文档库 最新最全的文档下载
当前位置:文档库 › 数学建模案例分析--最优化方法建模6动态规划模型举例

数学建模案例分析--最优化方法建模6动态规划模型举例

数学建模案例分析--最优化方法建模6动态规划模型举例
数学建模案例分析--最优化方法建模6动态规划模型举例

§6 动态规划模型举例

以上讨论的优化问题属于静态的,即不必考虑时间的变化,建立的模型——线性规划、非线性规划、整数规划等,都属于静态规划。多阶段决策属于动态优化问题,即在每个阶段(通常以时间或空间为标志)根据过程的演变情况确定一个决策,使全过程的某个指标达到最优。例如:

(1)化工生产过程中包含一系列的过程设备,如反应器、蒸馏塔、吸收器等,前一设备的输出为后一设备的输入。因此,应该如何控制生产过程中各个设备的输入和输出,使总产量最大。

(2)发射一枚导弹去击中运动的目标,由于目标的行动是不断改变的,因此应当如何根据目标运动的情况,不断地决定导弹飞行的方向和速度,使之最快地命中目标。

(3)汽车刚买来时故障少、耗油低,出车时间长,处理价值和经济效益高。随着使用时间的增加则变得故障多,油耗高,维修费用增加,经济效益差。使用时间俞长,处理价值也俞低。另外,每次更新都要付出更新费用。因此,应当如何决定它每年的使用时间,使总的效益最佳。

动态规划模型是解决这类问题的有力工具,下面介绍相关的基本概念及其数学描述。

(1)阶段 整个问题的解决可分为若干个相互联系的阶段依次进行。通常按时间或空间划分阶段,描述阶段的变量称为阶段变量,记为k 。

(2)状态 状态表示每个阶段开始时所处的自然状况或客观条件,它描述了研究过程的状况。各阶段的状态通常用状态变量描述。常用k x 表示第k 阶段的状态变量。n 个阶段的决策过程有1+n 个状态。用动态规划方法解决多阶段决策问题时,要求整个过程具有无后效性。即:如果某阶段的状态给定,则此阶段以后过程的发展不受以前状态的影响,未来状态只依赖于当前状态。

(3)决策 某一阶段的状态确定后,可以作出各种选择从而演变到下一阶段某一状态,这种选择手段称为决策。描述决策的变量称为决策变量。决策变量限制的取值范围称为允许决策集合。用)(k k x u 表示第k 阶段处于状态k x 时的决策变量,它是k x 的函数,用)(k k x D 表示k x 的允许决策集合。

(4)策略 一个由每个阶段的决策按顺序排列组成的集合称为策略。由第k 阶段的状态k x 开始到终止状态的后部子过程的策略记为)}(,),(),({)(11n n k k k k k k x u x u x u x p ++=。在实际问题中,可供选择的策略有一定范围,称为允许策略集合。其中达到最优效果的策略称为最优策略。

(5)状态转移方程 如果第k 个阶段状态变量为k x ,作出的决策为k u ,那么第1+k 阶段的状态变量1+k x 也被完全确定。用状态转移方程表示这种演变规律,写作(1k k T x =+k x ,)k u

(6)最优值函数 指标函数是系统执行某一策略所产生结果的数量表示,是用来衡量策略优劣的数量指标,它定义在全过程和所有后部子过程上。指标函数的最优值称为最优值函数。 下面的方程在动态规划逆序求解中起着本质的作用。

?????-===+=+++++∈1,,1,),,(,0)()],())(,([min )(11

111)( n n k u x T x x f x f x u x v x f k k k k n n k k k k k k x D u k k k k k

称此为动态规划逆序求解的基本方程(贝尔曼方程)。

可以把建立动态规划模型归纳成以下几个步骤:

(1)将问题恰当地划分为若干个阶段;

(2)正确选择状态变量,使它既能描述过程的演变,又满足无后效性;

(3)规定决策变量,确定每个阶段的允许决策集合;

(4)写出状态转移方程;

(5)确定各阶段各种决策的阶段指标,列出计算各阶段最优后部策略指标的基本方程。

下面结合具体例子阐述建立动态规划模型的思路。 例13 生产计划问题。公司要对某产品制定n 周的生产计划,产品每周的需求量、生产和贮存费用、生产能力的限制、初始库存量等都是已知的,试在满足需求的条件下,确定每周的生产量,使n 周的总费用最少。

决策变量是第k 周的生产量,记作),,2,1(n k u k =。已知下列数据及函数关系:第k 周的需求量k d :第k 周产量为k u 时的生产费为)(k k u c ;第k 周初贮存量为k x 时这一周的贮存费为)(k k x h ;第k 周的生产能力限制为k U ;初始(0=k )及终结(n k =)时贮存量均为零。按照最短路问题的思路,设从第k 周初贮存量为k x 到(n 周末)过程结束的最小费用函数为)(k k x f ,则下列逆向递推公式成立。

?????=?=∈++=++++≤≤0

)(1,2,,)]()()([min )(11110n n k k k k k k k k U u k k x f n k X x x f x h u c x f k k , (1)

而k x 与1+k x 满足 ???==?=-+=++012,,111n k k k k x x n k d u x x ,, (2)

这里贮存量k x 是状态变量,(2)式给出了相邻阶段的状态在决策变量作用下的转移规律,称为状态转移规律。在用(1)式计算时,k x 的取值范围——允许状态集合k X 由(2)式及允许决策集合)0(k k U u ≤≤决定。

在实际问题中,为简单起见,生产费用常取)(k k u c ,0=k u ;k k k cu a u c +=)(,0>k u ,其中c 是单位产品生产费,而a 是生产准备费。贮存费用常取k k k hx x h =)(,h 是单位产品(一

周的)贮存费。

最优方程(1)和状态转移方程(2)构成了这个多阶段决策问题的动态规划模型。实际上,多阶段决策问题有时也可用静态规划方法求解,如例2的生产计划问题。

例14 资源分配问题。总量为1m 的资源A 和总量为2m 的资源B 同时分配给n 个用户,已知第k 用户利用数量k u 的资源A 和数量k v 的资源B 时,产生的效益为),(k k k v u g ,问如何分配现有资源使总效益最大。

这本来是个典型的静态规划问题:

∑==n

k k k k v u g Z Max 1),( (1)

∑=≥=n k k k u m u

t s 110,..

(2) ∑=≥=n k k k v m v

120, (3)

但是当k g 比较复杂及n 较大时,用非线性规划求解是困难的,特别是,若k g 是用表格或图形给出而无解析表达式时,则难以求解。而这种情况下,将其转化为动态规划,是一种可行的方法。 资源A ,B 每分配给一个用户划分为一个阶段,分配给第k 用户的数量是二维决策变量),(k k v u ,而把向第k 用户分配之前,分配者手中掌握的资源数量作为二维状态变量,记作),(k k y x ,这样,状态转移方程应为

???-=-=++k k k k k k v y y u x x 1

1 (4) 最优值函数),(k k k y x f 定义为将数量),(k k y x 的资源分配给第k 至第n 用户时能获得的最大效益,它满足最优方程

?????=?=≤≤≤≤+=++++≤≤≤≤0)0,0(1,2,,,0,0)],,(),([max ),(12111100n k k k k k k k k y v x u k k k f n k m y m x y x f v u g y x f k k k k

(5)

对于由(4),(5)式构成的动态规划模型,不需要),(k k k v u g ,),(k k k y x f 的解析表达式,完全可以求数值解。

例15 系统可靠性问题。一个系统由若干部件串联而成,只要有一个部件故障,系统就不能正常

运行。为提高系统的可靠性,每个部件都装置备用件,一旦原部件故障,备用件就自动进入系统。显然,备用件越多,系统可靠性越高,但费用也越大,那么在一定的总费用限制下,如何配置各部件的备用件,使系统的可靠性最高呢?

