换将导致向相邻信道辐射能量)。 GFSK调制 1、直接调制:将数字信号经过高斯低通滤波后,直接对射频载波进行模拟调频。由于通常调制信号都是加在PLL频率合成器的VCO上(图一),其固有的环路高通特性将导致调制信号的低频分量受到损失,调制频偏(或相偏)较小。 图一

两点调制:调制信号被分成2部分,一部分按常规的调频法加在PLL的VCO端,另一部分则加在PLL的主分频器一端(基于PLL技术的频率合成器将增加两个分频器:一个用于降低基准频率,另一个则用于对VCO进行分频)。由于主分频器不在控制反馈环内,它能够被信号的低频分量所调制。这样,所产生的复合GFSK信号具有可以扩展到直流的频谱特性,且调制灵敏度基本上为一常量,不受环路带宽的影响。但是,两点调制增加了GFSK调制指数控制的难度。 2、正交调制 正交调制则是一种间接调制的方法。该方法将数字信号进行高斯低通滤波并作适当的相位积分运算后,分成同相和正交两部分分别对载波的同相和正交分量相乘,再合成GFSK信号。相对而言,这种方法物理概念清晰,也避免了直接调制时信号频谱特性的损害。另一方面,GFSK参数控制可以在一个带有标定因子的高斯滤波器中实现,而不受后续调频电路的影响,因而参数的控制要简单一些。正因为如此,GFSK正交调制解调器的基带信号处理特别适合于用数字方法实现。 cos(w C t) sin(w C t) GFSK的调制框图

GMSK调制解调原理和应用

GMSK调制与解调技术 (电子与通信工程陈斌2011282120194) GMSK简介 GMSK调制技术是在MSK基础上经过改进得到的,MSK(Minimum Frequency Shift Keying,最小频移键控)是二进制连续相位FSK(Frequency Shift Keying,频移键控)的一种改进形式。在FSK方式中,每一码元的频率不变或者跳变一个固定值,在两个相邻的频率跳变码元信号之间,其相位通常是不连续的。MSK就是FSK信号的相位始终保持连续变化的调制方式。采用高斯滤波器制作前基带滤波器,将基带信号成型为高斯脉冲,在进行MSK调制,称为GMSK 调制。 GMSK特点: ()t f - f c 图1 从图中可看出,MSK调制方式具有恒定的振幅,信号功率频谱在主瓣以外衰减较快。MSK信号的功率更加紧凑,占用的带宽窄,抗干扰性强,是适合在窄带信道传输的一种调制方式。在移动通信系统中,对信号带外辐射功率的限制十分严格,比如衰减要求在70~80dB以上。MSK信号不能满足这样的苛刻要求,而高斯最小频移键控(GMSK)往往可以满足要求。

GMSK 调制 GMSK 调制的一般原理 MSK 调制是调制指数为0.5的二进制调频,其基带信号为矩形波形。为了压缩MSK 信号的功率,可在MSK 调制前加入高斯低通滤波器,称为预调制滤波器。对矩形进行滤波后,得到一种新型的基带波形,使其本身和尽可能高阶的导数连续,从而得到较好的频谱特性。GMSK 调制原理方框图如下所示。 输出 为了有效地抑制MSK 的带外辐射并保证进过预调制滤波后的已调信号能采用简单的MSK 相干检测电路,预调制滤波器必须具有以下特性: 1.带宽窄并且具有陡峭的截止特性; 2.冲击响应的过冲较小; 3.滤波器输出脉冲面积为一常量,该常量对应的一个码元内的载波相移为 2π。 其中,条件1是为了抑制高频分量;条件2是为了防止过大的瞬时频偏;条件3是为了使调制指数为0.5. 高斯低通滤波器的传输函数为 ()?? ? ? ?=-f a f H 2 2 e x p (1.1) 式中,a 是与高斯滤波器的3dB 带快b B 有关的一个常数。有3dB 带宽定义有 ()2 1 2=b B H (1.2) 即 ( )2 1 2 2 2e x p -=-b B a (1.3) 所以 5887.02ln 2 1 ≈=aBb (1.4) 由此可见,改变a ,b B 将随之改变。