设系统有n 个部件,当部件k 装置k u 个备用件时,这个部件正常工作的概率为)(k k u p 。而每个备用件的费用为k c ,另外设总费用不应超过C 。

这个优化问题的目标函数是系统正常运行的概率,它等于n 个串联部件正常工作的概率的乘积。约束条件是备用件费用之和不应超过C ,决策变量是各部件的备用件数量,于是问题归结为

n

k k k u p Z Max 1

)(== (1)

∑==n k k k k

u C u c t s 1,..为非负整数 (2)

这个非线性规划转化为动态规划求解比较方便。

按照对n 个部件装置备用件的次序划分阶段,决策变量仍为部件k 的备用件数量k u ,而状态变量选取装配部件k 之前所容许使用的费用,记作k x ,于是状态转移方程为

k k k k u c x x -=+1 (3)

最优值函数)(k k x f 定义为状态k x 下,由部件k 到部件n 组成的子系统的最大正常工作概率,它满足

)]()([)(11)

(++∈?=k k k k x U u k k x f u p Max x f k k k (4) ], /c ,0[{)(k k x u u x U k k k k ∈=且为正整数}, 12,0,,,

?=≤≤n k C x k 1)(11=++n n x f (5)

注意,这个动态规划模型的最优方程(4)中,阶段指标)(k k u p 与最优值函数)(11++k k x f 之间的关系是相乘,而不是例13~15中的相加,这是由“两事件之交的概率等于两事件概率之积”这一性质决定的。与此相应,最优值函数的初始条件1)(11=++n n x f 等于1。

例16 任务均衡问题。一批任务由若干设备完成,问题是如何均衡地向每个设备分配各项任务,使这批任务尽早地完成。例如一高层(设N 层)办公大楼有n 部性能相同的电梯,为了在早高峰期间尽快地将乘客送到各层的办公室,决定各部电梯分段运行,即每部电梯服务一定的层段。假定根据统计资料,已知一部电梯从第i 层次开始服务j 层所需要的时间为ij t ,问如何安排这些电

梯服务的层段,使送完全部乘客的时间最短。

按照由下而上安排电梯服务层次的序号划分阶段n k ,,2,1 =。第k 部电梯(即第k 阶段)开始服务的层次为状态k x ,它服务的层数为决策k u ,满足

k k k u x x +=+1 (1) 当i x k =,j u k =时,已知第k 部电梯服务的时间为ij k k k t u x v =),(。因为对于第l k ,两部电梯而言,总的服务时间为)],(),,([l l l k k k u x v u x v Max ,所以最优值函数)(k k x f (即从第k 部到第n 部电梯总的最短服务时间)满足

)]}(),,({max[min )(11)

(++∈=k k k k k x U u k k x f u x v x f k k k }1)(,,2,1|{)(+---?==k n x N u u x U k k k k k 1,2,,,,3,2 n k N x k == (2)

0)1(1=++n f n (3)

这里我们假定每部电梯至少服务1层,且从第2层起开始服务。

应用动态规划方法求解多阶段决策问题分为两个步骤。第一是应用动态规划基本方程,逆序地求出条件最优目标函数值集合和条件最优决策集合。第二是顺序地求出最优决策序列。下面以一个例子加以说明。

例17 机器负荷分配问题。某种机器可以在高低两种不同的负荷下进行生产。在高负荷下生产时,每台机器生产产品的年产量为7吨,年折损率7.0=a (即若年初完好的机器有u 台,则年终完好的机器数为au 台),在低负荷下生产时,每台机器生产产品的年产量为5吨,年折损率9.0=b 。若开始时完好的机器数有10001=x 台,要求制定一个三年计划,在每年开始时,决定如何重新分配在两种不同的负荷下生产的完好机器数,使在三年内产品的总产量达到最大。

设第k 年初完好的机器数为k x ,分配给高负荷下生产的机器数为k u ,即在低负荷下生产的机器数为k x -k u 。这里k u 、k x 可取非负实数,如7.0=k x 表示第k 年度一台机器正常工作时间只占7.0。于是第1+k 年初完好的机器数

k k k k k k u x u x u x 2.09.0)(9.07.01-=-+=+

第k 年度的产量

k k k k k k k k u x u x u u x v 25)(57),(+=-+=

设三年总产量为V ,则问题即求解下面的线性规划问题:

∑=+=3

1)25(k k k u x V Max

1000..1=x t s

3,2,1,0,2.09.01=≤≤-=+k x u u x x k k k k k

现用动态规划来解。本题要求的是已知第一年度初拥有的完好机器数10001=x 台,用最优方案到第三年度末这段期间的产品产量,将它记为)(11x f 。为此先求:已知第j 年度初拥有的完好机器数j x ,用最优方案到第三年末这段期间的产品产量,将它记为3,2),

(=j x f j j ,列出动态规划

的基本方程 ?????==-=+=+++≤≤0)(3,2,1,2.09.0)](),([)(4

41110x f k u x x x f u x v Max x f k k k k k k k k x u k k k k

求解过程如下: )](),([)(443330333

3x f u x v Max x f x u +=≤≤ (1) 即)52()(330333

3x u Max x f x u +=≤≤,得最优解3*3x u =,从而3337)(x x f =。 )](),([)(332220222

2x f u x v Max x f x u +=≤≤ (2) 即)]2.09.0(752[)(22220222

2u x x u Max x f x u -++=≤≤)3.116.0(22022x u Max x u +=≤≤, 得最优解2*2x u =,从而2229.11)(x x f =。

)](),([)(221110111

1x f u x v Max x f x u +=≤≤ (3)

即)]2.09.0(9.1152[)(111101111u x x u Max x f x u -++=≤≤)71.1538.0(1101

1x u Max x u +-=≤≤, 得最优解0*1=u ,从而11171.15)(x x f =。

已知10001=x ,则原问题的最优值为15710)(11=x f 。

顺序求出原问题的最优解为

0*1=u ,9002.09.0112*2=-==u x x u ,6302.09.0223*3=-==u x x u

即第一年度应把年初全部完好机器投入低负荷生产,后两年每年应把年初全部完好机器投入高负荷生产,这样所得的三年总产量最高,为15710吨。

数学模型经典例题

一、把椅子往地面一放,通常只有三只脚着地,放不稳,然而只需稍挪动几次,就可以使四只脚同时着地放稳了,就四脚连线成长方形的情形建模并加以说明。(15分) 解:一、模型假设: 1. 椅子四只脚一样长,椅脚与地面的接触可以看作一个点,四脚连线呈长方形。 2. 地面高度是连续变化的,沿任何方向都不会出现间断,地面可以看成一张光滑曲面。 3. 地面是相对平坦的,使椅子在任何位置至少有三只脚同时着地。 (3分) 二、建立模型: 以初始位置的中位线为坐标轴建立直角坐标系,用θ表示椅子绕中心O 旋转的角度,椅子的位置可以用θ确定: ()f θ记为A 、B 两点与地面的距离之和 ()g θ记为C 、D 两点与地面的距离之和 由假设3可得,()f θ、()g θ中至少有一个为0。 由假设2知()f θ、()g θ是θ的连续函数。 (3分) 问题归结为: 已知()f θ和()g θ是θ的连续函数,对任意θ, ()()0f g θθ=,且设()()00,00g f =>。证明存在0θ, 使得()()000f g θθ== (3分) 三、模型求解: 令()()()h f θθθ=-g 若()()000f g =,结论成立 若()()000f g 、不同时为,不妨设()()00,00g f =>,椅子旋转()180π或后,AB 与CD 互换,即()()0,0g f ππ>=,则()(0)0,0h h π><。 (3分) 由f g 和的连续性知h 也是连续函数。根据连续函数的基本性质,必存在 ()000θθπ<<使000()0,()()h f g θθθ==即。 最后,因为00()()0f g θθ=,所以00()()0f g θθ==。 (3分) 图 5

建立数学建模案例分析

§15.4锁具装箱问题 [学习目标] 1.能表述锁具装箱问题的分析过程; 2.能表述模型的建立方法; 3.会利用排列组合来计算古典概型; 4.会利用Mathematica求解锁具装箱问题。 一、问题 某厂生产一种弹子锁具,每个锁具的钥匙有5个槽,每个槽的高度从{1,2,3,4,5,6}6个数(单位从略)中任取一数。由于工艺及其它原因,制造锁具时对5个槽的高度有两个要求:一是至少有3个不同的数;二是相邻两槽的高度之差不能为5。满足上述两个条件制造出来的所有互不相同的锁具称为一批。销售部门在一批锁具中随意地抽取,每60个装一箱出售。 从顾客的利益出发,自然希望在每批锁具中不能互开(“一把钥匙开一把锁”)。但是,在当前工艺条件下,对于同一批中两个锁具是否能够互开,有以下实验结果:若二者相对应的5个槽的高度中有4个相同,另一个槽的高度差为1,则可能互开;在其它情况下,不可能互开。 团体顾客往往购买几箱到几十箱,他们会抱怨购得的锁具中出现互开的情形。现请回答以下问题: 1.每批锁具有多少个,能装多少箱? 2.按照原来的装箱方案,如何定量地衡量团体顾客抱怨互开的程度(试对购买一、二箱者给出具体结果)。 二、问题分析与建立模型 因为弹子锁具的钥匙有5个槽,每个槽的高度从{1,2,3,4,5,6}这6个数中任取一数,且5个槽的高度必须满足两个条件:至少有3个不同的数;相邻两槽的高度之差不能为5。所以我们在求一批锁具的总数时,应把问题化为三种情况,即5个槽的高度由5个不同数字组成、由4个不同数字组成、由3个不同数字组成,分别算出各种情况的锁具个数,然后相加便得到一批锁具的总个数。在分别求这三种情况锁具个数的时候,先求出满足第1个条件的锁具个数再减去不满足第2个条件的锁具个数。在求这三种情况锁具个数的时候,主要依靠排列组合的不尽相异元素的全排列公式。 下面用一个5元数组来表示一个锁具: Key=(h1,h2,h3,h4,h5) 其中h i表示第i个槽的高度,i=1,2,3,4,5。此5元数组表示一把锁,应满足下述条件: 条件1:h i∈{1,2,3,4,5,6},i = 1,2,3,4,5。

基于层次分析法的数学建模

基于层次分析法研究云南烟草品牌竞争力 摘要 与国外知名烟草品牌相比,国内的烟草品牌存在着品牌集中度不够,品牌多、杂、散、小;品牌定位模糊,市场占有率低;品牌形象乱,品牌美誉度低,消费者购买行为习惯化导致忠诚度差等问题,因此,本文采用层次分析法对在中国烟草行业中有着举足轻重地位的云南省烟草品牌竞争力进行了评价研究,分析云南烟草业品牌现状,提出品牌竞争力的影响因素,对提高云南烟草业的品牌竞争力、解决烟草业存在的问题提供一定的帮助。 关键词:烟草品牌云南烟草品牌竞争力层次分析法 一、问题重述 近年来,我国一直推进实施卷烟工业的整合重组、卷烟品牌的淘汰和优化。但是,由于之前的卷烟品牌众多;截止到 2009 年底我国的烟草企业有 30 家,卷烟品牌 138 个,所以目前我国烟草企业之间的竞争非常激烈,行业内有众多势均力敌的竞争对手。当今卷烟产品差异化日渐缩小,消费者购买时会更看重品牌价值和品牌文化,使烟草行业内部面临着激烈的竞争,以具有代表性的云烟为实证,分析云南烟草企业的品牌竞争力及影响品牌竞争力的主要因素,并提出提高云烟品牌竞争力的对策建议。

二、问题分析 (1)云南卷烟近年情况分析 图1为云产卷烟在全国各地区的销量情况,有颜色部分为云南卷烟销量均超过15.58万箱,在全国卷烟销售中占有很大份额。2008 年卷烟品牌为16个,比2003年的36个减少了 20个。作为全国卷烟产销量最大的省份,2009 年云南的产销量达到 3667.9 亿支。在卷烟产量增幅较小的情况下,2008 年云南烟草工业税利为 577 亿元,比2003 年的 330 亿元增加了 247 亿元。因此,分析云南卷烟品牌竞争力有助于对云南卷烟品牌做出适当的规划调整,很大程度上能够促进云南经济的发展。(数据为云南中烟系统中2015年 云产卷烟销量数据) 图1

数学建模案例分析--对策与决策方法建模6决策树法

§6 决策树法 对较为复杂的决策问题,特别是需要做多个阶段决策的问题,最常用的方法是决策树法。决策树法是把某个决策问题未来发展情况的可能性和可能结果所做的预测用树状图画出来。其步骤如下: 1、用方框表示决策点。从决策点画出若干条直线或折线,每条线代表一个行动方案,这样的直线或折线称为方案枝。 2、在各方案枝的末端画一个园圈,称为状态点,从状态点引出若干直线或折线,每条线表示一个状态,在线的旁边标出每个状态的概率,称为概率枝。 3、把各方案在各个状态下的损益期望值算出标记在概率枝的末端。 4、把计算得到的每个方案的损益期望值标在状态点上,然后通过比较,选出损益期望值最小的方案为最优方案。 例1某厂准备生产一种新产品,产量可以在三种水平n1、n2、n3中作决策。该产品在市场上的销售情况可分为畅销、一般和滞销三种情况,分别为S1、S2、S3。通过调查,预测市场处于这三种情况的概率分别为0.5、0.3、0.2。三种决策在各种不同市场情况下的利润见下表: 表1 基于各种决策的各种市场情况的利润表(万元) 我们可以计算每种决策下利润的期望值: 实行在水平n1下生产的利润的期望值为:90×0.5+30×0.3-60×0.2=42 实行在水平n2下生产的利润的期望值为:60×0.5+50×0.3-10×0.2=43 实行在水平n3下生产的利润的期望值为:10×0.5+9×0.3-6×0.2=6.5 由于在水平n2下生产利润的期望值最大,因而应选择产量水平n2生产。 可以应用决策树帮助解决这样的决策问题,把各种决策和情况画在图1上: 图1

图中的方框(□)称为决策点,圆圈(○)称为状态点,从方框出发的线段称为对策分支,表示可供选择的不同对策。在圆圈下面的线段称为概率分支,表示在此种对策下可能出现的各种情况。在概率分支上注明了该情况出现的概率。在每一个概率分支的末端注明了对应对策和对应情况下的收益(利润)。在计算时,我们把相应的期望值写在相应的状态点旁边,再由比较大小后选择最优决策,在图上用∥表示舍弃非最优的对策,并在决策点上注明最优决策所对应的期望利润。 图2 利用决策树还可以解决多阶段的决策问题。 例2 某公司在开发一种新产品前通过调查推知,该产品未来的销售情况分前三年和后三年两种情况。因此生产该产品有两种可供选择的方案:建造大厂和建造小厂。如果建造大厂,投资费用5000万元,当产品畅销时,每年可获利2000万元,当产品滞销时,每年要亏损120万元。如果建造小厂,投资费用1000万元,当产品畅销时,每年可获利300万元,当产品滞销时,每年仍可获利150万元。若产品畅销可考虑在后三年再扩建,扩建投资需2000万元,随后三年每年可获利1000万元;也可不再扩建。预测这六年该产品畅销的概率为0.6,滞销的概率为0.4。试分析该公司开发新产品应如何决策? 根据问题的各种情况可以画出决策树如下:这是一个两阶段的决策问题。注意到图中有两个决策点,反映建小厂的方案中可以分成前三年和后三年两个阶段,并在后三年还要做出一次决策。 图3 把各种数据填到图适当的位置后,由后向前计算获利的期望值。由图可见应采用决策:建造大厂。 500 900 1000*3=3000 300*3=900 6.5