AM调制解调原理

幅度调制是正弦载波的幅度随调制信号作线性变化的过程。幅度调制信号可表示成()S (t)Am(t)cos t m c ω=.对与AM 来说m(t)是带有直流分量的基带信号,可以表示成m ο与1()m t 之和,m ο是m(t)的直流分量,1()m t 是表示消息变化的交流分量。则()()1S (t)()cos t m c m m t οω=+。 AM 调幅可以采用相干解调,将已调信号乘以载波后通过低通滤波器并在幅度上做一定调整即可以恢复出原来的调制信号。另外AM 信号在满足1max ()m t m ?≤条件下,也可以采用包络检波法。包络检波器通常由整流器和低通滤波器组成。与相干解调不同的是,包络检波不需要幅度修正。 在对模拟信号进行调制解调程序中,先对输入参数做出判决,当输入个数少于所需个数时则运行默认的。然后对输入的幅度做出判断,以免出现过调幅。然后是调制解调。下图即是调制波形。

解调中分别采用了相干解调和包络检波。另外程序中,解调前加入了噪声,可以发现在大信噪比条件下,两个解调方式性能相似,而在小信噪比调剂下相干解调要好的多,包络检波则因为门限效应存在很多误差。如下图所示。这里是小信噪比情况下的图。 在对语音信号进行调制解调时,因为语音信号频率比较高,所以

不容易把调制前调制后的图放在一起,程序着重在于播放输入信号和解调输出信号。当然输出也受信噪比的影响。信噪比小的时候是恢复不出原信号的。下面分别是输入语音信号和经过调制包络检波,相干解调后的语音信号时域频域图。这里采用的都是较大的信噪比。

可以发现解调的两个图的频谱都有突然截断的现象,这是因为在解调时都采用的是理想低通滤波器。 另外还有一个需要注意的问题,读入语音信号时所输入的路径必须和存放语音信号的路径相同。否则无法打开。 参考文献: [1]樊昌信,曹丽娜。通信原理。国防工业出版社。2006.9 [2] Santosh, the LNM IIT Jaipur (India).santosh_am_fm.m.2002.4

FM调制解调原理

F M调制解调原理 Hessen was revised in January 2021

频率调制信号的表示式为:()cos[()]t m c S t A t kfm d ωττ-∞ =+?其中,kf 为调频灵敏度,m(t)为调制信号。从公式出发即可完成频率调制的程序。 调频信号的解调方法通常是采用鉴频法。方框图如图所示 其中鉴频器包括微分电路和包络检波。 在模拟信号的调频程序中,先对输入参量的个数做出判断,少于则运行默认的。然后对信号进行调制,这里采样的调制信号是最简单的正弦信号,当然也可以为其他信号。调制过程中,积分是根据积分的定义编写的一段程序。在对已调信号进行解调前加入了噪声。解调过程中的微分同样的根据定义编写的,当然也可以采用MATLAB 里自带的函数diff 。在经过包络检波后对幅值做出了一定的修正。 下图是调频信号的时域频域波形。经过调频之后的信号频谱不仅发生了频谱搬移还增加了频率分量。

下图绿色的是小信噪比条件下的解调波形,可以发现信噪比对解调的影响。

而在语音信号的调频中,积分采用cumsum来完成,微分采用diff。因为经过调试发现,采用根据定义编写的程序由于循环运行需要很多时间。另外,在经过微分器后,包络检波和低通这段和幅度调制的非相干解调一样,所以也可以在经过微分后调用AM包络检波的程序。对于调频信号来说,都会存在门限效应,使之在小信噪比情况下无法恢复出原来的调制信号。所以语音信号的调制解调是在很大信噪比情况下。