层次分析报告法数学建模范例

2011高教社杯全国大学生数学建模竞赛 承诺书 我们仔细阅读了中国大学生数学建模竞赛的竞赛规则. 我们完全明白,在竞赛开始后参赛队员不能以任何方式(包括、电子、网上咨询等)与队外的任何人(包括指导教师)研究、讨论与赛题有关的问题。 我们知道,抄袭别人的成果是违反竞赛规则的, 如果引用别人的成果或其他公开的资料(包括网上查到的资料),必须按照规定的参考文献的表述方式在正文引用处和参考文献中明确列出。 我们重承诺,严格遵守竞赛规则,以保证竞赛的公正、公平性。如有违反竞赛规则的行为,我们将受到严肃处理。 我们参赛选择的题号是(从A/B/C/D中选择一项填写): A 我们的参赛报名号为(如果赛区设置报名号的话):A甲0616 所属学校(请填写完整的全名): 参赛队员(打印并签名) :1. 2. 3. 指导教师或指导教师组负责人(打印并签名): 日期:2011 年8 月20 日

2011高教社杯全国大学生数学建模竞赛 编号专用页 赛区评阅编号(由赛区组委会评阅前进行编号): 全国统一编号(由赛区组委会送交全国前编号):全国评阅编号(由全国组委会评阅前进行编号):

对学生建模论文的综合评价分析 摘要 本文研究的是五篇建模论文的评价和比较问题。首先,研读分析了五篇论文,并写出评语。其次,进行综合量化评价,主要运用的方法是层次分析法和模糊综合评判。最后,依据所得权重大小对论文排序。 针对问题一,我们对论文进行了横向比较和纵向分析。依据数学建模竞赛论文评分基本原则,首先,在研读论文的基础上,对论文分块进行了横向比较,并按照优、良、中、差四个等级作出评价。其次,采取纵向分析的方法,找到论文的优点与不足,写出每篇论文的评语。最后,结合横向比较和纵向分析对论文综合评价。 针对问题二,在建立数学模型时,首先从建模理念的应用意识、数学建模、创新意识出发利用模糊评判的二级评判模型把所给论文的建模摘要、模型与求解、模型评价与推广、其他作为第一级因素集,把问题描述等作为第二级因素集。在用模糊综合评判方法时,确定评估数据(评判矩阵)和权重分配是两项关键性的工作,求权重分配时,我们通过往年评分标准确定数据后用层次分析法计算出二级权重和一级权重;对于评判矩阵,我们通过对五篇论文进行评阅打分(用平均分数作为每项得分),用每一项得分占五篇论文该项得分的比重(商值法),建立评价矩阵。 最终,我们通过matlab编程处理得出的综合量化比较结果是所给5篇论文由好到差依次为论文4,论文2,论文1,论文5,论文3。并在模型结束时付上了对五篇论文的评语。

数学建模案例分析

案例分析1: 自行车外胎的使用寿命 问题: 目前,自行车在我国是一种可缺少的交通工具。它小巧、灵活、方便、易学,而且价格适中,给广大居民带来了不小的益处。但是,自行车也有令人头痛的地方,最常见的问题莫过于扎胎了。扎胎的原因有很多,但相当一部分是由于外胎磨损,致使一些玻璃碴、小石子很容易侵入、扎破内胎。为了减少不必要的麻烦,如何估计自行车外胎的寿命,及时更换? 分析: 分析角度:由于题目里未明确指出我们是应从厂家角度,还是应从用户角度来考虑这个问题,因此需要我们自己做出合理判断。若从厂家角度,我们面对的应当是一大批自行车外胎的平均寿命的估计。这样的估计要求一定精确度和相对明确的使用环境;而从用户角度来说,面对的仅是个人的一辆车,不需要很高的精确度,这样的寿命估计更简单,易于随时了解,下面仅从用户角度进行分析。 产品的使用者需要了解产品的寿命,是基于安全性及更换的费用来考虑的。我们将这两个标准作为主要标准来分析,首先值得注意的两个关键性问题是如何定义寿命、何时为寿命的终止。寿命的定义要做到科学,直观,有可比性,在航空工业中航天飞机的使用寿命是用重复使用的次数来衡量,而工厂机器设备的寿命则以连续工作的时间来定义。本题外胎的寿命亦可用时间来表征,但由于外胎的寿命直接与其磨损速度相关;而磨损速度又与使用频率及行驶速度相互联系,致使外胎的寿命不一定与使用时间成正比(这种非正比关系使我们不能拿一辆—天跑200公里的自行车与一天只跑1公里的自行车进行寿命比较),降低了可比性。如换成自行车的路程寿命来比较,就好得多。产品寿命是在安全性和更换费用相互制约下达到的一个点,在这个点上,外胎的安全系数降到用户不可接受的最低值,更换费用(寿命越长,在一定意义上更换费用越低)也达到了最大限度的节省。 弄清了上面两个问题后,我们继续明确建立模型需要解决哪些问题及建立模型的重点难点。 自行车使用过程中,一来影响因素多,二来这些因素之间彼此相关,十分复杂,要做到比较准确地估计使用寿命,不但要对外胎的性能有相当的了解,而且对使用环境更不能忽视。当然我们由于是站在用户角度上来考虑的,相对地就可忽略一些次要的影响因素。 这样的数学模型面对着两个主要问题。一、自行车使用寿命与外胎厚度的关系,二、外胎能够抵御小石子破坏作用的最小厚度。后者可处理得相对简略些(如只考虑一块具有一般特征的小石子对外胎的破坏作用),而重点(也是难点)是第一个问题。车重、人重、轮胎性质(力学的、热学的、甚至化学的)和自行车使用频率等都左右着它们的关系。这么多相关因素,不必一一都加以考虑(用户是不会在意这么多的),有些因素,可以先不考虑,在模型的改进部分再作修改,采取逐步深入的方法,如:摩擦损耗有滑动摩擦和滚动摩擦损耗两种,由于滚动摩擦占用的时间(或路程)显然占绝对优势,因此可重点考虑。但滑动摩擦造成的一次损坏又比滚动摩擦大,在刹车使用过频的情况下,就不能不考虑了。 最后,需对得出的结果用简单清晰的文字进行说明,以供用户参考。 案例分析2:城市商业中心最优位置分析 问题: 城市商业中心是城市的基本构成要素之一。它的形成是一个复杂的定位过程。商业中心的选址涉及到各种因素制约,但其中交通条件是很重要的因素之一。即商业中心应位于城市“中心”,如果太偏离这一位置,极有可能在城市“中心”地带又形成一个商业区,造成重复建设。 某市对老商业中心进行改建规划,使居民到商业中心最方便。如果你是规划的策划者,如何建立一个数学模型来解决这个问题。

(完整版)数学建模之层次分析法

层次分析法 层次分析法是一种解决多目标的复杂问题的定性与定量相结合的决策分析方法。该方法将定量分析与定性分析结合起来,用决策者的经验判断各衡量目标能否实现的标准之间的相对重要程度,并合理地给出每个决策方案的每个标准的权数,利用权数求出各方案的优劣次序,比较有效地应用于那些难以用定量方法解决的课题。 缺点: (1)层次分析法的主观性太强,模型的搭建,判断矩阵的输入都是决策者的主观判断,往往会因为决策者的考虑不周、顾此失彼而造成失误。 (2)层次分析法模型的内部结构太过理想化,完全分离、彼此独立的层次结构在实践中很难做到。 (5)层次分析法只能从给定的决策方案中去选择,而不能给出新的、更优的策略。 1.模型的应用 用于解决多目标的复杂问题的定性与定量相结合的决策分析。 (1)公司选拔人员, (2)旅游地点的选取, (3)产品的购买等, (4)船舶投资决策问题(下载文档), (5)煤矿安全研究, (6)城市灾害应急能力, (7)油库安全性评价, (8)交通安全评价等。 2.步骤 ①建立层次结构模型 首先明确决策目标,再将各个因素按不同的属性从上至下搭建出一个有层次的结构模型,模型如下图所示。

目标层 准则层 方案层 目标层:表示解决问题的目的,即层次分析要达到的总目标。通常只有一个总目标。 准则层:表示采取某种措施、政策、方案等实现预定总目标所涉及的中间环节。 方案层:表示将选用的解决问题的各种措施、政策、方案等。通常有几个方案可选。 注意: (1)任一元素属于且仅属于一个层次;任一元素仅受相邻的上层元素的支配,并不是任一元素与下层元素都有联系; (2)虽然对准则层中每层元素数目没有明确限制,但通常情况下每层元素数最好不要超过 9 个。这是因为,心理学研究表明,只有一组事物在 9 个以内,普通人对其属性进行判别时才较为清楚。当同一层次元素数多于 9 个时,决策者对两两重要性判断可能会出现逻辑错误的概率加大,此时可以通过增加层数,来减少同一层的元素数。 ②构造判断(成对比较)矩阵 以任意一个上一层的元素为准则,对其支配的下层各因素之间进行两两比 a重要程度的衡量用Santy的1—9较。得到判断矩阵,再求出各元素的权重。 ij 标度方法给出。即

层次分析数学建模案例

基于层次分析法的护岸框架最优方案选择 【摘要】长期以来,四面六边透水框架在河道整治等工程中,因其取材方便、自身稳定性、透水性、阻水性好、适合地形变化等特性优点而被广泛的应用。但是,在抛投和使用过程中,存在被水流冲击而翻滚移位、结构强度的不足、难以合理互相钩连的问题,使框架群不能达到理想的堆砌效果。本文主要探讨如何合理设计改进现有护岸框架,以最大程度减少框架群被水流冲击翻滚移位的情况,增加框架群在使用过程中互相钩连程度和结构强度,达到减速促淤效 群间易钩连程度、生产成本及易生产、施工简易度六个因素指标为准则层,选取原有护岸框架和本文设计的三个框架模型作为方案层,运用Matlab软件计算比较,最后得出结论为:模型二(六面九边带触脚框架模型)为最优护岸框架模型。 【关键词】护岸框架层次分析法立体图形触脚设计 Matlab 一、问题重述 在江河中,堤岸、江心洲的迎水区域被水流长期冲刷侵蚀。在河道整治工程中,需要在受侵蚀严重的部位设置一些人工设施,以减弱水流的冲刷,促进

该处泥沙的淤积,以保护河岸形态的稳定。 现在常用的设施包括四面六边透水框架等。这是一种由钢筋混泥土框杆相互焊接而成的正四面体结构,常见的尺寸为边长约1m,框杆截面约0.1×0.1m,将一定数量的框架投入水中,在水中形成框杆群,可以使水流消能减速,达到减弱冲击,防冲促淤的效果。 对四面六边透水框架在抛投时和在使用过程中,可能被水流冲击而翻滚移位,使框架群不能达到理想的堆砌效果,对功能有不利影响。为了使框架在水中互相钩连,需要设计新的形状。但已有的多数设计方案都存在问题,主要集中在两个方面:结构强度不足,以及虽然原则上能够互相钩连,但依然不清楚最终堆砌而成的形状是否合理。请你建立合理的数学模型,设计一个良好的框 发挥四面六边透水框架群的优势,并尽量弥补四面六边透水框架群在结构强度、易钩连程度、翻滚移位程度上的不足,并综合考虑设计后的框架结构在架空程度、经济生产成本、施工的难易程度等指标,通过机理分析,确定出参数关系,从而设计出四面六边带触脚框架模型(模型一)、六面九边带触脚框架模型(模型二)和双四面六边透水框架群(模型三)然后,我们利用Matlab软件[2],建立框架群层次分析模型[3](模型四)通过建立目标层、决策层和方案层,可以选取施工时架空率接近4-6的程度、结构强度、易翻滚程度、易钩连程度、生产成本、施工简易度六个指标对模型一、模型二、模型三所设计的改价护岸框架和四面六边透水框架群原型进行综合分析评价,以确立出最优的新型护岸框架方案。 三、模型假设 1. 护岸框架焊接牢固。

数学建模案例分析-- 插值与拟合方法建模1数据插值方法及应用

第十章 插值与拟合方法建模 在生产实际中,常常要处理由实验或测量所得到的一批离散数据,插值与拟合方法就是要通过这些数据去确定某一类已经函数的参数,或寻求某个近似函数使之与已知数据有较高的拟合精度。插值与拟合的方法很多,这里主要介绍线性插值方法、多项式插值方法和样条插值方法,以及最小二乘拟合方法在实际问题中的应用。相应的理论和算法是数值分析的内容,这里不作详细介绍,请参阅有关的书籍。 §1 数据插值方法及应用 在生产实践和科学研究中,常常有这样的问题:由实验或测量得到变量间的一批离散样点,要求由此建立变量之间的函数关系或得到样点之外的数据。与此有关的一类问题是当原始数据 ),(,),,(),,(1100n n y x y x y x 精度较高,要求确定一个初等函数)(x P y =(一般用多项式或分段 多项式函数)通过已知各数据点(节点),即n i x P y i i ,,1,0,)( ==,或要求得函数在另外一些点(插值点)处的数值,这便是插值问题。 1、分段线性插值 这是最通俗的一种方法,直观上就是将各数据点用折线连接起来。如果 b x x x a n =<<<= 10 那么分段线性插值公式为 n i x x x y x x x x y x x x x x P i i i i i i i i i i ,,2,1,,)(11 1 11 =≤<--+--= ----- 可以证明,当分点足够细时,分段线性插值是收敛的。其缺点是不能形成一条光滑曲线。 例1、已知欧洲一个国家的地图,为了算出它的国土面积,对地图作了如下测量:以由西向东方向为x 轴,由南向北方向为y 轴,选择方便的原点,并将从最西边界点到最东边界点在x 轴上的区间适当的分为若干段,在每个分点的y 方向测出南边界点和北边界点的y 坐标y1和y2,这样就得到下表的数据(单位:mm )。 根据地图的比例,18 mm 相当于40 km 。

[实用参考]高中常见数学模型案例.doc

高中常见数学模型案例 中华人民共和国教育部20KK 年4月制定的普通高中《数学课程标准》中明确指出:“数学探究、数学建模、数学文化是贯穿于整个高中数学课程的重要内容”,“数学建模是数学学习的一种新的方式,它为学生提供了自主学习的空间,有助于学生体验数学在解决问题中的价值和作用,体验数学与日常生活和其他学科的联系,体验综合运用知识和方法解决实际问题的过程,增强应用意识;有助于激发学生学习数学的兴趣,发展学生的创新意识和实践能力。”教材中常见模型有如下几种: 一、函数模型 用函数的观点解决实际问题是中学数学中最重要的、最常用的方法。函数模型与方法在处理实际问题中的广泛运用,两个变量或几个变量,凡能找到它们之间的联系,并用数学形式表示出来,建立起一个函数关系(数学模型),然后运用函数的有关知识去解决实际问题,这些都属于函数模型的范畴。 1、正比例、反比例函数问题 例1:某商人购货,进价已按原价a 扣去25%,他希望对货物订一新价,以便按新价让利销售后仍可获得售价25%的纯利,则此商人经营者中货物的件数P 与按新价让利总额P 之间的函数关系是___________。 分析:欲求货物数P 与按新价让利总额P 之间的函数关系式,关键是要弄清原价、进价、新价之间的关系。 若设新价为b ,则售价为b (1-20%),因为原价为a ,所以进价为a (1-25%) 解:依题意,有25.0)2.01()25.01()2.01(?-=---b a b 化简得a b 4 5=,所以x a bx y ??==2.0452.0,即+∈=N x x a y ,4 2、一次函数问题 例2:某人开汽车以60km/h 的速度从A 地到150km 远处的B 地,在B 地停留1h 后,再以50km/h 的速度返回A 地,把汽车离开A 地的路P (km )表示为时间t (h )的函数,并画出函数的图像。 分析:根据路程=速度×时间,可得出路程P 和时间t 得函数关系式P (t );同样,可列出v(t)的关系式。要注意v(t)是一个矢量,从B 地返回时速度为负值,重点应注意如何画这两个函数的图像,要知道这两个函数所反映的变化关系是不一样的。 解:汽车离开A 地的距离Pkm 与时间th 之间的关系式是:?? ???∈--∈∈=]5.6,5.3(),5.3(50150]5.3,5.2(,150]5.2,0[,60t t t t t x ,图略。 速度vkm/h 与时间th 的函数关系式是:?? ???∈-∈∈=)5.6,5.3[,50)5.3,5.2[,0)5.2,0[,60t t t v ,图略。 3、二次函数问题 例3:有L 米长的钢材,要做成如图所示的窗架,上半部分为半圆,下半部分为六个全等小矩形组成的矩形,试问小矩形的长、宽比为多少时,窗所通过的光线最多,并具体标出窗框面积的最大值。 解:设小矩形长为P ,宽为P ,则由图形条件可得:l y x x =++911π ∴x l y )11(9π+-= 要使窗所通过的光线最多,即要窗框面积最大,则: )44(32)442(644])11([322622 222 2ππππππ+++-+-=+-+=+=l l x x lx x xy x s