下面是语音信号调制解调的时域频域图。观看频谱可以看到调制信号的频谱相对于输入信号,发生了频谱搬移,还有在fc处多了一个冲激。 另外还有一个需要注意的问题,读入语音信号时所输入的路径必须和存放语音信号的路径相同。否则无法打开。 参考文献: [1]樊昌信,曹丽娜。通信原理。国防工业出版社。 [2] Santosh, the LNM IIT Jaipur (India).陈丽丹。FM调制解调系统设计与仿真

FSK调制解调原理

FSK调制解调原理 汉新宇,200805190061, FSK频移键控调制解调原理 FSK,Frequency-shift keying,的简介 FSK,Frequency-shift keying,是信息传输中使用得较早的一种调制斱式,它的主要优点是: 实现起来较容易,抗噪声不抗衰减的性能较好。在中低速数据传输中得到了广泛的应用。 最常见的是用两个频率承载二进制1和0的双频FSK系统。 技术上的FSK有两个分类,非相干和相干的FSK 。在非相干的FSK ,瞬时频率之间的转移是两个分立的价值观命名为马兊和空间频率,分别为。在另一斱面,在相干频移键控或二进制的FSK ,是没有间断期在输出信号。 在数字化时代,电脑通信在数据线路,电话线、网络电缆、光纤或者无线媒 介,上进行传输,就是用FSK调制信号进行的,即把二进制数据转换成FSK信号传输,反过来又将接收到的FSK信号解调成二进制数据,并将其转换为用高,低电平所表示的二进制语言,这是计算机能够直接识别的语言。 FSK 调制 在二进制频移键控中,幅度恒定不变的载波信号的频率随着输入码流的变化而 切换,称为高音和低音,代表二进制的1 和0,。 非连续相位FSK的调制斱式 产生FSK 信号最简单的斱法是根据输入的数据比特是0还是1,在两个独立的 振荡器中切换。采用这种斱法产生的波形在切换的时刻相位是不连续的,因此这种FSK 信号称为不连续FSK 信号。

由于相位的不连续会造频谱扩展,这种FSK 的调制斱式在传统的通信设备中采用较多。随着数字处理技术的不断収展,越来越多地采用连继相位FSK调制技术。 连续相位FSK的调制信号 目前较常用产生FSK 信号的斱法是,首先产生FSK 基带信号,利用基带信号对单一载波振荡器进行频率调制。 相位连续的FSK信号的功率谱密度函数最终按照频率偏移的负四次幂衰落。如果相位不连续,功率谱密度函数按照频率偏移的负二次幂衰落。 FSK信号频谱 在通信原理综合实验系统中,FSK 的调制斱案如下: FSK 信号:S(t)=cos(ω0t+2πfi?t) 在通信信道FSK 模式的基带信号中传号采用fH 频率,空号采用fL 频率。在FSK 模式下,不采用汉明纠错编译码技术。调制器提供的数据源有: FSK正交调制器结构 1、外部数据输入:可来自同步数据接口、异步数据接口和m序列; 2、全1码:可测试传号时的収送频率,高,; 3、全0码:可测试空号时的収送频率,低,; 4、0/1 码:0101,,交替码型,用作一般测试; 5、特殊码序列:周期为7的码序列,以便于常觃示波器进行观察;

BPSK调制解调

一、主要内容 1、简要阐述 BPSK调制解调原理 2、用 MATLAB进行仿真,附上仿真源程序和仿真结果,对结果进行分析。 二、主要原理 2.1 BPSK 的调制原理 在二进制数字调制中,当正弦载波的相位随二进制数字基带信号离散变化 时,则产生二进制移相键控( 2PSK)信号。通常用已调信号载波的0 度和 180 度分别表示二进制数字基带信号的 1 和 0. 二进制移相键控信号的时域表达式为 e2 PSK (t) [ a n g(t nT s )] cosw c t(式 2—1)n 其中, a n与 2ASK和 2FSK时的不同,在 2PSK调制中, a n应选择双极性,即当发送概率为 P, a n1,当发送概率为1-P, a n 1 。若g(t)是脉宽为 T S、高度为 1的矩形脉冲,则有 当发送概率为 P 时,e 2PSK ( )cos()(式—)t w c t22 发送概率为 1-P 时, e2PSK cos()(式 2 —)w c t3 由(式 2—2)和(式 2—3)可以看出,当发送二进制符号 1 时,已调信号 e2PSK (t)取 0度相位,当发送二进制符号为0 时, e2PSK (t) 取180 度相位,则有 e 2 PSK cos(w c t n ),其中发送符号1,n 00,发送符号0,n 1800。 这种以载波的不同相位直接表示相应二进制数字调制信号的调制方式,称为二进制绝对移向方式。下面为2PSK信号调制原理框图2.1 所示: e2 PSK (t ) S(t) 码型变换乘法器 cos(w c t) 图 2.1:2PSK 信号的调制原理图(模拟调制方法)