经典的数学建模例子1

经典的数学建模例子 一、摘要 SARS SARS就是传染性非典型肺炎,全称严重急性呼吸综合症(Severe Acute Respiratory Syndromes),简称SARS,是一种因感染SARS相关冠状病毒而导致的以发热、干咳、胸闷为主要症状,严重者出现快速进展的呼吸系统衰竭,是一种新的呼吸道传染病,传染性极强、病情进展快速。 当一种传染病流行的时候,会给人们的工作学习带来很大的不变,能有效地进行隔离、预防,会大大减少人员的得病率,当一种传染病开始流行时,在一定的条件下其趋势就像真菌的繁殖曲线,如果能通过计算预测但大概推算出其发病率高峰时期,及时的隔离预防。那会给社会人力带来很大的方便,当年SARS的爆发给我们带来和大的不便和损失,因此本论文就以SARS为例,来研究传染病的传播规律、为预测和控制传染病蔓延创造条件和帮助。 1 二、正文 1、模型的背景问题描述 SARS(Severe Acute Respiratory Syndrome,严重急性呼吸道综合症, 俗称:非典型肺炎)是21世纪第一个在世界范围内传播的传染病。SARS的爆发和蔓延给我国的经济发展和人民生活带来了很大影响,我们从中得到了许多重要的经验和教训,认识到定量地研究传染病的传播规律、为预测和控制传染病蔓延创造条件的重要性。 要求:(1)建立传染病传播的指数模型,评价其合理性和实用性。 (2)建立一个适合的模型,说明为什么优于问题1中的模型;特别要说明怎样才能 3 建立一个真正能够预测以及能为预防和控制提供可靠、足够的信息的模型,这样做的困难在哪里?对于卫生部门所采取的措施做出评论,如:提前或延后5天采取严格的隔离措施,对疫情传播所造成的影响做出估计。表中提供的数据供参考。 (3)说明建立传染病数学模型的重要性。 2、模型假设 (一)答;

层次分析法数学建模范例

对学生建模论文的综合评价分析 摘要 本文研究的是五篇建模论文的评价和比较问题。首先,研读分析了五篇论文,并写出评语。其次,进行综合量化评价,主要运用的方法是层次分析法和模糊综合评判。最后,依据所得权重大小对论文排序。 针对问题一,我们对论文进行了横向比较和纵向分析。依据数学建模竞赛论文评分基本原则,首先,在研读论文的基础上,对论文分块进行了横向比较,并按照优、良、中、差四个等级作出评价。其次,采取纵向分析的方法,找到论文的优点与不足,写出每篇论文的评语。最后,结合横向比较和纵向分析对论文综合评价。 针对问题二,在建立数学模型时,首先从建模理念的应用意识、数学建模、创新意识出发利用模糊评判的二级评判模型把所给论文的建模摘要、模型与求解、模型评价与推广、其他作为第一级因素集,把问题描述等作为第二级因素集。在用模糊综合评判方法时,确定评估数据(评判矩阵)和权重分配是两项关键性的工作,求权重分配时,我们通过往年评分标准确定数据后用层次分析法计算出二级权重和一级权重;对于评判矩阵,我们通过对五篇论文进行评阅打分(用平均分数作为每项得分),用每一项得分占五篇论文该项得分的比重(商值法),建立评价矩阵。 最终,我们通过matlab编程处理得出的综合量化比较结果是所给5篇论文由好到差依次为论文4,论文2,论文1,论文5,论文3。并在模型结束时付上了对五篇论文的评语。 关键词:层次分析法;模糊综合评判;统计分析:matlab编程;论文评价 一、问题重述 数学建模是利用数学方法解决实际问题的一种实践。即通过抽象、简化、假设、引进变量等处理过程后,将实际问题用数学方式表达,建立起数学模型,然后运用先进的数学方法及计算机技术进行求解。将各种知识综合应用于解决实际问题中,是培养和提高同学们应用所学知识分析问题、解决问题的能力的必备手段之一。 在实际过程中用那一种方法建模主要是根据我们对研究对象的了解程度和建模目的来决定。机理分析法建模的具体步骤大致可见下图。

数学建模在材料科学中的应用举例

数学建模在材料科学中的应用举例 现代科学技术发展的一个重要特征是各门科学技术与数学的结合越来越紧密。数学的应用使科学技术日益精确化、定量化,科学的数学化已成为当代科学发展的一个重要趋势。 数学模型是数学科学连接其他非数学学科的中介和桥梁,它从定量的角度对实际问题进行数学描述,是对实际问题进行理论分析和科学研究的有力工具。数学建模是一种具有创新性的科学方法,它将现实问题简化,抽象为一个数学问题或数学模型,然后采用适当的数学方法求解,进而对现实问题进行定量分析和研究,最终达到解决实际问题的目的。计算机技术的发展为数学模型的建立和求解提供了新的舞台,极大地推动了数学向其他技术科学的渗透。 材料科学作为21世纪的重要基础科学之一,同样离不开数学。通过建立适当的数学模型对实际问题进行研究,已成为材料科学研究和应用的重要手段之一。从材料的合成、加工、性能表征到材料的应用都可以建立相应的数学模型。有关材料科学的许多研究论文都涉及到了数学模型的建立和求解,甚至产生了一门新的边缘学科——计算材料学(Computational Materials Science),正是这些数学手段才使材料研究脱离了原来的试错法(Trial or Error)研究,真正成为一门科学。 以下给出一些与材料科学有关的具体建模实例。 例1:金属中空位形成能建模研究 1)建模准备 金属中空位研究的重要性,研究空位缺陷的形成能。 高能粒子对材料性能的影响,尤其是反应堆的金属材料在高能粒子的辐射作用下,性质如何变化,如何保证其安全运行? 固体受辐射后产生三种效应:电离、蜕变和离位(产生空位和填隙粒子),其中离位是金属中最主要的辐照效应。

数学建模之层次分析法

层次分析法 层次分析法就是一种解决多目标的复杂问题的定性与定量相结合的决策分析方法。该方法将定量分析与定性分析结合起来,用决策者的经验判断各衡量目标能否实现的标准之间的相对重要程度,并合理地给出每个决策方案的每个标准的权数,利用权数求出各方案的优劣次序,比较有效地应用于那些难以用定量方法解决的课题。 缺点: (1)层次分析法的主观性太强,模型的搭建,判断矩阵的输入都就是决策者的主观判断,往往会因为决策者的考虑不周、顾此失彼而造成失误。 (2)层次分析法模型的内部结构太过理想化,完全分离、彼此独立的层次结构在实践中很难做到。 (5)层次分析法只能从给定的决策方案中去选择,而不能给出新的、更优的策略。 1、模型的应用 用于解决多目标的复杂问题的定性与定量相结合的决策分析。 (1)公司选拔人员, (2)旅游地点的选取, (3)产品的购买等, (4)船舶投资决策问题(下载文档), (5)煤矿安全研究, (6)城市灾害应急能力, (7)油库安全性评价, (8)交通安全评价等。 2、步骤 ①建立层次结构模型 首先明确决策目标,再将各个因素按不同的属性从上至下搭建出一个有层次的结构模型,模型如下图所示。

准则层 目标层 方案层 目标层:表示解决问题的目的,即层次分析要达到的总目标。通常只有一个总目标。 准则层:表示采取某种措施、政策、方案等实现预定总目标所涉及的中间环节。 方案层:表示将选用的解决问题的各种措施、政策、方案等。通常有几个方案可选。 注意: (1)任一元素属于且仅属于一个层次;任一元素仅受相邻的上层元素的支配,并不就是任一元素与下层元素都有联系; (2)虽然对准则层中每层元素数目没有明确限制,但通常情况下每层元素数最好不要超过 9 个。这就是因为,心理学研究表明,只有一组事物在 9 个以内,普通人对其属性进行判别时才较为清楚。当同一层次元素数多于 9 个时,决策者对两两重要性判断可能会出现逻辑错误的概率加大,此时可以通过增加层数,来减少同一层的元素数。 ②构造判断(成对比较)矩阵 以任意一个上一层的元素为准则,对其支配的下层各因素之间进行两两比较。得到判断矩阵,再求出各元素的权重。ij a 重要程度的衡量用Santy 的1—9标度方法给出。即 设各元素C 1,C 2,… , C n 对目标O 两两比较后的重要性 ,(),ij i j ij n n a C A a ?==0,1ij ji ij a a a >=,则得到比较矩阵

数学建模案例分析--灰色系统方法建模2灰色预测模型GM(1-1)及其应用

§2 灰色预测模型GM(1,1)及其应用 蠕变是材料在高温下的一个重要性能。处于高温状态下的材料长期受到载荷作用时,即使其载荷较低,并且在短时间的高温拉伸试验中材料不发生变形,但在此情况下仍会有微小的蠕变,极端的情况下,甚至会使材料发生破坏。高温材料多应用于各种车辆的发动机及冶金厂中各种设备上,如果因蠕变引起破坏,可能造成很大的事故。 为了保证设备的安全可靠,在某一使用温度下,预先知道该材料对不同载荷应力下断裂的时间是很重要的。过去,人们都是通过蠕变试验测量断裂时间。而做蠕变试验时,需要很长时间才能得到结果,即使通过试验得出的数据,也只是对某几个具体试样而言,存在很大的偶然性,不能代表普遍的规律。如果将实测的数据用灰色系统理论来处理,可以预测在某一温度下的任何载荷应力的断裂时间。 一、灰色预测模型GM (1,1) 建模步骤如下: (1)GM (1,1)代表一个白化形式的微分方程: u aX dt dX =+)1() 1( (1) 式中,u a ,是需要通过建模来求得的参数;) 1(X 是原始数据) 0(X 的累加生成(AGO )值。 (2)将同一数据列的前k 项元素累加后生成新数据列的第k 项元素,这就是数据处理。表示为: ∑==k n n X k X 1 )0() 1()()( (2) 不直接采用原始数据) 0(X 建模,而是将原始的、无规律的数据进行加工处理,使之变得较有规 律,然后利用生成后的数据列来分析建模,这正是灰色系统理论的特点之一。 (3)对GM (1,1),其数据矩阵为 ???? ?? ? ? ?+--+-+-=1)]()1([5.01)]3()2([5.01)]2()1([5.0)1()1()1()1()1()1(N X N X X X X X B (3) 向量T N N X X X Y )](,),3(),2([)0()0()0( = (4)作最小二乘估计,求参数u a , N T T Y B B B u a 1)(?-=??? ? ??=α (4) (5)建立时间响应函数,求微分方程(1)的解为 a u e a u X t X at +-=+-))1(()1(?)0()1( (5)

数学建模微分方程的应用举例

第八节 数学建模——微分方程的应用举例 微分方程在物理学、力学、经济学和管理科学等实际问题中具有广泛的应用,本节我们将集中讨论微分方程的实际应用,尤其是微分方程经济学中的应用. 读者可从中感受到应用数学建模的理论和方法解决实际问题的魅力. 内容分布图示 ★衰变问题 ★逻辑斯谛方程 ★价格调整问题 ★人才分配问题模型 ★追迹问题 ★返回 内容要点: 一、衰变问题 镭、铀等放射性元素因不断放射出各种射线而逐渐减少其质量, 这种现象称为放射性物质的衰变. 根据实验得知, 衰变速度与现存物质的质量成正比, 求放射性元素在时刻t 的质量. 用x 表示该放射性物质在时刻t 的质量, 则dt dx 表示x 在时刻t 的衰变速度, 于是“衰变速度与现存的质量成正比”可表示为 .kx dt dx -= (8.1) 这是一个以x 为未知函数的一阶方程, 它就是放射性元素衰变的数学模型, 其中0>k 是比例常数, 称为衰变常数, 因元素的不同而异. 方程右端的负号表示当时间t 增加时, 质量x 减少. 解方程(8.1)得通解.kt Ce x -=若已知当0t t =时, ,0x x =代入通解kt Ce x -=中可得 ,00kt e x C -= 则可得到方程(8.1)特解 ,)(00t t k e x x --= 它反映了某种放射性元素衰变的规律. 注: 物理学中, 我们称放射性物质从最初的质量到衰变为该质量自身的一半所花费的时间为半衰期, 不同物质的半衰期差别极大. 如铀的普通同位素(U 238 )的半衰期约为50亿年; 通常的镭(Ra 226 )的半衰期是上述放射性物质的特征, 然而半衰期却不依赖于该物质的初始 量, 一克 Ra 226 衰变成半克所需要的时间与一吨Ra 226衰变成半吨所需要的时间同样都是 1600年, 正是这种事实才构成了确定考古发现日期时使用的著名的碳-14测验的基础. 二、 逻辑斯谛方程: 逻辑斯谛方程是一种在许多领域有着广泛应用的数学模型, 下面我们借助树的增长来建立该模型. 一棵小树刚栽下去的时候长得比较慢, 渐渐地, 小树长高了而且长得越来越快, 几年不见, 绿荫底下已经可乘凉了; 但长到某一高度后, 它的生长速度趋于稳定, 然后再慢慢降下

初中数学建模常见类型及举例

初中数学建模初探 随着经济的飞速发展和计算机的广泛应用,数学日益成为一种技术,其手段就是计算和数学建模.数学建模是解决实际问题的过程,在这一个过程中,建立数学模型是最关键、最重要的环节,也是学生的困难所在。它需要运用数学的语言和工具,对部分现实世界的信息(现象、数据等)加以简化、抽象、翻译、归纳,然后利用合适的数学工具描述事物特征的一种数学方法。一、在初中数学教学中,要使学生初步学会建立数学模型的方法,提高学生应用数学知识解决实际问题的能力,应着重注意以下几点: 1、审题 建立数学模型,首先要认真审题。苏联著名数学家斯托利亚尔说过,数学教学也就是数学语言的教学。实际问题的题目一般都比较长,涉及的名词、概念较多,因此要耐心细致地读题,深刻分解实际问题的背景,明确建模的目的;弄清问题中的主要已知事项,尽量掌握建模对象的各种信息;挖掘实际问题的内在规律,明确所求结论和对所求结论的限制条件。 2、简化 根据实际问题的特征和建模的目的,对问题进行必要简化。抓住主要因素,抛弃次要因素,根据数量关系,联系数学知识和方法,用精确的语言作出假设。