AM—调制与解调仿真

引言 本次实践开设的计算机课程设计为软件仿真,利用matlab 编写程序建立M 文件对计算机实验进行仿真。随着通信技术的发展日新月异,通信系统也日趋复杂,在通信系统的设计研发过程中,软件仿真已成为必不可少的一部分。随着信息技术的不断发展,涌现出了许多功能强大的电子仿真软件,如Workbeench 、Protel 、Systemview 、Matlab 等。虚拟实验技术发展迅速,应用领域广泛,一些在现实世界无法开展的科研项目可借助于虚拟实验技术完成,例如交通网的智能控制、军事上新型武器开发等。 调制就是使一个信号(如光等)的某些参数(如振幅、频率等)按照另一个欲传输的信号(如声音、图像等)的特点变化的过程。解调是调制的逆过程,它的作用是从已调波信号中取出原来的调制信号。对于幅度调制来说,解调是从它的幅度变化提取调制信号的过程。对于频率调制来说,解调是从它的频率变化提取调制信号的过程。在信号和模拟通信的中心问题是要把载有消息的信号经系统加工处理后,送入信道进行传送,从而实现消息的相互传递。消息是声音、图像、文字、数据等多种媒体的集合体。把消息通过能量转换器件,直接转变过来的电信号称为基带信号。AM 是调幅(Amplitude Modulation ),用AM 调制与解调可以在电路里面实现很多功能,制造出很多有用又实惠的电子产品,为我们的生活带来便利。用MATLAB 仿真工具仿真的AM 调制解调与解调器抗干扰性能分析的工作原理和工作过程,完成对调制与解调过程的分析以及相干解调器的抗干扰性能的分析。通过对波形图的分析给出不同信噪比情况下的解调结果对比。寻找最佳调试解调途径已相当重要。其中将数字信息转换成模拟形式称调制,将模拟形式转换回数字信息称为解调。 本文主要的研究内容是了解AM 信号的数学模型及调制方式以及其解调的方法在不同的信噪比情况下的解调结果。先从AM 的调制研究,其次研究AM 的解调以及一些有关的知识点,得出AM 信号的数学模型及其调制与解调的框图和调制解调波形图,然后利用MATLAB 编程语言实现对AM 信号的调制与解调,给出不同信噪比情况下的解调结果对比。 1 AM 调制解调的原理 1.1 AM 的调制原理 AM 是指对信号进行幅度调制。一般做法是先在原信号上叠加一个直流信号,以保证信号 0)(>+A t f , 然后乘上一个高频的余弦信号,即得到)]cos()([)(t A t f t g ω+=。在频域上的效果 就是将原信号的 域谱 移动到W 处,以适合信道传输的最佳频率范围g(t)的包络线即A t f +)(,用一个简单的包络检测电路就可以接收并还原信号了。 图1.1 仿真原理图 调制信号 ft t m 2sin )(= (1.1) 载波信号 t f t c c 2s i n )(= (1.2)