3、抽象 将已知条件与所求问题联系起来,恰当引入参数变量或适当建立坐标系,将文字语言翻译成数学语言,将数量关系用数学式子、图形或表格等形式表达出来,从而建立数学模型。 按上述方法建立起来的数学模型,是不是符合实际,理论上、方法上是否达到了优化,在对模型求解、分析以后通常还要用实际现象、数据等检验模型的合理性。 二、初中数学建模的主要类型 一切数学概念、公式、方程式和算法系统等都是数学模型,可以说,数学建模的思想渗透在中小学数学教材中。因此,只要我们深入钻研教材,挖掘教材所蕴涵的应用数学的材料,并从中总结提炼,就能找到数学建模教学的素材。例如:最大最小问题,包括面(体)积最大(小)、用料最省、费用最低、效益最好等,可以建立函数或不等式模型。行程、工程、浓度问题,可以建立方程(组)、不等式(组)模型。 1、函数模型 当涉及到总运费最少或利润最大等决策性问题时,可通过建立函数模型,将实际问题转化为数学问题,运用函数的相关知识来解决. 2、直角三角形模型

层次分析法数学建模范例

承诺书 我们仔细阅读了中国大学生数学建模竞赛的竞赛规则. 我们完全明白,在竞赛开始后参赛队员不能以任何方式(包括电话、电子邮件、网上咨询等)与队外的任何人(包括指导教师)研究、讨论与赛题有关的问题。 我们知道,抄袭别人的成果是违反竞赛规则的, 如果引用别人的成果或其他公开的资料(包括网上查到的资料),必须按照规定的参考文献的表述方式在正文引用处和参考文献中明确列出。 我们郑重承诺,严格遵守竞赛规则,以保证竞赛的公正、公平性。如有违反竞赛规则的行为,我们将受到严肃处理。 我们参赛选择的题号是(从A/B/C/D中选择一项填写): A 我们的参赛报名号为(如果赛区设置报名号的话):A甲0616 所属学校(请填写完整的全名): 参赛队员(打印并签名) :1. 2. 3. 指导教师或指导教师组负责人(打印并签名): 日期: 2011 年 8 月20 日

编号专用页 赛区评阅编号(由赛区组委会评阅前进行编号): 赛区评阅记录(可供赛区评阅时使用): 评 阅 人 评 分 备 注 全国统一编号(由赛区组委会送交全国前编号): 全国评阅编号(由全国组委会评阅前进行编号):

对学生建模论文的综合评价分析 摘要 本文研究的是五篇建模论文的评价和比较问题。首先,研读分析了五篇论文,并写出评语。其次,进行综合量化评价,主要运用的方法是层次分析法和模糊综合评判。最后,依据所得权重大小对论文排序。 针对问题一,我们对论文进行了横向比较和纵向分析。依据数学建模竞赛论文评分基本原则,首先,在研读论文的基础上,对论文分块进行了横向比较,并按照优、良、中、差四个等级作出评价。其次,采取纵向分析的方法,找到论文的优点与不足,写出每篇论文的评语。最后,结合横向比较和纵向分析对论文综合评价。 针对问题二,在建立数学模型时,首先从建模理念的应用意识、数学建模、创新意识出发利用模糊评判的二级评判模型把所给论文的建模摘要、模型与求解、模型评价与推广、其他作为第一级因素集,把问题描述等作为第二级因素集。在用模糊综合评判方法时,确定评估数据(评判矩阵)和权重分配是两项关键性的工作,求权重分配时,我们通过往年评分标准确定数据后用层次分析法计算出二级权重和一级权重;对于评判矩阵,我们通过对五篇论文进行评阅打分(用平均分数作为每项得分),用每一项得分占五篇论文该项得分的比重(商值法),建立评价矩阵。 最终,我们通过matlab编程处理得出的综合量化比较结果是所给5篇论文由好到差依次为论文4,论文2,论文1,论文5,论文3。并在模型结束时付上了对五篇论文的评语。 关键词:层次分析法;模糊综合评判;统计分析:matlab编程;论文评价

经典的数学建模例子

一、摘要 SARS SARS就是传染性非典型肺炎,全称严重急性呼吸综合症(Severe Acute Respiratory Syndromes),简称SARS,是一种因感染SARS相关冠状病毒而导致的以发热、干咳、胸闷为主要症状,严重者出现快速进展的呼吸系统衰竭,是一种新的呼吸道传染病,传染性极强、病情进展快速。 当一种传染病流行的时候,会给人们的工作学习带来很大的不变,能有效地进行隔离、预防,会大大减少人员的得病率,当一种传染病开始流行时,在一定的条件下其趋势就像真菌的繁殖曲线,如果能通过计算预测但大概推算出其发病率高峰时期,及时的隔离预防。那会给社会人力带来很大的方便,当年SARS的爆发给我们带来和大的不便和损失,因此本论文就以SARS为例,来研究传染病的传播规律、为预测和控制传染病蔓延创造条件和帮助。 1

二、正文 1、模型的背景问题描述 SARS(Severe Acute Respiratory Syndrome,严重急性呼吸道综合症, 俗称:非典型肺炎)是21世纪第一个在世界范围内传播的传染病。SARS的爆发和蔓延给我国的经济发展和人民生活带来了很大影响,我们从中得到了许多重要的经验和教训,认识到定量地研究传染病的传播规律、为预测和控制传染病蔓延创造条件的重要性。

要求:(1)建立传染病传播的指数模型,评价其合理性和实用性。 (2)建立一个适合的模型,说明为什么优于问题1中的模型;特别要说明怎样才能 3

建立一个真正能够预测以及能为预防和控制提供可靠、足够的信息的模型,这样做的困难在哪里?对于卫生部门所采取的措施做出评论,如:提前或延后5天采取严格的隔离措施,对疫情传播所造成的影响做出估计。表中提供的数据供参考。 (3)说明建立传染病数学模型的重要性。 2、模型假设 (一)答; 从上列图表可知道在4月20到5月7日期已确诊的发病人总数呈指数增长趋势5月20到6月1日增长缓慢,6月1日到6月12日总数几乎不变。其形式与生物学中真菌繁殖总数相似。 从表格和准备中,作如下假设。 1、不考虑SARS在人体中的潜伏期,也就是说当人一旦传染就表现出来立即就具有传染 性。 2、当健康者满足一地条件时,健康者才被传染。 3、整个发病期间为自然状态也就是无人为外界干扰,政府等其它形式进行隔离预防。 4、忽略特殊情况,如个别人体质弱或强的。 假定初始时刻得病例数为M0。平均每位病人每天可传染N个人,可传染他人的时间为T 天。则在T天内,病例数目的增长随着时间t(单位天)的关系是; M(t)=M0(1+N)t 如果不考虑对传染期的限制则病例数将按照指数规律增长考虑,当传染期T的作用后,变化将显著偏离指数规律,增长速度会放慢。把达到T天的病例从可以引发直接传染的基数中去掉,为了方便,从开始到高峰期间,均采用同样的N值,(从拟合这一阶段的数据库定出),到达高峰之后在10天的范围内逐步调整N值,到比较小,然后保持不变,拟合后在控制阶段的全部数据。 评价及其合理性和实用性; 本模型主要有三个参数M0、N、T,且都具有实际意义。T可理解为平均每个病人在被发现前后可以造成直接传染的期限,在此期限后失去传染能力,可能原因是被隔离、病愈或死去等等。N表示某种社会条件下平均每位病人每天传播的人数(但并非文中所述的一个病人的感染他人的平均概率)。整个模型抓住了SARS传播过程中两个主要特征:传染期T和传染率N,反映了SARS的传播过程。使人很容易理解该模型。 模型灵活 通过调整M0、N、T值,就可以描述不同地区,不同环境下SARS的初期传播规律预测准确 通过模型对表格的调查结果进行了分析,得到的预测值与实际统计数据较接近。可大致预测出疫情的爆发点和发展趋势。 预期模型的缺点: 1、对于如何确定对于三个参数M0、N、T,未给出一般的原则或算法,只能通过对 于已发病地区的数据进行拟合得出。按照作者的表述,N值是以病发高峰为界取各段的平均值作为传染概率,虽然简化了运算,但是在现实情况下,不同地区的N值是不同的。在实际应用中,如果没有一定量的数据,是无法得出N值的。在我们对该模型

相关文档