GFSK的调制解调基础学习知识原理

.\ GFSK的调制和解调原理 高斯频移键控GFSK (Gauss frequency Shift Keying),是在调制之前通过一个高斯低通滤波器来限制信号的频谱宽度,以减小两个不同频率的载波切换时的跳变能量,使得在相同的数据传输速率时频道间距可以变得更紧密。它是一种连续相位频移键控调制技术,起源于FSK(Frequency- shift keying)。但FSK带宽要求在相当大的程度上随着调制符号数的增加而增加。而在工业,科学和医用433MHz频段的带宽较窄,因此在低数据速率应用中,GFSK 调制采用高斯函数作为脉冲整形滤波器可以减少传输带宽。由于数字信号在调制前进行了Gauss 预调制滤波,因此GFSK调制的信号频谱紧凑、误码特性好,在数字移动通信中得到了广泛使用(高斯预调制滤波器能进一步减小调制频谱,它可以降低频率转换速度,否则快速的频率转换将导致向相邻信道辐射能量)。 GFSK调制 1、直接调制:将数字信号经过高斯低通滤波后,直接对射频载波进行模拟调频。由于通常调制信号都是加在PLL频率合成器的VCO上(图一),其固有的环路高通特性将导致调制信号的低频分量受到损失,调制频偏(或相偏)较小。因此,为了保证调制器具有优良的低频调制特性,得到较为理想的GFSK调制特 图一 两点调制:调制信号被分成2部分,一部分按常规的调频法加在PLL的VCO端,另一部分则加在PLL的主分频器一端(基于PLL技术的频率合成器将增加两个分频器:一个用于降低基准频率,另一个则用于对VCO进行分频)。由于主分频器不在控制反馈环内,它能够被信号的低频分量所调制。这样,所产生的复合GFSK信号具有可以扩展到直流的频谱特性,且调制灵敏度基本上为一常量,

ASK与FSK调制解调实验

ASK调制及解调实验 一、实验目的 1、掌握用键控法产生ASK信号的方法。 2、掌握ASK非相干解调的原理。 二、实验器材 1、主控&信号源、9号模块各一块 2、双踪示波器一台 3、连接线若干 三、实验原理 1、实验原理框图 ASK调制及解调实验原理框图 2、实验框图说明 ASK调制是将基带信号和载波直接相乘。已调信号经过半波整流、低通滤波后,通过门限判决电路解调出原始基带信号。 四、实验步骤 实验项目一 ASK调制 概述:ASK调制实验中,ASK(振幅键控)载波幅度是随着基带信号的变化而变化。在本项目中,通过调节输入PN序列频率或者载波频率,对比观测基带信号波形与调制输出波形,观测每个码元对应的载波波形,验证ASK调制原理。 1、关电,按表格所示进行连线。 源端口目的端口连线说明 信号源:PN15模块9:TH1(基带信号)调制信号输入 信号源:128KHz模块9:TH14(载波1)载波输入

模块9:TH4(调制输出)模块9:TH7(解调输入)解调信号输入 2、开电,设置主控菜单,选择【主菜单】→【通信原理综合实验系统】→【ASK数字调制解调】。将9号模块的S1拨为0000。 3、此时系统初始状态为:PN序列输出频率32KHz,128K载波信号的幅度3V。 4、实验操作及波形观测。 (1)分别观测调制输入和调制输出信号:以9号模块TH1为触发,用示波器分别观测9号模块TH1和TH4,验证ASK调制原理。 (2)将PN序列输出频率改为64K,观察载波个数是否发生变化。 实验项目二 ASK解调 概述:ASK解调实验中,采用的是相干解调法对调制信号进行解调。实验中通过对比观测调制输入与解调输出,观察波形是否有延时现象,并验证ASK解调原理。观测解调输出的中间观测点如TP4整流输出,TP5 LPF-ASK,深入理解ASK解调过程。 1、保持实验项目一中的连线及初始状态。 2、对比观测调制信号输入以及解调输出:以9号模块TH1为触发,用示波器分别观测9号模块TH1和TH6,调节W1,观测TP4整流输出、TP5 LPF-ASK两测试点,验证ASK解调原理。 3、以信号源的BS为触发,测9号模块LPF-ASK,观测眼图。 五、实验报告 1、分析实验电路的工作原理,简述其工作过程; 2、分析ASK调制解调原理。

相关文档